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THE NIELSEN-THURSTON CLASSIFICATION
AND AUTOMORPHISMS OF A FREE GROUP I

Z. SELA!

In a sequence of 2 papers we construct a hierarchical decomposition of a free group

with respect to a given automorphism of it. This hierarchical decomposition is shown
to be the analogue of the Nielsen-Thurston classification for automorphisms of a free
group. In the first paper we introduce a dynamical-algebraic commutative diagram
and use Rips’ analysis of (stable) group actions on real trees to get a “uniform”
approach to the Nielsen-Thurston classification and the Scott conjecture for auto-
morphisms of a free group. In the second paper we introduce further dynamical
invariants which allow us to obtain the hierarchical decomposition using the meth-
ods described in this paper.

Using train tracks and invariant laminations, Thurston has developed a whole
theory to understand the dynamics and geometry of diffeomorphisms of surfaces
([Th], [Ca-Bl]). By introducing a combinatorial analogue of train tracks M. Bestvina
and M. Handel [Be-Ha] have managed to analyse irreducible automorphisms of a
free group, and using this analysis to bound the rank of the fixed subgroup of an
automorphism by the rank of the ambient group, which was known before as the
Scott conjecture.

In [Sel] borrowing Jaco-Shalen-Johannson theory of the characteristic subman-
ifold, the author introduced a cononical decomposition for freely indecomposable
(Gromov) hyperbolic groups, which serves as a fundamental object for generalizing
results from the mapping class group of surfaces to automorphisms and the auto-
morphism group of freely indecomposable hyperbolic groups, and in particular to
generalize Thurston’s work to this class of groups. This JSJ decomposition was
later generalized to single ended f.p. groups in [Ri-Sel].

The construction of the JSJ decomposition, which uses extensively Rips’ work
on real trees, succeeds in generalizing Thurston’s theory but has not been able to
suggest an alternative approach to Thurston’s original work. In addition the whole
construction relies extensively on the groups in question being freely indecompos-
able and above all having no free factors.

In this sequence of papers we construct a hierarchical decomposition of a free
group with respect to a given automorphism of it. Our construction which is dynam-
ical in nature suggests a “unified” approach to Thurston’s theory on the dynamics
of diffeomorphisms of surfaces and to the study of the dynamics of automorphisms
of a free group and may sometimes serve as a complementary to the Bestvina-
Handel train tracks and invariant laminations. We also believe that besides the
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applicability of our methods to the study of the dynamics of automorphisms of a
free group, it can be applied in various other cases. In particular we have already
used it to obtain the Hopf property for hyperbolic groups [Se2].

In this paper we introduce the basic tools needed for the construction of the
hierarchical decomposition. We start by introducing a dynamical-algebraic com-
mutative diagram which is the basis for our whole approach. This commutative
diagram allows us to interpret dynamical invariants in algebraic terms and vice
versa. Using this diagram we show how to obtain the Nielsen-Thurston classifica-
tion of automorphisms of surfaces on the algebraic level in the third chapter and
the Scott conjecture for automorphisms of a free group in the fourth one.

Our arguments makes an extensive use of Rips’ work on stable actions of groups
on real trees. Since a preliminary version of our work appeared, F. Paulin has
shown how to replace the bi-Lipschitz equivariant map appears in our commuta-
tive diagram by an equivariant isometry. This may indeed be helpful for further
applications. M. Lustig has managed to obtain somewhat stronger closely related
structural results using elements from Bestvina-Handel’s work.

1. A Dynamical-Algebraic Commutative Diagram.

From a sequence of actions of a hyperbolic group on its Cayley graph via powers
of a non-periodic automorphism, it is possible to extract a subsequence converging
to an action of the group on a real tree by a theorem of F. Paulin [Pa]. We start this
section by reviewing this construction and stating Rips’ structurte theorem which
allows us to analyse the obtained action later in the sequel. Having the action we
construct a commutative diagram which allows one to relate algebraic assumptions
with dynamical assertions and vice versa. Later on we will see how to use this
commutative diagram together with Rips’ classification to obtain both the Nielsen-
Thurston classification for automorphisms of surfaces and a generalized version of
the Scott conjecture to automorphisms of a free group. In a continuation paper the
same commutative diagram will allow us to obtain a hierarchical decomposition of
a free group with respect to a given automorphism of it.

LetI' =< GIR>=<g1,...,4t ]rl,... ,Ts > be a torsion-free é-hyperbolic
group, X its Cayley graph with respect to the given presentation and ¢ an infinite
order auotmorphism in Qut (I'). Since ¢ is not a periodic automorphism the t-
tuple (¢™1(g1), ... ,©™(g¢)) is not conjugate to the t-tuple (¢™2(g1),... ,%™*(g1))
for my # mq. For each m we pick an element 4, € I which is translated minimally
under the action of ¢™(g1),... ,9™(g:) and set y,, to be that minimal translation,
le.

pm = max |ym @™ (95) 70" | = min max [ye™ (g}
Picking vm we define (,, to be the automorphism given by $m(v) = yme™(¥)y5!.
Since ¢m is determined by the image of the generators {g;};_; and since these
images are not conjugate for m; # mq, necessarily u,, — oo. Let {{(Xm, id.)}_,
be the pointed metric spaces obtained from the Cayley graph X by dividing the
metric dx by pm - (Xm, id) is endowed with a left isometric action of T" via @,,. At
this stage we can apply the following.



Theorem 1.1 ([Pal, 2.3) Let {Xn}%_, be a sequence of &, -hyperbolic spaces
with oo = limé&,n < 0. Let G be a countable group isometrically acting on X,,.
Suppose that for each m there ezists a base point u,, in X,,, such that for every finite
subset P of G, the union of the geodesic segments between the images of uy, under P
18 compact and these unions are a sequence of totally bounded metric spaces. Then
there is a subsequence converging in the Gromov topology to a 50 é.-hyperbolic
space Xoo endowed with a non-trivial isometric action of G.

Our pointed metric spaces (X, :d.) clearly satisfy the assumptions of the the-
orem (see [Pa] for details) and they are FJ: hyperbolic, hence, there exists a sub-
sequence {(Xm,, 1d.)}52, converging into a real tree Y = X which is endowed
with an isometric action of I'. By our construction Y is minimal under the action
of T, i.e., Y contains no '-invariant proper subtree.

To analyse the action of I on the real tree Y, we need to study some of its basic
properties. We start by showing the action is small and stable which will allow us
to use Rips’ classification of such actions in the sequel. The elementary properties
we need are standard and appear in [Ri-Se2].

Proposition 1.2 ([Ri-Se2], 4.1 - 4.2) With the notations above:

(i) Stabilizers of segments of Y are cyclic.
(11) Stablizers of tripods (convez hull of § points which are not on a segment)
are trivial. '
(iii) Let [y1, y2) C lys,ys] be segments of Y and assume stab ([ys, ya]) # 1.

Then stab ([y1, y2]) = stab ([y3, v4]).

Proposition 1.2 shows the action of I" on the real tree Y satisfies Rips’ Ascending
chain condition ([Ri],[Be-Fel],([Ri-Se2],10.2)), so it enables analysing the action
using Rips’ classification of stable actions of f.p. groups on real trees. In ([Ri]
and [Be-Fel)]) the real tree Y is divided into distinct components, where on each
component a subgroup of [’ acts according to one of several canonical types of
actions. We bring the version of this analysis appears in the appendix of [Ri-Se2]
which is going to be used extensively both in this paper and its consecutive one.
For the notions and basic definitions used in the statement of the following theorem
we refer the reader to the appendix of [Ri-Se2| and to [Be-Fel]

Theorem 1.3 (cf. [Ri],([Be-Fel],15)([Ri-Se2], 10.8)Let G be a f.p. group which
admits a small isometric action on a real tree Y that satisfies the ACC condition.
Assume the stabilizer of each tripod in Y 1s trivial.

1) There ezist canonical subtrees of Y: Y1,... Y with the following properties:
(1) gYi intersects Y; at most in one point if 1 # 7.
(11} gYi is either identical with Y; or it intersects it at most in one point.
(111) The action of stab (Y;) on Y; is either discrete or it is of azial type
or IET type.
2) The group G admits a (canonical) graph of groups with:
(i) Vertices corresponding to branching points with non-trivial stabilizer
in Y.
(i1) Vertices corresponding to orbits of the canonical subtrees Y1,...,Y;
which are of azial or IET type. The groups associated with these



vertices are conjugates of the stabilizers of these components. To a
stabilizer of an IET componenet there ezists an associate 2-orbifold.
All boundary componenets and branching points in this associated 2-
orbifold stabilize points in Y. For each such stabilizer we add edges
that connect the vertez stabilized by it and the vertices stabilized by its
boundary componenets and branching points.

(111) A (possible) vertez stabilized by a free factor of G and connected to
the other parts of the graph of groups by a unique edge with trivial
stabilizer.

(iv) Edges corresponding to orbits of edges between branching points with
non-trivial stabilizer in the discrete part of Y with edge groups which
are conjugates of the stabilizers of these edges.

(vi) Edges corresponding to orbits of poins of intersection between the or-

bits of Yi,... ,Yx.

Before concluding our preliminary study of the limit real tree and start construct-
ing our dynamical-algebraic commutative diagram, we exclude axial components
isometric to a real line appear in the statement of theorem 1.3 above.

Proposition 1.4. With the notations above:

(i) Y does not contain a minimal azial component isometric to a real line.

(11) Stabilizers of non-degenerate segments which lie in the complement of the
discrete parts of Y are trivial. Stabilizers of segments in the discrete com-
ponents of Y are trivial or mazimal cyclic.

Proof: U Y contains an axial component isometric to a real line, it contains a
solvable subgroup with Z2 as a quotient. But the only solvable subgroups of T
are virtualy cyclic, so we have (1). Since Y does not have componenets isometric
to a real line, the ACC condition implies that the stabilizer of a non-degenerate
segment in the complement of the discrete parts of Y, stabilize a tripod in Y.
Since stabilizers of tripods are trivial by lemma 1.2, stabilizers of segments in the
complement of the discrete parts of Y are trivial. Stabilizers of segments in the
discrete part of Y are trivial or maximal cyclic by lemma 1.2. a

Having a subsequence of powers of an automorphism ¢ of a hyperbolic group I'
converging into a real tree Y with the above properties, we are able to introduce our
approach to the study of the dynamics of ¢». The approach adopted in this paper is
much weaker than the one introduced in [Sel| for freely indecomposable hyperbolic
groups which are not surface groups, but as we will see it gives the Nielsen-Thurston
classification and can serve as a basis for understanding the dynamics of automor-
phisms of a free group. Let {¢k|¢k = Pmp = Ymp @ 7,‘,‘,}. }:°=1 be a subsequence
of automorphisms obtained by theorem 1.1, namely a subsequence for which the
metric spaces {(Xm,' , id)}‘:l equipped with a left isometric action of I via ¥ con-
verges into our real tree Y equipped with a left isometric " action. We start with
the following rather immediate commutative diagram which connects algebraically
two I" actions on real trees.



Proposition 1.5 For each k let (X!, , id.) be the pointed metric space (Xm,, id.)
equipped with a left isometric action of I" via the automorphisms ¢} = trop. Then
the sequence of pointed metric spaces {(X},,, id‘)}:; converges in the Gromov
topology on metric spaces to a pointed real tree (Y, yd) which is isometric to the
posnted real tree (Y, yo) via an equivariant isometry T : (Yl, y(l,) — (Y, yo) such
that the following diagram i3 commautative:

Cx(Y'hy) — (Y u)
(¢7) T

T x (Y, w) — (Y, %)

(ie. ¥y €T Vi€ Y r(v(#) = «(v) (r(§))) In particular Y1 is minimal
under the action of T.

Proof: The convergence of the sequence of the [-spaces {(X!, , id.)}:f__l to a real
tree Y1 follows from the convergence of the sequence { (X id.)}:;l to the real
tree Y. The commutative diagram in the limit follows from the existence of corre-
sponding commutative diagrams between the I' spaces (X}M, id.) and (Xm,., id.)
at any finite step k. Y'! is minimal, since the identity moves minimaly by the image
under ¥} of the generating system (¢~ (g1),... ,¢7 (g¢)). O

Having composed 3 with our initial automorphism ¢, we compose them in a
different order. Unlike the composition from the left, when we compose on the right
we need to take a subsequence in order to get convergence into a real tree equipped
with a T' action.

Proposition 1.6 For each k let (X?nk, id.) be the pointed metric space (Xm,_, id.)
equipped with a left isometric action of T via the automorphism 2 = potp;. Then
there ezists a subsequence of the pointed metric spaces {(an*, id.)}:o:] converges
in the Gromov topology on metric spaces to a pointed real tree (Y2, y2) equipped
with a minimal left 1sometric action of T, and such that there ezists a bi-Lipschitz
equivariant homeomorphism u : (Y, yo) — (Yz,yg) and the following diagram is
commutative:

I'xY —_ Y
(id., u) H
' x Y2 _ Y?

(i.e, u(v(¥)) = v(u())).

Proof: ¢ acts on the Cayley graph X as a quasi-isometry and so does ¢~!. For
each k and ¢, let ¥x(B¢) be given by:

e (Be) = {(v)|veX; |v] <€}



Then clearly ¢ acts on ¥i(B¢) as a bi-Lipschitz map with bi-Lipschitz coeffi-
cients independent of k and ¢. This clearly guarantees that the metric spaces
{(anh, id.)}:__l satisfy the assumptions of theorem 1.1, which gives a conver-
gent subsequence in the Gromov topology. Moreover, the independence of the
bi-Lipschitz coefficients in & and £ give us the existence of the (equivariant) bi-
Lipschitz homeomorphism p in the above commutative diagram. Since (Y, y,) is
minimal under the action of I', and (Y2, y2) is obtained from (¥, yo) by an equi-
variant bi-Lipschitz homeomorphism, (Y2, y?) is minimal under the action of T as
well. d

Proposition 1.5 connects the I' action on the real tree (Y'!,33) on the algebraic
level and proposition 1.6 connects the ' action on the real tree (Y2,y2) on the
space level. In order to deduce algebraic assertions from dynamical data and vice
versa, we need to put the two diagrams obtained in the above propositions into
a one diagram. To do that we show that there exists a ' equivariant isometry
between the real trees (Y!,y3) and (Y'?,y2). For simplicity we continue to denote
the subsequence obtained in proposition 1.6 by {gbz}:o:] and the corresponding

subsequence appears in proposition 1.5 by {qb,lc}:o:l

Proposition 1.7 With the notations above there ezists a bi-Lipschitz homeomor-
phism o : Y = Y for which the following diagram is commutative:

'xY! _— Y!
(id., o) o
I'xY e Y

(ie. VieY'  ~(a(9) =o(v()))

Proof: Thereal tree (Y?,y}) is obtained as the limit of the sequence of actions of T
via the automorphisms 1} on the metric spaces (X, ,1d.) and the real tree (Y2, 32)
is obtained as the limit of the sequence of actions of I via the automorphisms ¥ on
the metric spaces (X, ,1d.). The automorphisms 1} and ¥} are both conjugate to
™+ hence, by changing base points, we may view the real tree (Y!,y3) as the
limit of the sequence of actions of " via the automorphisms ¢™**! on the metric
spaces (X, ,¥m,) and the real tree (Y'2,32) as the limit of the sequence of actions
of T' via the automorphisms ™**! on the metric spaces (Xm, , ©(Ymi))-

Every non-elementary hyperbolic group contains two elements which generate
a free group, hence, we may assume that our generating set ¢;,...,g¢: contains
such a pair. The point ~,,, was chosen so that its maximal displacement by the
t-tuple (0™*(g1)s-.. ,¢™*(g:)) is minimal and equals y,,,. Therefore, there exist
contstants ¢j,... ,c4 for which:

Ciftm, < 112‘;?‘%(‘ dX(‘lomk+1(gj)(7m:. ), Ymn) < C2fim,

capim, < max dx(p™F(

X 95)(@(Ymu )y #(Ymi ) < Capimy,



Let ¢ = maxc; and let g; and g, be the pair of elements from our generating set
which generate a free group. Since g; and g; generate a free group, the commutators
[g7,95] are distinct for different r’s. If the axes for p™**1(g,) and for ™**1(g,)
remain in distance not more than 24 in a ball of diameter 2¢cp,, in X, then there
exists a point in one of these axes so that for all r = 0,1,... ,£ this point is being
moved by ¢™*¥1([g],g5]) a distance bounded by 8§ in X - the Cayley graph of
. Hence, the axes of ¢™**!(g;) and ¢™**1(g,) can remain at distance not bigger
than 2¢pm, only in a set of diameter not exceeding 2(vss + 5)cpim, where vgs is the
volume of a ball with radius 8§ in X. Since both points v, and ¢(+vm, ) have to lie
in this set by the above inequalities, the distance between these points is bounded
by 2(vss + 5)cpim, as well.

Having a bound on the distance between vy, and ¢(vm, ) in terms of p,,, we can
define a new limit procedure which will give us a new I real tree T which includes
both real trees Y! and Y2. To do that we need a minor modification of theorem 1.1
that can be proved by exactly the same arguments to those appear in ([Pa],2.3).

Lemma 1.8 Let {X,;,}35_, be a sequence of &, -hyperbolic spaces with 8o =
limé,, < co. Let G be a countable group isometrically acting on X,,. Suppose
that for each m there ezist a couple of points u,, and vy, in X, such that for every
finte subset P of G, the union of the geodesic segments between the images of up,
and v,, under P i3 compact and these unions are a sequence of totally bounded
metric spaces. Then there 1s a subsequence converging in the Gromov topology to
a 50 600 -hyperbolic space X, endowed with a non-trivial isometric action of G and
the sequence of points u,, and v, subconverge into a couple of points in this limit

space.

By the above arguments the metric spaces X,,, together with the points ~vn,
and ¢(v¥m, ) satisfy the assumptions of the lemma, hence, these metric spaces sub-
converge into a double pointed real tree (T,t,,t;). Clearly, both Y! and Y? are
subtrees of the real trees T, and since the action of " on T is non-trivial and both
trees Y! and Y? are minimal for that action - Y! = Y? and in particular there
exists a [-equivariant isometry between them. Composing this equivariant isom-
etry with the bi-Lipschitz equivariant homeomorphism from Y2 to Y we get the
bi-Lipschitz equivariant map from Y to Y. 0

Propositon 1.7 together with propositon 1.5 give us the commutative diagram
which is the key point in our whole approach to the dynamics of automorphisms of
hyperbolic groups. This commutative diagram will allow us to relate algebraic and
dynamical properties of automorphisms of hyperbolic groups and in particular of
free groups.

[ xY!? Yt
(1) (id. a)l l (.7 a T
'xY —_— Y
Vyel vYieY'  o(v(@®) = v(e@); T(0(@) = () (@)



2. Conservation Laws for the Basic Commutative Diagram.

The commuatative diagram (1) gives us a linkage between the algebraic automor-
phism ¢ and its action on the hyperbolic group I' and a I'-equivariant bi-Lipschitz
map o between the real trees Y and Y!. Having such a diagram we naturally
continue by studying some of the (dynamical) invariants of the map o and relate
these invariants with the algebraic structure of the automorphism ¢. To get the
dynamical-algebraic linkage we make an extensive use of Rips’ classification of sta-
ble actions of f.p. groups on real trees (see theorem 1.3 above). In (Se2], in the
coarse of proving the Hopf property for hyperbolic groups, some of the conservation
laws obtained in this section for bi-Lipschitz equivariant maps are generalized to
equivariant Lipschitz ones.

Our main goal in studying dynamical invariants of the bi-Lipschitz equivariant
map o is showing that parts of the graph of groups associated with the action of T’
on the real tree Y remain invariant under the automorphism ¢. This invariance can
be obtained immediately from Rips’ construction of the graph of groups, since the
whole Rips’ machine (cf. [Be-Fel]) is invariant under bi-Lipschitz equivariant maps.
For those who are familiar with Bestvina-Feighn approach to Rips’ work, let us
note that the lamination structure remains invariant under bi-Lipschitz equivariant
map, although the transverse measure changes. Eventhough relying on Rips’ proof
is the quickest approach, we have prefered to get our conservation laws from Rips’
theorem and not from his proof. This is partly because this approach is better for
generalizations (cf. [Se2]) and mainly because we want this paper to be accessible
also for people who are not familiar with the proof of Rips’ theorem. A knowledge
of Rips’ final theorem is crucial though, and the interested reader is refered to either
[Ri],[Be-Fel] or the appendix of [Ri-Se2]. We will also assume the reader is familiar
with the basics of the Bass-serre theory for actions of groups on simplicial trees. In
our continuation paper we extend the list of conservation laws which allow us to
enlarge and refine the parts of the graph of groups which remain invariant under
the automorphism ¢. This refinement will also allow us to show that our whole
construction is canonical.

Lemma 2.1 With the notations of the commutative diagram (1), the automor-
phism ¢ gives a morphism between the (Rips’) graph of groups associated by theo-
rem 1.8 with the action of T on the real tree Y'! and the graph of groups associated
with the action of I on the real tree Y. In particular the number of IET compo-
nents is tdentical for these two graphs of groups as well as the number of orbits of
points stabilized by a non-elementary subgroup of I', the number of orbits of edges
in the discrete parts of Y and Y! and the number of orbits of cdges stabilized by a
(mazimal) cyclic subgroup of T.

Proof: By the commutative diagram (1), Y is isometric to Y! via r, and vy € T
acts on Y'! exactly in the same way ¢ (v) acts on Y. This clearly gives the morphism
between the graphs of groups associated with these two actions by theorem 1.3 as
well as the equality in the number of components and orbits stated in the lemma.
0

Observing that the Rips’ graph of groups associated with the action of " on
Y is similar to the one associated with the action of T on Y!, we start studying



properties of the ['-equivariant bi-Lipschitz map o between these two I'-real trees.
Following J. Morgan [Mo] we will need the following notion:

Definition 2.2 A subtree (or forest) Ty of a I'-real tree T is called mizing if for
every two closed non-degenerate segments I and J in Ty, there ezists a finite cover
of J with closed intervals Jy,... ,J, and elementsv,... ,v, € T so that v;(J;) C I
fori=1,... ,n. Note that a mizing subtree of a I'-real tree contasns, in particular,
a dense orbit. In fact the orbit of every point in a mizing subtree i3 dense in it.

Lemma 2.1 shows the correspondance we get from the isometry T between the
graphs of groups associated with the actions of I' on ¥ and Y. To use these
correspondance we need to look for properties of these actions which are preserved
under the action of the bi-Lipschitz equivariant map o. The following invariants of
o are immediate from its definition.

Lemma 2.3 With the notations of the commutative diagram (1):

(i) If T is a mizing subtree of Y! then o(T) is a mizing subtree of Y.

(ii) If T is a subtree of Y! on which I acts discretely, then T acts discretely on
a(T).

(i) If T is a subtree of Y in which T has a dense orbit, then T has a dense
orbit in o(T).

(iv) Let H be a subgroup of T that fizes a point (segment) in Y!, then H fizes a
point (segment) in Y.

Lemma 2.3 gives us some of the elementary invariants of equivariant bi-Lipschitz
maps. Using them we can start looking for parts of the graph of groups associated
with the action of I on ¥! which remain invariant under the action of the auto-
morphism ¢. In this paper we study the invariance of the IET components, in
its consecutive one we study mostly the structure of components with indiscrete
action of free factors. Both of these studies use the notion of a mixing subtree in
an essential way.

Lemma 2.4 IfT is an interval ezchange type subtree of Y, then o(T) is contained
in orbit of an interval ezhange type subiree of Y.

Proof: A IET subtree is in particular mixing (cf. [Mo]), so by lemma 2.3 o(T)
is mixing as well. Since T contains a dense orbit, ¢(T) does not intersect the
interior of the discrete parts of Y. Furtheremore, a mixing subtree of Y is either
contained in an orbit of a IET subtree, or it does not cut any I ET component in
a non-degenerate segment.

Let Q be the subgroup that maps T into itself (Q appears as a vertex group in
the Rips’ graph of groups associated to the action of I" on Y'!). Since I' is assumed
torsion-free, @ is the fundamental group of a surface (cf. [Ri] or [Be-Fel]) or a
free group where the cyclic subgroups corresponding to punctures of this surface
fix points in T. We have also associated a graph of groups with the action of " on
the real tree Y, from which @ being a subgroup of I inherits a small splitting.

If Q is a surface group it is freely indecomposable so T must be mapped into the
orbit of an interval exhange component of Y! by . If @ is the fundamental group
of a punctured surface all its cyclic boundary components fix points in Y by lemma



2.3, hence, they are all contained in vertex groups @ inherits from its action on Y.
Once again the fundamental group of a punctured surface can not be written as
a free product where all boundary components can be conjugated into one of the
factors. Therefore, o(7") is contained in the orbit of a JET component of the real
tree Y. . O

Showing that an T ET component of Y'! is mapped by the bi-Lipschitz equivariant
map o into an orbit of an IET component of ¥ we show that the stabilizer of
such a component in Y is mapped by the automorphism ¢ into a stabilizer of an
IET component in Y. This will suffice to get the Nielsen-Thurston classification
of automorphisms of surfaces in the next section and the Scott conjecture in the
fourth one. To get our hierarchical decomposition one needs to look more closely
into the (dynamical) structure of components with an indiscrete action of a free
factor. This will be done in our continuation paper.

Proposition 2.5 Let T be an interval exzchange type subtree of Y! and let Q be the
subgroup that maps T into itself. Then o(T) is an interval ezchange type subtree of
Y and Q 1s its stabilizer. In particular, Q s conjugate to a (IET) vertez group in
the graph of groups associated with the action of T’ on Y where boundary elements
of Q are conjugate to boundary elements of this IET vertez group.

Proof: First, suppose @ is a surface group. In this case all its elements act hyper-
bolically on Y'!, hence, they all act hyperbolically on Y. If Q can not be conjugated
into a (IET) vertex group of the graph of groups associated with the action of I'
from its action on Y, @ inherits a non-trivial small splitting from this graph of
groups. In this inherited small splitting all edge groups fix points in Y, which is a
contradiction since all elements of @ act hyperbolically on Y.

If @ is the fundamental group of a punctured surface, the only elements in @
which fix points in Y] are conjugate to a power of a boundary element, hence, these
are also the only elements in @ which fix points in Y by lemma 2.3. Repeating the
argument for a surface group, if @ can not be conjugated into a (IET) vertex of
the graph of groups associated with the action of T on Y, @ inherits a non-trivial
small splitting from this graph of groups. In this small splitting every edge group
fix a point in Y. But in such a splitting of a punctured surface, each edge group is
generated by an element corersponding to a s.c.c. which is not a boundary element,
a contradiction.

So far we have shown that @ can be conjugated into a (IET) vertex group U
in Y. ¢~ gives us a bi-Lipschitz I'-equivariant map from Y to Y!, hence, we may
repeat all our arguments and conclude that U can be conjugated into a (I ET)
vertex group of the graph of groups associated with the action of I' on Y. Since
@ is a vertex group in this graph of groups and since @ can be conjugated into U,
necessarily @} is a conjugate of U. (o

Proposition 2.5 shows that an I ET vertex group in the graph of groups associated
with the action of I’ on Y! is a conjugate of an IET vertex group in the graph of
groups associated with the action of I on Y. By the commuatative diagram (1) an
IET vertex group in the first graph of groups is mapped by the automorphism ¢ to
an IET vertex group in the second graph of groups. Therefore, the automorphism



¢ acts as a permutation on conjugacy classes of JET vertex groups of the two
graphs of groups associated with the action of 'on ¥Y! and Y.

3. The Nielsen-Thurston Classification.

The basic conservation laws derived in the previous section shows the automor-
phism ¢ acts as a permutation on conjugacy classes of various vertex and edge
groups in the graphs of groups associated with the actions of I' on the real trees
Y and Y. As we will see, this is enough to get the Nielsen-Thurston classification
on the algebraic level, and in fact even to generalize it to any torsion-free, freely
indecomposable hyperbolic group. For a freely indecomposable group which is not
a surface group, what we are getting follows easily from the canonical JSJ decom-
position [Sel] which is a much stronger structural result - the decomposition we
will get is with respect to a single automorphism, whereas the JSJ is associated
with the ambient group and preserved by all automorphisms of it.

Throughout this section we will use the notations of the commutative diagram (1)
and assume [' is a torsion-free, non-elementary, freely indecomposable hyperbolic
group and ¢ is not a periodic automorphism (by periodic automorphism we always
mean an automorphism of finite order in Out(I')). We start with the pseudo-Anosov
case and some of its properties - all are well known and follow from Thurston’s work
(ITh], [Ca-Bl]). Our aim in bringing them is mainly showing the applicablity of the
commutative diagram (1) to derive algebraic information on automorphisms.

Proposition 3.1 With the above notations and assumptions, if I’ acts freely on' Y
then:

(i) T ts a surface group.
(i1) @ does not have any periodic conjugacy classes.
(iii) the growth rate of elements in T is uniform. i.e., for any two non-trivial
elements 41,2 € [ there ezist constants cy,cy such that for all positive n:

cile™(n)l < le™(12)l < eale™(m)l
and the same holds for the growth rate of their conjugacy classes.

Proof: Ifthe action of T'on Y isfree, and I' is a non-elementary freely-indecomposable
hyperbolic group, then I is a surface group by Rips’ theorem (theorem 1.3 above).
Every periodic conjugacy class of ¢ has to fix a point in the limit tree Y. Since the
action of T is free, ¢ has no periodic conjugacy classes.

Let 71,72 € T be a pair of non-trivial elements, and suppose that [p™*(v;)| <
ck|p™* (v2)| where cx —+ 0. In this case we can extract a pointed limit tree (T,1)
as the limit of a subsequence of the actions of I' on the metric spaces (X, ,1d.)
via the automorphisms ¢™* (i.e., we don’t compose the powers of ¢ with an inner
automorphism as we did in our original construction). The action of I on T is
small and it may be trivial. Still, because of the non-uniform growth, v, fixes a
point in T which is not fixed by the entire group I". The whole construction of
the commutative diagram (1) works for our new construction, hence, we get such
a commuative diagram for I' real trees (T?,¢!) and (T, 1).

Suppose the action of " on T is trivial. The base points ¢t and ¢, are stabilized
by 71 and o(t!) = 7(t!) = ¢ by our construction. Let ¢ € T be the point stabilized



by the entire group I'. Any element in I’ that stabilize ¢ stabilize the entire non-
degenerate segment [t,q] C T and since the action of I" on T is small by proposition
1.2, the stabilizer of the base point t is a cyclic group containing ;.

Now, o(t!) = r(t!) = ¢ by construction, so by the commutative diagram (1) the
stabilizer of ¢ is mapped to itself by ¢, and since we already know it is cyclic, (2
acts trivialy on it and we have contradicted (ii).

If T acts non-trivially on T, T is freely indecomposable and stabilizers of tripods
in T are trivial, so the action of " on T is discrete or T contains an I ET component
by theorem 1.3 above. If the action of I" on T is discrete, ¢ acts as a permutation on
conjugacy classes of segment stabilizers in T. If T contains a IET component then
the conjugacy classes of boundary elements in the stabilizer of an JET component
are periodic under ¢ by proposition 2.5. Again, a contradiction to (ii).

The lengths of non-trivial conjugacy classes is uniform by exactly the same ar-
gument applied to our original construction extracted from a non-uniform subse-
quence. a

Analysing the case of a free action, we continue by associating to ¢ a canonical
graph of groups with fundamental group I'. The edges of this graph of groups are all
cyclic, the automorphism premutes the conjugacy classes of vertex and edge groups,
and a power of it acts either as a periodic automorphism or as a pseudo-Anosov
of a punctured surface on each of the vertex groups. This power of the automor-
phism decomposes into its (canonical) actions on the vertex groups composed with
(possible) Dehn twists along the edges.

Theorem 3.2 Let T be a torsion-free, freely indecomposable hyperbolic group. With
the notations of the commutative diagram (1), if o ts not a periodic automorphism
and the action of ' on the real tree Y is not free there ezists a (canonical) graph of
groups A, with the following properties:

(1) edge groups of A, are cyclic.

(ii) ¢ permutes the conjugacy classes of vertez and edge groups in A,,.

(iii) There ezists k(T') so that o*T) composed with an approperiate inner auto-
morphism acts on each of the vertez groups either as a periodic automor-
phism or as a pseudo-Anosov of a punctured surface.

(iv) @*(I') can be written as a composition of its canonical actions on the vertez
groups composed with (possible) Dehn twists along the edges.

Before we prove theorem 3.2 note that if I' is a surface group it is exactly the
reducible case in the Nielsen-Thurston classification.

Corollary 3.3 Let T be the fundamental group of a closed surface S and let ¢ be
an automorphism of I'. Then etther:
(1) @ i3 a pertodic automorphism.

(i1) ¢ s a pseudo-Anosov. In this case there are no periodic conjugacy classes

and growth rate of elements and conjugacy classes is uniform.

(iii) there ezssts a collection of non-homotopic essential s.c.c. on S, so that ¢

permutes the conjugacy classes of the punctured surfaces obtained by cutting

S along these s.c.c., and a power of ¢ acts on these punctured surfaces etther

as a periodic automorphism or as a pseudo-Anosov of a punctured surface.



This power decomposes into its canonical actions on the punctured surfaces
composed with (possible) Dehn twists along the s.c.c. .

Proof: With the notations of the commutative diagram (1) if ¢ is not periodic
and I" acts freely on Y, ¢ is a pseudo-Anosov and its basic properties are given in
proposition 3.1. If the action of I" on Y is not free, I' is the fundamental group
of the graph of groups A, with cyclic edge stabilizers and with properties given in
theorem 3.2 above. The edge groups in every such graph of groups with a surface
fundamental group correspond to disjoint non-homotopic s.c.c. by [ZVC]. Hence,
from theorem 3.2 we get the reducible case in the Nielsen-Thurston classification
(case (iii) above). a

Proof of theorem 8.2: T is a torsion-free, freely indecomposable group and by
proposition 1.4 Y does not contain axial components isometric to the real line, so
Y contains only JET and discrete components according to thoerem 1.3 above. By
the same theorem we can associate to the action of I on Y a graph of groups with
fundamental group I'. Let A; be this graph of groups. Vertex groups in A; are
either stabilizers of points or stabilizers of I ET components in Y. Edge groups are
either boundary subgroups of stabilizers of I ET components, or stabilizers of edges
in the discrete part of Y.

By lemma 2.3 and the commutative diagram (1) ¢ permutes the conjugacy classes
of point and edge stabilizers in ¥ and by proposition 2.5 ¢ permutes the conjugacy
classes of stabilizers of TET components in Y. Hence, in the case of a torsion-free,
freely indecomposable group ¢ permutes the conjugacy classes of all vertex and
edge groups in the graph of groups A;.

At this point we start refining A, to obtain eventualy the canonical decomposi-
tion A,. We take a fixed power k; of ¢ that fixes the conjugacy classes of all vertex
and edge groups in A;. If ¢*' acts on a vertex group of A; either as a periodic
automorphim or as a pseudo-Anosov of a punctured surface we leave this vertex as
it is. Suppose A is a vertex group of A; on which ¢*' does not act in one of these
two canonical forms. All edge groups connected to A are cyclic and their conjugacy
classes are fixed under the action of p*:.

Up to conjugation we can assume that ©*! maps A to itself so we can obtain a
new commutative diagram from the action of ¢*' on the subgroup A. This gives
us a new graph of groups A4 with fundamental group A. The conjugacy classes
of all the original edge groups of edges connected to the vertex stabilized by A in
A, are periodic, hence, these edge groups are subgroups of a vertex group in A 4.
Therefore, we can replace the vertex stabilized by A in A; by A4 and get a new
graph of groups with fundamental group I' which we denote A;. The number of
edges in A2 is strictly bigger than the number of edges in A;. Applying lemma 2.3
and proposition 2.5 to A 4 we conclude that the conjugacy classes of all vertex and
edge groups in A4 and hence in Az are periodic under ¢*!, so they are periodic
under .

As long as we have vertices on which a power of ¢ does not act as either a pe-
riodic automorphism or a pseudo-Anosov of a punctured surface we can continue
the refinement process and get graphs of groups for I' with more and more edges.
By generalized accessibility [Be-Fe2| or by acylindrical accessibility [Se3] this re-



finement has to terminate and the final refined graph of groups which we denote
by A, satisfies the conclusion of the theorem. [

Note that the steps in the refinement procedure in which we have obtained A, are
precisely the different growth rates of conjugacy classes in I' under the action of .
A similar refinement procedure in the case of a free group is sufficient for obtaining
the Scott conjecture as we will see in the next section. To analyse automorphisms
of a free group in general we need to look more closely at automorphisms with a
uniform growth rate. This will be done in our continuation paper.

4. The Scott Conjecture.

The commutative diagram (1) joined with the conservation laws proven in sec-
tion 2 and the refinement procedure described in the 3rd section while obtaining
an algebraic version of the Nielsen-Thurston classification give a basic "scheme”
for studying automorphisms. For various applications this ”"scheme” needs to be
elaborate, but as we will see in this section, it is enough for obtaining a some-
what stronger form of the Scott conjecture on the rank of the fixed subgroup of an
automorphism of a free group. The Scott conjecture was originally proven by M.
Bestvina and M. Handel in [Be-Ha).

Like in obtaining a version of the Nielsen-Thurston classification for freely in-
decomposable hyperbolic groups, given an automorphism ¢ of a free group F,, we
associate to ¢ a graph of groups A, with fundamental group Fy. In this graph of
groups the fixed subgroup of ¢ is a subgroup of a vertex group of A, on which ¢
acts as a periodic automorphism. Later, this graph of groups together with Culler’s
analysis of periodic automorphisms of a free group [Cu| will prove the Scott con-
Jecture.

Theorem 4.1 Let ¢ be a non-periodic automorphism of a free group F,,. There
ezists a graph of groups A, with fundamental group F, and with the following
properties: ;
(i) edge groups of A, are either cyclic or trivial. ¢ permutes the conjugacy
classes of the edge groups.
(ii) vertez groups are esther:

(1) free factors of Fy, which are connected to the other parts of A, by edges
with trivial stabilizers.

(2) fundamental groups of punctured surfaces. These are connected to
other parts of A, by edges stabilized by their (cyclic) boundary sub-
groups. ¢ permutes the conjugacy classes of these vertices and a com-
position of a power of ¢ with an approperiate inner automorphism acts
on each such vertez group as a pseudo-Anosov of a punctured surface.

(8) the “remaining” vertices. ¢ permutes the conjugacy classes of the
remaining vertices, and a composition of a power of it with an ap-
properiate inner automorphism acts on each of them as a periodic
automorphism.

(iil) if the fized subgroup of ¢ is not trivial, Fiz(p) 1s either a cyclic edge group
in A, or a subgroup of a vertez group on which ¢ acts as a periodic auto-
morphism.



Proof: We apply again the refinement scheme presented in the proof of theorem
3.2. Using the notations of the commuatative diagram (1) if ¢ is not periodic and
F, acts freely on Y, our graph of groups A, is degenerate - it is a unique vertex
stabilized by F,. Clearly, in this case there are no periodic conjugacy classes under
the action of ¢ and in particular the fixed subgroup is trivial.

If the action of F, on Y is not free, we get a non-trivial graph of groups A;
with fundamental group F, associated with this action by theorem 1.3 above. By
proposition 1.4 Y does not contain axial components isometric to the real line so Y
contains only IET and discrete components. Hence, by theorem 1.3 above, vertex
groups in A; are either stabilizers of points, stabilizers of TET componenets, or
free factors of F,, connected to the other parts of A; by a single edge with trivial
stabilizer. Edge groups are either boundary subgroups of stabilizers of TET com-
ponenets, or stabilizers of edges in the discrete part of Y. By lemma 2.3 and the
commutative diagram (1) ¢ permutes the conjugacy classes of point and edge sta-
bilizers in Y and by proposition 2.5 ¢ permutes the conjugacy classes of stabilizers
of IET components in Y.

As we did in the case of freely indecomposable groups, at this point we start
refining A; to eventually get the decomposition A,. We take a fixed power k; that
fixes the conjugacy classes of all vertex groups in A; corresponding to stabilizers
of IET components and point stabilizers in Y and conjugacy classes of all edge
groups in A;. Our refinement procedure will deal only with vertices corresponding
to point stabilizers in Y - the rest of the vertices already satisfy the conclusion of
the theorem. Let A be a vertex group in A; that fixes a point in Y. If p*' composed
with an approperiate inner automorphism acts on A as a periodic automorphism we
leave this vertex as it is. Otherwise, up to composing with an inner automorphism
we may assume that ¥ maps A to itself so we can obtain a new commutative
diagram with A-real trees Y1 and Y4 from the action of ¢*' on the subgroup A.

Since the conjugacy classes of all edge groups in A; are fixed under ¢, if 4
acts freely on Y, all the edges connected to the vertex stabilized by A in A, have
trivial stabilizers. Hence, A is a free factor of F,, and we leave it as is. If A does
not act freely on Y4 we get a new graph of groups A4 with fundamental group
A. All the original edge groups of edges connected to the vertex stabilized by A
have to stabilize points in Y4 since their conjugacy class is fixed by ¢*!, so each
such edge group can be conjugated into a vertex group in A 4. Therefore, we can
replace the vertex stabilized by A in A; by the graph of groups A 4 and get a new
graph of groups Az with fundamental group F,,. The number of edges in this new
graph of groups is strictly bigger than the number of edges in A;. Applying lemma
2.3 and proposition 2.5 to A4 we may conclude that all conjugacy classes of edge
groups and vertex groups corresponding to point stabilizers and stabilizers of IET
components in A4 are periodic under the action of p*', hence, the same holds for
all conjugacy classes of these vertex and edge stabilizers in A,.

As long as we have a vertex group B in our refined graph of groups on which a
power of ¢ does not act as either a periodic automorphism or a pseudo-Anosov of
a punctured surface, and B does not act freely on a limit tree Y5 obtained from
a sequence of actions of B on its Cayley graph via powers of ¢, we can continue
our refinement procedure and obtain graphs of groups with more and more edges.
By generalized accessibility [Be-Fe2] this refinement has to terminate and we get a



graph of groups which we denote by A, which satisfies properties (i) and (ii) of the
theorem.

The whole limit procedure by which one obtains an action of a hyperbolic group
on a real tree from a sequence of powers of an automorphism of the group, forces
the fixed subgroup to fix a point in the limit tree. Hence, either the fixed sub-
group fixes a point in the interior of an edge in the discrete part of one of the real
trees constructed during our refinement procedure - in which case Fix(¢p) is a cyclic
edge group in Ay, or Fix(p) is a subgroup of a vertex group A on which a power
of ¢ composed with an approperiate inner automorphism acts as a periodic auto-
morphism and ¢ (possibly) permutes the conjugacy class of A with the conjugacy
classes of other vertices in A,.

Let T, be the Bass-Serre tree corresponding to the graph of groups A,. By
the properties of the graph of groups A, both A and ¢(A4) fix vertices in the Bass-
Serre tree Ty, . If Fix(yp) is not a cyclic edge group in A, it fixes only the vertex
stabilized by A in the Bass-Serre tree T, hence, A = ¢(A) and ¢ acts as a periodic
automorphism on A, so we have (iii). a

Theorem 4.1 already gives a rather specific characterization of the fixed subgroup
of an automorphism of a free group. We already know that the fixed subgroup of ¢
is either a cyclic edge group or a subgroup of a vertex group in a small splitting of
F, and the automorphism ¢ acts on this vertex group as a periodic automorphism.
To get the Scott conjecture from it we will need to use M. Culler’s analysis of
periodic automorphisms.

Theorem 4.2 ([Cu|,3.2) Let Fi be a free group and let a be a periodic automor-
phism of it. Then the fized subgroup of a is either cyclic or is a free factor in

Fy.

From the existence of the small splitting A, and Culler’s theorem we immediately
obtain the Scott conjecture.

Corollary 4.3. Let ¢ be an automorphism of a free group. Then rk(Fi:c(cp)) <n.

Proof: By part (iii) of theorem 4.1 if Fix() is not trivial then it is either a cyclic
edge group or a subgroup of a vertex group A of A, on which ¢ acts as a periodic
automorphism. By a standard homological argument, the rank of each vertex group
in a small splitting of F, is bounded by n - the rank of the ambient free group.
Hence, rk(A) € n. Applying theorem 4.2 to the action of p on A, Fix(yp) is either
cyclic or is a free factor of A, so in particular rk(Fix(y)) < n. O

Our description of the fixed subgroup as cyclic or a free factor of a vertex group
in A, can be applied to generalize the Scott conjecture in various ways. To demon-
strate that we bring the Scott conjecture for subgroups of automorphisms which
has been proven recently by W. Dicks and F. Ventura.

Corollary 4.4. Let H be a f.g. subgroup of Aut(F,). Let Fiz(H) denotes the
subgroup of Fy, which is fized by all elements of H. Then rk(H) < n.

Proof: Let H be generated by the automorphisms ¢y,... ,¢,, and let K| be the
fixed subgroup of ;. By corollary 4.3 rk(I;) < n. If ¢; is a non-trivial periodic



automorphism, its fixed subgroup K- is either cyclic or a free factor of F,,. In either
case rk(K; N K3) < n.

By theorems 4.1 and 4.2 if ¢, is not a periodic automorphism and its fixed
subgroup K3 is not trivial, either K, is cyclic or there exists a small splitting A,
of F,, in which K, is a free factor of a vertex group A;. K, being a subgroup
of F, inherits a small splitting from A,,. If the vertex group A; intersects K,
non-trivially, A; N K] is a vertex group in the small splitting K, inherits from A,,.
So in particular 7k(A42 N Ky) < rk(K;) < n. Kj is a free factor of A, so if the
intersection between the fixed subgroups K; and K3 is not trivial, K; N K3 is a
free factor of A; N Ky, and rk(K; N K;) < rk(A2 N K;) < n. A finite induction
argument finishes the proof of the corollary. a

To get the commutative diagram (1) we do not necessarily need our group to act
on its Cayley graph. We may as well get such a diagram from a sequence of actions of
a group on a d-hyperbolic space via powers of a given automorphism. This diagram
together with the "scheme” for getting the Nielsen-Thurston classification and the
Scott conjecture may serve to get various generalizations of this conjecture. Let us
note that the generalized Scott conjecture for an automorphism of a free product
proven by D. Collins and E. Turner [Co-Tu] can be proven using our scheme applied
to the actions of a group on the Bass-Serre tree corresponding to a free product.

The small splitting A, of a free group associated with an automorphism of
it in theorem 4.1, gives us an understanding of all periodic conjugacy classes of
such automorphism. It is not sufficient for understanding the structure of periodic
conjugacy classes of free factors. To get a better understanding of these, we need
to further refine the splitting. This will be done by introducing new dynamical
invariants which give rise to new conservation laws for our commutative diagram.
Having such a refinement we will also be able to show it is canonical.
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