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Introduction

The theory of harmonie manifolos has a relatively lang history. It started with a work

o.f H.S. Ruse in 1930, who made an attempt to find a solution for the equation Llf = 0 on

a general Riemannian manifold which depends only on the geodesics distance r(x, .) . His

main aim was to use these functions and develop harmonic analysis on Riemannian

manifolds similar to the euclidean case.
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It turned out that sueh radial harmonie funetions exist only in very special eases,

namely, in the eases where the density funetion "'p:= 11 det Kjj r in the normal

coordinate neighbourhood {xl, ... ,xn}p around each point p depends only on r(p,.).

From the well-known symmetry "'p(q) = wq(p) it ean be easily seen that this is the ease

if and only if the funetion "'p(q) is of the fonn

Wp(q) = t/J (r(p,q)); t/J: IR+ --dR ;

A Riemannian manifold was defined to be harmonie precisely when Hs density function

"'p(q) satisfies this radial property.

For a precise fonnu1ation one can introduee the notions of global -local- and

infinitesimal hannonicity [4]. Global and local harmonicity refer to the cases that the

above radial property of the density function is global or local, respectively. For

(k)
infinitesimal harmonicity we assume only that the derivatives V

ep
... e

p
wp w.r.t. the

unit veetors ep E. Tp(Mn) define eonstant funetions on the manifold. These nations are

obviously equivalent for analytie Riemannian manifolds [4].

(k)
The derivatives v

e
... e "'p can be expressed with the help of the curvature tensor

p p

and its covariant derivatives. For example, we have
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where R(X,Y) is the Bieci curvature, 80 the harmonie manifolds of any type are Einstein

manifolds. On the other hand, any Einstein metrie is analytie in the harmonie and normal

coordinates by Kazdan-De Turck theorem [48]. Thus we get:

The global. loeal and infinitesimal harmonicity are eguivalent oroperties.

We mention that in another paper we shall prove that also those SpateS whieh satisfy

the Legendre curvature condition Rij/ k + Rjk/i + Rki/ j = 0 are real analytie. It follows

that all the commutative Space8 and D'Atri spaces are analytie.

An interesting equivalent formulation of harmonieity was found by Willmore [26]:

A Riemannian space ia harmonie if and onlI if for anf harmonie funetion u tbe classieal

mean-yalue theorem

u(p) = 1 JSud S .r(x)
JS

dS (x) p·r p,
pjr ' .p;:.:

holds. where dSp;r(x) means the induced measure on the geodesie sphere Sp;r with the

eentre D and radius r.

Any two-point homogeneous manifold is obviously harmonie. The main problem

about the harmonie manifolds was to ·prove the Liehneyouriez conjecture [19] asserting

the eonverse statement: Any harmonie manifold is two-point homogeneous.

Thc eonjecture has been proved so rar only for dimensions 5. 4 [19] ,[25], [4]. All

these solutions use the dimensionality very heavily, and did not give any hope for higher
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dimensions. In higher dimensions, only partial results were proved using an additional

strong assumption. One such theorem is the following :

Any locally symmetrie harmonie manifold is two-point homogeneous.

The harmonie spaces were investigated from a Iocal point of view in most cases.

Between the few global investigations we mention the Allamigeon theorem [2] aod the

"niee imbedding theorem" of Besse [4]. The first theorem asserls that anyeomplete

simply eonnected harmonie manifold is diffeomorphic either to IR d or to a Blaschke

manifold, which has simple dosed geodesics with the same length. In Besse's theorem an

isometrie imbedding tjJ: Mn --+ IRd is eOD.strueted for eompa.ct simply connected

harmonie spaces such that tjJ(MD.) ia minimal in eertain aphere and furthermore, all the

geodesies are eongruent serew lines in IRd . Both theorems will be used in the present

paper. Our aim is to prove the conjecture for simply connected compact harmonie spaces.

Using the universal covering spaces, trus proof gives a proof of the Lichnerowicz conjecture

for the eompaet (infinitesimal, Ioeal or global) harmonie manifolds which have a finite

fundamental group (and hence a eompact universal covering space).

The author would like to express many thanks to Professors H. Kareher, O.

Kobayashi and K. Nomizu for the helpful conversations while he was staying at

Max-Planck-Institut für Mathematik in Bonn.
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1. The Basie Commutativity in harmonie spaees

For the sake of simplicity we investigate in this paper simply eonnected complete

Riemannian manifolds (Mn,g). The metrie g is aBsumed to be positive definite.

Let (xl t ••• ,xn)p be anormal eoordinate neighbourhood around a point p E. Mn .

The function

w := w [ : ' ... , ~n ]

stands for the volume density in the s-pace. We introduce also the polar eoordinate

neighbourhood (rp'tp) around p, where rp(q) = r(p,q) denotes the geodesic distance

between p and q, and tp represents the points of the unit sphere in the tangent space

Tp(Mn) . In this system the function wp can be written in the form wp(r,tp) and the

density with respect to (rp'tp) is

n-l8 := r w.p p

A Riemannian manifold is said to be harmonie if the density 8 p is a radial or

spherieal symmetrie funetion around any point p E. Mn , Le. it depends only on the

variable r and thus it ean be written aB ep(r).

It ean be proved that the functions Sp(r), p E. Mn , are also independent of the

points p E. Mn in a harmonie space [4J. This statement follows from the symmetry

Sp(rp(q)) = eq(rq(p)) easily.
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Now let 8 R be a geodesie sphere around p with the radius R whosep,

Minkowskian mean curvature is denoted by 0'p{R,'wO) . The formula

,
(1.U c (Ry) = eV(Ry\fkm yH =V + y Jjh =- (t. Ip)(R,cp)

is rather weIl known [4], where the comma means the derivation w.r.t. radial direction

and /:,.:= - v.~ is the Laplace operator in the space.
I

One ean prove from thiB formula that a lliemannian manifold is harmonie if the mean

curvature funetion O'p(R,.) is a radial function of the form O'p (r,'wO) = O'(r(p,.)) . The

statement ean be proved solving the equation

,
() n-l_~rur ---r r

with the initial condition w(0) = 1 .

We also mention another eonnection between the Laplace operator /:,. and the mean

eurvature function up(r,'wO) . Let v (resp. 6) be the covariant derivative (resp. the

Laplace operator) of a geodesics sphere S whose second fundamental form is denoted byp,r

M (X,Y). Then the formulap,r

f\J

v2f(X,X) = X · X(f) - (vXX) · (f) = v 2f(X,X) + M(XJX)f'

holds for a funetion f in Mn and a vector field X tangent to 8 . 80 we getp,r
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N

/!,. {= /!,. {- {" -up{r,rp){1 ,

and therefore the action of /:i on a radial {unction { (around p) is

(1.3) 6.f:=-fl' -u (r,rp)f / .p

We introduce also the so-called averaging operators Ap ' p E Mn , which playa

very important role in the following 4iscu~sions.

Let f be a smooth function of Mn . Then the averaged function Ap{f) is defined as

a radial function around p whose values are at the points of a geodesic aphere S justp,r

the average of f on Sp,r' Le.

(1.4)

The function Ap{f) ia defined only loca.lly, namely for the small values of r which

are less than the injectivite radius of Mn at p E. Mn . On the other hand, Ap{f) is

globally defined for any p E. Mn if the space is a compact Blaschke manifold (i.e. for

which the cut values are equal &t any.tangent space Tp{Mn)) or if it ia a non-eompact

complete manifold with an infinite injectivity radius. In the last case Mn ia diffeomorphic

to IR n by the exponential map. We call these spaces as globally averageable spaces. The

compact Blaschke manifolda have simple closed geodesics with a common length 2L such

that the geodesics, starting from a point m, intersect the cut locus at the distance L

orthogonally (see Corollary 5.42 and Proposition 7.9 in [4]). From this statement we get

easily that the averaged function Ap{f) of a function f of class Ck is a globally defined

function of class Ck in any globally averageable space.
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By the Allamigeon theorem any simply connected complete harmonie manifold is

globally averageable space.

Lemma. 1.1 (Basic Commuta.tivity in harmonie spates).

A Riema.nnian manifold (Mn,g) is harmonie if the Lapla.ce operator b. commutes

with the local averaging operators Ap ' p E. Mn , i.e.

(1.5)

yields for any smooth funetion f.

Proof. If Mn is harmonie then by (1.2), (1.3) and by the Stokes theorem we get

N

Ap(b. f) = Ap(~ f) - Ap{fl ') - Ap(up(r)f/ ) =

(1.6)

whieh proves the eommutativity in harmonie manifolds.

Conversely, if commutativity:

(1.7)

holds, then the mean curvature
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(1.8)

is a radial funetion and the spare is harmonie.

The above eharacterization of harmonie manifolds has servera! advantages. To make

these perfectly dear we investigate here also the heat kerne! on these manifolds.

At first we consider a eompact Riemannian manifold Mn and the several

investigations for the non-eompact case will be given later.

The heat operator of Mn ia defined by

(1.9) L := 11 +!L
8t

and a solution u(x;t) of the heat equation L(u) = 0 ia ealled a heat flow. The aolutions of

tbis equation eau be determined by the heat kernel Ht(x,y). This kerne! funetion ia

defined on Mn )( Mn )( IR+ and ia charaeterized by the following properties:

1. It ia of dass Cl w.r.t. the variable t aud it ia of dass C2 w.r.t. the

other variables.

(1.10) 2.

3. Set H~(y) for the funetion y --+ Ht(x,y) , then
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I i m H~ = 6 (Dirac 6 - function)
t-++O x

is satisfied for any x E. Mn .

The existence of such a kernel is assUIed by weIl known constructions [30]. The

UBualsimple proof of the unigueness is as follows.

Let AO= 0 < Al ~ A2 ~ ... be the (discrete!) spectnim of the Laplace operator t:..

Furthermore, let (fPO,fPl'fP2"") be the corresponding orthonormal set of eigenfunctions

forming a basis in the L2 function space of Mn . The series

stands for the L2 expansion of H~(y) for the fixed points t and x t and thus

(1.11)

By the properties 1. and 2. we get

(1.12)

and therefore by 3.

Uf.
_1 = -A.f. ,
8t 11
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(1.13)

follow, which proves the uniqueness of the kerne! Ht(x,y) on compact Riemannian

manifoldB.

The series (1.13) is absolutely convergent aB it is nothing else than the Parseval

formula for the integral

(1.14)

Also the series

(1.15)
\ -A.t
LeI = I Ht(x,x)dx, t > 0 ,

is convergent by the Beppo-Levi theorem.

The heat kernel Ht(x,y) is used for the solution of the heat equation L(u) = 0 with

the initial condition u(x,O) = uO(O) by the formula

The situation is much more complicated about the heat kernel of a non-eompact

Riemannian space as the Laplace operator does not have a discrete spectrum in these cases

and we cannot use an onhonormed basis of the eigenfunctions. On the other hand we can
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derive several heat kernels in such aspaces because of the determined boundary conditions.

Very recent resu1ts refer to the existence and uniqueness for the heat kernel of a complete

non-eompact Riemannian manifold which vanishes at the infinity [35J, [31J, [34]. In

the following we use this heat kernel in the case of eomplete non-eompact manifolds. We

mention that the asaumption on the Rici curvature in Yau~s theorem is trivially satisfied

here, as now the manifold is Einsteinian with constante norm 11 R 11 of the curvature

tensor.

A complete Riemannian manifold without boundary is said to be strongly harmonie if

the heat kernel Ht(x,y) ia a function of t and the distance r(x,y) only, i.e. it ia of the

form Ht(x,y) = Ht(r(x,y)) .

In this case the functions H~ = Ht(x,.) are radial functiona around x. Obviously

this weaker property characterizes strong harmonicity, taking into aeeount the symmetry

Any strongly harmonie manifold is harmonie (see in [4] p. 172), aB can be seen from

(1.16)
8'

X x" X x' 8 H
~yH t = - Ht - 8 x Ht = - --;;;: .

From this equation we get that the mean curvature Ux = e~/ex is also a radial function.

The converse statement is also true for simply connected and complete harmonic

manifolds aB was proved by D. Michel [32] using the technical method of Brownian

motion for the proor. Since this theorem immediately follows from our Basic

Commutativity (1.5), we deacribe the complete proof here.
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Theorem 1.1. On the class of simply conneeted complete Riemannian manifolds,

harmonicity and strong harmonicity are equivalent properties.

Proof. We have to prove only that harmonicity implies strong harmonicity.

The simply connected complete harmonie manifolds are globally averageable spaees

by the Allamigeon theorem. Therefore the averaged kernel

(1.17)
N

Ht{x,y) := (AxH ~(y))

is a globally defined smooth funetion whieh obviously satisfies property 3. from (LID). The

equation LyHt{x,y) = 0 follows im~ediately from the Basie Commutativity (1.5), and
N

Ht{x,y) = Ht{x,y) follows by the uniqueness of the heat kerne!. This proves the radial

symmetry of the heat kernel which is just the statement of the Theorem.
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2. The analysis of radial functions in harmonie spaces

Any function f: IR+ ---+ IR generates a radial function f around a point x €. Mx n

defined by fx(Y) := f(r(x,y)), where r(x,y) means the geodesics distance between the

points x,Y E. Mn . This function is well defined only for the points y for whieh r(x,y) is

less than the injectivity radius at x. The supoorting radius oe the funetion f is defined by

the infimum of the values R E. IR+ for which f( [R,(J)) = 0 holds. If this radius isless

then the injectivity radius at x, then the function f is globally defined on Mn.
x

Now let (Mn,g) be a harmonie manifold with the density funetion Sp' We consider

also an eigenfunction tp of the Laplacian ~ with the eigenvalue ;\ > 0 . From the Basic

Commutativity Ax6tp = ~ Axtp we get that the radial funetion (Axtp )(r) is an

eigenfunction with eigenvalue A. Thus the function z(r) := (Axtp )(r) ia the solution of

the differential equation

(2.1)
I I I

Z +u(r)z + AZ = 0

I

with the initial conditionB z(O) = rp(x), Z (0) = 0 . One 01 the difficulties about this

equation is that u(r) has infinite value &t r = 0 ; more precisely, it is of the form

u(r) = u*(r)/r with u*(O) = n - 1 . The following lemma plays an important role

throughout the whole paper. (This statement ca.n be found also in [3] with a different

proof.)

Lemma 2.1. The differential equation

I I I

Z + u(r)z + Az = 0 ,



-15-

where A > 0 and u(r) > 0 near zero, has only one solution with the initial condition
I

z(0) = 1, z (0) = 0 .

Proof. For tbis uniqueness it ia enough to prove that the only solution of (2.1) with
I

z(O) = 0, z (0) = 0 is the zero function. Now let z be such a solution. So by
I

multiplication with z we get

Introducing the function

(2.3)
1 I 2 2

v = 2" ((z ) +;\z) ~ 0

the second equation in (2.2) means

(2.4)
I I 2

v =- (z ) u ~ 0 ,

i.e. the function v is non-increasing in a neighbourhood of r =0 . Since v ~ 0 and
I

v(O) = 0 J so V = 0, z = 0 and z =0 in this neighbourhood. Thus z = 0 everywhere

by the Picard-Lindelöff theorem. This proves the lemma completely.

H ~x) f 0 at a point x E. Mn for the eigenfunction cp with the eigenvalue Athen

the function

(2.5) A 1cp (r):=;;;r;:\ (A cp)(r)
cp\xJ x
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satisfies the equation (2.1) with the initial conditions rp A(O) = 1, (rp A) I (0) = 0 , so

rp A(r) is uniquely detennined and it ia independent from the ehoice of the point x.

Furthermore also

(2.6) (A cp)(r) = cp (x)cp A(r) ,x x

holds. This formula can be considered as the generalization of the mean-value theorem for

the eigenIunctions of the Laplacian in harmonie manifolds, as for harmonie functions cp we

have cp O(r) = 1 .
x

Formula (2.6) says also that for a fixed point x E. Mn the averaging operator Ax

projects the space of eigenfunctions with a eommon eigenvalue A onto a one-dimensional

funetion space.

Also the formula

(2.7) A (A tp)(r) = (A cp)(y)cp A(r)y x x y

follows immediately from (2.6).

Next we give a new characterization of harmonicity.

If H(x,y) and G(x,y) are two kernel funetions on a Riemannian manifold such that

for any x the functions H (.):= H(x,.), GX(.):= G(.,x) are L2 - functions, then thex

convolution H * G is defined as uaua! by

(2.8) H *G(x,y) := f H(x,z)G(z,y)dz .
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In the following Proposition we investigate the convolution of two radial kernel

functions of the form H(r(x,y)); G(r(x,y)), where the functions H; G: IR+ --+ IR are

of compact support.

Proposition 2.1 A simply connected complete Riemannian manifold is harmonie if and only

if the convolution of two radial kerne! funetion is a radial kerne! funetion again.

Proof First we prove that if in aspace the eonvolution of two radial kernel functions is a

radial kernel funetion, then the spate is harmonie.

In fact, in this case for any R > 0 and for any smooth kerne! funetion H(r(x,y)) the

kernel funetions

(2.9)

(2.10)

RH (x,y):= I H(x,p)dp j

sn-l
YjR

RoH (x,y) = (n + 1)!«(.d H)(x,y) _ 1 P (y)H(x,y))
OR / R = 0 2n y !

are radial, where.d means the Laplacian aeting on the Beeond eomponent and p (y) isy

the Riemannian curvature scalar. This is possible, if p is eonstant and the Minkowskian
I

mean eurvature (Jx(y):= E>x(y)/E>x(Y) of the geodesics spheres defines a radial function

around x. From this harmonicity follows.

For the proof of the converse statement we consider first a simply eonnected eompaet

harmonie manifold and two radial kerne! functions h(r(x,y); g(r(x,y)) on it. For a fixed
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A.
point x the eigenfunctions rp 1 forin an orthogonal basis between the radialx

L2 - functions around x J so hx can be written in the L2 - series !rom

(2.11)

So from (2.7) we get

, A.
h = La. cp 1.

X • 1 X
1

(2.12)
, A.

I h (z)L(z)dz =La. I rp l(z).EL(z)dz =x -y . 1 X -y
1

R, g A.
=L °1, I n 1 I rp l(r ,cp)g(r)8(r)drdrp

i S -- 0 x y .
y

,Rg .t
= n lL (t. J (A cp 1)(r)g(r)8(r)dr

n- i 1 0 Y X

R, g A. A.
= n 1 L (t. (J cp l(r)g(r)8 (r) dr)cp l(y) ,

n- i 1 0 X

where nn-l denotes the hypersurface area of the euclidean unit sphere Sn-l and Rg is

the supporting radius of the function f: IR+ ----i IR .

A.
As the functions cp 1 are radial functions around x J so is the functionx

(h *g)x(y) =J hx(z)~(z)dz . Thie prOVeB the converse statement in the compact case

completely.
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In the non-eompaet case the procedure is similar. In this case for any geodesie ball

.>t.
Bx;5 with the centre x and radius Rh + Rg < 5 , a system {<p x1}i=1 of radial

eigenfunctions can be ehoosen in such a way that these span the radial L2 funetion space

defined on B
X

'5 around x. Using these funetions, the radiality of (h *g)x(y) follows
I

with the same computation aB before.

This proposition has serveral geometrie corollaries supporting the Liehnerowiez

conjeeture.

Corollary 2.1. Let B resp. B be geodesie balls in a harmonie manifold. Then the
xOr1 yr2

volume: vol(B nB ) , the hypersurface area: Area (B nS ) and in general
XOl 1 y,I2 Xor 1 y,I2

the integral:

(2.13) J f(I (P))dS (P) i f: R+ ---+ IR ;
Xo y,r2B ns

xOr1 yr2

are constant as y move along the sphere with center xo and radius

R = r (y) = conatant.
Xo

The proof ia atraightforward using the charaeteristic funetions of the balls in the

above proposition.

Another simple hut intelesting corollary of the generalized mean value theorem (2.6)

is the following.
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For a radial kernel function H(r(x,y)) with RH < CD we define the convolution

H * f on the L2(Mn) function spate by

(2.14) H * f(x) = I H(r(x,y))f(y)dy

For a simply connected complete harmonie space we have.

Corollary 2.2. All the globally defined eigenfunctions <p of the Laplacian (with the

eigenvalue A) are the eigenfunetions of the operator H * with the eigenvalue

(2.15)
Rh

nIl cp A(r)H(r)E>(r)dr .
n- 0

where nn-l is the area of the euclidean unit sphere Sn-I.

The proof easily follows !rom (2.6) by
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3. Besse's Nice Imbedding generalized

A.L. Besse states a beautiful theorem in [4]) where he eonstrueted isometrie

imbeddings of compact strongly harmonie manifolds into the euclidean spaces in such a

way that the images of the geodesics are congruent screw lines in the euclidean space. He

used for the proof the heat kerne! of the manifolds considered.

Now we generalize tbis statement eonsiderably as we eonstruet similar imbeddings of

an arbitrary harmonie manifold into ·the Hilbert space t 2 ~ Dur method will be different

!rom the method of Besse as the heat kernel eannot be used for such general eases. On the

other hand, our method gives the Besse's result &8 a sperical case.

First of all we survey some facts about the screw lines in the Hilbert space t 2 . A

coherent theory of these curves was given by J. von Neumann and I.J. Schoenberg in [33].

They defined these screw lines in t 2 as the rectificable eontinuous eurves !.(s) ,

parametrized by the arclength s, for wbich the distance 11 !.(sl) - !.(s2) 11 in the

t 2 - space depends only on the arclength s1 - s2 for any two points !.(sl) , !.(s2) . They

called the function

(3.1)

the serew funetion of the screw lines eonsidered and they investigated these functions !rom

the point of view of positive definite functions.

We mention that the above notion of the screw lines in the Hilbert spaee t 2 can be

traced back to the classicalserew-line notion easily. In fact, let r(s) (t2 be a e(JJ eurve

in t 2 which is a screw line in the above sense with the screw function S(8). The Frenet
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frame f1(8) = !.(8) , f2(8) =!. (s) / li (s) I, ... e. t.C. is defined aB usual in the classical

.
case together with the curvature K1 = I!.I = 1, K2 = I!. I, ... ,Ki'''' e.t.c.

H we transfer the origin of the spate t 2 into !(O) , then by the assumption the

function < !.(s) , ~(s) > ia indep"endent of the choice of the origin s = 0 on the curve !..

Therefore the derivatives of this function at s = 0 define constant functions along the

curve. From this we shall see that curvatures K. are constant.
1

We prove this statement by induction. By the Frenet formulas we get

< !.(s) , ~(s) >~4) 0 = -- 2 K ~ ,80 K2 ia constant indeed. AS8uming, that the curvatures

K1, ... ,Kk- 1 are constant we prove that Kk is constant.

In fact, by the formulas

(2)
!. = K2 ! 2 '

(k--l) )
!. = K 2 K3 ... Kk- 1 ! k-l + Tk- 1(Kl' ... ,Kk- 2, ! k-3'! k-5'''' ,

weget
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*where the terms Ti' Ti are suitable functions (linear combinations) of the arguments.

Thus for the derivative < r,r > ~2~)0 we get

(3.4)

k

< r r >(2k) = l 2e k)< r(t) r(2k-t) > _
-'- s = 0 t=O.f. ' S = 0

k

_ '\ 2( 2k )< (k-t) k+t) > _- L k II r,r - 0-t=O -.{,. s-

k

k+l 2 2 '\ 2k (k-t)
= 2(- 1) K2 ... Kk + t~o 2(k - t)< r ,Tk+t >s = 0 '

from which Kk =constant follows obviously.

So the smooth screw linea have constant curvatures. The converse is also obvioUB.
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Returning to the investigations of von Neumann and 8choenberg, they constructed for

any screw line !(s) a continuous one parametrie family Us of unitary transformations in

the space t 2 such that !(8) is the orbit of US of the form

U can be proved that for two screw lines !.1(s), ! 2(s) with the same screw function

81(s) = 82(s) an isometry v: VI --+ v2 between the spaces vi' spanned by

{!. i(s)}s E. lR' exists which takes !.i onto !. 2 .

After this introduction we construet an isometric immersion of a complete simply

connected locally harmonic manifold Mn into the Hilbert spaee L2(Mn) ~ t 2 . We

mention that tbis method gives also local imbeddings for a general harmonie manifold

without any topological assumption.

For this construction we consider a function h: lR+ --+ R of dass Cl with
I

h (0) = 0 and with compact support whose supporting radius Rh is not greater than the

radius ip of injectivity at any point p E. Mn .

In the case i = m we could consider also a function h for which J h2 e dt < m ;
I P .

2 I 2J (h ) <3 dt < Q) ,i.e. h) h E. Le .

With the help of h we define the map

(3.5)
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by

(3.6)

where hp(y) is defined by hp(y) :=h(r(p,y) ) aB in § 2.

H '}'(s) is a geodesic of Mn parametrized by the arc length 8, then the tangent

vectors of ~h(1(S)) are functions again. A simple calculation shows

(3.7) d~h (,-(s)) ( ) _ l' h(r(:y(s + t),{) - h(r(7fs),y)) _d y - 1m -
s t .... O

h (7<8 + t)) - h (1(s)) I
= lim Y f- Y = -li (r(l(s),y))cos a,

t-+O

. .
where a is the angle between y(s) and the tangent vector z(J(s)) of the geodesic

joining 7<s) and y. So these tangent vectors have the constant norm:

(3.8)
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Theorem 3.1 (Imbedding theorem oI harmonie spaces)

1) For any radial kernel function h(r(p,y)) above the map

where q:= ~ n/I1n_ l / 11 h'li e ' is an isometrie immersion of a harmonie spate

Mn into the sphere SQ of L2(Mn
) with the radius Q=,.[il 11 h 11 e / 11 h I Ile .

3) The submanifold ! h(Mn) (SQ is minimal in the sphere SQ iff the funetions

hp(Y) are eigenIunctions of the Laplacian /l. In this case the eigenvalues have the

form A = n/Q2 automatically ~ecause [Vihvih = [hllh.

I

Proof Using (3.8), for any geodesie -r(s) of Mn we have 11 rh({(s) 11 L2 = 1 ,BO !. h is

an isometrie immersion indeed. From J h2 = n 1 J h
2
(r)8(r}dr = n 1 11 h 11 ~Mn p n- n- 0

weget

(3.10)

obviously.

Furthermore for auy two points!. h(1(s1))' !. h(1\S2) the inner produet
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(3.11)

depends only on the geodesics distance IS1 - s2 1 by Proposition 2.1, so also the function

depends only on the geodesics distance IS1 - 821 . This means that the geodesics of

!: h{Mn) are congruent screw lines in L2(Mn) with the common screw function

2(Q2 - F{s)) = S(8) .

For the proof of the last statement we consider also an orthonormal basis <PI,<P2""

in the Hilbert space L2{Mn) with the coordinate functions

(3.12)

Hy a well known theorem ([37] , p. 342) the submanifold !: h{Mn) (SQ is minimal in

SQ iff

(3.13)

Le. iff

(3.14)

. 2 .
II Xl = (n/Q )xl

, i = 1,2, ... ,

r cp.{x)/l h(r(p,x))dx = ~ r tp.{x)h{p,x))dx
M 1 P Q~ M 1

n n
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and eonsequently ,

(3.15) l!J. h(r(p~) = (l!J. h )(x) =~ h (x)
p x p Q~ p

satisfies for any p E. Mn . This proves the theorem completely.

In the cases of eompaet strongly harmonie manifolds the space is a Blaschke manifold

with a simply closed geodesics with constant length 2L [4]. So for any eigenvalue

A E. spect (A.) of the spectrum a uniquely determined radial eigenfunetion epA exists
1 Mn x

with ep;(x) = 1 and with the eigenvalue A , as the spaee is globally averageable.

Furthermore the funetions <pA(.) = <pA(r(x,.)) span a finite dimensional subspace inx

L2(Mn) , namely the eigensubspace VA. Thus the map

(3.16) n 2( n)! A:M ---+L M
ep

maps the manifold Mn into the sphere SQ of VA such that all the geodesics are

congruent screw lines in VA. The minimality of! A(Mn) (SQ in SQ follows from the
ep

fact that ep A are eigenfunetions for any x. Hesse eonstrueted exactly these maps forx

compact strongly harmonie manifolds and ealled them niee imbeddings of compact strongly

harmonie manifolds.

We describe yet some more useful formulas. Let <PI' ... ,l/'f.. be the orthonormal basis

in VA so (/'J A ia of the form, r X

(3.17)
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with

(3.18)

Thus for any strongly harmonie manifold, we have

t

(3.19) 'P ~ (y) = 0n-l l ('P A(r»2 8(r)dr
i
!1 'Pi(x)'Pi(Y) -

=A\ l cp.(x)cp.(y) .
1\ 1 1

From these we get

(3.20)

whieh means that the restrietion of the eigenfunetion cp;\ onto a geodesie -nr) withx

')'(0) = X is of the form

(3.21)

where B;\ depends only from ;\ obviously.
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4. The proof of the Liehnerowiez coniecture for compaet simDly connected

harmonie manifolds

We prove the eonjecture for eompaet simply eonnected harmonie manifolds step by

step using more lemmas. Note that then the eonjecture is established for a eompact

harmonie manifold with finite fundamental group.

First of all we answer the follow.ing elementary quest~on. Let fh{t): f(t+h) stand for

the parallel displacement of a funetion f: IR ----+ IR w.r.t. areal number h E ~ . Dur

question ia as follows: What are the eontinuous funetions f: IR ----+ IR for whieh the

funetions {fhlhEIR span a funetion space of finite dimension?

Although the following answer is classical, we will give a short proof here, for the sake

of completencsa.

Lemma 4.1. The functions {fh}hEIR span a funetion-epace V of finite dimension iff f is

ofthe form

(4.1)

k
7·X

f(x) = 1: Pi{x)sinaix + Qi{x)cosßix + Ri{x)e 1 ,

i=1

Proof. It ia easy to show that for the functions of the form (4.1) the function-apace V

spanned by {fnlhEIR i s of finite dimension indeed.
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Conversely, if V is of finite dimension then lei

(4.2)

be the operator of the parallel displacement in V . Then {fh}hElR is a continuous

one-parametric family of linear transformations in V , because

(4.3)

hold irivially. Hy the Cartan theorem (which is ihe finite dimensional version of the Stone

theorem) t h is of the form

(4.4)

for a linear endomorphisID X: V --+ V . So the function f(x) is not only continuous but

of class Cm for which the i-th derivative is just the coniinuous function Xi(f). More

precisely, f is an analytic function, as the curve c(h): h --+ fh = th(f) in V is analytic

with the convergent Taylor expansion

(4.5)

Therefore the Taylor expansion
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(4.6)

ia convergent for Ix I < f .

It ia also plain that the derivatives dif/dxi := ~i) belong to Y and, as Y ia of

finite dimension, ~k) ia a linear combination of the functiona ~O) = f, ~l), ...,~k-l) for

some k. Therefore the function f ia _the solution of a diff~ential equation of constant

coefficients of the form

(4.7)
k

l Ai~i) = 0, Ai E IR, Ak = 1 ,

i=O

80 f ia cf the form (4.1) by a rather well known classical theorem.

Using Allamigeon's theorem, we aBsume that the space is normalized in such a way

that the totallength of a geodesic is 2r. So the generator lunction cp).(r) of a radial

eigenfunction with ). E Spect{).i} n is a function with period 2K.
M

Lemma 4.2. The functions cp).(r) , ). E {).i}/ n of a normalized harmonie manifold with
M

the diameter r are cf the form cp).(r) = P).(coa r) , where the P).-8 are polynomials.

fiQQf. The funetions cp; EV). span the finite dimensional eigensubspace V). , so for auy

geodesie -r(r) the functions <P~r) span a finite dimensional space. The restrietions of the

functions <P~r) to " form a parallel displaced family offunctions in the above sense by



-33-

Lemma 4.1. AB these span a finite dimensional function-spa.ce and these are even periodic

functions, so the generator function <p~(r) is of the form

k

<p~(r) = l Aicos~r, Ai'~ E IR .

i=l

We prove that the distinct (!) values Gi are uniquely determined natural numbers.

The distinct values 4i are uniquely determined for <pJ.. • Supposing the contrary we

have a non-triviallinear eombination

(4.9)

By the derivation we have

(4.10)

t
\" B.eosa.r = 0 .L 1 1

i=l

t
l Bia~k = 0 , k = 0,1,2, ... ,

i=l

k k=O,... ,.l-l 2k
whieh ia a eontradietion, since the Vandennonde matrix {a.} := {a. } has

1 . 1 lJ 1
1= ,... ,.L

non-vanishing determinant.

From the periodicity <p~(r+2i1') = <pJ..(r) and from the above consideration we get

cosai i1" = 1 , sin20i I" = 0 . So any value Qi in (4.8) is a natural number and therefore, by

the Csebisev polynomials , <p~(r) is a polynomial of eosr .

At the next we prove a similar statement for the density function 82(r).
I



-34-

Lemma 4.3. The funetion a2{r) is also a trigonometrie polynomial of the form

82{r) = T{cosr) for any compact normalized harmonie manifold.

Proof. Let

(4.11) n ..\[;\ : M --+ Y

be the Nice Imbedding of Mn into y;\ w.r.t. an eigenvalue '" E {.t} . We consider a
1 Mn

variation x;, -c: < s < c: of a geodesie xr = x~ . Then the map

(4.12)

has the property that for any values of s the eurves r --+ r..\(r,s) Are congment screw

lines in Y'" .So a differential operator

(4.13)

k .
dl

L = \ A. ---, A. E IRL 1 1 1
i=O dr
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*of constant coefficients exists such that

(4.14)

holds for any point (r,s). So we get

L(I~) = 0

(4.15)
8 8E~

0= 718 L(I~) = L(7JS)

whieh means that the Jacobian field

(4.16)
8E~

Y(r) := 7J8 8=0

is also a solution of the differential equation

(4.17) L(Y) = 0

Let el' ... ,ep be an orthonormal basis in V~ . As the differential equations L{yi) = 0 are

satisfied für the functions yi(t) = (Y(r),ei) we get (as in the previous lemma) that y i

is a trigonometrie polynomial of the form

* This can be derived by the last Frenet formula using also the formulas (3.2) für the
expression of the Frenet basis {~} with the help of r(k),; .
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k.
1

yi(r) = 1: Aj sin jx + Bj COS jx .

j=O

Now let Y(l)'''''Y(n-l) be Jacobian fjelds along xr with Y(j)(O) = 0 i furthermore the

vectors E(j):= Y(j)(Q) form an orthonormed basis in the hyperspace of T
XQ

(Mn)

orthogonal to i O' So the norm of the (n-l)-fonn

along xr is just 8(r) .

On the other hand we have

il'... ,i -1 t
where the funetions Q_ n are suitable polynomials of the funetions Y(k) , Le.

these eoefficients are trigonometrie polynomials again. Thus the funetion



-37-

is a trigonometrie polynomial. As a2(r) is aperiodie even funetion 80 it is of the form

a2(r) = T(cos r) indeed, where T(x) is a polynomial.

Now we examine the roots of the polynomials P ~ and T. Dur aim is to prove that

the polynomial T has only the roots +1 and -1 . First of all we eonsider the polynomial

Lemma 4.4. Neither +1 nor -1 is a root of P ~ ; further more all the roots of P ~ have

multiplicity one.

~. For <p~(r) =P ~(eosr), <p~(O) =p ~(1) =1 holds so the value +1 is not a root of

p ~ . Let us introduee also the funetion z(r):= <p~ (7I'"-r) J for whieh we have

(4.22)
N

ZU + qZ' = -~z ,

where ~(r):= -0-( 'I"-r) is a positive function for small values of r , as the function q is

negative near r. (In fact, B(r) is a decreasing function near ,....) As

z'(O) = --<p1("") =sin(r)P'(cos('I")) =0, we have z(O) = <PA('I") = P A(cos,...) = P A(-I) f 0

by virtue of Lemma 2.1. Thua the value -1 is not a root of P ~ .

Now we return to the second part of the lemma. The equation

(4.23)

can be written also in the form:

11 + 8', 1
<P~ 1f<P~ =-"<P~
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(4.24)

The function S2(cp~)2 is a trigonometrie polynomial of the form

82(r)(cp~)2(r) = Q(cos r) by the above lemmas, therefore

(4.25)

(4.26)

P~(cosr)
(f-n Q(cos r))' = . ,2~ SInr P , (oosr)

f
P ~(cosr)

f-n Q(cosr) = -2~ -fil nr P'(cosr) dr .

Using the substitution x = cosr we get

(4.27) f
P~(x)

tn Q(x) = -2~ 2 dx .
(I-x )P'(x)

Let Kl'oo.,Kr be the roots of P ~ with multiplicities ap ... ,ar . Then the derived

polynomial P1 has the values Ki as roots exactly with multiplicities (ai-I).

Furthermore for P1 we have additional new roots JlI, ... ,Jlt (different from the Ki ) with

multiplicities say bl ,b2,... ,bf-' So we have

(4.28)
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where q = -2,\/(a1 + ... + ar) is a constant.

Using the method of the partial fraction for the integration of the right side, we have

that tbis integral is of the form tn Q(x) for a polynomial Q(x) iff

b1 = b2 = ... = bt = 1 and JJi I %1 . Furthermore Q(x) in tbis case is of the form

(4.29)

with suitable constants a,A,B,B1,... ,Bt .

On the other side we have

(4.30)

andso

(4.31)

where K. I J.L. , K. I %1 . So if some multiplicity a. were greater than 1, then
1 J 1 1

-2(ai-1) < 0 and thus T(x) would not be a polynomial· •. Tbis proves the remaining

statement
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completely.

Now we turn to the examination of the roots of the polynomial T(x) . The values

+1 and -1 are roots of T as the 82(r) =T(cosr) vanishes at r =0 and at r = W' •

The multiplicity of these roots are denoted by A resp. B.

Let 'l""'t be the other roots of T(x) with the multiplicities Gl' ... ,G.e.' So

82(r) is of the form

-.2 A B GI Gttr(r) = +c(l-eosr) (cosr+l) (cosr-11) ... (cosr-1t) ,

(4.32)

with p = 2A , q = B-A .

Lemma 4.5. All the roots 'i f:l:1 of T(x) are also the roots of the polynomial P ~ (x) ,

~ E {~.} .
1 Mn

Proof. From the equation

(4.33)

we have
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1 2~ 22" (l-x ) ~P'(x) = -~P(x)+xP'(x)-{l-x )P"(x)

and thus from (4.31) the function

(4.35) 1 2, -A B G Gt
~ (l-x )P ~(x)(l x + (l+x) + (x-i 1) + ... + (x-it»

is a polynomial. This is possible iff the roots ii are also the roots of P ~ (x) .

The following lemma is much more important in these considerations.

Lemma 4.6. All the roots K1, ... ,Kr of P..\ and all the roots Jll, ... ,Jlr-l of P ~ are real

numberslying in the interval (-1,1) , Le.

(4.36)

Proof. Hy the formula (4.24) we have

(4.37)

and80

(4.38) ((l-x2)T(x)P'(x)P'(x»' =-2"\T(x)P(x)P'(x)

The roots of the polynomial (1-x2)T(x)P'(x)P'(x) are exactly the values

+l,-l,Jll" .. ,Jlr_l and the roots of T(x)P(x)P'(x) are exactly the values
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+1,-1,K1' ... ,Kr ' Jl1, ... ,Jlr-1 by the above lemmas. As the roots of a derived polynomial

lie in the convex hull of the roots of the original polynomial by Lucas' theorem, we have

(4.39)

We show that this situation is possible only in the case where all the roots K1,... ,Kr of

P A (and consequenUy also a1l the roots Jl1'''' ,Jlr of P~ ) lie in the interval (-1,+1) . In

fact, the convex hull of the roots Kl' ... ,Kr of PA contains the raots Jl1,· .. ,Jlr-l of P1.
As the multiplicity of any root K. is exact1y one, the vertices K. ,... ,K. of

1 11 ' 1.e..

conv{Kl' ... ,K } are different from the vertices Jl. ,... ,Jl. of conv{Jll""'J1.· } .
r J.e.. Jk Jk

k' li

~\r
+1

1
I, I
I

I I
I t

I J

I I
~,

K,l I

t<~ +1 Jftl.

So if g is such a line on the complex plane which is not orthogonal to any of the sides of

conv{Kl'... ,Kr} , then the orthogonal projection of conv{Kl' ... ,Kr} onto g is an

interval [Ki,K2] which properly contains the orthogonal projection [Jli ,Jl2] of

conv{Jll'···,Jlr_1} , i.e. Ki < l1i < Jl2 < K2 holds.

Now, if the roots Kp... ,Kr did not lie in the interval (-1,+1), then it would be

possible to choose such a line g which has the additional property: The orthogonal

projection [-1',+1'] of [-1,+1] onto g does not contain the orthogonal projection

[KiK2] of conv{K1,· .. ,Kr} . So at least one of the points Ki,K2(say Ki) is not

contained in [-1',+1'] . In this case
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(4.40)

would hold, where K
ip

is the root o! P ~ whose orthogonal projection onto g is just the

point Ki. This eontradieis the property (4.39), 80 an the roots K1,... ,Kr are eontained in

(-1,+1) indeed. The arrangement (4.36) o! the roots !ollows immediately from the fact

that the multiplicity o! any root Ki ia one.

Now we return to the roots of the polynomial T(x).

Lemma 4.7. The polynomial T(x) has only the roots +1,-1, 80 the density !unetion

8(r) o! a eompaet normalized harmonie mani!old is o! the form

(4.41) El(r)-= sinP(r)(1-eosr)Q .

Proof. H T(x) had a root IJ different from :!:1, then IJ would be the root also of P1(x)

by Lemma 4.5. Using Lemma 4.6, J1 would be real with -1 < IJ < 1 . So if 0 < rO< ~

were the value for whieh COBIO= IJ holds, then we would have

82(rO) = T(eosrO) = T(~) = 0 , which is a eontIadietion as S2(r) is strietly positive on

the interval 0 < I < 'K" and vanishes only at the endpoints 0 and 'X. So T(x) has only

the roots :1:1 and B(r) is of the form

(4.42)
A* B~

8(r) = (l-eosr) (l+eosr) = sinPr(1-eosr)Q ,
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Jf AIf JJ.
where p = 2B , q =I"\-B .

Lemma 4.8. Any normalized (2L = 2;.-) compact strongly harmonie manifold has a

Laplacian eigenfunction of the form

(4.43) tp~ = Bcosr + A, A+B = 1 ,

whose eigenvalue ~ is the least non-=trivial eigenvalue of the Laplacian. The apectrum

(without multiplicity!) ia: {~n = n(n+p+q)}nEIN .

Proof. From 8 = sinPr(l--eosr)q we have

(4.44) 8' = peoar + rainr = {p+q)eoar+q
8"" slnr -eosr slnr '

so for the funetion u = eosr+q/p+q+l we get:

(4.45) u" +~U' = --eosr - ((p+q)cosr+q) = -(p+q+l)u ,

Le. the funetion u = eos+q/p+q+l ia an eigenfunction with the eigenvalue ~ = p+q+l .

It can be seen easily that for any nEIN+ an eigenfunetion of the form

(4.46) n A n-l A Acos r+ lCOS r + ... + lcosr+ 1 A. E IRn- n I

exists whose eigenvalue is

(4.47) ~n = n(n+p+q) ·
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This proves the lemma eompletely.

.-\
Lemma 4.9. Let r: Mn ---+ V 1 be the Niee Imbedding of a compact normalized

harmonie manifold w.r.t. the first non-trivial eigenfunetion cosr+A. Then the geodesics

.-\
of I(Mn) are circles of radius 1 in VI.

Proof. Let r(r) = r( 7(r)) be the image set of a geodesie nr). Then by formula (3.21)

and Lemma 4.8 the function (r(O),r(r) ia of the form Bcosr+A· B , A,B E [R , so for any

r we get

(4.48) (r(O),r'''+r') = 0

As !(O) is arbitrary on the geodesic r( 1) and as the vectors !"'+!' lie in the subspace

apanned by th vectors {r(1)} , we get

(4.49) r'''+r' = 0 .

By the Frenet formulas we get that r( 1) is aplane curve of constant curvature +1 ,

Le. it ia a cilcle.

The following lemma provea the eonjecture for the compact harmonie manifolds with

finite fundamental groupe eompletely.

Lemma 4.10. Let MD ~ IRk+ n be a submanifold such that all the geodesies of Mn are
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clrcles in [Rk+n. Then Mn is asymmetrie space; furthermore it is a two-point

homogeneous space.

Proof. Let Np be the orthogonal complement of the tangent spaee Tp(Mn) at a point

p E Mn in IRn+ k , and let

(4.50) T . IRn+k ---+ IRn+k
p.

be the reflexion w.r.t. thc subspaee Np. Thus Tp is an isometry of the euelidean space

~n+k .

As the eurvature vectors ~ of the geodesics through p lie in Np' Tpleaves these

geodesics together with the whole submanifold Mn invariant. Thus T p induees an

isometryon Mn which is the geodesies involution at p obviously. So Mn is symmetrie

space. Its rank need to be one, because all the other symmetrie spaees have also non-closed

geodesies on the maximal torus determined by the rank of the space.

This proves the Lemma and thc· conjecture completcly.
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