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Introduction

The theory of harmonic manifolds has a relatively long history. It started with a work
of H.S. Ruse in 1930, who made an attempt to find a solution for the equation Af=0 on
a general Riemannian manifold which depends only on the geodesics distance r(x, .) . His
main aim was to use these functions and develop harmonic analysis on Riemannian

manifolds similar to the euclidean case.
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It turned out that such radial harmonic functions exist only in very special cases,
namely, in the cases where the density function wy 1= -,/W in the normal
coordinate neighbourhood {xl, ,xn} p around each point p depends only on 1(p,.).
From the well-known symmetry up(q) = wq(p) it can be easily seen that this is the case

if and only if the function wp(q) is of the form

A Riemannian manifold was defined to be harmonic precisely when its density function

wp(q) satisfies this radial property.

For a precise formulation one can introduce the notions of global —local — and
infinitesimal harmonicity [#]. Global and local harmonicity refer to the cases that the
above radial property of the density function is global or local, respectively. For

(k)
infinitesimal harmonicity we assume only that the derivatives VC ¢ Y w.r.t. the
p = &p

unit vectors ¢ p € Tp(Mn) define constant functions on the manifold. These notions are

obviously equivalent for analytic Riemannian manifolds [4].

(k)
The derivatives Ve ¢ Wp can be expressed with the help of the curvature tensor
p - &p

and its covariant derivatives. For example, we have

(2) 1
v W =- R(£ ,f ):
£p£p p-  37%pSp
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where R(X,Y) is the Ricci curvature, so the harmonic manifolds of any type are Einstein
manifolds. On the other hand, any Einstein metric is analytic in the harmonic and normal

coordinates by Kazdan—De Turck theorem [48]. Thus we get:

The global, local and infinitesimal harmonicity are equivalent properties.

We mention that in another paper we shall prove that also those spaces which satisfy
the Legendre curvature condition Rij /k + Rjk /i + Ry li= 0 are real analytic. It follows

that all the commutative spaces and D’Atri spaces are analytic.
An interesting equivalent formulation of harmonicity was found by Willmore [26]:

A Riemannian s is harmonic if and only if for any h nic fynction he classi
mean— heorem

u(p) = —————Jfg_udS, ()

J Sp;IdS p; x) B

holds, where dS . (x) meansg the induced measure on the geodesic sphere S with the
ntr radiug r .

centre p and radius r.

Any two—point homogeneous manifold is obviously harmonic. The main problem
about the harmonic manifolds was to prove the Lichnevouri¢z conjecture [19] asserting

the converse statement: Any harmonic manifold is two—point homogeneous.

The conjecture has been proved so far only for dimensions <4 [19] ,[25], [4]. All
these solutions use the dimensionality very heavily, and did not give any hope for higher
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dimensions. In higher dimensions, only partial results were proved using an additional

strong assumption. One such theorem is the following :

Any locally symmetric harmoni¢c manifold ig two—point homogeneous.

The harmonic spaces were investigated from a local point of view in most cases.
Between the few global investigations we mention the Allamigeon theorem [2] and the
"nice imbedding theorem" of Besse [4]. The first theorem asserts that any complete

d or to a Blaschke

simply connected harmonic manifold is diffeomorphic either to R
manifold, which has simple closed geodesics with the same length. In Besse’s theorem an
isometric imbedding ¢ : M — IRd is constructed for compact simply connected
harmonic spaces such that ¢(M™) is minimal in certain sphere and furthermore, all the
geodesics are congruent screw lines in RY . Both theorems will be used in the present

paper. Our aim is to prove the conjecture for simply connected compact harmonic spaces.

Using the universal covering spaces, this proof gives a proof of the Lichnerowicz conjecture
for the compact (infinitesimal, local or global) harmonic manifolds which have a finite
fundamental group (and hence a compact universal covering space).

The author would like to express many thanks to Professors H. Karcher, O.
Kobayashi and K. Nomizu for the helpful conversations while he was staying at

Max—Planck—Institut fir Mathematik in Bonn.
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1. The Basi mmutativity in harmonic spa

For the sake of simplicity we investigate in this paper simply connected complete

Riemannian manifolds (M",g) . The metric g is assumed to be positive definite.

Let (xl, ,xn) D be a normal coordinate neighbourhood around a point p € M™ .

The function

stands for the volume density in the space. We introduce also the polar coordinate
neighbourhood (rp,(p) around p , where rp(q) =r(p,q) denotes the geodesic distance
between p and q, and ¢ represents the points of the unit sphere in the tangent space
Tp(Mn) . In this system the function w, can be written in the form wp(r,qp) and the

density with respect to (rp,tp) is

A Riemannian manifold is said to be harmonic if the density @p is a radial or
spherical symmetric function around any point p € MY | i.e. it depends only on the

variable r and thus it can be written as © p(1') :

It can be proved that the functions E)p(r) , pe M, are also independent of the

points p € M® in a harmonic space [4]. This statement follows from the symmet
Iy

0,(1p(a)) = © (1, (p)) easily.
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Now let Sp R be a geodesic sphere around p with the radius R whose
Minkowskian mean curvature is denoted by ap(R,qp) . The formula

(11) oy (Re) =0 (Re)/6,(Rg) =T + LB = _ (a1 )(R )

is rather well known [4], where the comma means the derivation w.r.t. radial direction

and & :=-— Vivl is the Laplace operator in the space.

One can prove from this formula that a Riemannian manifold is harmonic if the mean
curvature function ap(R,.) is a radial function of the form o (r,9) = a(x(p,.)) . The
statement can be proved solving the equation

14

n-1 _w (r
o) =5 =G

with the initial condition w(0)=1.

We also mention another connection between the Laplace operator A and the mean

~ ~N

curvature function a'p(l',lp) . Let v (resp. &) be the covariant derivative (resp. the
Laplace operator) of a geodesics sphere Sp r whose second fundamental form is denoted by

Mp (X,Y) . Then the formula

vAH(X,X) = X + X() - (vyX) - () = 7 %(X,X) + M(X,X){’

bolds for a function f in M™ and a vector field X tangent to Sp . So we get
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(1.2) Af=af-1""' —ap(r,ga)f’ ,
and therefore the action of A on a radial function { (around p) is

(1.3) af:=—f"" — ap(r,:p)f’ .

We introduce also the so—called averaging operators Ap , pEM", which play a

very important role in the following discussions.

Let f be a smooth function of M™ . Then the averaged function A p(f) is defined as
a radial function around p whose values are at the points of a geodesic sphere S p,r just

the average of f on Sp,r ,l.e.

1
(1.4) Ap(f)(l.') =7 Bp(l',(P)d(P ff(r,'lp)ep(r,go)d(p .

The function Ap(f) is defined only locally, namely for the small values of r which
are less than the injectivite radius of M™ at p e M" . On the other hand, Ap(f) is
globally defined for any p € M™ if the space is a compact Blaschke manifold (i.e. for
which the cut values are equal at any.tangent space Tp(Mn)) or if it is a non—compact
complete manifold with an infinite injectivity radius. In the last case M™ is diffeomorphic
to R® by the exponential map. We call these spaces as globally averageable spaces. The
compact Blaschke manifolds have simple closed geodesics with a common length 2L such
that the geodesics, starting from a point m , intersect the cut locus at the distance L
orthogonally (see Corollary 5.42 and Proposition 7.9 in [4]). From this statement we get
easily that the averaged function Ap({) of a function f of class CE isa globally defined

function of class Ck in any globally averageable space.



By the Allamigeon theorem any simply connected complete harmonic manifold is

globally averageable space.
Lemma 1.1 (Basic Commutativity in harmonic spaces).

A Riemannian manifold (M",g) is harmonic if the Laplace operator A commutes

with the local averaging operators Ap , pe M?ie.
(1.5) Ap(A f)=a Ap(f)
yields for any smooth function f.

Proof. If M" is harmonic then by (1.2), (1.3) and by the Stokes theorem we get

— - AT I =
Ao =A(aD-A (')~ A (o ()
(1.6)
- _ rr_ ’
=~ (A0) — o (DAD) =4 A0
which proves the commutativity in harmonic manifolds.
Conversely, if commutativity:

(17) Aan=aA(0=—(AM)"" -0 5e)A D)

holds, then the mean curvature
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is a radial function and the space is harmonic.

The above characterization of harmonic manifolds has serveral advantages. To make

these perfectly clear we investigate here also the heat kernel on these manifolds.

At first we consider a compact Riemannian manifold M™ and the several

investigations for the non—compact case will be given later.
The heat operator of M™ is defined by

i}
(1.9) Li=a+=
&

and a solution u(x;t) of the heat equation L(u) = 0 is called a heat flow. The solutions of
this equation can be determined by the heat kernel Ht(x,y) . This kernel function is
defined on M™ x M™ x R + and is characterized by the following properties:

1. It is of class C1 w.r.t. the variable t and it is of class 02 w.r.t. the

other variables.
(1.10) 2. LyH(xy)=0 for any fired point x Mo,

3. Set H’tt(y) for the function y — H,(x,y) , then
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lim H} =6_ (Dirac 6 — function)
t—=+0 x

is satisfied for any x e M" .

The existence of such a kernel is assured by well known constructions [30]. The

usual simple proof of the uniqueness is as follows.

Let ’\0 =0<A; €Ay< .. be the (discrete!) spectrum of the Laplace operator A .
Furthermore, let (cpo,gal,qu, ...) be the corresponding orthonormal set of eigenfunctions

forming a basis in the 12 function space of M™ . The series

BX() = L (x)50)

stands for the L2 expansion of H’t‘(y) for the fixed points t and x, and thus

(1.11) f(x,t) = [ H(xy)p,(y)dy .

By the properties 1. and 2. we get
%

(1.12) —==-Af,
ot

and therefore by 3.
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-A
L(xt)=e

it

@l(x) )
(1.13)

~At
Hxy)=4e ~ o(x)ey)

follow, which proves the uniqueness of the kernel Ht(x,y) on compact Riemannian

manifolds.

The series (1.13) is absolutely convergent as it is nothing else than the Parseval

formula for the integral
(1.14) J Hilz(x,z)Htp(y,z)dz .
Also the series

—A.t
(1.15) Ee U= fH(xx)dx, t>0,
is convergent by the Beppo—Levi theorem.

The heat kernel H,(x,y) is used for the solution of the heat equation L(u) =0 with
the initial condition u(x,0) = uy(0) by the formula

u(x3t) = | Ht(XJY)uo(Y)dyl-

The situation is much more complicated about the heat kernel of a non—compact
Riemannian space as the Laplace operator does not have a discrete spectrum in these cases

and we cannot use an orthonormed basis of the eigenfunctions. On the other hand we can
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derive several heat kernels in such a spaces because of the determined boundary conditions.
Very recent results refer to the existence and uniqueness for the heat kernel of a complete
non—compact Riemannian manifold which vanishes at the infinity [35], [31], [34].In
the following we use this heat kernel in the case of complete non—compact manifolds. We
mention that the assumption on the Rici curvature in Yau’s theorem is trivially satisfied
here, as now the manifold is Einsteinian with constante norm | |R|| of the curvature

tensor.

A complete Riemannian manifold without boundary is said to be strongly harmonig if
the heat kernel Ht(x,y) is a function of t and the distance r(x,y) only, i.e. it is of the
form Ht(x’}’) = Ht(r(x7Y)) ‘

X

In this case the functions H = Ht(x") are radial functions around x . Obviously

this weaker property characterizes strong harmonicity, taking into account the symmetry

H(x,y) = H/(yx) .
Any strongly harmonic manifold is harmonic (see in [4] p. 172), as can be seen from

r o’ ’
(1.16) a B =-F -~ B -9

(%

»

-

#|
=]

From this equation we get that the mean curvature o = © J,t /9x is also a radial function.

The converse statement is also true for simply connected and complete harmonic
manifolds as was proved by D. Michel [32] using the technical method of Brownian
motion for the proof. Since this theorem immediately follows from our Basic

Commutativity (1.5), we describe the complete proof here.
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Theorem 1.1. On the class of simply connected complete Riemannian manifolds,

harmonicity and strong harmonicity are equivalent properties.
Proof. We have to prove only that harmonicity implies strong harmonicity.

The simply connected complete harmonic manifolds are globally averageable spaces

by the Allamigeon theorem. Therefore the averaged kernel

~N

(117) Hy(xy) = (AH 1)

is a globally defined smooth function which obviously satisfies property 3. from (1.10). The

equation LyHt(x,y) =0 follows immediately from the Basic Commutativity (1.5), and

H,(x,y) = H/(x,y) follows by the uniqueness of the heat kernel. This proves the radial
symmetry of the heat kernel which is just the statement of the Theorem.
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2. Th ig of radi nctiong in h ni

Any function f:R M R ge:ierates a radial function fx around & point x € M
defined by { (y) := f(x(x,y)), where r(x,y) means the geodesics distance between the
points x,y € M_ . This function is well defined only for the points y for which r(x,y) is
less than the injectivity radius at x . The gupporting radius of the function f is defined by
the infimum of the values R € R + for which f([R,»)) = 0 holds. If this radius is less
then the injectivity radius at x , then the function f_ is globally defined on M”" .

Now let (M",g) be a harmonic manifold with the density function Gp . We consider
also an eigenfunction ¢ of the Laplacian a with the eigenvalue A > 0. From the Basic
Commutativity A ap =4 A ¢ we get that the radial function (A_¢ )(r) is an
eigenfunction with eigenvalue A . Thus the function z(r) := (Axga )(r) is the solution of
the differential equation )

/

(21) 2 tol)s +Az=0

with the initial conditions z(0) = ¢(x) , zI(O) = 0. One of the difficulties about this
equation is that o(r) has infinite value at r = 0 ; more precisely, it is of the form
o(r) = o*(r)/r with ¢*(0) =n —1. The following lemma plays an important role
throughout the whole paper. (This statement can be found also in [3] with a different
proof.)

Lemma 2.1. The differential equation

/

’ 4
z +o(t)z +Az2=0,
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where A > 0 and o(r) > 0 near zero, has only one solution with the initial condition

/
z(0)=1, z (0)=0.
Proof. For this uniqueness it is enough to prove that the only solution of (2.1) with

/
z(0) =0, z (0) =0 is the zero function. Now let z be such a solution. So by

/
multiplication with z we get

rr o ’ ’ VN4 ’ 2,/
(2.2) z z +o0(z )2+Azz =0;(-(£2-)—)——+0(z )2+ Az7)
Introducing the function

/

(2.3) v=3(@ )2 +2d)20
the second equation in (2.2) means
‘ 4 /7 2
(2.4) v =—(z )0 <0,

i.e. the function v is non—increasing in a neighbourhood of r = 0. Since v > 0 and
4

v(0)=0,80 v=0, ¢ =0 and z =0 in this neighbourhood. Thus z =0 everywhere

by the Picard—Lindeloff theorem. This proves the lemma completely.

If p(x)#0 atapoint xe M™ for the eigenfunction ¢ with the eigenvalue A then
the function

(2.5) 0 (1) 1= 57y (A P))



—-16 —

4
satisfies the equation (2.1) with the initial conditions ¢ '\(0) =1, (¢ '\) (0)=0,s0
" '\(r) is uniquely determined and it is independent from the choice of the point x .

Furthermore also

A
(2.6) (A, o)1) = ¢ (x)p L (1),
holds. This formula can be considered as the generalization of the mean—value theorem for
the eigenfunctions of the Laplacian in harmonic manifolds, as for harmonic functions ¢ we
0
have ¢ (r)=1.
Formula (2.6) says also that for a fixed point x ¢ M" the averaging operator AL

projects the space of eigenfunctions with a common eigenvalue A onto a one—dimensional

function space.
Also the formula
(2.7) AJ(A0)(1) = (A P)3)e 3(1)
follows immediately from (2.6).
Next we give a new characterization of harmonicity.
If H(x,y) and G(x,y) are two kernel functions on a Riemannian manifold such that
for any x the functions H_(.) := H(x,.), G*(\) := G(.,x) are 1.2 — functions, then the

convolution H * G is defined as usual by

(2.8) H * G(x,y) := [ H(x,2)G(z,y)dz .
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In the following Proposition we investigate the convolution of two radial kernel
functions of the form H(r(x,y)); G(r(x,y)), where the functions H; G:R + —R are

of compact support.

Proposition 2.1 A simply connected complete Riemannian manifold is harmonic if and only

if the convolution of two radial kernel function is a radial kernel function again.

Proof First we prove that if in a space the convolution of two radial kernel functions is a

radial kernel function, then the space is harmonic.

In fact, in this case for any R > 0 and for any smooth kernel function H(r(x,y)) the

kernel functions

(29) H(xy) = | H(xp)dp;

n-1
SY;R

R
(2.10) 2hlra) Ot l(a, B)(ey) - 5o ()HGY))

/R

are radial, where Ay means the Laplacian acting on the second component and p (y) is

the Riemannian curvature scalar. This is possible, if p is constant and the Minkowskian
/

mean curvature o _(y) := ©_(y)/©_(y) of the geodesics spheres defines a radial function

around x . From this harmonicity follows.

For the proof of the converse statement we consider first a simply connected compact

harmonic manifold and two radial kernel functions h(r(x,y); g(r(x,y)) onit. For a fixed



—18 —

A
point x the eigenfunctions ¢ xl forin an orthogonal basis between the radial

L2 — functions around x , 80 hx can be written in the L2 — series from

(2.11) h_= Zai ” ii .
So from (2.7) we get
T ot
(212) [ (0 = Lo, § o, (g, (a)da =
Re
=Laif o0y [ 0, ry P00y

y

R
A
= “n—1i2 a gg (Ay Y(r)g(r)O(r)dr

R »
=“n—1i2“i (8 ¢ (DB(1)@ (r) dr)e '(v)

where Qn—l denotes the hypersurface area of the euclidean unit sphere Sn_1 and Rg is

the supporting radius of the function f: R y— R.

A
As the functions ¢ xl are radial functions around x , so is the function

(hxg) (y)=J hx(z)gy(z)dz . This proves the converse statement in the compact case
completely.
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In the non—compact case the procedure is similar. In this case for any geodesic ball

A
Bx;6 with the centre x and radius R, + R.g < §,asystem {y xl}?=1 of radial
eigenfunctions can be choosen in such a way that these span the radial L2 function space
defined on B, ., around x . Using these functions, the radiality of (h * g)x(y) follows

with the same computation as before.

This proposition has serveral geometric corollaries supporting the Lichnerowicz

conjecture.

Corollary 2.1. Let B~ resp. B yr be geodesic balls in a harmonic manifold. Then the

0'1 2 ‘
lume: vol(B NB the h rf : Area (B ns di al
volume: vol( Xt Y,Iz) , the hypersurface area: Area ( X4t Y,Iz) and in gener
the integral:
(2.13) I f(rxo(P))dSy,r2(P) S R, —R;
B, . NS
of1 Y72

are constant as y move along the sphere with center Xg and radius

R= rxo(y) = constant.

The proof is straightforward using the characteristic functions of the balls in the

above proposition.

Another simple but interesting corollary of the generalized mean value theorem (2.6)

is the following.
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For a radial kernel function H(r(x,y)) with Ry < o we define the convolution
H * {f on the L2(Mn) function space by

(2.14) H * {(x) = [ H(x(x,y))f(y)dy
For a simply connected complete harmonic space we have.

Corollary 2.2. All the globally defined eigenfunctions ¢ of the Laplacian (with the

eigenvalue A) are the eigenfunctions of the operator H * with the eigenvalue

Ry R
(2.15) Qn—l% @ “(r)H(r)O(r)dr .

where . is thearea of the euclidean unit sphere st

The proof easily follows from (2.6) by

Ry
J PR (2)dz = 2y [ ¢ AOEEO(r)drp (3)
0
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3. Besse’s Nice Imbedding generalized

A.L. Besse states a beautiful theorem in [4], where he constructed isometric
imbeddings of compact strongly harmonic manifolds into the euclidean spaces in such a
way that the images of the geodesics are congruent screw lines in the euclidean space. He

used for the proof the heat kernel of the manifolds considered.

Now we generalize this statement considerably as we construct similar imbeddings of
an arbitrary harmonic manifold into the Hilbert space £2 . Our method will be different
from the method of Besse as the heat kernel cannot be used for such general cases. On the

other hand, our method gives the Besse’s resuit as a sperical case.

First of all we survey some facts about the screw lines in the Hilbert space £2 A
coherent theory of these curves was given by J. von Neumann and I.J. Schoenberg in [33].
They defined these screw lines in €2 as the rectificable continuous curves 1(s) ,
parametrized by the arclength s, for which the distance | |r(s;) —1(s;)|| in the
X space depends only on the arclength By — B for any two points 5(31) , 5(52) . They
called the function

(3.1) S(s) =| [x(sg + 8) —1(s) | |2

the screw function of the screw lines considered and they investigated these functions from

the point of view of positive definite functions.

We mention that the above notion of the screw lines in the Hilbert space 22 can be
traced back to the classical screw—line notion easily. In fact, let 1(s) C 2 bea ¢® curve

in £2 which is a screw line in the above sense with the screw function S(s) . The Frenet
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frame f,(s) = 1(3) » 15(8) = 1(3)/ |£(s) |, ... et.c.is defined as usual in the classical

case together with the curvature K, = [r| =1, K, = |i. [y ... K

p o et

If we transfer the origin of the space ¢2 into 1(0) , then by the assumption the
function < r(s), r(s) > is independent of the choice of the origin 8 = 0 on the curve r .
Therefore the derivatives of this function at s = 0 define constant functions along the

curve. From this we shall see that curvatures Ki are constant.
We prove this statement by induction. By the Frenet formulas we get
< 1(s) , r(s) >g4i 0=—2K % ,80 K, i8 constant indeed. Assuming, that the curvatures

Kl’ 'Kk—l are constant we prove that Kk is constant.

In fact, by the formulas

32 W=p,
(2) =
.3 K2£2,
(3) - _k2
t =Ky Kyf3 Koty
rED oK Ky Ky £y o+ Ty (K, o K oy of )
- T 273 Tk-1-k-1 k—1\" o k=2 S k3= k-5 o )

we get
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(3.3) (K = x K

K Kyrifxh

NI TS LCSTRR SHIRTE STR SW))

(k+1) _ ./
r =K Ky .. K ) + K,y

k+L) _ ()
((k+8) Tk+g(K K; fk+v--"§k—£+1)+

2

+ Ty oKy Ky go s )

oKg - Ky £y + Ty(Ky, oo Ky o fy 0 fy oo

—K2

+)

KK

k-

K2

k-1t

*
where the terms T, T, are suitable functions (linear combinations) of the arguments.

(2k)

Thus for the derivative < r,r > _’g we get

(3.4) <r 22?0 _1202 (2 k)< A(8) (2k-2) > _g =
k
= £2 2(k )< r(k l),rk+f.) >e 0=

k

= o(-1)kt1g2 . K + 120 2(k25 D)< (k=2)

2

from which K, = constant follows obviously.

’Tk+£ 28 =0

So the smooth screw lines have constant curvatures. The converse is also obvious.
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Returning to the investigations of von Neumann and Schoenberg, they constructed for
any screw line 1(g) a continuous one parametric family U g of unitary transformations in

the space 22 such that r(s) is the orbit of Uy of the form

1(s) = Uy(x(0))

It can be proved that for two screw lines 1 ,(8), r o(8) with the same screw function
5,(8) = S,(8) anisometry v:v; — v, between the spaces v, , spanned by

{r;(8)}; ¢ g » exists which takes r, onto 1.

After this introduction we construct an isometric immersion of a complete simply
connected locally harmonic manifold M™ into the Hilbert space L2(Mn) A 2. we
mention that this method gives also local imbeddings for a general harmonic manifold

without any topological assumption.

For this construction we consider a function h: R L R of class C1 with
/
h (0) =0 and with compact support whose supporting radius R, is not greater than the
radius i p of injectivity at any point p € M.

In the case i p = we could consider also a function h for which | h2edt <o ;
14

2 . o2
J(h )"Odt<w je h, h eLg.

With the help of h we define the map

(3.5) &, : M® — L3(MY)



by
(3.6) %, : p(e M") — b (¢ LY(M"))
where hp(y) is defined by hp(y) := h(r(p,y)) asin§ 2.

If () is a geodesic of M" parametrized by the arc length s, then the tangent

vectors of ‘Ivh(fy(s)) are functions again. A simple calculation shows

d%, (1(5))

(3.7) —5— )= i_:%l

h(r(fs + t),ltf) — h(r(7(8).¥)) _

h (1(s +t)) —h '
<tim LTIV reona,

t=0

where a is the angle between y(s) and the tangent vector z(7(s)) of the geodesic

joining 7(s) and y . So these tangent vectors have the constant norm:

0

’ Rh ’ h’
(3.9) lléh(»r(s))HJ = ()8(s) = 110

n

n—-1



— 26 —

Theorem 3.1 (Imbedding theorem of harmonic spaces)
1)  For any radial kernel function h(r(p,y)) above the map
(3.9) Th=%gph: M®— L(M"); ¢ piP——ab,(3);

where q := ,]n]ﬂn_l /10| X is an isometric immersion of a harmonic space

M" into the sphere SQ of L2(Mn) with the radius Q={n | |h|[|g /| |1 |]g -
2) The geodesics of 1 h(Mn) are congruent screw lines in the space L2(Mn) 2y 2
3)  The submanifold r h(Mn) C SQ is minimal in the sphere SQ iff the functions
hp(y) are eigenfunctions of the Laplacian A . In this case the eigenvalues have the

form A =1/Q® automatically because [ v:bv'h = fhah.

/
Proof Using (3.8), for any geodesic 1(s) of M™ we have | lry(r(8)] | o=1,80 1y is
L

. - N 2 2 2
an isometric immersion indeed. From [ bl =0 . fhi(r)6(r)dr= Q__,||}h|]|q

Mt P
we get
n
obviously.

Furthermore for any two points r(7(s)), I(7(s;) the inner product
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(3.11) P (8389) i= < 1,(2(8) £ (7(55)) > =

- Il/nn—l
= T J h.,,(sl)(Y)hq(sz)(Y)

depends only on the geodesics distance |81 - s2| by Proposition 2.1, 8o also the function
| 15(1(8.)) = 1 (18)) | |2 = 2 Q% = 2F (5,,8,) = 2 Q% — 2F (|5, — 5,
h\N8p)) —THINBEy 781082 1752

depends only on the geodesics distance |8, —8,| . This means that the geodesics of
r 11(Mn) are congruent screw lines in L2(Mn) with the common screw function

2(Q% - F(s)) = S(s) -

For the proof of the last statement we consider also an orthonormal basis P1:Pgs -

in the Hilbert space L2(Mn) with the coordinate functions

(3.12) x(p) = < Pl p(P) > =f ¢ 1,(p).

By a well known theorem ([37], p. 342) the submanifold 1 (M_) C SQ i8 minimal in

S iff

(3.13) ax =(@/QYx, i=12, ..,

i.e. iff

(3.14) [, ANk = 2y £ hip )

n n
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and consequently -

(3.15) ah(r(p,x) = (a,h)(x) = %2 h(x)

satisfies for any p € M . This proves the theorem completely.

In the cases of compact strongly harmonic manifolds the space is a Blaschke manifold
with a simply closed geodesics with constant length 2L [4]. So for any eigenvalue
A € spect (Ai) n of the specirum a uniquely determined radial eigenfunction <pi exists
M

with wi(x) =1 and with the eigenvalue A, as the space is globally averageable.

Furthermore the functions go;\c(.) = <p'\(r(x,.)) span a finite dimensional subspace in

A

L2(Mn) , namely the eigensubspace V” . Thus the map

(3.16) roy Mt LAY
¢

maps the manifold M" into the sphere SQ of VA such that all the geodesics are
congruent screw lines in V2 . The minimality of r M™) c SQ in SQ follows from the
4

fact that ¢ i are eigenfunctions for any x . Besse constructed exactly these maps for
compact strongly harmonic manifolds and called them nice imbeddings of compact strongly

harmonic manifolds.

We describe yet some more useful formulas. Let P12 - Pp be the orthonormal basis

in V’\,so zp’; is of the form

(3.17) wi () =a;0y(y) + ... + 3504 (¥)
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with
A L A2
(3.18) 40 = [ 03 @Ry =0, 60 (o 70) ear.
n
Thus for any strongly harmonic manifold, we have

£
L
(319) e =0_, (e 6w pxe() =
0 i=1

= A, 2 o6
From these we get

(3.20) <y ilm i2 > = A,z\2 (%) )ei(xg) = Ayp il(x2) ’

which means that the restriction of the eigenfunction ¢ i onto a geodesic 4(r) with

1(0) = x i8 of the form
(3.21) oM =0 25() =B, <1 2,000 >,

where B, depends only from A obviously.
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4. The proof of the Lichnerowicz conjecture for compact simply connected

harmoni¢c manifolds

We prove the conjecture for compact simply connected harmonic manifolds step by
step using more lemmas. Note that then the conjecture is established for a compact

harmonic manifold with finite fundamental group.

First of all we answer the following elementary question. Let f; (t) : f(t+h) stand for
the parallel displacement of a function f: R — R w.r.t. a real number h € R. Our
question is as follows: What are the continuous functions f: R —— R for which the

functions {fh}hE[R span a function space of finite dimension?

Although the following answer is classical, we will give a short proof here, for the sake

of completeness.

Lemma 4.1. The functions {fh}hE[R span a function—space V of finite dimension iff f is

of the form

Y- X
P.(x)sina;x + Q,(x)cosfx + R.(x)e v
1

(4.1) f(x) =

i

0~

where Pi(x), Q;(x), Ry(x) are polynomials.

Proof. It is easy to show that for the functions of the form (4.1) the function—space V
spanned by {fn}hE[R is of finite dimension indeed.
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Conversely, if V is of finite dimension then let
(4.2) $:V—V, & :g(x)—g(x)

be the operator of the parallel displacement in V. Then {'ih}hem is a continuous

one-parametric family of linear transformations in V , because

ih(alg1+azg2) = alﬁh(g1)+a26h(g2); a;,a, € R, 8189 €V
(4.3)

¢ =id, ¢ =% od
0= "> hy+hy ™ "hy ” Th,
hold trivially. By the Cartan theorem (which is the finite dimensional version of the Stone

theorem) &, is of the form

(4.4) ¢, = exphX = § Bx*

for a linear endomorphism X : V—— V. So the function f(x) is not only continuous but
of class C® for which the i—th derivative is just the continuous function Xi(f) . More
precisely, f is an analytic function, as the curve c(h): h — fy = Qh(f) in V is analytic

with the convergent Taylor expansion

k
(4.5) f(x) =Y hr X¥(f)/k , [h] <€ <0 .

Therefore the Taylor expansion
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(45) i) =3 7@+ = T2 X (00)
is convergent for |x| < €.

It is also plain that the derivatives dif/dx' := f() belong to V and,as V is of
finite dimension, t(k) is a linear combination of the functions f(O) =1, f(l),...,f(k_l) for
some k . Therefore the function f is the solution of a differential equation of constant

coefficients of the form

k
i _
(4.7) y Aii()=0,AiEIR,Ak._1,
i=0

so f is of the form (4.1) by a rather well known classical theorem.

Using Allamigeon’s theorem, we assume that the space is normalized in such a way
that the total length of a geodesic is 2« . So the generator function cp"(r) of a radial
eigenfunction with A € Spect{A,} o 18 a function with period 27 .

M

Lemma 4.2. The functions gpA(r) A€ {A}/ _ of anormalized harmonic manifold with
M

the diameter x are of the form ga"(r) =P,(cos 1) , where the P y—8 are polynomials.

Proof. The functions tpi € V')‘ span the finite dimensional eigensubspace vA , 80 for any
geodesic 4(r) the functions gpi(r) span a finite dimensional space. The restrictions of the

functions qu to v form a parallel displaced family of functions in the above sense by
7(r)
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Lemma 4.1. As these span a finite dimensional function—space and these are even periodic

functions, so the generator function (p'\ (r) is of the form

k
90"(r) = 2 Ajcosar, Aja €R .
i=1

We prove that the distinct (!) values a, are uniquely determined natural numbers.
The distinct values @, are uniquely determined for fp’\ . Supposing the contrary we

have a non—trivial linear combination

L
(4.9) E B,cosa;r =0 .
i=1
By the derivation we have
L
(4.10) Y Ba=0,k=012,.. ,
i=1

k=0,...,8-1

2k
:={a}" } has
i=1,..,0 !

which is a contradiction, since the Vandermonde matrix {a]i‘}

non—vanishing determinant.
From the periodicity go’\(r+2x) = (p"(r) and from the above consideration we get
cosa;x =1, sin2a,x = 0. So any value a; in (4.8) i a natural number and therefore, by

the Csebisev polynomials , <p"(r) is a polynomial of cosr .

At the next we prove a similar statement for the density function Bz(r).
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Lemma 4.3. The function 62(r) is also a trigonometric polynomial of the form
Bz(r) = T(cosr) for any compact normalized harmonic manifold.

Proof. Let
(4.11) £ Mt — VA

be the Nice Imbedding of M" into vA w.r.t. an eigenvalue A € {"i}Mn . We consider a

variation x: , —€ < 8 < € of a geodesic x = xg . Then the map
(4.12) 1,(8) :=1,(x%) : Rx(—¢,e) — V"

has the property that for any values of 8 the curves r— 1 (r,8) are congruent screw

lines in V" . So a differential operator

k .
dl

(4.13) L=) Aid—{,AiEER
i=0 ¢
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*
of constant coefficients exists such that
(414) L(I/\) =0
holds for any point (r,8) . So we get

or
(4.15) 0= % L(r,) = L(Bgi

which means that the Jacobian field

or
is also a solution of the differential equation
(4.17) L(Y)=0 .

Let el,...,ep be an orthonormal basis in VA . As the differential equations L(Yi) =0 are
satisfied for the functions Yi(p) = (Y(r),ei) we get (as in the previous lemma) that Y

ig a trigonometric polynomial of the form

This can be derived by the last Frenet formula using also the formulas (3.2) for the

expression of the Frenet basis {f} with the help of ;(k)-s .
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k;

(4.18) Yi(r) = 2 Aj sin jx + Bj cos jx .
j=0

Now let Y(l)""'Y(n-l) be Jacobian fields along X, with Y(j)(O) = 0 ; furthermore the
vectors E(j) = Yij)(o) form an orthonormed basis in the hyperspace of T (M")
0

orthogonal to X . So the norm of the (n—1)—form

along x_ is just 8(r) .

On the other hand we have

A _ n =
Yy (gy(0)= Y ()1 Yipop)e; e
1<) 0+l $P

ijig...

127" 'n-1,y,L
= 2 Q n (Y(k))ci’\..f\e. ,
151.1<12<. <ip_,<p

| PN
where the functions Q,1 -1 are suitable polynomials of the functions Y%k) , .e.

these coefficients are trigonometric polynomials again. Thus the function
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is a trigonometric polynomial. As Bz(r) is a periodic even function so it is of the form

92(r) = T(cos r) indeed, where T(x) is a polynomial.
Now we examine the roots of the polynomials P A and T . Our aim is to prove that
the polynomial T has only the roots +1 and -1 . First of all we consider the polynomial

P,‘.

Lemma 4.4. Neither +1 nor -1 isarootof P )i further more all the roots of P A have

multiplicity one.

Proof. For qu(r) = P (cosr) , qu(O) = PA(l) =1 holds so the value +1 is not a root of

P, . Let us introduce also the function z(r) := ¢, (1), for which we have

(4.22) 2"+ 02 =-z ,

where &(r) := —o(x—r) is a positive function for small values of r , as the function o is
negative near = . (In fact, B(r) is a decreasing function near r.) As

2(0) = —p3(7) = sin(x)P’(cos(x)) = 0 , we have 2(0) = p,(7) = P,(cosx) = P (-1) $0

by virtue of Lemma 2.1. Thus the value —1 is not a root of P 1
Now we return to the second part of the lemma. The equation

(4.23) qp:{ + g— 9= —Aqu

can be written also in the form:
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(e
2‘((52)- (90,\)

(4.24)
1 Ewy 2}
e

The function 82(99:‘)2 is a trigonometric polynomial of the form
Bz(r)(go:‘)z(r) = Q(cos 1) by the above lemmas, therefore

P, (cosr)

(425) (f,n Q(COB 1'))' =-2A Eiir—p-r(—)'

P, (cosr)
(4.26) £n Q(cosr) = ~22 J' T P &
Using the substitution x = cosr we get

A(x)
4.27 L = =2 dx
(4.27) 2 Q(x) j—T———l_x e

Let Kl""’Kr be the roots of P 1 with multiplicities 2,08y - Then the derived
polynomial P} has the values K; as roots exactly with multiplicities (3,-1) .
Furthermore for P} we have addmona.l new 1008 fy,.. ’”Q (different from the K, ) with
multiplicities say bl’b2’ ’bﬂ, So we have

x-K,)...(xK
(4.28) tncz(x)=fq Oy ) py dx

b b
(1x)(14x) (xpry) L (xtag) Zlxppy) ©
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where q =-21/(a; + ... +a) is a constant.

Using the method of the partial fraction for the integration of the right side, we have
that this integral is of the form £n Q(x) for a polynomial Q(x) iff
by=by=..=by =1 and # 1 . Furthermore Q(x) in this case is of the form

B B
(4:29) Q(x) = (%) (1400 % (xy) L(xopg)

with suitable constants a,A,B,Bl,...,B ¢

On the other side we have

@;)_,=_((soj)2)’+ cost))

8 _@2— COST
(4.30)
T(cosr) = (¢ :‘)_2(1')Q(cosr) = (1—cos2r)“1(P’(cosr))_2Q(cosr)
and so
A-1,,  \B-1 —2(a; 1)
T(x) = p(1-x)" “(1+x)~ "(x-K,)
(4.31)
—2(a_—1 B,-2 . B,—2
(x——Kr) (ar )(X"Ill) L (x—#g) ¢

where K, 2 pj , K, # £1 . So if some multiplicity a, were greater than 1, then
—2(a;~1) <0 and thus T(x) would not be a polynomial , This proves the remaining

statement
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completely.

Now we turn to the examination of the roots of the polynomial T(x) . The values
+1 and -1 are roots of -T as the Bz(r) = T(cosr) vanishesat r=0 andat r=~r.
The multiplicity of these roots are denoted by A resp. B.

Let T Ty be the other roots of T(x) with the multiplicities Gl""’GP, . So
92(r) is of the form

Bz(r) = +c(1—<:osr)A(cosr+I)B(cosr—'rl)Gl...(cosr—qra)Gf' ,

(4.32)
G G
Bg(r) =c sinpr(l—cosr)q(cosr—'yl) 1...(cosr—7£) ¢

with p=2A,q=B-A.

Lemma 4.5. All the roots 7, # +1 of T(x) are also the roots of the polynomial P "‘(x) ,
A€ {in}Mn :

Proof. From the equation

(433) = ¢}~ 2o,

DY —
m |u:
[\]
<
D

we have
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(4.34) 5 (1—x%) I.'r{gp’(x) = —AP(x)+xP'(x)~(1-x2)P"(x)

and thus from (4.31) the function

G
(43%)  FO-OPEEE+ B+ Gyt ﬁ)

is a polynomial. This is possible iff the roots 7; are also the roots of P)"(x) .

The following lemma is much more important in these considerations.

Lemma 4.6. All the roots Kl""’Kr of PA and all the roots By of Pj are real
numbers lying in the interval (-1,1),i.e.

(4.36) 1<K <py<Ky<py<..<p <K <1

Proof. By the formula (4.24) we have

(4.37) (@%(¢})%) = —238%, 0}
and so
(4.38) (1—x®)T(x)P"(x)P’(x))' = —2AT(x)P(x)P'(x) .

The roots of the polynomial (1—x2)T(x)P’(x)P’(x) are exactly the values
+1,—1,44,-...4,_; and the roots of T(x)P(x)P’(x) are exactly the values
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+1L,-LK K e by the above lemmas. As the roots of a derived polynomial

lie in the convex hull of the roots of the original polynomial by Lucas’ theorem, we have

(4.39) {+1,-LK o K opyyepy y } Coonv{+1,—1,py,.0, 1} -

We show that this situation is possible only in the case where all the roots Kl"“’Kr of
P, (and consequently also all the roots Pyyeebhy Of P} ) liein the interval (—1,4+1).1In
fact, the convex hull of the roots K Kp of P,\ contains the roots Byveabbe_y of Pi.

of

As the multiplicity of any root K, is exactly one, the vertices K, ,...,Kiﬂ
1 i
conv{Kl,...,KI} are different from the vertices Juj!;’m'”jk of conv{pl,...,pjk} .
KL‘{

o

+ 'q.l.'ﬂ_.-_—_....__._‘+

-

I
£
'
2

Ke pro - A
Soif g is such a line on the complex plane which is not orthogonal to any of the sides of
conv{Kl,...,KI} , then the orthogonal projection of conv{Kl,...,Kr} onto g is an
interval [Ki,Ké] which properly contains the orthogonal projection [,ui,,ué] of
conv{,ul,...,pr_l} yie Ki <p] < py <K; holds.

Now, if the roots K,..,K_ did not lie in the interval (~1,+1), then it would be
possible to choose such a line g which has the additional property: The orthogonal
projection [-1’,+1'] of [—1,+1] onto g does not contain the orthogonal projection
[K;K3] of conv{K,,..K }.So at least one of the points KK, (say K] ) is not

contained in [—1°’,41°] . In this case
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K; £ conv{p],py 1,1} ,
(4.40)

Kip ¢ conv{+1,—1,4y,..opb._1}

would hold, where Ki is the root of P A whose orthogonal projection onto g is just the
P

point K; . This contradicts the property (4.39), s0 all the roots K,,..,K_ are contained in
(-1,+1) indeed. The arrangement (4.36) of the roots follows immediately from the fact

that the multiplicity of any root K, is one.
Now we return to the roots of the polynomial T(x) .

Lemma 4.7. The polynomial T(x) has only the roots +1,—1, so the density function

B(r) of a compact normalized harmonic manifold is of the form
(4.41) B(r).= sinP(r)(1—cosr)? .

Proof. If T(x) had aroot u different from %1, then x4 would be the root also of P:\(x)
by Lemma 4.5. Using Lemma 4.6, 4 would be real with -1 < p<1.So0if 0< <~
were the value for which COSTy = fb holds, then we would have

92(r0) = T(cosr,) = T(p) = 0, which is a contradiction as Bz(r) is strictly positive on
the interval 0 < r < x and vanishes only at the endpoints 0 and x.So T(x) has only
the roots *1 and B(r) is of the form

(4.42) B(r) = (l—cosr)A’EHcosr)B*: sinPr(1—cosr)? |
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where p = 2Bx, q =AtB*

Lemma 4.8. Any normalized (2L = 2x) compact strongly harmonic manifold has a

Laplacian eigenfunction of the form
(4.43) ¢, = Beosr + A, A+B=1,

whose eigenvalue ) is the least non—trivial eigenvalue of the Laplacian. The spectrum

(without multiplicity!) is: {A = n(n+p+a)} ey -

Proof. From B = sinPr(1—cosr)? we have

B’ _ peosr |, gsinr _ (p+g)cosr+q
(4.44) B = sinr T Tcost — inr ?

8o for the function u = cosr+q/p+q+1 we get:

8

(4.45) u" + Hlu' = —cosr — ((p+q)cosr+q) = —(p+q+1)u ,

i.e. the function u = cos+q/p+q+1 is an eigenfunction with the eigenvalue A = p+q+1.

It can be seen easily that for any n €N 4 an eigenfunction of the form
(4.46) cosnr+A1cosn—lr +..+ A _jcosr+A , A ER

1

exists whose eigenvalue is

(4.47) A, = n(n+p+q) .
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This proves the lemma completely.

A
Lemma4.9. Let r: M"—V 1 be the Nice Imbedding of a compact normalized

harmonic manifold w.r.t. the first non—trivial eigenfunction cosr+A . Then the geodesics

A
of i(M™) are circles of radius 1in V 1

Proof. Let r(r) = r(7(r)) be the image set of a geodesic 7(r) . Then by formula (3.21)
and Lemma 4.8 the function (r(0),z(r)) is of the form Bcosr+A-B, A,B € R, s0 for any
I we get

(4.48) . (x(0),r"+1°) =0 .

As 1(0) is arbitrary on the geodesic r(7y) and as the vectors r’’+r’ lie in the subspace
spanned by th vectors {r(7)} , we get

(4.49) P4 =0 .

By the Frenet formulas we get that r(7) is a plane curve of constant curvature +1,

i.e. it is a circle.

The following lemma proves the conjecture for the compact harmonic manifolds with

finite fundamental groups completely.

Lemma 4.10. Let M® C R“T™ be a submanifold such that all the geodesics of M" are
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k+n

circles in R . Then M" isa symmetric space; furthermore it is a two—point

homogeneous space. j

Proof. Let Np be the orthogonal complement of the tangent space Tp(Mn) at a point
p €M™ in R™¥ andlet

(4.50) Tp' Rk gotk

be the reflexion w.r.t. the subspace Np . Thus T is an isometry of the euclidean space
RuHk

As the curvature vectors ;i; of the geodesics through p liein Np , -rp leaves these
geodesics together with the whole submanifold M" invariant. Thus T induces an
isometry on M™ which is the geodesics involution at p obviously. So M" s symmetric
space. Its rank need to be one, because all the other symmetric spaces have also non—closed
geodesics on the maximal torus determined by the rank of the space.

This proves the Lemma and the conjecture completely.
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