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ABSTRACT.

The geometrical resolution problem for singular lagrangian
varieties is formulated and the partial classification of images
of lagrangian submanifolds and singular symplectic structures is
given. An introductory symplectic framework for extended descrip-
tion of the composite thermodynamical systems is proposed. We
explain, using simpler smooth symplectic objects, appearance of
singular lagrangian varieties as the models for the real states
of physical systems in equilibrium. Thus the Maxwell's convention
is obtained as a consequence of the existence of the appropriate
symplectic resolution of tﬁe system. In £he standard singularity
theory approach the classification of general constitutive sets
is given and the normal forms for the generic singularities of
the reduced constitutive sets are described in small dimensions.
Using the theory of constitutive sets and their singularities
the geometric classification of phase transitions and singular

phase diagrams for the classical systems is proved.



1. INTRODUCTION

The simplest problem concerning singular lagrangian varieties
is the following resolution problem: Let (P,w) be a symplectic
manifold. Let (P,X,n) be a differential fibration and 6 a
1-féorm on P such that w = d6 . The quadruple (P,X,m,8) is
called a special symplectic structure on P if there is a diffeo-
morphism @ : P —> T*X such that =« = Ty © O 8 = a* ex (cf.
(1}, [26]). Let L <(P,w) be a germ of singular lagrangian
variety, i.e. the strat;fied subse£ of P the maximal strata of

which are lagrangian [22]. The question is: do there exist

(1) a special symplectic structure (P,X,w,ei on (P,w) ,

(ii) a submersion p: A —> X, for some smooth manifold A .

(iii) a regular (i.e. transversal to the fibres of T*A , thus
generated by a functioﬁ F : A —> R ) lagrangian submanifold

N_c_ (T*A ’ dGA) ’

such that L 1s an image of N with respect ot the canonical

cotangent bundle lifting of p , i.e.
L = T*p(N) (see §2) .

Such problems appear naturally in a study of constitutive
sets in mecganics and thermodynamics [24] as well as in.the
investigations of wave front singularities in the presence of
obstacle [3]. Representation of singular equilibrium spaces of

states, for various systems encountered in physics, by the

corresponding smooth resolutions, bring some light on the geome-



trical structure and the physical sense of these singularities.
The corresponding smooth representatives give us the calcula-
tional possibility to indicate many universal characteristics
(e.g. of the equation of states) for the systems near phase
transitions. |

Our aim in this paper 1is to give the postﬁlational basis
for resolution of thermodynamical spaces. As the main result
we obtain the classification of singular constitutive sets and
.singular symplectic structures. We also provide the exact resol-
ving procedure for the so-called simple thermodynamical systems,
the droplet system and chemical system in the presence of

chemical reactions.

In Section 2 we recall the relevant definitons and facts
concerning symplectic images as well as we classify the singular
symplectic structrues. In Sectiohs 3 and 4 we present the geome-
trical approach to thermodynamical composite systems and discuss
gualitative properties of reduced lagrangian varieties és the
models of various phenomenological phenomena. In Section 5 we
develop the geometry of constitutive sets and provide the classi-
fication of their stable images. Direct application of the theory
of images of constlitutive sets to coexistence of phases is dis-
cussed in Section 6. In this section we show how useful the
symplectic approach is in understanding quite complicated struc-

ture of phase transitions.



§2. SYMPLECTIC IMAGES AND SINGULAR SYMPLECTIC STRUCTURES

Let (P1,m1) and (Pz,wz) be two symplectic manifolds
(for the basics of symplectic geometry see e.g. [1],[25]). Let

m, s P xPz.———>P

i 1 (1=1,2) be the cartesian projections. We

i
define a symplectic relation R from (P1,w1) to (Pz,wz)
as an immersed lagrangian submanifold of the symplectic manifold

1
of P‘l r let the symplectic relation R be given as a graph of

(P1 x Pz;-wr"’m1 +1r5w2) (cf. [6],[25]). Let C be a submanifold

an appropriate differentiable submersion 7T : C —> P Then

. 2’
R is called the reduction relation from (Pi,w,} to (Py,u,)
(cE. [7], p. 561), and C is a soisotropic submanifold of
(P1,w1) , 1.e. at each x€¢(, (_TxC)§ E‘TXC , whére (TXC)§ is
the symplectic polar of TxC defined by

5 _ : ] _ '
(TXC) = {veTxP1,<vnu,w1> =0 VuETxC} {;ee e.g.[6] _?.9).

For any subset FcP, ., the set R(F) = {p2€P2 : there exists
p; €F such that (p,,p,) €R}cP, is called the image of F
with respect to the relation R . If Sc:P2 then the set |
t-'R(S) -‘:P1 will be called the counterimage of S with respect

to R . Here tR is the transposed relation,
t

= ] . - R * .
R {(92’p1) €P, x P, ; (pqyrpy) ER}C (P, x P, , Tiwy * TT2LU1) .

Most applications of symplectic geometry use the cotangent
bundles as the typical examples of symplectic manifolds (cf.
[151,[14],[23],([22]). Hence in what follws we deal with symplectic
manifolds endowed with the special cotangent bundle structures

(cf. [24]).



Now let X and Y be two smooth manifolds and let

f : X—>Y be a smooth mapping. We define the set
g = {(gn) € T ATy ;g s e )

It is easy to check (see e.g. [26], p.5) that T*f is a 7.
symplectic relation in (T*X x T*Y ,n;dey-n?dex) , wWhere

0 are the Liouville forms corresponding to T*X and T*Y

x %y ’
respectively (see [1]). This 1is the graph of symplectomorphism

if and only if f 1is a diffeomorphism.

PROPOSITION 2.1. Let o : X —> Y be a smooth submersion

(i.e. rankdp(x) = dimY at each x€ X ). Then the set
T*pc (T*X x T*Y , vzdeY-ﬂ?dex) is the symplectic reduction
relation from T*X to T*Y .

PROOF. We have the natural mappings associated to p (cf. [1]):

(*) Tx <25 x x. yT*Y £, pry ,

where 3 is the restriction to X«x YT*Y of the projection of
X xT*Y onto the second factor. Since h is an immersion, we
identify X «x YT*Y (the fibre pullback of T*Y by means of p )
to its image C in T*X . It is easy to see that T*p is a
symplectic relation (see [6], p.13). Moreover on the basis of (*)

we see that T*p 1is the graph of differentiable submersion

C —> T*Y (because of p 1is submersion) defined by p . Hence



T*p 1is the reduction relation and C 1is the corresponding

coisotropic submanifold of it.

In more éeneral context (see [6]), to each coisotropic
submanifold Cg;(T*X,dex) corresponds the canonical symplectic
manifold, defined by the so-called homogeneous system, i.e. the
triplet (T*x,dex,C) defining the corresponding characteristic
distribution on C . If B is the set of its integral manifolds
admitting a differentiable structure then there is a unique

symplectic structure R on B such that
~* - - .

where 3 : C —> B 1is the canonical submersion (see [6], p.13).

Let L be a lagrangian submanifold of (T*X,dex) . The
singularity structure of the image of L with respect to the

reduction relation T*p depends on the properties of mutual

intersection of L and C (here also C = tT*p(T*Y)) .

PROPOSITION 2.2. Let T*pc (T*X x T*Y, WEdGY - 'ﬂ"%‘d@x) ,bé the

reduction relation (as in Proposition 2.1). Let L be a lagran-

gian submanifold of (T*X ,dex) and let C be the above defined
coisotropic submanifold of (T*X,dex)'. We ‘assume that CNL is
smooth and T(CnNnL) = TCNTL (clean intersection condition

[25]). Then :CNL —> T*Y (defined in (*)) has a con-

Plent
stant rank and T*p(L) is an immersed lagrangian submanifold of

(T*Y,dGY) ]



The éroof of this proposition follows immediately on the

basis of {7] Proposition 2.

Proposition 2.2 is very useful in representing the lagran-
gian submanifolds in cotangent bundles by the so-called gene-

rating families, or Morse families (see [26]). Let Lc< (T*X,d0,)

X
be a lagrangian submanifold generated by a smooth function
F . x _—2> R r ioe. dF(X) = L r dF H X —_—2 T*X . If L iS

transversal to C = tT*p(T*Y) then F is called the Morse

family generating of the lagrangian submanifold T
T*p(L)g;(T*Y,deY}_. A lagrangian submanifold of a cotangent
bundle can always be generated, at least locally, by Morse
families (see [26], Lecture 6). If (y,Xx) are coordinates of X
adapted to the submersion p : X —> ¥ , then the transversality'

condition for a function (y,A) —> Fl(y,\A) 1is formulated as

the maximality of the rank of the matrix (cf. [4])

3°%F 3%F
5yax ' BA3X .

In terms of canonical coordinates (y,p) of T*Y , the lagran-

gian submanifold T*p(L) 1s described by equations:

(vod) , 0= (y,0, i=1,...,diny ,
j

oF

Py = 3yi

1,-..,dimx—dimY

3

There are many examples where the above introduced trans-

versality conditions or clean-intersection conditions are not



fulfilled (see [4], [17], [23]). If this is so the image set
T*p (L) 1is no longer a differential submanifold . The aim of
this paper is to describe the fundamental properties of such

varieties encountered in classical physics.

EXAMPLE 2.3. (CNL 1is not smooth submanifol of T*X ).

Let dim T*X

4 and (x1,x2;€1,£2) are coordinates on T*X .

We difine C {pET*X : 52 =0} and L = dF(X) , where

= 14 v 1y 2
F(x1,x2) = 1%5 + 5K Ky - We see that
1.2 2
= XY . - — = = = .
cnL {pe'r X E1 5X, 0 ,(x2 + x1)x2 0 ,52 0} is pot
regular. Obviously the reduced set S = T*p(L) , where

p(x1,x2) = X4 is not a submanifold of T*Y .

EXAMPLE 2.4. {(CNL is a submanifold of T*X , however T*p(L)

is singular). Let (T*X,dex) and C<T*X be as in Example 2.3,

here E(x1,x2,£1) = (x1,E1) . Let the generating function for

L1523 2
Le (T*X,d6,) has a form F(x,,x,) = gX; 3X4X5 * X,X7 . In

= R . — -
this case CNL = {pEﬁT*x, 51 3X, = 0, X, x5 = 0 ,52 = o} .

Hence the reduced set S = T*p(L) = {(x1,51)€ T*Y ;95? = 16x?}

" has the cusp singularity (cf. [20]) at zero. It is easy to check
that E CNL has no constant rank in this case, which is a
reason of appearance of this singularity. It also appeared as

a member of the hierarchy of open-swallowtails introduced by

Arnold [4](cf. [17]).

We generalize now the construction, introduced in [4],
which was a part of original motivation for our investigations

of singular images of lagrangian submanifolds (17].



Iet C,V be two coisotropic submanifolds of a symplectic
manifold (P,w) , codimC =codimV =k ., Let 7 : C —> M  be
the canonical characteristic projection. M 1is the corresponding
symplectic manifold, dimM = 2n-2k , dimP = 2n . Let V and
C intersect transversally, so we have the next submanifold
WeC , W=VnC , and its smooth mapping Kk onto M , x = .

W
As an immediate consequence of this construction we obtain.

PROPOSITION 2.5. The singular generic symplecitc structures on

W (dimW=2(n~k) ) are classified by classifying smooth mappings
K= Tla treated as the mapping diagrams W s c Lt> M

(cf. [27]) with dimKerk, sk .

COROLLARY 2.6. (cf. [4]). Let k = 1 , then generically the

singular symplectic structures on W , say w are classified

w r
by the following germs of Whitney projections (see [20])

k_(y Yo 4sY vy) = (¥ y oy ey yE e ey oLy V)
B0/ TRERES SURTS SYSTERETS o TERREED PR 7 Bs £ /NN ECERRS A /5D SURERERE) 4%

where W = K;UJM ’ Tr(yo,.. .,yN) = (y1 ,...,yN) , dimW=N and
Wy is the canonical symplecitc structure on M . Moreover if

rs3 w has the corresponding normal forms

W
n-2
r=1 Wy = 2po dq1 Adpo + 122 dpi Adq:.L
3 n-2
r=2 wy = dlpy +p,Py) Adp, * 122 dp; Adq;
4 2 n-2
r=3 w, = a4, Ad(py * PPy *+ I,Py) * dp, Adq, + 123 dp, A dq;



where (qo,...,qn,po,...,pn) are the corresponding Darboux

coordinates on P in which =7 : C —> M, n(q,...,qn,po,...,pn)=

= (Qqrevesd rPyreeespy)

PROOF. On the basis of Whitney's theorem (see [2], p.163),
classifying the stable projections W <—> C s M, by an

-appropriate choice of local coordinates on W , C and M,

we can reduce 1w to the form n(yo,...,yN) = (y1,...,yN) and

W= {yEﬁC; yg+1 + y1¥g_1 NIRRT M 0} . Applying [3]
(Theorems 1,2,), for the cases r = 1,2,3 , we can reduce

the symplectic forms Wy r @ be diffeomorphism preserving the
corresponding swallowtail to the Darboux normal forms

£
[}
He~-13

i

n
Odpi/\dqlle=i£1 dpl/\dqil C = {(prq) EP;q0=0} '

where the respective hypersurface W 1is given in the following

form:
' 2
=1 W={(p.q)ec;p0+p1=o}
- 3 -
r=2 W-{(qu)ECFPO+P1PO+q1 _0}
-4 2
r=3 W = {(p.q) €C i Py * PqPy * 9Py * pz} .
Taking the appropriate pullbacks K;L%4 we obtain the results

of Corollary 2.6.

The singular symplectic structures (classified in

Corollary 2.6) where used in [3] and [4] to indicate the generic
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singular lagrangian varieties, so~called open swallowtails,
appearing in the variational problem of bypassing of obstacle.
The more comprehensive study of these singularities was done

in [17].

REMARK 2.7. Let dimP=8 and k=2 , then the generic

singular structures Weg on W are classified by the germs of

the following stable mappings (see e.g. [2] p.68)

1,0 2

Z ’ K(y1'---:Y4) = (y1,Y2:Y3:Y4)
1,1,0 3

z : K(y1,...,y4) = (Y1 :yer3lY1Y4 +Y4)

v1,1,1,0 2 4

2 ' : K(y1'o’olY4) = (Y1:y21Y3:Y1Y4+Y2Y4+Y4)
1,1,1,0 2 3,5
I e K(Y1:---ry4) = (y1 r¥51Y3:0Y4Yy +YZY4+Y3Y4+Y4)
2,0 2 2

z ’ : K(y1,...,y4) = (y1JY2IY3tY4+Y1Y3+Y2Y4IY3Y4)

where coordinates {y,,...,y,} are not necessary adapted to the
1 Yq

Darboux normal form of the symplectic structure Wy -



§3. COMPOSITE SYSTEMS AND SYMPLECTIC REDUCTION RELATIONS

Now we consider a simple thermodynamical system (see e.qg.
[91), with the chart of extensive variables {x,,...,x}
parametrizing the space of equilibrium states of the system
(c£. [16]). Here the X, symbolize the independent physical
quantities, e.g. the internal energy U, the valume V and the
mole numbers Nj . Following [16] (cf. [24]) we introduce the
phase space of the system as the symplecticAmanifold (T*X,dex) ‘.
where 6 is the corresponding form.of eéuilibrium entropy.

X
The space of equilibrium states, say L , of some real system

is a lagrangian submanifold of the phase -space (T*x,dex)
(see [24]), p.113). Equilibrium entropy S oflthe system is
a generating function of L . This function provides the so-
called fundamental equation of the system (e.gq. S = s(u,v,N)

for one-component simple system [9]).

The form of an equilibrium entropy is as follows
O = g'pidxi

where p; are the thermodynamical intensities, e.g. 1/T
1/T, p/T, -uj/T (T - temperature, p-pressure, uj-chemical
potentials). The corresponding equations of state

39S

P; © 3;; (x)

. are determinded by the obvious relation.
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[an]
"

m*ds ’

where 1w = Tyl and Ty T*X —> X 1s the cotangent bundle

projection.

In classical thermodynamics (see [9], [19], [18]), the

‘composite system is defined as a conjunction of spatially dis-

joint volume elements, i.e. isolated subsystems, each of them
is characterizéd by the set of additive (conserved) quantities -
extensive parameters. The walls or internal boundaries limiting
thermodynamic subsystems are assumed to be restrictive (or non-
restrictive) with respect to the transfer of the various quan-
tities. Manipulations by means of the boundary conditions
(imposition or relaxation of constraints) are called the;mody-
namic operations. The thermodynamic processes are defined as
transfers of additive invariants between subsystems after the
thermodynamic operationé. The sequences of thermodynamic
operations applied to the starting system is called a thermody-

namic deformation (e.g. in chemical systems as an example of

thermodynamic deformation we can consider a simple bringing into

the system some new chmical constituents).

The phase space of a composite system has a form:

)

X ) 1s the phase space for the corresponding

©
isolated subsystem and ww: b T*xb —_— T*Xw is the cartesian

('l [T*X , ] ©* de
X
e Y 90 ® T

where (T*Xw,de

projection (¢,b, are integers).



Assuming only the thermodynamical interaction between

subsystems (cf. (9], [22]), for the total entropy we can write

where Sa is the entropy function for the corresponding sub-
system. By a relaxation of constraints we evoke the correspon-
ding thermodynamic process as a transfer of additive invariants
between subsystems, thus we have the transition (irreversible
in general) from a more constrained state to a less constrained
equilibrium. In such thermodynamic processes some previously
controlled parameters tend spontaneously to equilibrium values

determined mainly by the remaining controlled additive invariants.

EXAMPLE 3.1. Let us consider the class of thermodynamic deforma-

tions of the simplé one-component system onto two spatially dis-
joint isolated subsystems. The corresponding phase space of this

composite system is following

* % * * = . Mk *
(T*X xTX2,1T1d6X+‘n'zdex dase) , TTi.TX1xTX

-+ T*Xi ’
1 2

1 2

where in the respective local coordinates we have

1 oqu el qun s ol v, 22 qu. - o1 an. - 22 gy
T, O tT At Y rE ot N Ty 9N

g =

T*xi : {Ul'Vi:Ni:1/Tlrpi/Tlr"lll/Tl} H Xi : {Ul’vl'Nl} , (1= 1,2) .



By removing the thermal constraint between subsystems the new

controlled extensive variables space is as follows

Y ; {U,V1,V2,N1,N2} r Where U = U,+U

1 2

(see e.g. [9]) and the possible range for the spontaneous

changes of extensive parameters is defined by the submersion:

It is easy to check that the corresponding coisotropic sub-

manifold of T*X1x-T*X2 defined by the symplectic relation

* D * * - ok
T p_C_(T ()(‘1 xxz) x T*Y , T3 Wy Tr‘|mX1 xxz)

has a form

t* = = * - -
T*p (T*Y) = C = {pET Xy x T*X, ; T, = T2} .

Hence, this example suggests that in general thermodynamical
context equilibrium condition has the structure of coisotropic

submanifold. We can iprmulate the following

HYPOTHESIS 3.2. Equilibrium of a thermodynamical system'sub-

jected to the class of deformations is determined by the corres-

ponding reductibn relation

* Mk * * - ok
Tps(T XxTY,ﬂsz Tl’1mx> ’
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where p : X —> Y 1is a submersion defining the control
variables, and (T*X,wx) is a phase space corresponding to
the intermediate composite system.

The coisotropic submanifold C = t

T*p (T*Y) < (T*x,wx) is called
the condition of equilibrium with respect to the imposed class

of thermocdynamic deformations.

REMARK 3.3. Thermodynamic processes caused by the thermodynamic

operations are irreversible, so one can generalize the above
introduced notions to the irreversible thermodynamics framework.
However in this paper we éonsider the transition from the more
constrained to a less constrained equilibrium (cf. [9]) and we
deal only with the initial and final equilibrium states (the
initial lagrangian submanifold and the redgced lagrangian sub-

- manifold respeéﬁibély), ignoring both intermediate non-equilibrium

situations and also the time dalay involved in the transitions.

EXAMPLE 3.1. (continuation) 1In the standard composite system

(see Fig. 1 ), by removing all constraints, we can contrél the
total sums of the corresponding additive extensive invariants,
i.e. the submersion p : X —> Y 1is as follows (system composed
of k-subsystems)
D(U.l,...’Uk';v.],...,Vk,N.],...,N (ini’z Vi,ZiNi) .

k! i

Hence, the corresponding reduction relation



1 Py TH 1 -
T*p = {((Ui'vi'Ni;T—-"'l_‘i' #) . (U‘,V,N;-,f,%, -,%)) € T*X x T*Y ;
P K
1 i
=_T."-T_=E T_i..=%'i=‘|,...'k} .

and the equilibrium condition (cf.[18], [9] and Prop.2.1) is

as follows

*Y . =
T*X;T Tj'Pi

=Pj,u.i=uj,1 Si,jSk} .

EXAMPLE 3.4. (Droplet equilibrium). Let us look at the droplet

in some surrounding gas as a composite system. The corresponding
phase space (T*X,dex) can be characterized as follows

1 1 P P k4 My
2 —T—dU +——'dU2+',i,—-dV1+T— de—T— dN1 'T—sz Bdo
2 1 2 1 2
where ¢ is an area of the droplet (see Fig. 2) and
{U1,U2,V1,V2,N1,N2,c} are the standard coordinates of X . The
natural submersion meddeling the equilibrium of the droplet has

a form

P (U1'U2'V1'V2'N1'N2"’) l{g=0} = (U1 +Upr ¥y +"2'N1_“Nz)

where g : X —> R is the function of a possible dependence
of o on the rest of extensive variables. We can assume that
g depends only on two variables, say ¢ and V1 {volume of
the droplet).
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By simple calculations using the local coordinates we

obtain the cofresponding equilibrium condition:

Py Py 7Hy

U
1 1
C:{(U 7 U5,V VN, N,,0,5 va5 17— 7
' 1 2 1 2 1 2 'I'1 T2 T1 T2 T1

Hlt
NN

,-B) € T*X ;

o

P 3g g=39 }
T, =T, u1=u2,;l.—1-=—3+av1(°'v1)a' B=35(0sVyla, a€Rp .

1

[x8]

This is equivalent to the equation

e = - ~39 3g = o349
P17 P "‘av1 (0, V) / 55lo.vy) "‘dv1

g(cfv1) = 0 !
where o = BT 1is a surface tension of the droplet (cf.[18]). In
this example we used a little more general notion of reduction,

namely the reduction relation with constraint. In what follows

we give the precise description of such objects.

REMARK 3.5. In the standard phase space of thermodynamics (let

us take the internal energy representation [24], [9])

(T*Q,,d8, ) , T*Q, = {S,V,N,T,~p,u} , = TdS - pdv + udN , there
1

eQ1
is an additional structure, namely the structure defined by the

so-called Gibbs-Duhem distribution T = {y =0} , where
¥ = =SdT + Vdp - Ndu . This distrubution is not integrable (it

is easy to check that yndy # 0 on T*Q1 ) . However every

tangent hyperplane I’I_,’cz'l'pT’*Q.I is a coisotropic subspace, so
§

taking the symplectic polar T to every Fp we obtain the

corresponding characteristic distribution F§ {see §2). P§
) : . § _ 9 9 _ 9_

is one dimensional and integrable, T° = {GSBS-PGVavi-GNBN ;

NGS + S6N = 0 and NGV = V6N} . The space of equilibrium
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states of the system is a lagrangian submanifold Lg (T*Q1,<.’1BQ )
1

such that TL<Tl . Let F : Q.l —> R be a generating function
for L and i : L —> T*Q1 its immersion. Let us define the
following function G : T*Q,I —> R, G(S5,V,N,T,p,u) =TS -pV + uN .

The condition TLc<cTl implies
i*dG = TdS - pdV + pdN + SAT - Vdp + Ndp l L= eQ1 ’ L-x|L=dP
and the corresponding Euler egquation for F .
i*G = 7 *F

(cf. [91, [19]).



4. REDUCED SPACE OF EQUILIBRIUM STATES.

By Hypothesis 3.2. the symplectic reduction relation
describes the corresponding process of establishing of equili-

brium in deformed systems. Let Lg (T*Q,w.) be a space of

Q
equilibrium states of a thermcdynamical system endowed with the

shase space (T*Q,w.) :

Q

HYPOTHESIS 4.1. Let the assumptions of Hypothesis 3.2. be

fulfilled. Let the lagrangian submanifold fg;(T*X,mx) represents
the space of equilibrium states of the composite system correspon-
ding to the considered class of deformations of the initial system

Lg (T*Q,w.) . Then the space of equilibrium states of the deformed

Q
equilibrium system Wg;(T*Y,wY) is represented as a symplectic

~ image ; i.e.

W = T*p(T) .

The thermodynamical phenomena do not suggest in general any
regular intersection condition between the lagrangian submanifold

} and the corresponding equilibrium condition

Tc (T*X, wy
Cc

(T*x,wx) (see Hypothesis 3.2). Hence the space of equilibrium
states of the deformed system can be vefy complicated and not
‘'smooth in general (see Fig. 3.).. © OQur aim in this’
paper is to give the geometrical framework adapted to the ;

canonical representation of the singular constitutive sets by

their smooth resolutions (cf. [171]).
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If we assume that the reduced phase space is iscmorphic
to the phase space of the initial perfect system, i.e. we have

the following diagram

(T*XIUJXIC)
7
/
deformation )/ ‘ . T*p

/

/

/ ~

(T*Q,wQ)<——iL——>(T*Y,wY) .

Then the stability notion of the initial space of equilibrium

states Lg (T*Q,wQ) can be defined.

DEFINITION 4.2. Let ng(T*Q,mQ) be a space of equilibrium
states of the system. We say that L 1is stable with respect
to the given group of deformations if and only if L and

T*5 (L) are isomorphic, i.e. there exists a symplectomorphism

@ ¢ (T*Q,w.) ~—> (T*Y,mY) such that

Q
e(L) = T*p ()

where T and p were defined before and are determined by
the class of deformations.

As an example of the unstable space of equilibrium states
we take the smooth surface given by the Van der Waals equation
(see [15], [9]). The stabilization of this space (near critical

points) with respect to the standard deformations into two
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thermodynamically interacting subsystems corresponds exactly
to the so-called Maxwell convention. The stabilized space is
no longer smooth (see Fig. 3.). Because of the ﬁniversality
of this example we give its more precise formulation.

Let us continue Example 3.1. In the first step we assume
for simplicity that the constraint separating the corresponding
two subsystems is diatermic (cf. [9]). This suggests the use of
Helmholtz cotangent bundle structure (special symplectic
structure [24]) for the phase space of the.system i.e.

T*Q {T,V,N;-S,—p,u}, §,.=-5dT - pdV + udN . The corresponding

Q

condition of thermol equilibrium in '(T*Q1-+T*Qz,n;de + 7*do )

Q 2T
has a form (see Example 3.1.)

CT = {(T1 'Vqi Ny rT2V2N2;—S1'P1 rHq ,-Sz,—pz,uz) € T* (Q‘T x QZ) ;T1=T2=T} )

Since thé phase transitions are isobaric¢ and isothermic
processes it 1is reasonable to fix one of the intensive parameters,
say T , and localize the other one (p) 1in the point of phase
transition. In what follows we use the proposed geometric view
point to describe formally some aspects of phase transitions
(see [21], [19]).

We see that the space of characteristics of CT is cano-

nically isomorphic to (T*X,dex) where X is an open subset

of R5 5t

1 + uszz ; Where S=S.!+S

with local chart {T,V1,V N1,N2} and

8y = -SAT - p,AV, - p,dv dN

X 2t Hy 2 -

The corresponding submersion 9 :CT —> T*X defined in §2

is as fdllows:
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B‘ (TIV1 'N'I ITrvz 1N2 r"'sal r-P1 ll—lul r—szr'P21u2>

B (T'VT'Vz'N1'N2' -8+ 8y, 'P1"Pz'“1'“2) ’

Let the space of equilibrium states ]LE(T*Q,dBQ) be
defined by the Helmholtz free energy function F : Q —> R
(cf£. [24], p.113). Then the corresponding generating function
for lagrangian submanifold fg;(T*X,dex) representing the
equilibrium states of the composite system (with respect to the

considered class of deformations) has a form

?(T,v1,v2,N1,N2) = F(T,V1,N1) +F(T,V1,N1) ,

since the two subsystems have the same nature.
The submersion p (cf. Hypothesis 3.2) for the full contact

of subsystems is as follows:
.0 H X —_—2 Y r p(T,V1 ,V2 ’N1 'Nz) = (T,V1 + V2 ,N1 + N2>
and the corresponding equilibrium condition

C = {(TIV-I IverTJ‘NzI-SI-pTl-p21u1lu2) € T*X; P1 =p27 l-l.' ="IJ-2 } .
We see that (T*Q,dGQ) 5 (T*Y,dBY) so we can ask for the
stability of the considered space of equilibrium states L . To
give an answer to this question we must look at the image of
lagrangian submanifold fg;(T*X,dex) with respect to the

symplectic relation T*pc (T*X x T*Y,m3d8, - m¥dey) .
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Let us consider the Van der Waals system (see [9]) in the
neighbourhoocd of critical point (cf. [21]) or the system with

the space of equilibrium states of type A3 (cf. (161, [8],

{10]). Let us fix the total number of moles, i.e. N = const. ,
so we have now the new parametrization for Q , Q : {T,V} and

respectively T*Q : {T,V;-S,-pl} , deQ = -pdvV - Sd4dT .

17N5) PNy + N, = const.} .

N2) = (T,V1-+V2) . By simple calculations, using

X := {(T,V VZ'N

-ir
p(Tlv-l lvz IN1 14
the standard formula (cf. [24], [5]) and Proposition 2.1. we

obtain

PROPOSITION 4.3. For the class of deformations of the system

onto two isolated subsystems‘the corresponding image T*p(f)

is described by the following equations

(1) -p = -g-‘—, F(T,V=-V,,N-N,)
_ JF 3F - _
(2) =S = mz (T,V,,N,) + 37 (T,V-V,,N-N,)
(3) 0 =2 (FlT,v. N+ F(T,V-V,N-N))
1 .
(4) 0 = -g—-ﬁ (F(T,V1,N1) + F(T,V-V1,N-N1))

1

PROOF. It is easy to check that the image of I with respect

to T*p 1is described by the following equation

which implies the equations of Proposition 4.3.
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F 1is a homogenecus function (with respect ot the extensive
variables - Gibbs-Duhem equation [9] and Remark 3.5.). Thus we

can write

(5) F(T,Vi,Ni) = Nif(T,Vi) PV Vi/Ni 1 =1,2

where f 1is a differentiable function. We immediately have

COROLLARY 4.4. Let us assume the homogeneoulty property (5)
for the function F . Then the equations (3}, (4), in terms of

function £ , can be rewritten in the following form:

of _ of
(6) 'a—‘; (TJV.‘) = ﬁ (Trvz) )
of _ _ . af
(7) f(TrV1} "'V.IW (va-l) = f(Tlvz) Vz—av (Trvz) .

Let us fix T . By M we denote the set of pairs
{vT,vz)ER2 such that (6), (7) are fulfilled. We denote
A = {(v1,v2} ER2 P vy =v2} , thus M~ A we call the set of
Maxwell points. Obviously; thé pairs (VT,vz)EiA are solutions
to equations (6) and (7). This implies that the initial space L
is containeq in the correspondiﬂg reduced space T*p(LD)

By simple reformulation of Corollary 4.4. we obtain

COROLLARY 4.5. The following conditions are equivalent
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(a) (v1,v2) € M~ A
Va
of of _ af _of _
(b) J (W(T’V) —a—v(T,v1))dv—0 and BV(T’V1) aV(T,vz) =0
v .

1

Let us notice that the condition (6) in Corollary 4.5 is
equvalent to the condition of eqﬁal areaé (01= 02) inﬁroduced
by Maxwe;l 9 for the Van der Waals gas (see Fig. 3 .). So the
method of stabilizing of L give us the space of equilibrium
states endowed with the Maxwell's addiﬁiongl part.

For the Van der Waals system we have

- - eK _ -b) - 2
(8) £(T,v) = CVT 1n "7 RT In (v-b) 5
(cE. [9]).
PROPOSITION 4.6. Let the function f have a form (8) and the

assumptions of Proposition 4.3. are fulfilled. Then in the neigh-

bourhood of critical point (of the Van der Waals system) we have

T*p (L) = L, UL, ,

5 have the following form

and the smcoth components L1,L
CV 2 ’ .
(V/N-b) \Y
- . IR . c .
L, : (-S,-p) =(}LV2N ln (_e_K)v ! +V v‘]Nl‘n (9-15 v-—-——1 a.-
2 VTV, RT (v.].-b)R VooV, RT, (vz-b)R v?
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8 a

for vV.N<V<v,N, T« TC = >58b

1 2

where (v1,v2) is a Maxwell point depending on T (see Fig. 3.).

PROOF. Using Proposition 4.3., Corollary 4.5. and the form (8)
of function f after straightforward calculations we obtain the

desired structure of T*p(L) (cf. [15]).

REMARK 4.7. The component L (see Fig. 3.) of T*p(L) repre-

1
sents the standard homogeneous states of matter (stable gas and

stable liquid, and metastable respectively). However L2
describes the equilibrium space of coexiséence states (coexistence
of liquid and gas phases [19]) and has the structure of con
strained lagrangian submanifold (for definiton see [24], p.103)
defined over the constraining variety representing the correspon-
ding phase diagram. The classification of such spaces of coexis-. -~
tence states can be found in [15]. As an immediate consequence of
Proposition 4.7. we have the Clapeyron-Clausins equation (cf. [9])

representing the relation beween the slope of phase diagram and

affine parameters of the line of coexisting states:

s, (T) - s,(T)
QE(T) - ] 2
4T v, (T) = v, (T)
1 2
where (v1(T),v2(T)) is the Maxwell point corresponding to
temperature T , and si(T) = af/aT(T,vi(T)) , 1=1,2.

EXAMPLE 3.4. (continuation) Let us consider the virtual droplets

in the Van der Waals gas. The corresponding phase space of the
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composite system in thermal equilibrium has a form

* . = - - - :
(T X,dex) ; O sdaT p,IdV1 p2dV2-+u1dN1-+u2dN + ado and

X 2
{T,V1,V2,N1,N2,0} are local coordinates of X (cf. [18]).

Let us assume the spherical shape of the droplet, i.e.
3 2

g =0 - 36'rrV.I . The corresponding submersion p . (with constraints)

defining equilibrium of the reduced system is as follows .

TV Vo Ny /Ny, 0) N, + Ny, =N= const.” TV +Va)

0% - 367v% = 0
and the generating function for the space of equilibrium states

of the composite system Tc (T*X,dex} has a standard form

(c£. [18]).

F(T,VT,VZ,N1,N2,0)’=N1f(T,V1/N1rFsz(T,Vz/Nz) + QC -
It is easy to check, that the equations defining T*p(T) < T*Y

can be written as follows

of _ af
= 4 of _3f - .20 - _
(10) Py-pPy =+ BV(T'V1) BV(T'V2) === vi-Vi/Ni ,1=1,2
S =-§— ¥{T,v,,V,,N.,N,,0)
3T A L R A i
= p2
VvV = V1 + V2
N = N1 + N2 = const.
03 - 36 Tl‘Vf = 0
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where we assumed, V1 = % wr3 0 = 4 nr2 , >0 . It is obvious

that the equations (9), (10) can be rewritten in the following

way
v, .
of of _ 2a
(11) (TV(T'V) -W(T'V1)) dv = vy
v
1
3f _df 2a
(12) §§(T'V2) = 3§(T,v1)+ , a2 0

(see e.g. [18]). But these two equations have very convenient
geometrical interpretations (see Fig. 4.}.

Following Widom [28] we can assume in the critical region
: : m
{(13) a(T) ~ (T - Tc) '

where u 1is the corresponding critical expcnent (cf. [21]).

For the general A3' model (cf. [16]) we can derive the asympto-

tic behaviour for minimal radius R of an equilibrium droplet

min
near a critical point.

of af n=-2
(14) Rmin'"zv‘la / J (-a—v(T,v) -a—v(T,vz)) dv e~ (T-Tc)

By the scaling argument (see e.g. [21], [28]) we can obtain
an apporopriate value for the critical exponent ¢ using the

scaling relations

M+v = y+28 , Sv = y+ 28
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where V,Y.,B are standard critical exponents (cf. [21])

and S 1is a dimensionality of the system.

The measured value u = 1,28 * 0.06 is a realistic
estimate for 1 which is believed to be universal (see [21]).
Thus we can deduce from (14) that in the critical region only

fluctuations of density exist and any new phase can appear.
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§5. THE GEOMETRY OF CONSTITUTIVE SETS

The space of equilibrium states for the system introduced
in the preceding section, is a particular case of the so-called
constitutive set the notion coming from the contreol theory of
static mechanical systems (cf. [23]).

Let K be an arbitrary subset of the manifold X . We
assume K to be semialgebraic (cf. [12]). Let us consider the
set of partially ordered subdivisions of K onto disjoint
union of semialgebraic components (see [13]). As an example of
such subdivision one can take the standard stratification (into
smooth submanifolds) which always exists for semialgebraic
sets (see [13], [21]).

Let £ be a subdivision of KcX , say K= U K
i€eI

i - We

define the subset TKi of TX by

TKi = {VEZTX ; there exists an integral curve y : R —> X

for v such that Y([O,E[)C:Ki , for some ¢ >0}

So the corresponding tangent space of K subordinate to the

subdivision £ 1s defined as follows

K= U TK

(£) 1ex ¢

For the trivial one-component subdivision of K we use also

notation TK . For the constraints we write (X,§) .



The constitutive set of a system, endowed with the phase

space (T*x,dex) , 1.e. the set of points in T*X defining
certain "external forces" (cf. [23]) under which the system

will remain in equilibrium, is defined as follows:

(15) S = {pe T*X ; Trx(p) €K, <v,p> S <v,d> for each

veT

(E)K such that Tx(v) = ﬁx(p)}

where o : X —> T*X 1is a 1-form (defining the regular system
before the constraints K are imposed [23]), and .S is called

the constitutive set corresponding to the subdivision § .

EXAMPLE 5.1. Let a material point move freely on the line. Two

stops restrict the movements of the point to the interval
~asx sSa , a>0 . It is easy to check that the constitutive

set corresponding to the trivial subdivision is described by

x| s a

where (x,£f) are coordinates of fo:aRz

If (K,§) represents the physical constraints imposed
on the system with internal energy U : X —> R . Then the
corresponding constitutive set S of the constrained system is

defined by the variational principle (15) with o = dU . This
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principle is the generalization of the principle

<v,du> for each

S' = {pGT*X;TTX(p) €K , <v,p>

(v)

v € TK such that T

X “x(P’}

valid for the constraint represented by a smooth submanifold
KcX without boundary.

Let p : X —> Y be a submersion, let KcX be a semi-
algebraic subset of X , thus described by a number of polynomial

eguations and inequalities gi(x) =0 , g:'i(x) <0 .

DEFINITION 5.2. The subset §c(T*y,deY) defined as follows

S = {pET*Y;wY(p) € p(K) , <Tp(v),p> § <v,0d > for each

VET K such thaj: p('rx(v)) = TrY(p)}

(€)
is called the reduced constitutive set. We denote it also by
T*py {(gd) (where o : X —> T*X is the one-form). Usually the

(€)
subdivision of © p(K)ecY is determined by the structure'of this

reduction procedure.

EXAMPLE 5.3. A freely moving material point on the plane

Rz,(x,y) , confined to the parabole {y-x2 = 0} with "y

only the controlled variable can be described as a reduced con-

stitutive set. Here we have

plx,y) =y , K= {y-x2= 0} (with trivial subdivision); 0=z0
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and S is described by the following conditions

£ =0 4f y>0

fe€R if vy= . (y,f) € T*y .

We see that this is the constitutive set over p(K) = {yz20}

corresponding to the natural subdivision p(K)={y=0}u {‘y:> 0} .

If the constraint KcX 1is a smooth hypersurface then the
local singularities of the constitutive set S are determined
by the mutual position of K and fibres of the fibre-map
p ¢+ X —> Y . |

The.constitutive set (15) with o0=0 we call the free

constitutive set. The free constitutive sets are responsible for

the equilibrium configurations governed by the constraints and
they determine the structure of singularities in the presence of
internal forces (o=0) . Now we provide their stable reduced

types (for the definitions see [20]).

PROPOSITION 5.4, Let dimX-1=dimY¥=n , KcX , codimK=1 ,

and let p : X —> Y be a submersion. For the generic, reduced
free constitutive. set ¥ , around each point x€ K and around

the corresponding point p(x) €Y .we can choose the local coordi-
nates in which § cén be reduced to one from the following normal

forms
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1 k+1 k=1
Sy = {(f,y) ET*Y; 3 such that X5 +Y, Xy *...¥Yy_  X4=Yy = 0
xOGR

n
) v,£, 50 for each (vy,...,v,) € R™' - such that
i=1
k=1
, K k=2 k-1 ~
vo((k+1)x0 + (k=1)y,xq +...+yk_.|) + iz1x0 Vi =V = 0}

where- k€N , ksn .

PROOF. For the mapping diagrams of type

(*) K &> x —F> v

with the standard equivalence relation (see [2]p.4175)

K &> X —-9—>Y

K &——>» X —p>Y

we have the Whitney classification theorem (see [27]). According
to this theorem the generic mapping diagram (*) with K-hypersur-
face and p-submersion with one-dimensional fibres, is locally

equivalent to one of the following normal forms:

O(XO'XT"°"XH) = (x.l,...,xn)EY
_ L JKkT1 k-1 _
K—{(xo,x.l,...,xn)ex,xo * XX, +...+X -O}

where k=0,...,n

r

A diffeomorphism (i=1,2,3)
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Insertingthis local expressions into the formula of Definition

5.2, after stréightforward calculations we obtain the thesis

of Proposition 5.4.

If dimY=ns3 we can obtain even mofe, namely the classi-

fication of normal forms for the generic images

*pK(dF) .

. PROPOSITION 5.5. Let the assumptions of Proposition 5.4. be

valid. Let dimyYy=ns3

set S = T*pK(dF)

Then for the generic constitutive

, the corresponding germ of §

for every point

pizg is equivalent to one, represented by o,K,F , from the
following list:
p ¢ XY KeX F : X=+R
(xo ’xl) "xl {xouO} xltX§
(Xg,%,) > X, {xg-xl=0} x0+pl(x%)
-A(xo |x1 ’xz)" (xl sxz) {x°='0} x-l ,"-’x%ix%
(xo » Xy ’xz) nd (xl ,x2) {x%-x1=0} Xo+Xg ,"’x%+xo ,x2+xgtx2xo

(xo,xl,xz)-o(xl,xz)

{xg+xox2-x1-0}

ixu+pz(x +X (X, ,X,)

(xg 1K, 5%, 9x3) - (xl X, sxa)

(xosxl s Xy ’x3) - (xl ’x29x3)

(g2 %y 5%,,%,) = (xy,%,,%,)

(xo )xl ’xz !xa) -

{x,=0}
{xg-x1=0}

3
{x°+xox2 xl=0}

4, 2
+
{xo X,

X +x x_=-x =0
2 7073 1 }

2 _2,.2
+ +
1>-%y X=X,

2 XX +x2+x2,x +X X

073
X, +x 0¥ +x3+xox§

X

X

2,
-+
X, x3,x x5 0¥z

x +x +X,.P, (x XX, X))

(x +X

2y x X

+ +
+x P (x XX, 5%, 0K,

X ),

x_)

where Py (i=1,...,5)

are smooth functions.
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PROOF. On the basis of Proposition 5.4. we can reduce the
classification problem for the generic imagesl T*pK(dF) to

the classification of mapping diagrams

|2

R < K &> X 4L> Y

endowed with the so-called strong equivalence (see [2]). In the
local coordinates of Proposition 5.4, using the Whitney lowerable
-vector fields on K we can classify the generic singularities

of F (see [2], p.356).

Then, as we see from the definition of the reduced consti-
tutive set 5 , we can take for F an arbitrary smooth extension
of ¥ . Taking the trivial extension of F we obtain the list

- of Proposition 5.5.
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§6. COEXISTENCE OF PHASES, EXTENDED APPROACH

We consider the closed éystem consisting of n moles of
Van der Waals gas divided intoc k open subsystems in equilibrium
(composite system §3). Let (T*X,dex) be the phase.space of this
system (cf. [18]).

3k
L R CAMTA MR S

(V1I--opvk)l

(si)= (s1,...,sk) ect.

ok = 56K | {(Vi) (5,0, tn) (), (), (Tfi)}
k ~J
Ox = 121 (mydvy + 73dsy *uydny)

where '(Vi),(si),(ni) etc. are the molar coordinates correspon-
ding to the division into cells (see [9]). The adjoint variables
expressed in the standard thermodynamical coordinates are the

following (cr. Section 3} .

Wy S TPyRy e Ty TNy By T Hy TPV TSy .
. Let the internal energy | (vi) ' (si) p (.ni) y »U( (vi) ’ (si) ’ (ni) t=
= I niU(vi,si) be the generating function for the space of
i=1

equilibrium states I of the composite system. -The configura-

tional domain X cX (attainable states) is defined as follows

K={((Vi)'(si)'(ni))ex"; vi>0 ’ si>0 P niZO ’

k
for i=1,...,k, Zn =n>0}
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We adapt Definiton 5.2. in variational form, to obtain all

equilibrium states of the reduced system.

Let (T*Y,dei) be the standard control phase space

(see Section 4), i.e., T*Y:{V,S,-p,T} , 8,=T4ds - pav .

Y

HYPOTHESIS 6.1. Let o : X-Y , p(tvi),(si),(ni)) =

k k
= (iz1nivi, iz1nisi) be the canonical submersion. Then the space

of equilibrium states Wc:(T*Y,dBY) for the reduced (deformed)
system is represented as the reduced constitutive set T*pK(f),
where T 1is the corresponding, regular constitutive set in
(T*X,dex) . Now we verify this hypothesis in the case of the Van

der Waals system (see Section 4). By Definition 5.2. we have:

(v,s,-p,T) € T,*pK('f:) < T*Y if there exists ((vi) P (Si) ’ (ni) € K

such that

R k k
2° -p5( 3 nivi) + TG( ) nisi)s § Ty, (sy),(ny))
1=1 i=1

" for all displacements ((Gvi),(ési),(dni)) compatible with K .

According to the structure of K we have the two cases:

'(K');ni>-0 for i=1,...,k (k subsystems)

ne-15
o
o
l,.J.
1
o

[ S—

TK' = {((Gvi),(ési),(ﬁni)) ;

taking én, i'o , from 2° we obtain
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3 Ju
(16) p = - 5% (Vi,si) , T = s (Vi'si) i=1,...,k .

i i

Insertiﬁg into 2° , sz =0 , Gsm =0, for 1s2,msk and

Gni'+6nj = 0 were Gnr =0 if r=#1i,j , we obtain
(17) —p(vi-vj) + T(si—sj) - u(vi,si) + u(vj,sj) =0 .

Taking into account the legendre transformation of u(v,s) ,
namely fT(v) = u{v,s(v,T}) - Ts(v,T) , where %%(V,S(V,T))E'T

the equations (16), (17) can be rewritten as follows

But they are equations obtained in Section 4. for the Van der
Waals system. In this case, near the critical point, we have
maximally two different solutions with appropriate values of p

and T . Let I, be a subset of K = {1,...,k} corresponding

to the scolution, say (v1,s1) , and let I2 = K-—I1 be the
subset corresponding to the second solution (vz,sz) respecti-
vely. Hence we can write: V = N1v1-rN2v2 , S = N1s1-+N252 p
N, = ) n,, N, = § n and
Voogér, %2 ger t
1 2
_du,.1 1 _du, 1 1
-p = 3;(v ,8') , T = as(v ,S )

which are equations describing the coexistence of the two
phases (see [9]) with the Maxwell convention as a consequence

of the approach.
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(k") ;nr=0 for some re¢ I,

Let us suppose that the r-th cell became empty, i.e.

K"={((Vi)r(si)y(ni))?vi>0lsi>0 'nI':O for some r€I1

.ni>0 for ieK- {r}} . By Definition 5.2. we have
p= (v ,s) , 7= (v,,s,) for 1€K-{r}
3v, i’°i’ ! 9s 1774 !
(18)
1 2
V=uv n. +v n _o1 -2 z
jer,~{xr} 7 i€I, 1’ S=s jET,-(r}%y " ® 1€1,"1
and

| o = {((6v i tss) ten ) » §oem=0, en zo} .
Let us take

Sn. = - ): dn

ieR-{j} i

for some j=r . Substituting this formulae to 2° we obtain

. (-pv,+Ts, +pv.-Ts.})dn, < 2 (u(v,,s.% -u(v,,s,))dén,
ieR={3} 1770 0 T T a2 () e 1 *
By independence of 6n1 we have
(19) —p(vi-vj) +T(si—sj) =u(vi,si) -u(vj,sj), for 1i,j=r

(20) -p(vr-vj) +T(sr—sj) Su(vr,sr) -u(vj,sj) » 15j8k

’
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It is easy to check that (20) is automatically fulfilled and
(18) together with (19) reconstruct the modified Van der Waals

variety (see Fig. 3 .).

REMARK 6.2. Considering the conditions 1°, 2° for generic

potential function fT(v) .(see [9], [16]) we obtain the triple
points (i.e. coexistence of three phases). The presented geome-
trical approach can be easily extended into more general thermo-
dynamical systems providing guite useful methods for unifying

the descriptions of phase transitions in complicated systems
(c£.[191). Moreover one cén find easily the universal geometrical

meaning for majority of standard procedures 'in classical theory

of phase transitions (see [18]), [21], [9]).

Let us adapt our methods to the chemical equilibrium ..--
(cf. [9]). Let (T*g,deg) be the phase space of the spatially

and chemically (with many ingradients) composite system.

X {(pi) (T (nji)} , T*X : {(pi) ALY (ngg) 5 V), (-55) (uji)}
k m
by = i21(-SidTi+Vidpi + jZ1ujidnji)
where "i" numbers the cells and "j" numbers the chemical
components of the cells.
For simplicity we assume now that only one phase realizes
and only one chemical reaction can appear. So the corresponding

phase space for this chemical composite system is as follows



- 42 -

(T*X,dex) , T*X {p,T,nj;V,—S,uj}

m
Bx = =8dT + Vdp + jz1ujdnj R
where nj are mole numbers of the chemical components.'The

chemical reaction is commonly symbolized by equation (see [9])
?

(21) v,B, = 0 ’
p=p 13

where v, are stoichiometric coefficients.

Equation (21) shows that the changes in mole numbers of all
substances taking part in the reaction aée completely determined
by a single mole number, say n, . The course of reaction can,

therefore, be described in the form dni = af , L =1,...,m

Vi
where i is called the progress variable (cf. [9]). A is
the increment in the time the reaction takes place. Thus the
phase space adapted to the presence of chemical reactions can be

defined as

(T* (XxR") , dby Rr) '
where r is a number of reactions (here r =1 ). R is the
space of so-called progress parameters.

Let (T*Y,-SdT + Vdp) as before be the standard thermody-
namical phase space and p : XxR —> Y , p(p,T,(ni),ﬁ) = (p,T) .
Thus the corresponding constitutive set Q<«T*Y in the presence
of chemical reaction can be written as follows (see Definition

5.2. and Hypothesis 6.1.)
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.

(p,T,V,~S) €QeT*Y if there exists (p,T, (n,) A ec |,
such that

Vép - S6T s ss(p,T,(ni),ﬁ)

 for all virtual displacements compatible with TCNnz ,

where C = {(p,T,(ni),ﬁ) : p>0, T>0, niao} , ZcT(YxR) 1is

a distribution defined by the reaction
zZ = {(5p,aw,(ani),sﬁ) ; 6n, = v, 8f i.=1,...,m}

and G : XxR —> R 1s a generating function (free enthalpy [9])
for the space of equilibrium states I in the phase space
(T* (X x R), dex xR) of the composite system. G does not depend
directly on A .

Let us suppose (without restriction of. generality) that all
chemical components are :aither reactants or products ¢f the con-
sidered reaction. Hence we have to take into account the four

steps of the variational principle (22).

A
1°. (p,T,ni,n) €C, ni>0 .

m
- 3G 3G 3G
Vep - SAT <75 6p + 33 8T + [ o7 6n,
i=1 i
where 5ni = \)isﬁ . So we have:
m
- 36 - - 3G 3G =
V_BP'S-aT'i;anl 0
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where the last condition expresses the equilibrium condition

(cf. [9])

when all reactants and products are present.

2°, not all products are present

Let n_=0 for some reI, (v > 0) , where the subset of

indeces I2 corresponds to the products and the. subset I1

corresponds to reactants respectively. Now we have

m
3G
TR

i=1 i
i5 such that én.20 and A2 0 . So we otain

vep - seT s 28 sp + 28 st 4

ap 3T + where (5pf<5T,(6ni),6ﬁ)

i

_ 36 _ .26
m m
aG 3G
(23) (2 —-u.)aﬁzo-.z 22 v, 20
o \g=q oyl 1= oyt
If we introduce the quantity
m
A = -121 wivy = - AG ’

so-called affinity of the reaction, thus (23) corresponds to

the well-known criterion for the possibility of reaction

AG20 , AL O (reaction possible) .
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3°. not all reactants are present.

In this case n, = 0 for some k€ I1(Vk<0) . Hence

analogously as above we obtain

_ 9G - _29G
V - ap Fi S - aT
m
I g—-g Gni 2 0 ,
i=1 i
where 6n, = v,6R , 6n, 20 and SAs0 (because of v, <0) .
i i k k
Thus
m
AG = 2 uivi'<0 , A>0 (reaction impossible)
i=1
or
AG =0, A=0 (chemicai equilibrium) .

=] . =
4 . nr-O for some rEiI2 and nk 0 for some k€I1.

In this case we. do not obtain any additional equilibrium
condition, because reaction can not appear. This problem reduces

to the thermodynamical equilibrium without chemical reactions.
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FINAL REMARK:

Let the volume V of the container be subdivided into
cells of volume A . It is supposed that A 1s so large that
it contains many particles, but so small that the potential is
practically constant inside A . This imposes the condition that
the range of potential must be very long, and that the density
must be so high that many particles interact simultaneously.

For this system we have the following phase space

(T*X,dex) T*X {T,V,(ni).—s,-p,(ui)}

8, = -SAT - pav + E by

dpi

where (ni) defines the cofiguration of particles. The free
energy for this. composite system has a form
FIT,V, (n;)) = Ef(T,V,ni) + o RANLAY
r]

where -wij is the attractive potential between cells ni,nj .
The whole variational analysis of-the system is anologous to
this one conducted in Section 5, nevertheless the proposed
formulation provides the natural geoﬁetric approach to the
continuous media.

The proposed symplectic approach to thermodynamics gives

an adequate language for expressing the geometry of constitutive

sets and frequently observed reciprocity relations [23] . Our
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concept of deformation of the system generalizes the notion

of virtual state (cf. [ 9 ]) and provides quite effective quanti-
tative analysis of systems near phase transitions. One of the
.consequences of this approach 1is a derivation in the very
general phenomenological context, the so-called Maxwell rule
[22] which gives a hope that the very peculiar constitutive
space of states in mechanics and thermodynamics can be resolved

by the canonical symplectic procedures.
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