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INTRODUCTION

For several reasons, most of them stemming from algebraic topology,
it is important to know whether a topological space, or more generally a conti-
nuous ;ap, is triangulable or not. Cairns [Cal] proved the triangulability of
smooth manifolds; another proof, providing also a uniqueness result, is due to
J.H.C. Whitehead [Wh]. First attempts to prove the triangulability of algebraic
sets are due to van der Waerden [W], Lefschetz [Le] , Koopman and Brown [K-B]
and Lefschetz and Whitehead'[L-W]. Rigorous proofs, in the more general case
of semiahalytic sets, were given by Lojasiewicz [Lo] and Giesecke [Gi]. Later,
Hironaka [Hil] and Hardt [Hazl proved the triangulability of subanalytic sets.
The most general spaces known to be triangulable are the so called abstract
Prestratifications introduced by Mather [Mall; they include all the above
mentioned spaces and also the orbit spaces of smooth actions of compact Lie
groups. Their triangulability was proved by several authors (Goresky [Gl]’
Hendricks [He], Johason [J2], Kato [Ka], Matumoto [Mat] and Verona [Ve3]). The
Dore difficult problem of the triangulability of mappings was considered by
m"Cﬁ'fcwer authors: Putz [P] proved the triangulability of smooth submersions,
Hardt [ﬂaZ] proved the triangulability of some, very special, subanalytic maps
and we proved in FVe3] the triangulability of certain stratified maps. In [Tll
Thom considered the problem of the triangulability of smooth mappings and (im-
Plicitely) conjectured that "almost all" smooth mappings are triangulable. It

is the aim of this paper to prove this conjecture. More precisely we shall
Prove

Theorem. Let M and N be smooth manifolds without boundary. Then any
Proper, topologically stable smooth mapping from M to N is triangulable.

Since the set of proper and topologically stable smooth mappings from
M to N is dense in the set of all proper smooth mappings from M to N
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1is is another conjecture of Thom, proved by Mather [Mazl; see also [Gib]) we
:ain a positive answer to the above mentioned conjecture.

As a matter of fact, we prove a more general result concerning the
iangulability of certain stratified mappings (Theorem 8.9) which implies the
aorem stated above and also the following result (first proved by Hardt [Hazl):
y proper light subanalytic map is triangulable (light means that the preimage

a dicrete set is discrete).

Since we are dealing with stratified spaces as introduced by Mather
: [Mal] and since these lecture notes have never been published, we thought it
uld be useful to collect in a first part of the paper (Chapters I, 2 and 3)
Q main results of the theory. Some of the proofs presented here are new and
.mpler than the original ones. For techmnical re#sons we are obliged to work
.th certain manifolds with corners, called here manifolds with faces. Some
:cessary facts concerning them are presented in Chapter 4. In Chapter 5 we ex-
:nd the theory of abstract stratifications and abstract Thom mappings to the
ase when the strata are allowed to be manifolds with faces; most of the proofs
re copies of the proofs presented in the first three chapters and so we omit
hem. In Chapter 6 we prove some theorems concerning the structure of abstract
tratification and of abstract Thom mappings. In some sense they can be viewed
s a kind of "resolution of the singularities” in the d”-caae. For example,
heorem 6.5 can be interpreted as saying that any abstract stratification of
‘inite depth can be obtained from a manifold with faces by making certain iden-
:ifications on the faces. Chapter 7 contains a proof of the triangulability of
ibstract stratifications. Chapter 8 contains the main results of the paper

(they were mentioned above). In an appendix we have collected some facts from

L-topology which were needed in Chapters 7 and 8.
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0. NOTATION AND CONVENTION -

0.1. A topological space is called nice if it is Hausdorff, locally compact,

paracompact and with a countable basis for its topology.

0.2. If A 1is a topological space and X €A , then clA(X) (resp. incA(X))
denotes the closure (resp. interior) of X in A .

0.3. If A and B are topological spaces, then A B denotes their dis-
joint union.

0.4. For any set A , lA (or idA ) denotes the identity map of A .

0.5. Smooth means always differentiable of class c .

0.6. The connected components of a smooth manifold may have different dimen-—
sions. Given a smooth manifold M we denote by T i:z5 zZanrent bundle, If
xeH1, TMx denotes the tangent space of M at x . If N is another smooth
manifold and £ : M+ N 1is smooth, df : ™ + TN denotes the differential of
f; if x €M, then dfx R Wi TNf(x) denotes the restriction of df .

The smooth map f 1is called submersive if dfx is surjective for any x € M.

0.7. Let A be a topological space and let X , Y and Z be subsets of A.
Let £ and g be maps defined on X and Y respectively. We say that £
equals g near Z (denoted f = g near Z ) if there exists a neighborhood
U of 2 such that £f|X NU = g|Y NU . The same terminology is also used in
other similar situations (for example X = Y near Z means that there exists
a neighborhood U of Z such that X NU =Y NU ).

0.8. R denotes the field of real numbers ; R_ = {r €R ; r > 0} and
R,={r €rR; r>o0}.



1. ABSTRACT STRATIFICATIONS

1.1. Let A be a nice topological space and let X © A be a locally
closed subset. Let TX be an open neighborhood of X in A,

Ty ¢+ Ty —> X be a continuous retraction (i.e., 'n'xlTx = ly) and
Py TX —_— R+ be continuous and such that p).(l(O) = X. Given
€, § : X — R we shall use the following notation ¢ < § if

e(x) < 8(x) for any x € R; if e < 6 set

X x(g 8 ={(x, t) € X xR; e(x) <t < §x)}
X x {e} ={(x, t) € X xR; t = e(x)}
X x[g, 8 =(X x (g, 8))VU (X x {e})
X x (g, 8] =(X x (g, 8))U (X x {8}
X x{g, 8] =(X x[e, 8)VU (X x {&})
T}e( = {a € Ty: ogla) < e(mg(ad)}
€

SX = {a € Tx: px(a) = e(wx(a))} .

In such an expression a real number will be considered as the corresponding
constant function on X. From now on, unless the contrary is specified,

€ (or €1 €35 +ees 8y 61. ...) will be a continuous function taking
values in R:, its domain being determined by the context; if in addition
the domain is a smooth manifold, then ¢ will be assumed to be smooth.
When no confusion can arise we shall denote the restrictions of L% and

pPx to T; by the same symbols; otherwise we shall use‘the notation

1r§ and p}e{ respectively.

Let Tx. Tx and px be as above. One can verify that, possibly



after shrinking TX’ the following assertions are true:

(1.1.1) if XU cA with U open, then T;: U for some ¢;

(1.1.2) (1:§, p;) : T; —> X x [0, ¢) is proper for some e.
As an immediate consequence

(1.1.3) given a compact subset K ©€ X and a neighborhood U of K

*
in A, there exists ¢ € R_ and a neighborhood V of K in

£ecy,

-1
X such that Ty (V) n TX

Let Ts(. wk and ps( have the same properties as TX, L% and Py
The triples (Tx, Ty px) and (Tk. 'rrk, pk) are called equivalent if
(TX. LI px) = (Tk. nk, pk) near X, that is, there exists a neighbor-

hood U of X in A such that TXnU=T'X

and pXITX nu-= pkiTx N U. By definition, a tube of X in A is an

NU, ne|Ty N U = nf [Ty N U

equivalence class of triples (Tx, Ty px) . In order to simplify the notation,
we shall not distinguish between a tube and a triple which represents it;
however we shall consider only triples which verify (1.1.1) and (1.1.2)
(and therefore (1.1.3) too).

Let now Y € A be another locally closed subset such that X < clA(Y)
and X nY=¢ (i;x this situation we shall write X <Y; as usual X <Y
) and

" means that X <Y or X =Y). Let = (T

Tx X' ny px
Ty = {TY. Ty» Py} be tubes of X and Y respectively. We shall consider

"control conditions" of the form




(1.1.4) there exist ¢ and & such that a € TS 0 Tg. implies

TrY(a) €TX and 1.rx(1rY(a)) = ﬂx(a);
(1.1.5) there exist ¢ and 6 such that a € T; n T,g implies

ng(2) € Ty and oy (n,(a) = py(a).

Next let f : B —= A be a continuous map, where B is another
nice topological space. Let Yo B and X ¢ A be locally closed subsets
such that f(Y) < X. Given tubes Tx and Ty of X in A and Y in

B respectively, we shall also consider control conditions of the form

(1.1.6) there exists § such that f(Tg)c Tx and

s

f(my (b)) = me(£(D)), b€ Ty;

(1.1.7) there exists § such that f(Tg.) c Tx and

pg(b) = oy (£(b)), b € Ty.

1.2.1. A weak abstract stratification (w.a.s.) A consists of (i) a nice

topological space A; (ii) a locally finite family A of locally closed subsets
of A (called strata) such that A is the disjoint union of the strata;
(iii) a family of tubes of the strata, {rx; X € A}, The strata and their

tubes must satisfy the following four axioms:
(1.2.1.1) if X, YE A and Xn cR.A(Y) # ¢, them X <Y;

(1.2.1.2) each stratum is a smooth manifold (without boundary) in the

induced topology;

(1.2.1.3) for any X € A there exists €x such that for any stratum



Y#X of A, TXﬂY#q) implies that X <Y and

€
(ux, px)IT;X ny: TXX ny — X x (0, ex) is smooth

and submersive (in particular dim(X) < dim(Y));

(1.2.1.4) for any strata X < Y, the tubes Ty and Ty satisfy (1.1.4)
with €= gy and 6=eY.
If in addition

(1.2.1.5) for any strata X <Y, the tubes 1, and =t

X v satisfy (1.1.5)

with e=ax and 6=eY,

then A is called an abstract stratification (a.s.).

Sometimes we shall say that é is a (w.)a.s. structure on A.
Let A be a w.a.s. Since A is a normal space, we can assume

without loss of generality that

€ €
(1.2.1.6) let X, Y € A; then Ty® NT," # ¢ if and only if X <¥

or Y<X.

Remark. Let A (resp. A') be a w.a.s. with tubes
x = {Tx, Ty » px}, X €A (resp. 5 = {Tk,, T pk,}, X' €AYy, It
is important to notice that, in view of our earlier convention on tubes,

A=A ifandonlyif A=A", A=A and (T ) = (T

X' "x' Px X' "X’
pk) near X, for any X € A. Thus it may happen that, for some
X €A, Tx # Tk or my # X or oy # Px» but Ty = Ty near

X, "X="5( near X and °X=°5( near X.



1.2.2. Let A be a w.a.s. and X € A be a stratum. Define the depth

of X in A to be the integer

depth,(X) = sup{n; there exist strata X = X, <X

0 1<...<Xn}

Next define the depth of A and the dimension of A to be

depth(A) = sup{depthA(X): Xe A}

and
dim(A) = sup {dim(X); X € A}

One can prove that dim(A) is the topological dimension of A and
thus is a topological invariant. Although depth(A) is obviously not a
topological invariant, it is clear that dim(A) : = implies that depth(4A) < =.
Notice also that depth(A) = 0 if and only if all the strata are open and
closed in A, i.e., if and only if A is a smoofh manifold and each stratum

X €A is the union of some connected components of A.

1.2.3. Let A bea (w.)a.s. and U cA be a locally closed subset.

Set AlU={XNU;X€ A and XN U # ¢}. Suppose that for any

o
xnuy SUN g

and set my oy = y|Tyqy : Tyqu = X0 U ogqy =0xiTxqu 2 Txnu
—>R+ and T If

X NU € AlU there is given T (X n U) containing X nU

%au = Txnu’ ™au’ Pxnu’:

(1.2.3.1) each TXnU is open in U;

(1.2.3.2) XNU, YN UEA|U and (XN U)N cty(Y A U) # ¢
imply that X N1 U< cy(Y N U);



(1.2.3,3) any XN UE€ A|U is a smooth submanifold of X ;

(1.2.3.4) any XN UEA|U verifies (1.2.1.3) (with X and Y

replaced by X N U and Y N U respectively),

then A|U and {tyqys XN UE A|U} determine a (w.)a.s. structure on
U, called the restriction of A to U and denoted A|U. From (1.2.3.1)
and the inclusions X N U < TXﬂ U< un n}-{l(x n U) it follows that
UNr(XNU) isopenin U near X NU and thus

- -1
TxnU-Uﬂwx(XﬂU) near XN U,

As a consequence A|U (if it exists) is completely determined by A and U.
It is also important to notice that if U is locally closed in A, V
is locally closed in U and A|U exists, then (A|U)|V exists if and

only if A|V exists and if they exist then
(1.2.3.5) AlV = (All}v

The simplest examples of subsets U c A for which A|U exists
are provided by locally closed subsets which are union of strata or by

open subsets. Other examples are given in 2.9 and 2.12.

1.2.4. Let A and B be w.a.s.'s. A continuous map f : B — A

is called a weak morphism, denoted f : B——> A, if for any Y ¢ B

there exists X€ A such that f(Y)e X, f|]Y : Y — X is smooth and

the tubes Ty and T, satisfy (1.1.6). If in addition Tx and Ty



satisfy (1.1.7), then f is called a morphism and is denoted f : B ~— A.
The differential of f|Y will be denoted simply df.

It is useful to notice that if f : B —= A is not known to be con-
tinuous, but it verifies all the other conditions in the definition of a morphism,
then it is continuous, hence it is a morphism. This follows from (1.1.3),
(1.1.6), (1.1.7) and the continuity of f on the strata. A similar assertion

is true for weak morphisms if depth(A) = 0.

1.2.5. A (weak) isomorphism is a (weak) morphism whose inverse (as a map)

exists and is a (weak) morphism. Clearly a (weak) morphism is a (weak)
isomorphism if and only if it is a homeomorphism sending strata diffeomorphically
onto strata.

For example, given two w.é.s.'s A and A' with A=A',1, is
an isomorphism if and only if 4 and A' are equal. If A =A' and 1,

is a weak isomorphism, we shall call A and A' weakly equal.

1.2,6. f : B ——> A is called submersive if for any Y € B and X € A

with £(Y) €X, f|Y : Y — X is submersive.

1.2.7. A smooth manifold M, if not connected, can be endowed with
different a.s. structures of depth zero. By M we shall denote the unique

a.s. structureon M for which M € M (thus M= {M}, T,, = M, 1

M ™ T M

and Py = 0).

1.2.8. Let A be a w.a.s. and M be a smooth manifold. A map

f: A —> M is called controlled (resp. a controlled submersion) if it is

a weak morphism (resp. a submersive weak morphism) from A to M.



If U< A is locally closed and A|U exists, we shall denote by C;(U. M)
the set of all controlled maps from A|U to M. Clearly the family

{C;(U. M); U open in A} together with the obvious restrictions

CA(U’ M) —» CZ(V, M) (for Vc U) is a sheafon A. If M =R we

shall denote CX(U, R) by CZ(U) and the corresponding sheaf (of real

algebras) by CZ. If UcA islocally closed and A|U exists, an element

of CX(U) is called a controlled function on U.

1.2.9. Given two w.a.s.'s A and B we define their product A x B as
follows. The underlying topological space of A xB is A x B; the family
of stratais A xB ={X xY; X€ A, Y€ B}, For X xY €A xB set
Txxy = Tx * Tys mx,p(as B) = (13(a), my (b)), oy v(a, b) = py(a) + py(b)
and Xxy = (TXXY' sy’ PX xY)' There is no problem in verifying that,
in this way, we have defined a w.a.s. However it is important to notice that
if A and B are a.s.'sthen A xB is an a..s. if and only if
depth(A)+depth(B) = 0. Indeed, if depth(A)-depth(B) > 0 there exist

strata X <X' of A and Y <Y' of B; then for a€T§nX' and

berTs ﬂTG:, with €, 6§ and §' sufficiently small, we have =,,(b) € T
Y Y Y Y
and
Ox xy (Mg i(3r B)) = oy o (my(a), my, (b)) =
= px(ﬂx(a)) + py(my (b)) = oy(b)
while

Pxxy (3 D) = px(a) + py(b) # ou(b)
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and thus condition (1.2.1.5) cannot be satisfied. If depth(A) =0 or
depth(B) = 0, then it is easy to check that A x B is an a.s. as soon
as A and B are a.s;'s.

If A is a w.a.s., & §: A — R are continuous and ¢ < §,

then the w.a.s. (A xR)|A x (g, ) will be denoted A x (g, §).

1.3. LEMMA. Let A be a w.a.s. Then for any covering of A by open
subsets there exists a subordinate partition of unity consisting of controlled

functions.

Proof. Since A is paracompact, the assertion is equivalent to the
following local statement:

"Let x € A and V be a neighborhood of x in A. Then there
exists f ECZ(A) such that f(A) < [0, 1], supp(f) ¢V and f-]'(l) is
a neighborho:d of x in A." '

The statement being local, it suffices to consider w.a.s.'s of finite
depth. If depth(A) = 0, A is a smooth manifold and all smooth functions
are controlled. The statement follows. Assume inductively that the state-
ment is true for any w.a.s. of depth less than depth(A) and let x and
v l;e as above. Let X € A be the stratum containing x and let
e : X — R: be such that all the conditions involved in the definition of
a w.a.s. are verified on T;. Let also K be a compact neighborhood of
x in X. Choose g € Cc®(X) such that g(X) « [0, 1], supp(g) =K
and g-l(l) is a neighborhood of x in X. Define g, € C;(T;) by
g, =8 ° v}ec. Next consider é-lT; ~ X and notice that

depth(élT; N X) < depth(A). Therefore, by induction, there exists
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h € c;('r}‘i ~ X) such that h(Tg~ X) < [0, 1], supp(h) © T{ for some

§ <e and h(a) =1 for any a € TS/2~ X. Define h, € C*(TS) by
X 1 - ~A'X

hy|Tg~ X =h and hi(a) =1 if a€X. In view of (1.1.3) we can
choose § and K such that n;(l(K) n T}‘S( < V. Finally define f EC;(A)
by setting

g (a)h (a), a€ Ty

f(a) =

0, ag TS

’ X
It is obvious that f has the required properties. Q.E.D.

1.4. COROLLARY. The sheaf CZ is fine.

Notes. The definition of abstract stratifications given above is due to
Mather [Mll (he calls them abstract prestratifications). Lemma 1.3 appears

first in [Vll and [VZI ; the proof given here is simpler.

2. CONTROLLED VECTOR FIELDS

2.1. A vector field on a w.a.s. A is a collection

£={&(x) € TX_; x€ X, X € A} such that for any X € A
(2.1.1) X 3x —> E(x) is a smooth vector field on X.
The vector field £ 1is called weakly controlled if

(2.1.2) for any X € A there exists ¢ < ex (g asin (1.2.1.3)) such

that for any Y€ A with X <Y and any y € Tg N ¥,

dmy - £(y) = &(ny(y)).
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If in addition, the notation being as above,
(2.1.3) - deyeEly) =0 ,

then £ is called a controlled vector field on A.

Given a subset U c A, set £|U = {&(x); x € U}, Thus (2.1.1)
means that, for any X € A, £|X is a smooth vector field on X.

Suppose now that U< A is locally closed and A|U exists; a (weakly)
controlled vector field on A|U is called a (weakly) controlled vector field on
U. The set of all weakly controlled (resp. controlled) vector fields on U is
denoted XX(U) (resp. XA(U)) . It is clear that the family
{XX(U); Ua open in A} ;gether with the obvious restrictions
xX?U) — xZ(V) (for V< U) is a sheaf on A, denoted xz. The
sheaf X A is defined similarly; in fact it is a subsheaf of XZ. Both XZ
and X, have natural structures of C,-modules and also of sheaves of

A A
Lie algebras. For example if &, n € XX(U), then [£, n] is determined by

(e, nl|X = [g]X, n]|X], XE€A|U

Any § € XZ(U) may be viewed as a derivation of CZ(U) as follows

(-£)|X = (g|X)-(£]X), X € A|U, f € CZ(U)

The fact that £-f € CZ(U) follows immediately from the control conditions
satisfied by £ and f-. The fact that f > E+f is a derivation of
C;(U) is obvious. The converse is also true (i.e., any derivation of
CE(U) is of the above form) but since we shall not use this assertion, we

leave its proof to the reader.
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Notation. Let A and B be w.a.s.'s, f : A ——>B be a weak
morphism, U cA and V cB be locally closed subsets such that A|U
and B|V exist, and let ¢ €XX(U). n EXg(V) and ¢ € CZ(U). The

notation

df-g = on
will mean that for any a € U n f-l(V)
d(f|X)-g(a) = o(a)n(f(a)) ,
where X € A is the stratum containing a. For example
deo-g = (E-9)d/dt

where d/dt is the canonical vector field on R.
Given two smooth manifolds X and Y, and given x € X and y € Y,

we shall identify T(X x Y)(x with TXx x TYY as usual. Then for

»Y)
any w.a.s.'s A and B and any open subsets Uc A and V =B there

exists a canonical map XZ(U) x XVB:(V) — XZ,"Q(U x V), (§, n) —> £ xn,

where (£ x n)(x, y) = (£(x), n(y)).

2.2. Let A beaw.a.s.and £ EX4(A). For X€ A and a €X, let

A, ¢ (sg, tg) ~> X be the maximal integral curve of £|X through a

(i.e., O €(s§. tg)bc R, Aa(O) = a, E(Aa(s)) = dxa°(§t-| ) for

t=s
s € (si, ti) and if A' : (s', t') —> X has the above two properties,

then (s', t') c (sg, tg) and ' = Xal(s', t'); the property of being

3

maximal is equivalent to the following: if ti < = (resp. s, > -») and
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(sn) is a sequence contained in (sg, tf) and converging to tg (resp.
si). then the sequence (Aa(sn)) does not converge in X). Define

DgcAXR and AgzDE——>A as follows

D, ={(a, ) € AxR; t€(s5, tD)}

)‘E(a, t) = Aa(t)

A, 1is called the flow associated to §. For.any t € R denote

3
D! ={a€a; (a, t) € Dg} and let 1; : D:;—-> A be given by

g
Atg(a) = Ag(a, t). From the properties of the flows of smooth vector fields

on smooth manifolds it follows that if (a, t)€ D_, and b = As(a, t) then

13
s§=s§—t,t§=t§—t and for any s€(s.§, tg) one has

(2.2.1) AE(AE(a, t), 8)) = AE(a, t+s) .

2.3. LEMMA. Let A be an a.s. and let £€ Xp(A). Then

(i) let y € A; if t; < » (resp. sg > -») and (sn) is a
sequence in (sg, tj) converging to tf' (resp. 55). the sequence
(Xg(y. sn)) does not converge in A;

(ii) Dg is openin A x R and A_ is a morphism from

3

A x RIDE to A;

t

(iii) for any t € R, pt is open in A and AE

£
t -t . . . -t
of g}._lDE on AIDE » its inverse being 1, .

is an isomorphism

Proof. Let X€ A and x € X. Choose a compact neighborhood K
of x in X and ty» t, € R such that sf‘ <ty <0<t2<t§ and

K x [tl' tzl D Choose also € such that all the control conditions

glx’

involved hold on T;. Set 6§ = min{e(a); a € J\E(K x [tl. tzl)} and
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V={ac¢€ T;; nx(a)G K, px(a) < §/2}. Let a € V. Then, for a sufficiently

small t' > 0 and any t with |t| <t
€
(2.3.1) )‘E(a’ t) € TX

Since dnx-(E|T§() = ElX and dpx-(EIT;) = 0, we can shrink t' such that

(2.3.2) ’ nx(xg(a. t)) = Ag(nx(a). t)
and
(2.3.3) Pyt (2, £)) = pyla)

for |t] <t'. If t' < min{tg, t,}, then (2.3.1) is also true for t =t
(use the fact that (n, px) : T; —> X x [0 ¢) is proper). It follows
that (2.3.2) and (2.3.3) are true for t = t' too. Now, if s >0 is small

enough, J\E(a. t'+s) € T; “and
wx(lg(a. t'+s)) = ”xo‘g("g(a' t), s)) = kg(nx(xg(a. t')), s)
= AE(AE(n‘x(a). t'), s) = Xg(wx(a). t'+s)
similarly
DX(XE(a. t'+s)) = ox(a)

We deduce that (2.3.1), (2.3.2) and (2.3.3) are valid for
0<t < min{tg. tz}. The same arguments apply for negative t's and

therefore

(2.3.4) (2.3.1), (2.3.2) and (2.3.3) hold for max{sg.tz} <t < min{tg,tz}
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Let us prove (i). Assume it is not true. To make a choice, let
3

lim s, = tY < @ and let. x = lim Y,* Where y = Ag(y. sn). Let X
and Y be the strata of A which contains x and y respectively.
Then y € Y for all n and therefore X < Y. Since (yn) cannot
converge to a point in Y (because of the maximality of Ay, see 2.2)
it follows that X < Y. There is no loss of generality in assuming the
sequence (sn) increasing. For large n and any p > 0,
- £ _ = ¢& -

0 < sn+p s, < ty Sh tyn. 0< sn+p s, <t
(2.3.4) and (2.3.3)

and Y, € V. By

0 <poyly) = Px(A gy Snep s)) = px(ls(xg(y. s ) Snep s))
= 0T 3d) =0y

thus the sequence (px(yn)) cannot converge to zero. Since px(x) =0,
this contradicts the continuity of Py Thus (i) is true.

To prove (ii), let (x, t) € D let the notation be as in the first

E'
part of the proof and choose t1 and ts with the additional property

that ty <t <t,. Let a € V and suppose that ti < t,. Then (by
(2.3.4)) (2.3.1), (2.3.2) and (2.3.3) are valid for any 0 <t <t Let

g

: (3 . =
(sn) be a sequence in (0, ta) converging to t’. Set a = Ag(a. tn).

By (2.3.2)
lim wy(a ) = A (ny(a), tf)
and by (2.3.3)

lim px(an) = px(a)
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Since (nx. px) : T; —> X x [0, €) is proper, there exists a subsequence
of (an) which converges. This contradicts (i). It follows that tg >ty

Similarly sg <t Thus V x (tl, tz) < D_ which proves that D_ is open

1° £ 13
in A x R. In view of (2.3.4) we deduce that (2.3.2) and (2.3.3) hold for

any (a, t) € V x (tl, tz). This proves that X, is a morphism (see the

€
last remark in 1.2.4). Finally (iii) is a trivial consequence of (ii). Q.E.D.

2.4, LEMMA., Let A be an a.s., M be a smooth manifold and f : A — M
be a controlled submersion. Let also A0 < A be a closed subset which is a
union of strata (thus A[A, exists; we shall denote it Ag), & be a smooth
vector field on M and EO € XQO(AO) be such that df-Eo = . Then there
exists £ € X,(A) such that df-f = ¢ and &;IAO =§g,. If f is proper then
D, = (£ x 1) (D).

Proof. We. begin with the first assertion. Because of the existence of
controlled partitions of unity thé problem is local and therefore it suffices to
congider only the case when A is of finite depth. If depth(A) = 0, then
A is a smooth manifold, A() is the union of some connected components of
A and the assertion is obvious. Assume inductively that the assertion is
true whenever the depth of the domain (of the controlled submersion) is less

than depth(A). Let a € A and X € A be the stratum which contains a.

Let Ex be a smooth vector field on X such that
(2-401) dfogx - C ;

if Xe Ao. we take € = EOIX. Choose now a sufficiently small ¢ such

that all the control conditions involved are verified on T; (in particular if
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€
Tx

definition of 60 are verified on T; n AO) .

depth(A|TS ~ X) < depth(A) and (myr py) ITE S X+ TS X —> X x R

is a controlled submersion. Thus, by induction, there exists

n A0 # ¢, then X < AO; also the control conditions involved in the

It is clear that

n € Xé(Tg( N~ X) such that
(2.4.2) - dwfx-n = EX’ dpx-n =0
and
€ €
nfAy 0 (T~ X) =g5(a, (T~ X)

But (2.4.2) simply means that £ = {¢%(b); b € T)e(} given by

Ev(b), be X
2b) =4 X .
. : € a € €
is a controlled vector field on Tx. Clearly ¢ IAO n TX = EOIAO n Ty

(1.1.6), (2.4.1) and (2.4.2) show now that
(2.4.3) df.g? = ¢

Thus for any a € A there exist an open neighborhood Ua of a
in A and £ € X,(U,) which extends £o|A A U, and verifies (2.4.3).
A partition of unity argument completes the proof of the first statement.
To prove the second one, let X €A, x€ X and y = f(x). Since
o = : £ & (SR 4 1 4
df-¢ = g, it follows that (sx, tx) < (Sy’ ty)° Assume that ty < ty'

Then, because f is proper, there exists a sequence (Sn) in (0, ti)

converging to ti and (Ag(x, sn)) converging to some a € A. This
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contradicts Lemma 2.3(i). Thus ti = t; and similarly si = S;' This

proves that D

- (£ x 1]
g = (Ex 170y, Q.E.D.

As an application of the above lemmas we shall prove a criterion for
the "local triviality" of certain controlled submersions. First we need two

more definitions.

2.5. Let A be an a.s. and M be a smooth manifold. A controlled map
f: A —>M is called trivial if there exist an a.s. A, and an isomorphism
F:AyxM-—> A such that f(F(a, x)) = x.

More generally, f is called locally trivial if any x € M has an open

neighborhood U such that f|f 2(U) : £ 1(U) — U is trivial, f }(U)

being endowed with the a.s. structure ‘_A.If-l(U) .

2.6. THEOREM (Thom first isotopy lemma). Let A be an a.s., M be a
smooth manifold and f : A —> M be a proper controlled submersion. Then

f is locally trivial.

Proof. The problem is local with respect to M and therefore we may

assume that M = R® and 0 € f(A). Let g, =dldt, i=1, ..., n, be

the canonical vector fields on R™. By Lemma 2.4 there exist giG X A(A)
such that df'Ei = g5 i=1, ..., n. Let Ai : Di —> A x R be the flow
associated to £;; since f is proper, D, =A x R. Let Ay =1 (0) and
define F:onR"—> A and G :A — AjxR" by
t t t
- 4 D,y n-1 1
F(ao’ t1, e s tn) - An (An"l (.'.(Al (ao))oAQ))
s, -S

G I | 2 “n
(@) = (a; "(a; "Cea(ny (a))..))s (89, -.vv 8.))
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where (51’ cees sn) = f(a). It is obvious that F and G are continuous,

GoeF=1 ,FoaG=1

onRn

Let us check that A|A, exists. For any X € A choose an

A and f(F(ao, (tl’ vees tn)) = (tl, cees tn).

e(X) = € such that all the control conditions involved are verified on T;

=TE NA,. Let a€T

XﬂA0 X 0 ano

f(wx(a)) = f(a) = 0 and thus ﬂx(a) € Xn. Ao. Therefore

and set T Since f is controlled,

XN A T c AN ﬂ;(I(XﬂA It is obvious that (1.2.3.1) and

0 X ﬂAo 0 0)'
(1.2.3.3) hold (the last one because f is submersive). Since for any
X€A, X=FUXNA) x R™), (1.2.3.2) is also true. Finally (1.2.3.4)

follows from (1.2.1.3) after noticing that for any X € A and x € X N A,
T(XNAj) = ker((df)[TX )

Now set éo = g._IAO. It remains to notice that F and G are morphi:

which is obvious because the A;'s are morphisms. Q.E.D.

2.7. Remark. Let A be an a.s. and X€ A. Let ¢ be sufficiently

small such that all the control conditions involved hold on T;. Then

(“X’ DX)ITi\ X : T;:( ~X — X x (0, ¢) is a proper controlled submersio
and thus it is locally trivial. If Y€ A and X <Y it follows that

("X’ pX)IY n T; :Yn T; —> X x (0, ¢) is also a locally trivial fibration.
Therefore (nx, px)(Y nT;:() is open and closea in X x (0, €). Since

X <Y, it follows that

(2.7.1)  (my, o |[Y N TS : ¥ n TG — X x (0, €) is surjective.

X X

2.8. Let A be a w.a.s. A locally closed subset A, < A is called

0
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saturated if A|A, exists and for any X € A with X n Ay # ¢ there

exists an € such that

-1 € _ £
(2.8.1) Ty (Xn AO) n TX = A0 n 'I‘x

Suppose that A0 < A is saturated. Let X < Y be strata of A

and y €Y N Ao ﬂT;, ¢ being as above. Then

- - eyy~1
(2.8 T(ENAY, = (@AY T THTXNAY, ()

2.9. LEMMA. Let B be an a.s., A be a w.a.s., Ay S A be saturated
and f : B ——> A be transverse to Ay i.e., for any Y € B and
X €A with £(Y) ©€X, the smooth map f|Y : Y — X is transverse to
X NA,. Then B = f’l(Ao) is saturated in B; in particular B|B,

exists.

Proof. For any Y € B choose a 6(Y) = § such that all the control

conditions involved hold on ’I‘6 and, if f(Y) e X€ A, XN Ay # ¢ and ¢

Y
is as in the definition of a saturated subset (see 2.8), then f(Tfl) c Ti.
Set 'I‘Yn BO = T.GI n B, and let b € TYﬂBO' Since f is a weak morphism

and (2.8.1) holds
f(ny(b)) = my(f(b)) € A,

-1
0 Therefore Y n Bo c TYn BOC BO n Ty (Yn BO)'

It is clear that (1.2.3.1) and (1.2.3.3) are verified (the last one because of

and thus nY(b) €EYNB

the transversality assumption). Let us check (1.2.3.2). Let Y, Y'€ B

be such that Y NBy,#Y'NB, and Y nB,cecty (Y'N Bo) # ¢. Then
0

0

Necessarily Y < Y'. Let b€ YN B, By (2.7.1) there exists a sequence
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. )
(bn) in TYﬂY' such that nY(bn) = b and pY(bn) =1/n for n

large enough. By (1.1.3) (bn) converges to b. Now

mel£(b)) = £(ny (b)) = £(b) € A,

Using again (2.8.1) we deduce that f(bn) € A, and thus bn€ Y'nB

0

Therefore Y N B0 CczB (Y ﬂBo). To check (1.2.3.4) one has to use
70
(2.8.2) and notice that for any X € A and Y € B with f(Y) <« X, and

0.

any bGYﬂBO

- -1
T(YﬂBo)b—(d(ﬂY)) (T(ano)f(b)) .

Thus B IBO exists. At the beginning of the proof we have seen that

6 § -1 [
BoﬂTY YﬂBo Thus BOnTY CwY (YﬂBo)ﬂT . Let

-1
b €1rY (YﬂBO) nT

=T cn,}l(YnB

0)'
[
Y* Then

ne(£(b)) = f(ny(b)) € X N A_
and thus £(b) € n, /(XNA () N T§. By (2.8.1), £(b)€ Aj. Therefore

§ _ -1 $
OnTY =Ty (YnBo) nTY'

that B0 is saturated. : : Q.E.D.

b € ByN Ty which proves that B It follows

2.10. Remark. The fact that B was an a.s. was used only once in the
above proof, namely in order to apply Remark 2.7. Thus Lemma 2.9 is still
true if B 1is only a w.a.s. such that for any strata Y <Y' of B,

("Y’ pY)ITfI ny: : T.i. Ny — Y x (0, §) is surjective for some §.

2.11. LEMMA. Let B and C be a.s.'s, A be a w.a.s., f :B~-—>A and g : -

be transverse, i.e., for any Y€ B, Z€ C and X € A with £(Y) U g(2)¢
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the smooth maps f|Y : Y —> X and glZ : Z — X are transverse.
Denote B x,C = {(b, c¢) € B x C; f(b) = g(c)}. Then B x c|B x, C

exists and is an a.s. if depth(B):depth(C)

0.

Proof. Let AA = {(a, a') € A x A; a = a'} and notice that

B *A C=(f x g)—l(AA). where fxg : BxC —> A x A is the obvious
map. The assertion will follow from Remark 2.10 if we can prove that

(i) a, is saturated in A x A;

(ii) f x g is transverse to 8,.

To prove (i), notice first that (A x A)IAA = {8y X € A}. For any

X €A set TA = ('I’X x Tx) n Bys all the conditions in 1.2.3 are easily
X

checked and thus A x Ala, exists. Since 4, also verifies (2.8.1), it

A
follows that A A s saturated. (ii) is equivalent to the fact that f and g

are transverse. Q.E.D.

In the following we shall denote B x C|B xo, € by B x, G itis

called the fibre product of B and C over A (with respect to f and g).

2.12. Let A bean a.s., X € A be a stratum and € be such that all
the conditions involved hold on T;:(l for some €' >e. Then A |S§ exists.
In view of Lemma 2.9 the assertion follows from the following remarks:
(1) set U=TS~X and U =AlU; then f=(ry, py)|U : U —
X x (0, ') is controlled and transverse to the submanifold X x {e} of
X x (0, €');
(i) & = £HX x {e});
(iii) apply (1.2.3.5).
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Notes. Most of the notions in this chapter are due to Thom ['I‘l];
we have adopted the presentation of Mather [Mll (however the proof of
Lemma 2.4 is 'simpler hére: we use another type of induction which
concentrates many arguments). The notion of saturated subset (section 2.8)

is due to Goresky ([Gzl, section 4.1; he uses another terminology).

3. ABSTRACT THOM MAPPINGS

3.1.1. Let V, Vl, VZ and W be real vector spaces and fl’ fz. g1

and g, be linear maps such that the diagram

f
W ————— V1

is commutative. This square is called regular if for any Vi € V1 and
vy, € V2 such that gl(vl) = gz(vz), there exists w € W such that

fl(w) = vy and fz(w) = v,

3.1.2. Let

Qe Cl—<

I

be a commutative diagram of real vector spaces and linear maps. Suppose
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that the top and bottom squares are regular. It follows immediately that the

big square is also regular.

3.1.3. Consider now a commutative square
?4
M ————

Py
P P

of smooth manifolds and smooth maps. It is called regular if for any m € M

2

——————————
¥2

dy
1
™™ = (TP 4 ()
do, dy,
TPo,m) v, — TPy, 0,(m)

is a regular square of real vector spaces and linear maps.

3.2. Let B be a w.a.s. and A be an a.s. A weak morphism

f: B —~—>A is called an abstract Thom mapping (a.T.m.), denoted

f:Bb—>4a, if
(3.2.1) it is submersive;

(3.2.2) for any X € A and any Y <Y'€ B such that Y, Y! < 1),

the tubes Ty and T verify (1.1.5);

Yl
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(3.2.3) for any Y <Y'€ B with f(Y) €X€ A and £f(Y')eX'€ A
. 8 )
there exist ¢ and § such that f(Ty) < T;:(, Ty|Ty N Y' and

wXIT;:( N X' are smooth and the square

.
Tfl an__.Y_.__,.Y

TS nx' — X
is regular.

Notice that, as a consequence of (3.2.2) and (3.2.1)

(3.2.4) for any X € A, B|f (X) exists, is an a.s. and

flf—l(X) : f_l(X) —> X 1is a controlled submersion.

Let f: B—~—>A and f' : B+~~——>A' be a.T.m.'s, F : A — A
be a morphism (resp. an isomorphism) and G : B ——>B' be a weak
morphism (resp. a weak isomorphism). We shall say that the pair (G, F)
is a morphism (resp. an isomorphism) from f to f' (or that G is a
morphism (resp. an isomorphism) over F) if f' ¢ G =F o f and for
any X € A and X' € A' with F(X) € X', the restriction of G to
£1X) isa morphism (resp. an isomorphism) from Qlf—l(X) to
Bl hxn.

3.3. This subsection contains some examples, remarks and constructions

to be used later on.
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3.3.1. Let f : B ——>A be a weak morphism and let depth(A) = 0.

Then f is an a.T.m. if and only if B is an a.s. and f is submersive.

3.3.2. Let f: Br+~—A andlet Uc A (resp. V c B) be either a
locally closed subset which is a union of strata or an open subset. Suppose

that f(V) cU. Then f£|V : B|]V ——>A|U is an a.T.m.

3.3.3. Let fo : 1_3,0 l-——->1_&.0 be an a.T.m. and C be an a.s. of depth

zero. Then fo x 1C : By x € - >4, X € is an a.T.m,

Consider now an a.T.m. f : B =-—>A and a controlled map

P : A — M. We shall say that f is trivial over p if there exist an

a.T.m. £, : B l———>.g.‘0 and an isomorphism (G, F) from f to f, x 1

0 0 0 M

such that p = Py ° F, where P, : A xM — M is the canonical
projection.

More generally, the a.T.m. f : B —>A is called locally trivial

over the controlled map p : A — M if any m € M has an open neigh-

borhood U such that fl(p°f)-1(U) :gl(pof)_l(U)h—»élp-l(U) is
trivial over plp-l(U) : p-l(U) — U.

3.3.4. Let f: B+~~—>A bean a.T.m. andlet X €A and Y€ B
be strata such that f(Y)c X. Choose € and 6 such that all the
control conditions involved hold on T; and Tfl. Consider the controlled

€
x * Tx
they are transverse and thus we can consider the fibre product

L % (A|TS) (see 2.11). Let also B = B|f (T$) N T and define

submersion =« — X and the smooth submersion f|Y : Y — X;

g : g_g -—Y Xy (élTi) by g(b) = (nY(b). f(b)). A direct verification
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shows that g is an a.T.m.

3.4. Let £ : B+ —>A bean a.T.m. and V © B be either a locally
closed subset which is a union of strata or an open subset. We shall denote

by XfB(V) the subset of Xg(V) consisting of those n which verify

(3.4.1) for any X € A, n|f-1(x) N V is a controlled vector field on
Bl x) 0 v.

It is obvious that the collection {X£(V); V openin B} isa

subsheaf of the sheaf Xg ; we shall denote it X;. In fact ng is a

B*

p-submodule of XB and also a subsheaf of Lie algebras of X

~

3.5. LEMMA. Let f : Bi—>A bean a.T.m., E€ X(A), Bjc B be
a closed union of strata and n, € Xg(BO) . Suppose that d‘f-ﬂ0 =g, Then
there exists n € Xfa(B) such that n|B, =n, and dfen =¢.

Proof. Because of the existence of controlled partitions of unity, the
assertion is local. Thus we may assume that depth(B) is finite. If
depth(B) = 0, then there are no incidence relations between the strata of
B and the assertion is trivial. Assume that depth(B) > 0 and that the
assertion is true for any a.T.m. whose domain has depth less than
depth(B). Let b € B, Y € B be the stratum which contains b and

X € A be the stratum which contains f(Y.). Let

§

g : Be——Y x (AlT;) be the a.T.m. constructed in 3.3.4. Let

-1
also By =B|f "(X) and fy = fIBx : By —> X. By (3.2.4) fy isa

X
controlled submersion. As a consequence of Lemma 2.4, there exists
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4 EFX,B,X(BX) such that
(3.5.1) df-z = ¢
and
(3.5.2) t|By N B, =nglBy N B,
Let Bl = BO v Bx; it is a closed union of strata and, as a consequence

of (3.5.2), ¢z and Ny determine a vector field nlé'. X;(Bl) such that
df-n1 =E.
) 6 €
Let C =B [(B_NY), Cy=CN By, g =¢g|C:Cr——Y % (4]|T),

ng =n,lCy and £ = (z]Y) x (5|Ty) € Xyxp(¥ * T Notice that actually

£
X) :

E is a controlled vector field on ¥ ¢ (éITi{) and dg'-n, = £. Since

depth(C) < depth(B), we may apply the inductive hypothesis to g', &

- ~ ! - ~
and n,. Thus there exists n € Xé (C) e XfB(C) such that nlC0 = n

and dg'-n = £. The last equality is equivalent to df'n = £ and

0

dRY°ﬁ = ¢|Y. Now it is obvious that n and z|Y determine an

b f o6 b binS _ §
n € xg(Be) such that dfen” =¢ and n |[B_ NB, = nolBE n B,
Thus for any b € B there exist an open neighborhood Ub of b

b

in B and n° € X;(Ub) such that df-nb = £ and anUb N B, = nOIUb N B,.

A partition of unity argument completes the proof of the lemma. Q.E.D.

3.6. LEMMA. Let f : Br——A bean a.T.M., ¢E€ XA(A) and
ne€ an(B). Suppose that df-n = ¢. Then
(i) let y € B; if a sequence (sn) in (s;, t;) converges to
t;‘, < » (resp. s; > -=»), the sequence (Xn(y. sn)) does not converge

in B;
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(i) Dn is open in B x R and (An. Ag) is a morphism from
(f x lR)an : (B x §)|Dn|—-—>(§._ x g)ng to f;
(iii) for any t €R, (X;, )‘2) is an isomorphism from

t

. t -t -t -t,
fIDn .ngnl——>élDE to f|Dn -§ID,, t——-m;\_IDE.

lpy.

(iv) if f is proper, D_ = (f x 1p)" .

Proof. (i) Assume the contrary. To make a choice, let lim s, = th
i = y! = = i = '
and lim Y, =Y where Ya Xn(y, sn). Let x = f(y), x f(y') and
let X, X', Y and Y' be the strata containing .x, x', y and y'
respectively. Clearly X' <X and Y'<Y. If X =X', then Y and Y'
are contained in f-l(X). Using (3.2.4), (3.4.1) and Lemma 2.3(i) we obtai

a contradiction. Thus X' < X. Since df.n =&, it follows that (s;, t;)

LN 3 = n £
S (sx, tx) and f(kn(y. sn)) = As(x. sn) for any n. If ty <ti, then
x' = lim A (x, s)) = A (x, t;) € X; since X < X', this is not possible.
no_ .6 : £ . w
Therefore ty =t.. In this case (sn) converges to t o < and

()\E(x, sn)) converges t.o x' € A, which contradicts Lemma 2.3(i). This
last contradiction shows that (i) is true.

(ii) Let (y, t) € Dn' Wo be a neighborhood of An(y. t) in B,
Y € B be the stratum which contains y, x = f(y) and X € A be the
stratum which contains x. Since dfen =&, (x, t) € DE' To make a
choice, assume that t > 0. Choose now a compact neighborhood K of vy
in Y, real numbers tl' tz. t'l. €9 and 6§, and smooth maps
€ :X —> R: and §&(2) : Z — R: (Z € B) such that t

n n
ty €, § >0, sy < tlf_t'1<t<t2<tY and

1 <0

(3.6.1) K x [tl. tzl c Dn (hence f(K) x [tl. tzl CDE) H
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(3.6.2) all the control conditions involved hold on T; and TGZ(Z)

, Z € B;
(3.6.3) § <min{8(Y)(b); b € An(K X [tl. tzl)} and
gy < min{e(a); a € Ag(f(K) x [tl. tzl)};

(3.6.4) if V0 ={b € TY; 'n'Y(b) € K, pY(b) < 6§}, then f(VO) x [tl, tZICDE;

(3.6.5) if U =1{a € Tx; nx(a.) € kg(f(K) x [tl. t2])’ px(a) < eo}.
By ={Z € B; £(2) =X, Z >Y}, then

~1 §/2 §(2Z)
f(U)n veT U T > H
20 8
Z

(3.6.6) (b € Ty; my(b) € A (K x [t], ty])}c W,

There are no problems with (3.6.1), (3.6.2) and (3.6.3). Since DE

is open in A x R and K is compact, (1.1.3) implies that (3.6.4) is true

for & sufficiently small. Since Ir)nlY is open in Y x R and )‘nlY is

continuous on D (1.1.3) implies that (3.6.6) is true for § and

nlY’

tz-t'l sufficiently small. Finally, since V is compact, similar arguments

imply that (3.6.5) is true for a sufficiently small Notice that, by (3.6.3),

20.

(3.6.7) Uc TS and V ch(Y)

and, by (1.1.2), U and V are compact. If (b, s)€Dn and

A (b, 8) € 8 (Y)

v then
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nY(An(b. s)) = An(ﬂY(b). s)

and

f(An(b. s)) = )‘E(f(b)’ s)

In the following we shall use these relations without any other mention.

Let b €T.6{(Y) n (U + T%(Z)). Then, for |s| sufficiently small,
’ ZEBY
(*) PyA (b, 5)) = py(b)
Indeed, if b € T3'?) with z € B}, then

pyid (B, 8)) = pylmy(A (b, 8))) = py(A (ny(b), 5))

= "Y("Z(b)) = pY(b)

(the first and fourth equality are consequences of (3.2.2),. the third one
is a consequence of (3.4.1) and the second one follows from (2.1.2)).
Assume now that )\n(b, s) € TG(Y) n ( U + TG(Z)). Then from

Y z€8y 2
(*) and (2.2.1) we obtain

(3.6.8) pY(kn(b, s)) = pv(xn(b, s)), s near s

Let W =inty(Vy N (U)). Clearly y€ W. To prove that D,
is open in B x R it suffices to check that W x (tl, tz) c Dn' Let
b€ W and ZO € B be the stratum which contains b. Suppose that

tg < tz. Since Anlzo is continuous, there exists 0 < Sy < t; such that
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(3.6.9) A (Bs 8) €VN £y
for 0 <s < Sy and ) is maximal with this property. If Sg < tg,
since V N f-l(U) is closed in B,
-1 §/2 §(2)
A (b, sp) € V£ NU) € Ty U( U T, )
z€ BT
Y
If A (b, s, € 'I“s,2 since s. <t] <t using the continuity of A
n o’ %o Y VI S g ¥ n|z,’
(3.6.7), (3.6.4) and (3.6.2) we deduce that (3.6.9) is true for 0 <s <s'
. §/2 8(Y) 8(Z)
with s' > g If )\n(b, so) 4 TY then kn(b, SO) € TY n (ZL€JB+TZ )
and, using (3.6.8), (3.6.2) and (3.6.4) we reach again the same Y

conclusion as above. Since this contradicts the maximality of Sy it

follows that s, = t.g

0

Since vV N f-l(U) is compact, there exists a sequence (sn) in
(sg. tg) converging to tg < » and such that the sequence (An(b, s))
converges in B. This contradicts (i). Therefore tg > ts. Similarly
Sg <t). Hence W x (tl, t2) c Dn which, as already mentioned, proves
that Dn is open in B x R.

Notice now that (3.6.9) is true for any ty <s <t,. From (3.6.2),
(3.6.7) and (3.6.6) it follows immediately that An(W x (t'l, tz)) c WO’
which proves the continuity of An. The remaining part of (ii) raises no
supplementary difficulties and is left to the reader.

(iii) is obvious. (iv) can be proved exactly as the last assertion

of Lemma 2.4. Q.E.D.

3.7. THEOREM (Thom second isotop& lemma). Let f : B—— A be a
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proper a.T.m., M be a smooth manifold and p : A — M be a proper

controlled submersion. Then f is locally trivial over p.

Proof. The assertion being local with respect to M, we may assume
that M = R® and 0 € p(A). Then the vector fields d/dt, on R" can

be lifted to vector fields Ei €X A(A) which in turn can be lifted to vector

. f - - = a1
fields niGXg(B) (thus dfoni-gi and dp t;i-dldti). Let Ao p (0),

...1 .
By=f (A) and f,= f|B, : B, — A,. As in the proof of Theorem 2.6

the flows of the gi's and ni’s induce homeomorphisms F : Ao x R® — A

and G:BOXRn——>B such that

[o4)
X
vl
o
Y

Y

laa)

(=]
X

e

o]

B

> e

*hn

onRn F
p\ P
R =M

commutes (p, is the projection on R™). We know that A |a, exists
(see the proof of Theorem 2.6); the same type of arguments show that

B|B, exists and f : B|By=——>Al|A, is an a.T.m. Set B, = BIB,

0

and A4,=4A IAO. Since (G, F) is obviously an isomorphism from

fgx 1 B x R -—> A

gh - =0 = "gn to f=§'——>1,\,; the proof is

0
complete. Q.E.D.
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Notes. The notions introduced in this chapter are again due to
Thom [Tll, while the presentation follows closely that of Mather [M,].

However the proof of Lemma 3.5 is much simpler here.

4. MANIFOLDS WITH FACES

4.1. Let M be a smooth manifold with corners (see [C]), bM be the
boundary of M and M = M ~ bM be the interior of M (thus it is a
smooth manifold without boundary). A face of M consists of a closed

subset B « bM and a map Fp : UB — B x R_, called the collar of

the face, such that
(4.1.1) B is a manifold with corners;

(4.1.2) UB is an open neighborhood of B in M, FB(UB)
is open in B x R and FB is a diffeomorphism of

Ug onto FB(UB);
(4.1.3) FB(x) = (x, 0) for any x € B.

Notice that
) 2 *
FB(UB nM = FB(UB) n M x R+)
Define a smooth vector field ng on UB by

(dFg)(ng) = (0 x d/dt) |F(Up)
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It is clear that FB is completely determined by ng- Let also Pg 0]

—

B
and rg UB —> R_ be given by

Then Pp and rp determine FB and ng is the unique vector field on

UB which verifies

(4.1.4) dpgng = 0 and dr = d/dt

BB

As in the case of tubes we shall not distinguish between two faces

(B, FB) and (B!, FB.) if B=B' and F = Fp, near B. From now

B
on, in order to simplify the notation, a face (B, FB) will be denoted simply

B; FB : UB — B x R, ng» Pg and rg will always havg the above
meaning. For formal reasons we shall consider that the empty set is a face
of M, with the empty map as collar.

Let now M1 and M2 be faces of M. Set Ui = UMi. i Mi’
n, = nMi, P; = pMi and r, = rMi, i=1, 2. M1 and M, are called

compatible if either (a) Ml = M2 (and Fl = Fz near Ml)’ or (b) Ml = ¢,

or (c) M, =4, or (d) M; and M, are non empty, different, M, N M,

is a face of Ml (resp. MZ) with collar a suitable restriction of FZ

(resp. F and

P

(4.1.5) (n;lU; n U, n,|U; NU,l =0 near M, 0 M, ;

(4.1.6) dri-nj = 0 near M; N M,, i #j
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As a consequence one also has

(4.1.7) dpi-nj =nj|Mi near Mln MZ’ i#j

(4.1.8) pl(pz(x)) = Pz(pl(x)) € M; N M, near M, N M2 ;
(4.1.9) there exists an open neighborhood V of Mlﬂ M2 in

M such that the assignment x> (p,(p,(x)), r(x), ry(x))

gives rise to a diffeomorphism of V onto an open subset of

(M1 n Mz) x R+ x R+.

The smooth manifold with corners M is called a manifold with faces

if bM = U Mi’ any M. is a face of M and any two of them are
i€l !
M
compatible (in view of our last convention it may happen that Mi = ¢

for some i€ IM).

Remarks: (1) There exist manifolds with corners which carry no
structure of manifold with faces. An example is given by the following

compact domain in RZ:
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(2) Let M be a manifold with faces, I = {il’ e in} be a finite

subset of 1 and M, = mM.. Then M, is a manifold with faces and
M I i€l i I

there exists an open neighborhood V of M, in M such that the

I
assignment xk—> (pM (pM (...(pM (x))...)), Ty (x), ..., Iy (x))

1 2 'n 1 'n
gives rise to a diffeomorphism of V onto an open subset of

MIxR+x ...XR+.,
(3) The family {Mi; i€ IM} is locally finite (in M).
4.2. Let M and N be manifolds with faces, bM = LJ M, bN = U N.

. : ]
i€ IM j€ IN
A map f : M —> N is called compatible with the faces if

RS MARTE SN AT~ I, and
(4.2.1) if i€ 1Y then f’l(Ni)= M, and
FNi o f = ((fIMi) x 1R+) ° FMi near Mi H
(4.2.2) if i€Ih’f then f = (fIMi) ° pyy hear Mi ;
i

(4.2.3)  if jeIg~1"T then f“l(Nj) =¢ or f'l(N].) = M.

A face Mi of M with i€IV’f (resp. iélh’f) is called

f-vertical (resp. f-horizontal). Given i€ Ih’f we shall denote Ni = N.
For any i € IM we shall denote by fi : Mi — Ni the restriction of f.
Recall that a smooth f : M —> N, M and N being smooth manifolds

with corners, is an embedding if it is locally proper, injective and for any

x € M the differential df_ : TM_ —> TN is injective.
x x f(x)
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Let now N be a manifold with faces. A subset M of N is called
a submanifold of N if there exists a structure of manifold with faces on
M such that the inclusion M < N is an embedding and is compatible with
the faces. In this case M is locally closed in N and the structure of

manifold with faces on M, having the above property, is unique.
4.3. Examples and remarks.

4.3.1. Any open subset of a manifold with faces is a submanifold.
4.3.2. Any face of a manifold with faces is a submanifold.

4.3.3. Let M and N be manifolds with faces. Then M x N has an
obvious structure of manifold with faces: its faces are of the form

(a) M x N-j (j € IN) with collar (x, y)v+— (x, Py (y), ry (y)
i j
MxUNj—-b MXN].XR+, or
(b) Mi x N (i€ IM) with collar (x, y) —> (pM'(x). Y, rM.(X))
1 1l

19)
M *N — M, x N xR_.

i
4.3.4. Let M and N be manifolds with faces, M0 be a face of M, N

be a diffeomorphism compatible with

0

be a face of N and f:MO——>-N0

the faces. Let M U, N be the space obtained from the disjoint sum of M

f

and N by identifying x € M, with f(x) € N We shall consider M

0 0°
and N as subsets of M Uf N. The usual construction can be carried
out and we can endow M U ¢ N with a canonical structure of a manifold

with faces. Let us describe its faces. If Mi # M0 is a face of M such

that Mi N M0 # ¢, then there exists a unique face Ni of N such that
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- = . n n i
f(M; N My) =N, NN, and f, flMiﬂMo.Mi Mg —> N, AN, isa

diffeomorphism compatible with the faces. We can assume that

f(Uy M) =U and that the equality in (4.2.1) holds on U, N M,

M, N, 1N, M,
(all the faces of M0 are f-vertical!). As above we can construct
Mi Uf Ni; let Ui = UM. U UN. M Uf N and define

i i i
Fi : Ui-—-> (Mi UfiNi) x R_ by

Fi(x) FM.(x) € Mi x R <=(Mi Uf.Ni) *xR,, x € UM. s

1 1 1

Fi(y) FN.(Y) € Ni x R+ c(Mi Uf, Ni) x R+. y € UN

i i i

It is easily seen that Fi is well defined and that Mi Uf Ni is a face of
i

M Ug N with collar Fi. The other faces of M lJf N are those faces of

M (resp. N) which do not intersect M, (resp. No), their collars in

M Ug N being just their collars in M (resp. N).
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4.3.5. Let M and N be manifolds with faces, P =N be a submanifold
and f : M — N be a smooth map compatible with the faces. Suppose that
f is trensverse to P (i.e., for any x € M with f(x)€ P,
= -1 . :
TPf(x) + df-(TMx) = TNf(x))' Then f “(P) is a submanifold of M.
We can assume that, for any j €IN, P& Nj (otherwise we can replace

M by f-l(Nj), N by Nj and f by flf-]‘(Nj)). We can also assume that,

v,f

for any j € WM f-l(Nj) = ¢

For i € IM let fi : Mi —_ Ni be the restriction of f (recall that,
for i€ Ih’f, Ni = N). Since f is compatible with the faces, fi is

transverse to Pi =P N Ni' By induction on dim(M), we may assume that

(-]

fi.l(Pi) is a submanifold of Mi' Let f =

fl]M : M — N. Then f is
transverse to Ig =PnN lo\I and therefore E- 1(1‘;) is a smooth submanifold of

° :

M. Now a direct verification shows that there exists a unique structure of a
manifold with faces on f (P) such that

-1, . -1 . .

(1) fi (Pi) is a face of f "(P), i € L

=T

¢2) £1p) = (H

(P)
(3) the inclusion f-l(P) c M is an embedding compatible with the

faces.

4.3.6. The previous construction can be generalized as follows. Let

M, N and P be manifolds with faces and f : M — P and g : N — P
be smooth maps compatible with the faces. Assume that f and g are
transverse (i.e., for any x € M and y € N such that f{(x) = g(y),

Then M xp N = {(x, y)€ M x N; f(x) = g(y)}

df-(TM,) + dg-(TN) = TP ).
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has a canonical structure of a manifold with faces.
There is no loss of generality in assuming that, for any k € IP'
f(M) < P and g(N) ¢ Pk (otherwise we can replace P, M and N with

-1

P, f

K’ (Pk) and g-l(Pk) respectively).

Let now Mi be an f-vertical face of M, Pi be the corresponding
face of P (Mi = f-l(Pi)) and Ni = g-l(Pi) . Then Ni is either a non empty
g-vertical face of N or Ni = ¢. Consider the case Ni # ¢. As above we

can define Mi *p Ni (with respect to fi and 8; the restrictions of f
i
and g). By induction on dim(M) we can assume that Mi Xp Ni is a
i
manifold with faces. Let F, : U, —> M. xR, and G, : V. —> N, x R
i i i + i i i +

be the collars of Mi and Ni respectively; we can assume that the equality

in (4.2.1) holds on Ui (resp. Vi)' Then Wi = {(x, y) € M x5 N;

P

x€U, y€E Vi} is an open neighborhoéd of M, x N, in Mxp N and we
i
can define Hi : Wi —_— (Mi *p Ni) *x R by

Hi(x. y) = ((pM.(x). Py (y)), ry (x))
i i i

(by (4.2.1), rMi(x) = rPi(f(x)) = rNi(y)). It is obvious that Hi(wi) is
open in (Mi Xp Ni) x R, and that Hi is a homeomorphism of Wi on
i
H (W).
Next let M, be an f-horizontal face of M. Then fIMi : M, —> P
and g : N — P are transverse and, again by induction on dim(M), we
can assume that M, x; N is a manifold with faces. Let F, : U —> M, * R,

be as above and set Ui ={(x, y) EM ) N; x€ Ui}' Define
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Fi:Ui—> (MixPN)XR+ by

f‘i(x, Y) = ((py (%), ¥), 1), (x))
i i

Then fli is an open neighborhood of Mi xp N in M x5 N, F-‘i(fli) is open
in (Mi Xp N) x R, and f‘i is a homeomorphism of Oi on f‘i(fli).
The same construction applies to a g-horizontal face Nj of N and we

can define éj : Vj —> (M ) Nj) x R, with similar properties.
Finally fll:d : M — P and gllsl : N — P are transverse and
thus M 3 N is a smooth manifold. Now fhere is no difficulty in verifying

that there exists a unique structure of a manifold with faces on M xp N such

that

o -]
p N=Mxg N;

(2) the faces of M *p N are of the form (a) Mi x

(1) M x

p N with collar

Fi’ i€.Ih’f; or (b) M xp N]. with collar é]., j€ Ih'g; or (c) M, x Ni

with collar H,, i€ v f a8,

P,
i

4.3.7. Let M and N be manifolds with faces and f : M — N be a
smooth map such that for any face Mi of M, f(Mi) is contained in a face
Ni of N (however, f is not assumed to be compatible with the faces).
Let fi : Mi — Ni be the restriction of f. An easy verification shows

that if f is submersive, then fi is also submersive, i € IM.

4.3.8. Let M be a manifold with faces and {Ua} be an open covering
of M. Then there exists a partition of unity wa} subordinated to the

covering {Ua} and consisting of smooth mappings ¥y M —s R compatible
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with the faces.

The proof is simple and left to the reader. The idea is to construct
first the y,'s on the M;'s (by induction on dim(M)), then to extend
them on a small neighborhood of each Mi (by composing with pMi) and
finally to construct the npa's on the whole of M by using the fact that

(-]
M is a smooth manifold without boundary (in this case the assertion is

well known) .

4.4. Let M be a manifold with faces and £ be a smooth vector field on

an open subset U of M. We shall call & parallel to the faces (denoted

£ € XM,bM(U)) if, for any i€ I4 such that Mi nu#s,

(4.4.1) dpMi-E(x) = E(pMi(x)) near Mi nu
and
(4.4.2) drM.-E = 0 near Mi nu .

1

These conditions are equivalent to

(4.4.3) dFy <€ = (£|M; N U) x 0 near M AU
i

If g€ XM bM(U) then its flow A, : D_ —> U has the usual

13 2
properties (i.e., DE is open in U x R, Ag is smooth and for u € U, if
({u} x R) EDE = {u} x (53' ti), then tr—»> Ag(u. t) : (sﬁ. ti) — U

is the maximal integral curve of £ through u (the same definition as

in 2.2)). Moreover xg is compatible with the faces (DE and U have
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canonical structures of manifolds with faces).

4.5. LEMMA. Let M and N be manifolds with faces and f : M — N
be a smooth submersion compatible with the faces. Let n € XN bN(N),
let I IM and for any i€ 1 let g € XMi.bMi(M). Assume that

df-Ei =n and EiIMi n Mj = é;j]Mi n Mj’ i, j € I. Then there exists

£ € xM’bM(M) such that df-f = n and £|Mi =g, i€ I. If in addition
-1

f is proper then D_ = (f x 1

g R D).

Since the proof of this lemma is standard and raises no serious difficulty,

it is left to the reader.

5. ABSTRACT STRATIFICATIONS (WITH FACES)

5.1. We shall now enlarge the notion of (w.)a.s. by allowing the strata to
be manifolds with faces. Normally these objects should be called (weak)
abstract stratifications with faces. However, in order to keep the terminology
as simple as possible, we shall call them (weak) abstract stratifications and
call the objects introduced in 1.2.1 w.a.s.'s without boundary. Now the
definition.

A weak abstract stratification (w.a.s.) A consists of (i) a nice

topological space A; (ii) a locally finite family A of locally closed subsets
of A (the strata) such that A is the disjoint union of the strata; (iii) a

family of tubes of the strata {rx =(T X € A}; (iv) a family of

X? ﬂ'x’ px);
closed subsets Ai (i€ IA) of A, called the faces. The strata, their

tubes and the faces must satisfy the following axioms:
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(5.1.1) if X, YE€EA and XN c!.A(Y)#cb, then X< Y;

(5.1.2) for any face Ai of A there exist an open neighborhood

UA of Ai in A and a homeomorphism
i
FAi : UAi — Ai x R, onto an open subset of Ai x R,
such that (1) FA (a) = (a, 0), a € Ai and (2) for any
, i ‘
X €A FAi(Xﬂ UA.) c(Xn Ai) xR.; F

i
collar of Ai; we shall define p Al 4]
i

A is called the
; .

Ai —_— Ai and

rAi H UAi — R+ bY FAi(a) = (PAi(a); rAi(a));

(5.1.3) each stratum X € A is a manifold with faces (in the
induced topology), its faces being Xi =XnNn Ai’ ieg IA;

the collar of X, is in = FAiIX n UAi : Uxi =X N UAi

—>XiXR+;
(5.1.4) if X €A and ielA.

in e My = ((ry|Ty na) x 1R+) o F

..1 -
then Y (Xi) = Ai n Tx and

Ai near Xi:

(5.1.5) for any X € A there exists ey such that, for any

£X
stratum Y # X of 4, Ty
€

X
X <Y and (nx, px)ITx nNY : T

NY # ¢ implies that
€X

X nYy—X x (0, €

x)

is smooth and submersive;

(5.1.6) for any strata X <Y the tubes TX and Ty verify

(1.1.4) with €= ey and &= Ey*

If in addition



- 47 -

(5.1.7) for any X € A and i€ Ié,' Py = Py © pAi near X,
and
(5.1.8) for any strata X <Y the tubes Ty and Ty verify

(1.1.5) with € = Ex and § = €y

then A is called an abstract stratification (a.s.).

Let A be a w.a.s. Since A is a normal space we can assume

without any loss of génerality that
X T Y
(5.1.9) for any strata X and Y, Ty~ N Ty # ¢ if and only

"if X <Y or Y <X.

Remark. Let A be a w.a.s. and X <Y be strata. By (5.1.4)

€ €
lTe® NY : T,X N ¥ — X is compatible with the faces, all the faces
€ €
of TyX NY being (ry|T," N Y)-vertical. If A is an a.s., by (5.1.7),

€x
X €
MY being (py|Ty" N ¥)-horizontal.

€
ox|Ty> 0¥ : T,XN ¥ — R is also compatible with the faces, all the
€

faces of Txx

Given a w.a.s. A and X € A we define depth,(X), depth(A)
and dim(4) exactly as in 1.2.2.

For formal reasons the empty set will be considered an a.s. of depth -i.

5.2. Let A and B be w.a.s.'s. A continuousmap f : B — A is

h,f

v i f, vof

Iv’f el and

a

called compatible with the faces if IB

(5.2.1) if i€1"f then f’l(Ai) =B, and

1

Fy of= ((£]B,) x1p ) o Fp near B

1 + i
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(5.2.2)  if i€ 1% then f=(f|B) opy near B
i

f

(5.2.3)  if 1€, ~T"T then £HA) =9 or A =B.

£

The faces Bi of B with ie1r”’ (resp. iGIh’f) are called

f-vertical (resp. f-horizontal). If i€ 1™f ve sec A; = A. For any ie 1,

we define fi: Bi — Ai. to be the restriction of f.

If £f: B —> A is compatible with the faces and

(5.2.4) for any Y € B there exists X € A such that f(Y)e X

and f|Y : Y — X is smooth;

(5.2.5) Y and X being so above, the tubes Ty and Tx

satisfy (1.1.6),

then f{ is called a weak morphism (denoted f : B ——>A).

If f: B ~-—>A and

(5.2.6) for any X and Y as in (5.2.4), the tubes Ty and

Ty satisfy (1.1.7)

then f is called a morphism (denoted f : B —A).

Notice that for a weak morphism f : B ——>A and two strata Y
and X as in (5.2.4), the restriction f|Y : Y —> X is compatible with
the faces.

A weak morphism f : B — —> A is called submersive if for any
Y€B and X€ A with £(Y) <X, f|[Y : Y — X is a submersion.

A (weak) morphism f is called a (weak) isomorphism if f-1 exists

and is a (weak) morphism.
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Two w.a.s.'s A and A' are called equal if A = A' and lA is

an isomorphism of A on A'. If lA is only a weak isomorphism of A on

A' then A and A' are called weakly equal.

5.3. Examples, remarks and constructions.

5.3.1. Let A bea (w.)a.s. and W c A be a locally closed subset. Set
AW={X NW; X€E A and XN W#¢}l For any iEIA set Wi=AinW.
Suppose that for any X N W € A|W there is given a sugset

Ty qw SWN 73 (X NW) containing XN W. We can define

oW ¢ Txnw —>» X NW and Pxnw ® TXﬂW -_— R+ to be the
restrictions of T and ox respectively. Set xaw - (Txn W TXnw

Pxpw): I

(5.3.1.1) each Ty nw is open in W;

(5.3.1.2) for any i € I‘;\= either Wi'= $ or W. =W or W= (pAi)_l(Wi)

near Wi (thus, in the last case, there exists an open

neighborhood U of W, in W such that F, =F |u

Wi Wi Ai Wi

is a homeomorphism of UWi onto an open subset of W, x R );

(5.3.1.3) if XN W, YAW €AW and (XOW)N ce (YOW) # ¢

then X N W Cc!.w(Y nw);

(5.3.1,4) each X N W€ A|W is a submanifold of X;

(5.3.1.5) any XNW € AlW  verifies (5.1.5) (with X and Y

replaced by X NW and Y N W respectively)
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then one can endow W with a (w.)a.s. structure, denoted A|W and
called the restriction of A to W, such that the inclusion W< A de-
termines a morphism A|W — A. The strata of A|W are of the form

X NW with X NWE A|W, their tubes being of the form Tt the

Xnw'

faces of A|W are of the form W, with i€I, and W, #W, the

a

collar of Wi being F (see (5.3.1.2)).

Ww.
i

As in the case of w.a.s.'s without boundary it follows that for any
X nNWEeEA|W

— -1
Tan-anx(XﬂW) near X N W

(see (1.2.3.5)). Thus A|W, if it exists, is completely determined by A
and W.

The most important example§ of subsets. W< A for which A|W exists
are provided by locally closed subsets which are union of strata or by

open subsets.

If A|W exists and for any XN W € A|W
(5.3.1.6) .n;(l(XﬂW) =W near X ,

then W is called saturated.
For any i€ I,, Ai is a saturated subset of A; in particular
élAi exists (in order to verify (5.3.1.5), one has to apply 4.3.7). From

now on, unless something else is specified, we shall denote QIAi by 4,.

o

Let bA =|J A, be the boundary of A and A =A “bA. Then A
i€l

A
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is open in A and thus we can consider is a

13>
]
>
o
i3> 0

Clearly

(w.)a.s. without boundary.

5.3.2. A manifold with faces M has a unique a.s. structure M such that
M = {M} and the faces of M are those of M. R_ will be always considered
a manifold with faces with only one face {0}, its collar being the obvious

map R+ —> {0} x R+.

5.3.3. Let A and B be w.a.s.'s. Then A x B can be endowed with
an obvious w.a.s. structure, denoted A x B (the strata and the tubes are
defined as in 1.2.9 while the faces are defined as in 4.3.3). A x B is an
a.s. if and only if A and B are a.s. and depth(A)-depth(B) = 0.

We shall describe now a related and useful construction. Let A be a
(w.)a.s. and let ¢, § : A ——>R, e < §. Define

Fe:Ax[e,G)—->(Ax{e})><R+ and F, : A x (g, §] — (A x {§}) x R,

8
by Fe(a, t) = (a, e(a), t - e(a)) and Fs(a, t) = (a, 6(a), 6(a) - t). There
exists an obvious (w.)a.s. structure on A x [e, 8], denoted A x [e, 6],
such that the strata are of the form X x [¢]|X, §|X] with X € A and

the faces are of the form (1) A, x [elAi, GlAi] with i € Ié, (its collar

being a suitable restriction of F A" 1R+) or (2) A x {e} (its collar being
Fe)’ or (3) A x {§} (its collar Ilaeing F6)° The fact that € and § are

weak morphisms is important for this construction. In a similar way one can

define A x {e}, A x (e, 8], A x [, §) and A x (¢, §) (this last one is

simply A x R|A x (e, §)).

5.3.4. Let A be a (w.)a.s. and let A, be a face of A. A direct
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verification shows that (possibly after shrinking U, ) F is a (weak)

A TA

i i
isomorphism of élUA on (4, x §+)|FA (Up) (here A
i i i

. = AlA,, see

i ="

(5.3.1). From now on we shall always choose U A such that this assertion
i

is true.
5.3.5. Let A be a w.a.s. and M be a manifold with faces. As in 1.2.8
we can introduce the sheaf C:(-, M) of controlled maps defined on open

subsets of A and with values in M (in this new setting * controlled map

is also compatible with the faces). If M = R we shall d.'. ‘. this sheaf by

CZ; its sections (over any subset of A) are called contralled functions.
Lemma 1.3 and Corollary 1.4 are valid in this more general setting too (the
proof of Lemma 1.3 can be carried out without any change; one has only to

take into account 4.3.8).

5.3.6. Let B and A be w.a.s.'sand f : B —> A be continuous and

compatible with the faces. We shall say that f is a quasi-morphism,

denoted f : B ~—~ A, if

(1) for any Y € B, f(Y) is a union of strata of A;

(2) forany Y€ B and X € A with X CczA(f(Y)) there exist
¢ and & such that b€ T nffl('r)e{) implies 7, (b) € f '(T,) and
T (f(b)) = Ty (f(1y(B)));

(3) for any Y and X as above wy ° £y n fnl(T;) :

Y n f-l(Ti) — X is a smooth submersion and py ° £ly n f-l(T§) :
Yn f-l(T;) — R is smooth.
Clearly a weak morphism f : B ——> A is a quasi-morphism if and

only if it is submersive and, for any Y € B, f(Y) € A.
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Let now f : BA—> A be a proper quasi-morphism, all the faces of
B being f-vertical. Let C(f) be the topological mapping cylinder of f,
i.e., C(f) is obtained from the disjoint sum (B x [0, 1])| |(A x {0}) by
identifying (b, 0) with (f(b), 0), b € B. The image in C(f) of an
element (c, t) € (B x [0, 1)LJ(A x {0}) is denoted [c, t}. Let

'f':BL_lA—>A,nf:C(p)—+A,if:A——>C(f),jf:B—»C(f).A,ﬁ

and @ : B x [0, 1] — C(f) be given by f|B =1, f|lA =1

A,
i(A), B = j(B),

te(lc, t1) = E(c), ig(a) = [a, 0, j(b) = [b, 1], A
odb, t) = [b, t].

Given a face B, of B, let A, be the corresponding face of A
(i.e., Bi = f-l(Ai)) and set fi = lei : Bi —_ Ai' Then we can define
C(fi) and consider it as a subset of C(f), more precisely C(fi) = (wf)-l(Ai).

Since f is proper we may assume that UB = f-1

-1 i i
= (UAi) and define

(Up ) and the equality in

(5.2.1) holds on U Set U

Bi. C(fi)

FC(fi) FUcrry) C(f) x R, by

([pB (c), t], B(C)). c€Ug, 0c<tc<l
1 i i

Foqey e th =

il
o

([PA (C)t 0]0 rA (C))' c€ UA , t
i i i

Given j € IA \IV’f

FAj : UA'j-» ijR+ by

set Aj = if(Aj), UAj = if(UAj) and define

(notice that condition (3) in the definition of a quasi-morphism implies that
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f‘lmj) = ¢).

Let Ug = C(f) ~ A and define F5 : Uy — B x R,_ by

FB([b’ t]) = ({b, 1], 1-t)

Let 81:R><R-——> R.BZ:RxRxR—aR and

a:R+xR+—->R be given by

0, t-s <0
Bl(s. t) =

el/s-t’ s-t < 0

82(3, t, u) = Bl(s' u)Bl(us t)

¢ 2x
f Bz(xﬁ 2x, u)du
-+ » (%, y) # (0, 0)
a(x, y) = 4 f B,(x, 2x, u)du
p.4

Then o is smooth on R_x R, {0, 0}, a(x, y) = 0 iff y > 2x,
a(x, y) =1 iff y <x and (x, y) # (0, 0) and d“(x.y) # 0 iff
x <y < 2x.

Finally let ¢ : A — R: be a controlled function. A straightforward
verification, which we omit, shows that there exists a w.a.s. structure
g(f)e on C(f) with the following properties:

(i) for any X €A, X = i(X) is a stratum of C(£)®, its smooth
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~

structure being given by the obvious identification of X with X;
Tg = 1, (Ty), mglle, t1) = [ry(Fe)), 01, pz(le, t]) =
= a(t, py(f(e))) elay (Fe))) -t + (1 - alt, py (Fle))))epy (Ele));
(ii) leIB x (0, 1] : B x (0, 1] — g(f)elC(f) S~ A is an isomorphism;

(iii) the faces of g(f)E are B, C(fi) (1€1I; = Iv‘f) and

o]

A].(i € I{}_\ I?_) with collars Fj, Fc(fi) and FAj respectively;

(iv) g(f)s is uniquely determined by (i)-(iii);

(v) i A — g(f)elA and j. : B — g(f)elﬁ are isomorphisms;

(vi) Te Q(f)er\r—-»é is a proper, surjective quasi-morphism, B
being the unique nf-horizontal face of g(f)e; if in addition f is a weak
morphism, then LY is a weak morphism too;

(vii) let i € Ip; then on C(fi) there are two w.a.s. structures:
one inherited from -C(f)e (i.e., C(HF|C(f), ecf. 5.3.1), the other one
being Q_(f.i)E|Ai (since fi : glm—» éx is a proper quasimorphism, all the
faces of Ql being fi-vertical, this makes sense); it is not difficult to see
that they are equal;

(viii) let X < X' be strata of A such that the tubes Ty and Ty,
verify the control condition (1.1.5). Then the tubes e and T of
C(£)® verify (1.1.5) too. This is the only point where the so complicated
definition of Pz is needed (otherwise we could have defined p% by the
formula pgz(lc, t]) = e(ﬂ'x(f—(c)))'t + ox(f-(c));

(ix) if B is an a.s. and depth(4) = 0, then C(H)® is an a.s.
(in this case the definition of pg in (i) above reduces to pi([c, t]) =

= elny (Fe))) ).

Finally a remark concerning the notation: if e(a) =1, a € A, then
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C(f)® will be denoted C(f).

5.3.7. Let A (resp. B) be a (w.)a.s., AO (resp. Bo) be a face

of A (resp. B) and f : A, — B, be an isomorphism. Let A UfB

be the topological space obtained from the disjoint sum of A and B by

identifying a € A, with f(a) EBO. We shall consider A and B as

0

subspaces of A U. B. Set W=U, U U
f A0

x R by

B c A UfB and define

0

f:W——>A0

F(a) (pAo(a)n —er(a))) a € UA »

0

(£ Hpg (b)), rg (b)), b EU
0 0

F(b)
By

Let X€ A and Y€ B and suppose that f(XN A ) =Y ﬂBo#db.

0)
Let fx O:XDAO—->YnB° and set Z =X foY (see
4.3.4). Consider also X'€ A and Y' € B such that X <Y', Y <Y'

=f|X nA

and f(X'N A =Y'n B,- As above define fys, and Z'=X' U Y'.

fx,

* *
Choose € : X —> R, and & : Y — R, such that ¢[XN A =6 of

0 X’
Then Tz = T; v Tfl is open in A Uf B and, if ¢ and & are sufficien
small, we can define py : T, — R_ by szT; = p§( and pzl'rf[ = p.f,
(this is possible since f is an isomorphism). Assume now that for any

X, X', Y and Y' as above
ok
(5.3.7.1) pZ]TZ nz : 'I‘Z nz — R+ is smooth

(if A and B are a.s.'s this condition is always verified; it is a conse-

quence of (5.1.7)).



- 57 -

- A direct verification shows now that there exists a unique (w.)a.s.

structure A U £ B on A U £ B such that

(i) the strata of A Ug B are of the form X € A (resp. Y € B)

with XﬂAo=¢ (resp. YﬂBO=¢) or X Uf Y with X€ A, Y€ B

X
and £(X NAQ) =Y N B #¢;

() (A U BI[A~A)=AlAN Ay

(i) (A U, B)[B~B, =B|B~ B

(iv) F : (A Ue B)|wW ——>4, xR is a (weak) isomorphism near A;
(v) for strata of A UgB of the form Z=X U, Y, T, and p,

X
are defined as above.

Notice that if A and B are a.s.'s, then (v) is a consequence of (iv).

' If Ay=B, and f=1, , A U,B will bedenoted A U, B. If

0 Ag =

Ag=¢=B;, A U, B will be denoted ALIB; thus ALIB is the (w.)a.s.
whose underlying topological space is the disjoint sum of A and B, and
(ALJB)|A = A and (ALJB)|B =B.

Let A, B and ¢ be w.a.s.'s, A, (resp. By

B
of A (resp. B, B, C) and f: Ay — B, and g : B

isomorphisms which verify (5.3.7.1). We can consider A Us/B and B Ug C.
Assume that B, N B, =¢. Then B, (resp. B;) isafaceof A U B

(resp. B Ug C) and we can consider (A U, B) Ug C and A U, (B VU_QC).

g
It is obvious that we can identify (A U; B) Ug C with A U, (B Ug C)
and then (A Ue B Us C and A U (B Ug C) are equal. We shall denote

this w.a.s. by A U.B U_C.

f= "¢

5.3.8. Let q': B'a—> A' and q" : B"A—> A" be proper quasi-morphisms,
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all the faces of B' (resp. B") being q' (resp. q")-vertical. Let

By (resp. Ba) be a face of B' (resp. B"), let Aj (resp. Aa) be
the corresponding face of A' (resp. A") and let q'0 : Qbm—» Ay
(resp. qa : Qg A~ &a) be the restriction of q' (resp. q"). Let

f : ng — Qa and g : .g.‘b —> éa be isomorphisms such that

g ° qp =qp ° f. Assume we can consider B' U B" and A! Ug A" (i.e.
condition (5.3.7.1) is verified in both cases). Consider also g(q')e' and
g(q")e" for some ¢' and e" such that e'|A} = (¢"|A}) o g. Define

q : B' U B" — A ug A" and F : C(qp) —> C(qy) by ql|B' = q',
a|B" = q*, F(b, t]) = [£(b), t] if b € By,
= [g(a), 0] if a€ Ab. Then q 1is a proper quasi-morphism from

0<t<1 and F([a, 0]) =

B' U, B" to A Ug{_\,", all the faces of B' Ug B" are g-vertical and

" ]
€ IAb

T3

is an isomorphism from Q(qb)e'“6 to g(qa) Let

€ : A ug A" —> R: be given by ¢|A' =¢' and e|A" =¢". We can
consider C(q)® and Q_(q')e' qu(q")e" and define

¢ : (@)% U, C@M — Q) by e(lb, t]) = [b, tI(1). Itis

obvious that ¢ is an isomorphism.

5.4. Let A be a w.a.s. A vector field on A is a family
£ =1{&(x); £(x) € TX_, x€ X, X € A}. Given a vector field § on 4

and a subset U of A, we define the restriction of &£ to U to be the

family £|U = {g(x); x € U}. The vector field £ on A is called weakly
controlled if for any X € A and any i€ IA there exist ¢ < e (e as

in (5.1.5)) and a neighborhood Vi of Ai in UA such that
i

(5.4.1) £]X is a smooth vector field on X;
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(5.4.2) for any Y€ A and any vy er*;(n Y, drg£(y) = £lry(y))

and

(5.4.3) for any a €V, dFAi-E.(a) = (E(pAi(a)). 0)
If in addition, the notation being as in (5.4.2),

(5.4.4) dpx'E(Y) =0

£ 1is called a controlled vector field on A.

As in 2.1 we can define the sheaf XX of weakly controlled vector

fields on open subsets of A and its subsheaf X A of controlled vector

fields. Both are sheaves of Lie algebras and C:-modules. Also any
£ € XZ(U) (U open in A) can be viewed as a derivation of CZ(U) (the
same formula as in 2.1).

Given an open subset Uc A and ¢ € XX(U) we can define, exactly

as in 2.2, the flow associated to £ and denote it J\E : DE — U (the

construction is possible since, in view of (5.4.1) and (5.4.3), for any
stratum X of l_\]U the restriction £|X is a smooth vector field parallel
to the faces and therefore the remarks in 4.4 can be applied).

Let now i€ IA' By the convention established in 5.3.4,

Fé‘i : UAi — A, x R_ is a weak isomorphism of é!UAi on

(é'i x &"”FAi(UAi)‘ Let nAi be the unique vector field‘on UAi such

Ai.nAi = 0 x d/dt. Clearly FAi is determined by nAi. Since
*

0 x d/dt is controlled on &l x R, (but not on 1_\_1 x 5__'_!) it follows that

that dF
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~ Ai € XZ(UAi\ Ai)' If A is an a.s. then FA is an isomorphi

ny 1Uq,
i i

1
and therefore nAilUAi\ A € xé(UAi\ A).

5.5 Let B be a w.a.s. and A be an a.s. A weak morphism

f :

(1o

— —> A is called an abstract Thom mapping (a.T.m.), denoted

f:Brr—A if
(5.5.1) it is submersive;

(5.5.2) for any strata Y <Y' of B, such that f(Y) and £(Y'")
are contained in the same stratum of A, the tubes t, and

Ty verify (1.1.5);
(5.5.3) for any strata X of A and Y of B . with f(Y)< X and
ST _ . 1wy,
any i€ Ig. Py =Py °pBi'near Y"\Bi in f (X);

(5.5.4) for any strata Y <Y' of B with f(Y)c X € A and

f(Y) e X'€ A there exist § < ey and € <ey (eY and ey

as in (5.1.5)) such that f(T.i,) c T; and the diagram
TS 0 v Y Ly
£ | £
€ S
Tx nx » X

is regular.

Remarks: (1) Let f : B ——> A be a weak morphism, A being
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an a.s. Assume that f is locally an 2.T.m., i.e., B can be covered by
open subsets U such that f|U : B|U ~— A is an a.T.m. Then f
itself is an a.T.m.

(2) Let f: B——>A be an a.T.m. and V B (resp. U € A) be
either a locally closed subset which is a union of strata or an open subset.
Assume that f(V) c U. Then f|V : B|V ——>A|U is an a.T.m.

(3) Let f: B——>A be an a.T.m. and B, be a face of B. Let
h,f

fi : =B.1 ———>£L_i be the restriction of f (recall that éi =A if i€I

).

Then fi is an a.T.m.

The notion of morphism (resp. isomorphism) between a.T.m.'s is defined

exactly as in 3.2.

Let f: Br——>A bean a.T.m. and V< B be an open subset. We

shall denote by ng(V) the set of those vector fields n € Xg (V) which
verify
(5.5.5) for any X € A, nlf-l(X') N V is a controlled vector field

on Blfl(x)n v.

It is clear that the collection {XfB(V); V open in B} is a subsheaf of

X;: we shall denote it XfB. In fact X]f3 is a C;-submodule and also

a8 subsheaf of Lie algebras of X;.
Taking into account 4.4, 4.5 and 5.3.5, the following proposition can

be proved exactly as Lemma 2.3, Lemma 3.5 and Lemma 3.6.

5.6. PROPOSITION. Let f : Bt——>A bean a.T.m., B'<B bea
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closed union of strata and let 1 CIB. Let f' : B! —> A and

f. : Bi — Ai’ i €I, be the restrictions of f (recall that Ai = A if

1
ier™f). set B =BIB. Let ¢ €X}(A), n' € XL, (B) and

ny € xBi.(Bi) (i € I) be such that

=1
() n'[B'NB, =n|B'nB, i€L;

(2) n,|B, N B, ndBi nB, i j € I;

(3) dfen' = g;

E, 1€I.

(4) df.-ni

Then

f

E(B) such that dfn =¢, n|B' =n' and

(i) there exists n € X
nlBi =n, i €L

(i) if £€ X,(A), then D_ is open in A xR, Dn is open in

13
B x R and the pair (ln. AE) is a morphism from
(f x 1p)[D, : (B x I}_)IDnr—-—>(A x 1;)|DE to £f:Br—>A; ifin

-1
(DE)'

addition f is proper, then Dn = (f x lR)
5.7. THEOREM (Thom second isotopy lemma). Let f : Br-—>A bea
proper a.T.m., M be a manifold with faces and p : A —> M be a prop-

controlled submersion. Then f is locally trivial over p (same definition

in 3.3.3).

Proof. The assertion being local with respect to M, and f and F
being proper and compatible with the faces, we may assume that
(i) M=R" x (R)? and 0€ p(£(B));
(1) A =4 x (R)L B=B =~ R

(iii) there exist a proper a.T.m. f' : B'r—-—A' and a proper
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controlled submersion p' : A' — R™ guch that f = f' x 1 and
(R,
P =] ' x } .
(R

Clearly it is sufficient to prove that the a.T.m. f' is trivial over
the proper controlled submersion p'. This can be done exactly as in the

proof of Theorem 3.7. Q.E.D.

5.8. COROLLARY (Thom first isotopy lemma). Let B and A be a.s.'s
and f : B ——> A be proper and submersive. Suppose that depth(A) = 0.

Then £ is locally trivial.

Proof. It is obvious that f is an a.T.m. Since A is a manifold
with faces and 1A : A — A is a proper controlled submersion, Theorem
5.7 implies that f is trivial over 1 A’ which means that f is locally

trivial. Q.E.D.

5.9. We shall list now some results which can be derived exactly as the
corresponding ones in the case of w.a.s.'s without boundary. When necessary

we shall give some indications conceining their proof.

5.9.1. Let A be an a.s. and X <Y be strata of A. For a sufficiently

€ - . L
small ¢ the map (mg> px)lTX\ Y : Ty SY — X x (0, €) is surjective.

5.9.2. Let B be an a.s., A be a w.a.s., Ay < A be saturated (see
5.3.1) and f : B ——> A be transverse to Ay (the same definition as

in 2.9). Then f (A.) is saturated in B; in particular _B__If-l(Ao)

0’
exists. (The strata and the tubes of glf-l(Ao) are defined as in 2.9.

By 4.3.5 the strata are manifolds with faces. In order to check the conditions
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which must be verified by the strata and their tubes one proceeds as in

2.9. The faces are defined as in 4.3.5).

5.9.3. Let B and C bea.s.'s, A beaw.a.s.and f: B ~—>A
and g : Q ——> A be transverse, i.e., for any Y€ B, Z € C and X €
with f(Y) U g(Z) = X, the smooth maps f|Y : Y — X and g|Z : Z —
are transverse. Set B x, C= {(b, c) € B x C; f(b) = g(c)}. Then B x
can be endowed with a canonical w.a.s. structure B x A &» called the fibre
product of B and C over A (with respect to f and g). If
depth(B) -depth(C) = 0, then B x, C is an a.s.

(Since 4, is not saturated in A x 4 (if DA #¢, then (5.3.1.2)
does not hold) we cannot proceed as in 2.1.1. We shall proceed as follows.

For any Y € B and Z €C, by 4.3.6, Yx, Z=(Y x2Z)n (Bx, C) is

A
a manifold with faces. Thus (Y A Z; YE B, Z€ C} is a locally finite
partition of B x A C into locally closed subsets which are manifolds with

faces. The faces of B x, C are defined as in 4.3.6. The tube

A
(Tyw» Ty» Pyy) of a stratum W =Y xy Z is defined by:

Tw = (T; x T%) N (B Xa C) for some sufficiently small ¢ and 3§,
(ks ¢) = (7y(b), 7,(c)) and py(b, ) =py(b) +p,(c), (b, c) € Ty.

A straightforward verification completes the construction of B x A c).

5.9.4. If B and A are w.a.s.'s and depth(A) = 0, then
f: B——A is an a.T.m. if and only if B is an a.s. and f is sub-

mersive.

5.9.5. Let f : B——>A bean a.T.m. and Y and X be strata of
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B and A respectively such that f(Y)< X. Choose & and 6§ such that

all the control conditions involved hold on T; and T,ﬁ,

Consider the fibre product Y Xy (élT;) of Y and éITi over X

8
Y

by g(b) = (ry(b), f(b)). Then g is an a.T.m. from =Bale:s to

€

8 I
and f(TY) c TX'

nf‘l(T;() —> Y x, T

(with respect to £|Y and w}e() and define g : B: =T x Tx

5.9.6. Let f : B~ -—>A be an a.T.m. and C be an a.s. of depth zero.

Then f x ]'C :BxC ——>AxC is an a.T.m.

5.9.7. Let f' : B'l—>A' (resp. f" :B"——A") be an a.T.m.,
By (resp. Ba) be an f{' (resp. f")-vertical face of B' (resp. B")
and A A(resp. AB) be the corresponding face of A' (resp. A").
Let (y, ®) be an isomorphism of f'|Bj : Bjr——> Ay on f"[Bj :
QSI—'-—>48 such that y verifies (5.3.7.1). We can therefore consider
the w.a.s. B = B! U'P B" and the a.s. A = A' U(pb A". Define f : B — A
by setting f|B' = f' and f|B" = f". A straightforward verification shows
that £ : B ——>A is an a.T.m. We shall denote f by f'u_ f". If

1

By =B} AL = A", yp =1 and ¢ =1 we shall denote f by f' U_, f".
0 0’ =0 0 Bb Ab BO

5.9.8. Let f': B'*——>A (resp. f{" : B"— —>A) bean a.T.m., By
(resp. Bj) bean f' (resp. f")-horizontal face of B' (resp. B") and
(v, 1,) be an isomorphism of f'[Bb : By —>A on f"|§8 : Bil——A
such that ¢ verifies (5.3.7.1). Let B = B’ U\l' B" and define f : B — A
by setting f|B' = f' and f |[B* = f'. As above, a straightforward verification

shows that f : B ——>A is an a.T.m. We shall denote it f' U‘p fr; if
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By = B0 and ¢ = IB,O we shall use the notation f' UBb f*.

5.9.9. Let f : G——>B and g : B+~-—>A be a.T.m.'s In general
g °f is not an a.T.m. However if for any X € A the strata of B
contained in g-l(X) are not comparable (i.e., if Yi € B and g(Yi) € X,

i=1,2 then Y, <Y, implies Y, =Y,) then gef:C ——>4A is

an a.T.m.
(Indeed, (5.5.1) is obvious, (5.5.2) and (5.5.3) are easy consequence

of our additional assumption, and (5.5.4) follows from 3.1.2).

5.10. PROPOSITION. Let f : B——>A be an a.T.m., W be an open
subset of A and g : W —+> R be continuous. Suppose that there exist

t € R and an open neighborhood U of At = g‘]'(t) in W such that

atl = 8-1 ((-=, t]) is closed in A and g|U is a controlled submersion.

set AP = atl CAat, alt =4 <alt, At 2 alt At Bt ¢ 1laY),

B[t = f‘l(A[t) and similarly B(t. Bt tl and B! ) Define f' : Bt — A,
t] t} t

f : B —>At} and f(t : B[ -—>A[t to be the restrictions of f.

Then B[t and Bt] (resp. A[t and At]) can be endowed with w.a.s.

[t [t t]

structures B'~ and Qt] (resp. a.s. structures A ) with

and A
the following properties:

@ g8t =p|a(, ¥ |8Y = |BY, alta(t = 4]alt and

ét] lAt) (t

=§_]At) (notice that AY and A(l are open in A and Bt
and B! are open in B);

(ii) £t (resp. ft]) is an a.T.m. from Et] (resp. g“) to
atl (resp. alh;

(iii) A is a face of A[t (resp. 4"’); the restriction of A to
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A' exists and a|At = altjat = atl|AY,
(iv) BY is an ft] (resp. f[t)-vertica.l face of _B__t] (resp. B[t);

the restriction of B to B' exists and ngt = };t]lBt = Q[tIBt;

t] (V] N B[t and the inclusions Btl < B,
B

B[t <B, At] < A and A[t < A determine a weak isomorphism

(v) one can construct B

G : =B_t] U, glt —~—>B and an isomorphism F : ét] u é[t — A
B . A
such that the pair (G, F) is an isomorphism from ft] v, f[t
t] [t t] [t B
u tB ——A" U : A to f: B——>A;
B A
(vi) assume that there exist £ € XA(U) and n € XfB(f l(U)) such

: B

that df'n = £ and dg-f = d/dt; then we can choose Qt] and I;[t

t] and Q[t) such that the vector fields associated to the face

(resp. A
Bt (resp. AY of lét] and =B_[t (resp. g._t] and g[t) (see 5.4)

are restrictions of n (resp. §).

-1

Proof. Let V =f (U). Then f|V : B|]V+——>A|U and

glu : élUl———-in are a.T.m.'s and by Proposition 5.6 there exist

§ €X,(U) and ne€XS(V) such that dge¢ = d/dt and dfen=g. If
€: A? S R: and ;: B! — R: are sufficiently small, then

At x (-, €¢) «D_ and Bt x (-8, 6) CDn. Set Ue = XE(At x (~e, €))

11

and V, = "n(Bt x (-8, 8)). Clearly

U ={a€U; (a, -g(a)) € D, and lg(a)] < e (a, -g(a)))}

13
and

Vs ={be V; (b, -g(f(b))) € D, and lg(f(b))]| < G(An(b. -g(f(b)) )N}

Thus Ue and VG are open in A and B respectively. Arguing as in



- 68 -

the proof of Thom isotopy lemmas (Theorems 2.6 and 3.7) we can see that
the restrictions of B and A to B' and al respectively exist and t

is an a.T.m. from Bt

=B|B' to A= AlAt. Moreover F = kzlAt x (-¢, ¢
is an isomorphism of A% x (~¢, ¢) on AlU_ and G = An]Bt x (-§, §) s
a weak isomorphism of B' x (-8, §) on B|V,. Notice that

Fa* x 10, ) =al*nu, Fat x (-, o)) =at nu_, G(B' x 10, ) =

B[t n V6 and (}(Bt x (-8, 0]) = Bt] n VG' It is now obvious that there

[t on Alt such that altja(t = 4]a®

exists a unique a.s. structure A
and A% is a face of é[t, its collar being F‘.llA[t n Ue : A[t n Ue —_—
One defines similarly gt]. Qlt and Qt] . The rest of the proof is a simpl

matter of verification. Q.E.D.

5.11. PROPOSITION. Let f : Bt——>A bean a.T.m., W<EB be open
and g : W — R be continuous. Suppose that there exist t € R, an
open neighborhood V of Bt = g-l(t) in W and n € X;(V) such that
(1) g is controlled on V;
(2) dfen = 0;
(3) dg-n = d/dt;
(9) BY = g7l((~, t]) is closed in B.
set BY =B <8t Blt=5 <8P, 8t =B~ Bt and define

t t A and ftl : Bt] —> A to be the restrictic

.8t — a, ¢t Bl
of f. Then there exist w.a.s. structures- Q[t and ﬁt] on Bt and B
respectively such that |

(1) §[tIB('c = ng(t’ §tlIBt) = ngt);

(ii) glt (resp. ft]) is an a.T.m. from g“ (resp. gt]) to A
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(iii) B is an gt (resp. ftl)-horizonta.l face of Qlt (resp. gt])
and the vector field associated to it (see 5.4) is a restriction of n; the
restriction of B to B' exists and B|B® = 1;"] Bt = gltlBt;

(iv) one can construct 1=3_"] U ¢ Q[t and the inclusions Bt] c B

B
and B[tc B determine a weak isomorphism G : Qtl U, Q[t - —>B
B
such that (G, lA) is an isomorphism from ft] u . f[t : 1=3f] v, Q_[tl—--—>é
B B
to f: Br——A.
Proof. Similar to that of Proposition 5.10. Q.E.D.

5.12. Let f : B—>A bean a.T.m. and let X€ A and Y € B

*
be such that f(Y)e X, If ¢ : X — R, is sufficiently small then Py
is controlled on T;\ X. In general this is not true for Py i.ees oy

is not controlled on Tg NY, even'if & is very small. We shall prove

however that Py is controlled near (T,i, ~NY) N f-l(X) if & is

sufficiently small.

*
For each Z € B choose a(2) : Z —> R+ such that all the control

conditions involved hold on Tg(Z). Set 6 =a(Y) and B;. ={Z€B; Z>Y

and £f(Z) € X}. Then

(5.12.1) py is controlled on T.‘i, n¢J +T;(Z))-

Z€BY

Indeed, set V =Ty n ( LTU®)) and notice that VN Y = 4.
y A3 BY
Let 2'€ B be a stratum such that Z' 0V # ¢ (thus 2' # Y) and let

beEVn T;,(z'). Then there exists Z € B;. such that b € T;(Z). Since

53 0 137 4y, 20 <2 or Z<2. Also, since Ty NZ'#4, Y <2

Let X' € A be the stratum which contains £(Z'). Clearly X <X'. If
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2' <2, then X = X' and by (5.5.2)

Py(7,4(b)) = py(b).

If Z <2', then

py(T51(B)) = py(m,(7,,(b))) = py(m, (b)) = py(b)

(the first and last equalities are consequences of (5.5.2), while the second
one follows from (5.1.6) ). Similar arguments show that oYIV is compatible

with the faces of B|V. Thus (5.12.1) is proved.

6. THE STRUCTURE OF ABSTRACT THOM MAPPINGS.

6.1. The aim of this chapter is to prove that any a.T.m. whose source and
target have finite depth can be "decomposed" into "simpler" a.T.m. 's. As
a first step we show how to "decompose™ a.s. 's into "simpler" ones. What
"decompose" and "simpler" mean will be explained in 6.1.1 for a.s.'s and in

6.8.2 for a.T.m.'s.

Notation. In all this chapter A will denote a non empty a.s. of

finite depth. Set A* = (X € A; dcpthA(X) = depth(A)} and A* = u . X .
XEA
- .
Any X € A is closed in A and therefore A 1is also closed in A (as a

» » .
locally finite union of closed subsets) and AIA exists. Set A = QIA .
.  J
Clearly depth(A ) =0 and A # A if and only if depth(A) > O.
Given € : A — R, set A% - U. 'r;lx . If ¢ is sufficiently
XEA
small, then .rclx n 'r;“ =@ for any' strata X ¥ Y of é‘. Thus we can

X
3
define le) : A‘) —+ A and p‘) H A‘) — R, by setting
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elX elX elX elX *
n"l'rxl '“xlTxl , pélrx‘ -pxl‘l'xl y XEA .

The notation and the conventions introduced in 5.3.6 and 5.3.7 will

be used without any other mentiom.

6.1.1. A quintuple A = {l_&-, 1'&+, P, €, ¥} is called a decomposition of A

if

(1) A and é+ are a.s.'s, A and A' are closed subsets of A,
A" = A" na’ is a face of both 1‘_\— and l_\+, Q-IAO -§+|AO and the

inclusions A~ <A and AY cA determine an isomorphism of é- U 0 A: on
A

A (as a consequence :}IAO exists and éIAO - §+|AO = éle ; denote

2" = ala%;

*
(ii) p Ao -+ A ‘is a proper submersive weak morphism sending

*
strata onto strata (i.e., if X € A then p(X) € A)

* *
(iii) € : A =+ R
= =

(iv) ¢ S(p)e > é- is an isomorphism such that

0([a,0]) = a, a€ A,
#([a,1]) = a, a€A’,

- ’ .
Remarks. (1) If depth(A) = O and A = {A, A, p, &, ¢} is a decompo-

.. - » 0 €
Sition of A, then A = A -Q,A"-A =9, C(°=A and o=1, .

(2) Let A = {‘.\-' e*, p, €, $} be a decomposition of A . Then

depth(A’) = depth(A) - 1 and thus the structure of §+ is simpler than
=» -
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that of A . On the other hand, although depth(é-) = depth(A), the struc

of A is simpler than the structure of A : it is isomorphic to the

*
structure of g(p)e which is determined by éo, A and p, and depth

(4%) = depth(a) - 1, depth(d™) = 0.

6.1.2, Let ; be another a.s. and F : A~ be an isomorphism. Let

et

also A = {g-, é+, P,€, ¢} and A= {é’, §+, P, E, 3} be decompositions

of A and é respectively. F is called compatible with A and A if

(1) F(A") =& and F =F[A” : A"+ 4 is an isomorphism;

§+ > é* is an isomorphism;

(2) F(A") =a" and F' = P|a”

A0 - KO

* ~k
(3) clearly F(A%) = &% and F(A) = A ; let P - F]Ao

* * X % ~ 0 * ~ &
and F =F|A :A +A ; then peF =F op and € =ceF ;
(4) F(®([a,t])) = &([F(a),t]), [a,t] € c(p).

Two decompositions A and A of A are called equal (denoted

A =8) if 1A is compatible with A and A.

Let again é be an a.s. and F : A+ A be an isomorphism. Given
a decomposition A of A, it is easy to see that there exists a unique

decomposition F,(A) of 5 such that F is compatible with A and F,(

6.1.3. Let A = {§°, §+. P, €, &} be a decomposition of A . Let

+ 0 0

+
+

F 0° U o™ A x R+ be the collar of Ao in é*, p+0 : U 0o A~ and
A A A A

et oot sR be the associated maps and n+ be the associated vector
A0 A0 + A0

. + *
. - s . H ‘nd
field., Set UA A U UAO and define “A H UA + A, Qk UA +> R+

Ep € ‘XA(UA\A*) as follows:
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m,(8([a,t])) = m ([a,e)), [a,t] € c(p)
r.(a) = p(p* (a)), aceut
A A0 A0
¢A(¢([a,:]))' =t, [a,t] € c(p)
@, (a) =1+1" (a), aevut

A A0 A0

EpIATAT = a0 0 ) (0 x a/d)

N + (.0 +
£, 0" A" =
A'" 0 A0

. . *
(in the above relations Trp : C(p) A and @y AO x [0,1] + C(p) are

the mappings introduced in 5.3.6). It is obvious from the definitionms that

(6.1.3.1) dﬂA 'EA a0

and

(6.1.3.2) ~a" € ¢(W~Aa") and dy, £ =d/d
.1.3. “’AIUAA Ecé SA) an @, "Ey = d/dt .

Also, since ¢ is an isomorphism

*
(6.1.3.3) M, = Ty near X, X € A
and
*
(6.1.3.4) 9, = px/e °Ty near X, X €A .

As in the case of tubes and collars we are only interested in the germ

of UA (resp. LIVEY tA) at A" . In order to maintain the notation
as simple as possible, we shall always identify these germs with suitable

chosen representatives.
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Let now AA = XEA : DA = DCA <+ A be the flow associated to EA .

From the definitions it follows that

{(a,t) € (UA~A*) x R; - (a) <t <0} = {(a,t) € Dps ¢t < 0};

¢([a,t]) = AA(a,t-l), a € Ao, 0<t<l;

o([a,0]) = lim A,(a,-t), a€ A ;

Al

+ +
FAo(a) = (AA(a, 1~ cpA(a)). wA(a)-l). a GUAO H

0

x - 4 -1
A = ‘pA (O)’ A = lDA ([0’1])) A = (DA (1) .

Given an open subset U of A and E € .XA(U) set

Ugs{aéu; sgz_-l} .

Then
U AT~A"
= = .
E;A
The above relations imply that A is determined by S and €.

More precisely

6.1.4., LEMMA. Two decompositions A and A of A are equal if and

only if € = E, U. =U_, and {, = E~ near U .
£y &} A" SR £y

6.1.5. Given a decomposition A = {é-, y, P> €, o} of A and a face
A; of A such that depth(ﬁi) = depth(A) (this is equivalent to

* * *
(Ai) = Ai N A orto. Ai N A #8), A induces in a canonical way a

.o - .+ - -
decomposition A[Ai = {éi, Als Pis €5 Qi} of A, wvhere A, =A na;

+ + - + . - -
Ai =A N Ai are faces of A and A respectively, éi = A lAi.
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0

+ + .+ 0 - + s
|Ai’ Ai = Ai n Ai =A N Ai » Py € and ¢i are the restrictions

A, = A
=1 =
of p, € and ¢ respectively. Note that

U, U, NA

AlA, Ao
1

®a, T

¢ |u
: A

AlA,

1
Eala, = EalUsla,
1 1

6.1.6. Let A = {é-, §+, P, €, ®} be a decomposition of A and U be an
open subset of A containing A . Then A|U = {g-, §+|A+l1 U, p, €, 9} is

a decomposition of A[U .

6.1.7. Let A = {Q-, §+, P, €, P} be a decomposition of and let

>

Wid -+ RO, Set A= {a €47 g, (a) < ulm(ad},

Ao = {a€ A ; QA(a) = u(wA(a))} and A" = A*x(K-‘KO). Define

P : a0 +»A*, € : P R: and @ : C(;) +A by pa= HAIKO, € = ue and
5([3,:]) = ¢([a,u(ﬂA(a))t]). Then one can endow A and A’ with unique
a.s. structures é- and §+ such that Au = {é-, §+, P, E, o} is a
decomposition of A and UZ = UA . EAu = (u °ﬂA)€A , “Au =T, and

‘pAu - (I/uoﬂA) P, -

(Indeed, K™= 07M((==,1]), A= ©7'(1) and do, *§ = d/ae .
u H u
Proposition 5.10 gives us é- and §+, the rest being a simple matter of

verification.)

1 2

1A UB Zg , B being a face of both A and é ,

6.1.8. Suppose that A=
and lﬁln - zélB' Let A = {lé', 1A+, 1p, e, 0} be a decomposition of

lﬁ y 1=1,2, If depth(lg) = depth(zé) = depth(élB), we assume that
. 1 -
1A|B « 2A|B. We shall define a decomposition A Ug 2y = (a7, &%, 05 6y 0)

of 5 as follows.
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* * -
Case I: depth(g) = depth(lg) > depth(zé). Then A = lA , BN lA
and B 1is a face of léf . Take §° = lé-, §+ = 1§+ UB 2& .
1 0O 1.0 1+* * 1 1

Pp=p:tA ="A"+"A =A, £€="¢€ and ¢ = "¢,

Case II: depth(A) = depth(zé) > depth(lé). This case is similar to

Case I.

Case II1: depth(A) = depth(lé) = depth(zﬁ) > depth(éIB). Then

1 2

1A+ and zA+ and

- - & * *
A" 02 =g, A" = WLJA", B is face of botn a A

AT e tagn - fa e AT|n. make a7 - TATLI%T, TaeTaTup T ke
- %* * *
2% = a7 na* = 1]%1U20, Define P A+ A" and e: A + R, by

. . . . 1 2
p|1Ao = o and g[lA* e, i=1,2. Then g(p)e = E(lp) el_Jg(zp) € an

we define ¢ : C(p) + A~ by ¢|C(1p) - 10, i=1,2,
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Case IV: deptb(é) = depth(lg) = depth(2

+

hypothesis 1A|B = zAlB = {8,

[]-2)

» 4, S, Y}.

1 2

*x %* *
A" =Bn! 2

* *
AN A =BN"A =8B

ake A" = ATy _ %7 and At =Ty, A

"

A) = depth(ng). Then, by

Notice that

-e

we

; then a0 = A" n At - 140y 2,0
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. 0 * * * i 0 i
and we can define p : A"+ A and €:A +R_ by p| A" = Tp,
i* i . . 1 2
€|’ = "¢, i=1,2. Notice that C(p) = C('p) U C(“p) and

C(lp) n C(zp) = C(q). Thus we can define ¢ : C(p) + A~ by setting

Qlc(lp) = '9. As in the other cases, a straightforward verification shows

that 1A UB 2A = {é-. g+. P, €, ¢} 1is a well defined decomposition of A.

x *
*
'a . 5 2 \
\ R
. \\l -\ ) \ - AN 2,- >
: N B B A
lAO B0 B0 2A°
B* B" . 2
lA+ . ZA+ * q’// A
N, \‘ N *. h
.
A
A) . i \..
A .
- Ao \
+
A
N A

6.1.9. Let § be an a.s. of depth zero and let q : é-— - E . A decompos

4 of A is called q-compatible if
q=q oﬂA near A"
or, equivalently

dq 'EA =0 near A .
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If A is q-compatible then q|A' is a weak morphism from é+ to
M (if A is not q-compatible it may happen that in+ is not compatible

with the face AO of é+).

6.1.10. Consider a diagram

HWE o N
n

é >

in which depth(g) = Q= depth(lj) and q and g are transverse. Let z
=A !H§ be the fibre product of A and N with respect to q and g (see

n, -
5.9.3); since depth(g) =0, Ais an a.s. Let A = {é ’ §+, p, €, ¢} be a

q-compatible decomposition of A. Ve shall define a decomposition 2% =

a, - -
- {z-, é*, pg, eg, o8} of g as follows. Notice first that qjA : A —+ M

LI
(resp. qlA": ét--*l_&, qIA :A—->M, qle: éo—-v M) and g are transverse

n* A0

LS *
‘\.‘.'é -éxnﬁ":‘

Ny - +
and thus we can consider A = A XME (resp. A = A x

M
- éo"uﬁ) and identify its underlying topological space with a closed

= -
subset of X. Then Z. - (z) . X° = X’nk" is a face of bothz and g’

* x * X
and F71X° = 3150, vefine p%: X' — X7, ¢%: X" — R, and o8: c(p®) — &

by setting: pg(a,x) = (p(a),x), (a,x) € XO = AOxMN; eB(a,x) = e(a),

(alx) € X. - A' x“ N; °g([(a,8),tl) - ([( a,t]),x), [(a,X),C] € C(Pg)‘

.. "
A direct verification shows that 28 30 defined is a decomposition of 4 .

N
If U, is small enough, we can take U g " (Uy *¥)NA and chen
A :

wkg(a.x) = wA(a) , (a,x) € UAg;

= »X), »X) EU
uAg(a,x) (wA(a) x), (a,x) K



»
€= (5, o)luAsxk .

6.2. THEOREM. Let A and M be a.s. 's, 0 < depth(A) < =, depth(M) = |

and let q : A~ -+ M. Suppose that there exists lc IA such that, for an

ier,
(a) depth(éi) = depth(A);

(b) there is given a (qlAi)-compatible decomposition

- .+
Ai - {éiv éii pi’ ei’ oi} of éi = ﬁIAi H

(©) if J €I, j#i, A NA;#@ and depen(a;|A; N A;) = depeh(s
then 4 [A. N Aj = AjIAi N A; (note thar A, N A, is a face of both &,
and gj).

Then there exists a g-compatible decomposition A of A such that
ala; =8, , i €I

Proof. For any i€ I set

* * - - *
Vi=A NU, and V., = l?A]'(('lrA x 1g ) 1(F’A (Vi))).
i i i + i
*
s L3 . s 3 h
Define T2V, >V, and ®; ¢ vi + R_ to be the unique maps whic

make commutative the diagrams

FAiivi rAi]vi |
1
L T, x1 @, o pT
i A, %R, e ] (V!
%
V " |v Ai. x R R+
Al
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where pry is the projection on UA
i

Consider j € I,” j # i. Taking into account (c), we can assume

(possibly after shrinking the U, 's and the U, 's, k € I) that

A b

and
‘”i‘vi n Vj = “’jlvi n VJ. .

* * *
Next let @ : A + R_ be such that for any X € A" all the

control conditions involved hold on T

;'X. By taking a sufficiently

's and the U 's

A B

small and (if necessary) by shrinking once more the U

(k € I) we may assume that for any i €I

a)g,a) - a) ‘
n IA‘ v, =mnfa™ 0 v,

o [a® n v, = ta.lEi)(A"‘) n

where ei =€ onAi o(pAi[Vi)

V. +R . Set
i +

v=a®u (U Vo)
1ET

* : .
and define 7 : U+ A and p : U~ R, by setting

Aa) = "G) ’ TT'V. =T,

| i i

\plAa) -, olv, = o.€; .



Notice that

(A7 x [0,6,) U (&" x {O1) & {(n(a),p(a)); a € U} c A" x B,

*
and the set in the middle is open in A x R, . Hence there exists

*
€ é — - §+ such that

ela; = ¢, i€1
and

A* x [0,e] « {(n(a),p(a)); a€ U} .
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Let ® =~op/eem’: U+ R . Clearly efu, = ©, and
i i

wlﬁa) = Ooole oﬂa). Set W = {(n(a), W(a))E€ A* X R: ; a € U~A*}; then

W is open in Af X R: and (é* x 5:)|W is an a.s. of depth zero. Define

£ : U\A* +W by f(a) = (n(a), ¢(a)). It is easily checked that f is a

proper, submersive weak morphism of élUsA* on (é* X gt)lw 3y by 5.9.4 ¢

is an a.T.m. Notice that UA:‘AE = (UsA*) na, is a face of Q]U~A* and
i

*
df .EA. = 0 x dt. By Proposition 5.6, there exists £ € XA(U~A ) such
i

that
(6.2.1) ' A"
“le gluy~a; =8,
1 1
and

df *£ = 0 x d/dt € X , (W) .
-,

g

This last relation is equivalent to

(6.2.2) de £ =d/dt
and
(6.2.3) dm - £ =0 .

From the choice of & and the definitions of ¢ and W, we deduce
%* - - . .
that A x (0,1] €W. Then A = © 1((--09,1]) is closed in A. Let

0 = (0-1(1) and A' = (ANAT) U Ao. By Proposition 5.10, we can endow A~

A

and At with a.s. structures Q- and §+ having the properties required in
. 0

6.1.1(i) and such that the vector field associated to the face A~ of

ﬁ- (resp. A*) is a restriction of £.
E 3
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0

*
Let p = n|A0 2’A" + A . Then p 1is a proper, submersive weak

*
morphism from éo = Ale to A sending strata onto strata. We can

therefore consider g(p)e.
*
Let AE : DE + UsA be the flow associated to . Since f is

proper it follows that

{Ca,t) € (U~A*) x R; -9(a) <t <0} = {(a,t) € D.; t <O},

E;
Taking into account (6.2.2), (6.2.3) and (1.1.3) we obtain
. : *
lim Xg(a,-c) = n(a), a € U~A .
tA9(a)

Define ¢ : C(p) + A~ by

0

®([a,t]) = A (a,t-l), a €A, O0<t<1l;

3

o([a,0]) = p(a), a €Al ;

([a,0]) =a, a €A .

Then ¢ is an isomorphism of E(p)e on ﬁ- . It follows that
A = {é-. §+, €, Py P} 1is a decomposition of A . From the construction,
A|Ai = Ai , i €I. Finally, by choosing € carefully, we may assume tha

dq ‘£ = 0 near A, which means that A is g~compatible. Q.

Remark. If in the above theorem I = @, then the construction of

) )

A is much simpler. Indeed, in this case, U = A% s T = © s

* *
9 = pa)/e °na), €E:A + R+ being any controlled map such that € < O

and all the assertions made during the proof of Theorem 6.2 are obvious.
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6.3.1. Recall that 0 < depth(A) <. We define inductively the notion of

total decomposition of A , denoted D, as follows. If depth(4) = 0, then

D= {A,}, where Al is a decomposition of A . If n = depth(a) > 0,
then D = {Al,A?,...,AP+|} where Al - {é., é+, P, €, ®} 1is a decompositi-
on of A and ?* - {Az, A3,..., 21} is a total decomposition of é+ .
6.3.2. Let D = {Al,..., A"} be a total decomposition of A and A,

be a face of A such that depth(A.) = n-k > 0 . Then D induces a total
decompbsition of éi , denoted D,Ai , as follows. Let éj be the a.s.

of which Aj is a decomposition; then 'depth(éj) = n-j+! (this follows
easily by induction on j). Since depth(éi) = n-k it follow; that Ai is
a face of ék+l and we can consider AFHIAi . Moreover A, N A isa

non empty face of éj for all j > k+1 and deb:h(glei n Aj) = depth(éj).

Define DIAi by

k+2 k+2

k+1 + 1
lei {a ]Ai, ATCjA N A

enes AP*';Ai na™tt

An inductive verification shows that DlAi is indeed a total decomposition

of A. .
=]

6.3.3. Let f: A—-=+ M, depth(M) = 0 . A total decomposition D =
. . 1 .
= {Al, A?,..., Ap+‘} of A is called f-compatible if A is an f-compa-

tible decomposition of A and, inductively if n > 0, the total decomposi-

tion D+ - {Az,..., Ap+l} of é* is flA*-compatible.

2 n+l}

6.3.4. A total decomposition D = {Al, AT, ..., A of A is called

Yegular if either n =0 or n > 0 and then (inductively) the total
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-

decomposition ?* = (Az,..., An+l} of é+ is regular and U+IA9 is a
p—compatible total decomposition of ﬁﬂ (recall that Ao =A N A+ is

a face of é+ ).

6.3.5. Let

A — —

2

be as in 6.1.10 and let D = {Al, A ,..ey An+|} be a q—compatible total

.. . .. 08 ~1 XZ
decomposition of A . VWe define a total decomposition = {A°, seasesd

N
An+l} of A=A XM N as follows. Set Kl = A8 (see 6.1.10) and, induc-

tively if n>0, (A%,...,.8%"'} « (098,

The following lemma is an immediate consequence bf the definitions

introduced above.

6.4. LEMMA. Let f: A —+M with depch(M) = 0, let D be a total decom
position of A and let Ai be a non empty face of A . If D is regular
(resp. f-compatible) then DIAi is regular (resp. Ei-compatible) (here
fi: A Mi is the restriction of f).

6.5. THEOREM. Let f: A —~ M with depth(d) = 0. Let I <1, and for
any 1 €1 let Di be a regular and fi-compacible total deco;posi:ion of
A; . Assume that Ui[Ai n Aj = Dj'“i n Aj if AN Aj #O (i,] €1).

Then there exists a regular and f-compatible total decomposition D of A

such that DIAi - Di for any i € I.

Proof. The proof is simple and we shall only sketch it. If
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depth(A) = 0, there is nothing to prove. Assume that depth(A) > 0. Comstruct
first an f-compatible decomposition al - {é-, §+. P, €, ¢} of A with che

required properties. Next construct by inductiom on depth(é) a regular and

p-compatible total decomposition Do of éo

- DiIAO n Ai if Ao n Ai $# @, i € I. Notice that Do is also f-compatible

such that DoiAo n Ai =

R
since Al is f-compatible and thus fIAO = (f|A )op. Next construct, again

by induction, a regular and (fIA+)-compaCible total decomposition p¥ - (Az.

ooy A%y of é+ such that D+|A0 = 0° and D+|Ai na’a- Di.Ai na'
vhen this makes sense. Finally set 0 = (Al, Az,.... An+l}. Q.E.D.

2

6.6.1. Let D = {Al, A%, eee, Aty be a total decomposition of A with

A‘ - {é.,éf, Py €, ¢} . If n =0 set c(é.D) = A, If n>0 define
. -
inductively c(é.v) - A I_Jc(§+,0+), where D% = {Az,..., Ap+l). It is

obvious from the definition that c(A,0) is a manifold with faces; it is

called the J-core of A.

6.6.2. Given two total decompositions 0 and D' of A, it is easily
seen that c(A,?) and c(é,D') are diffeomorphic (we shall not use this

assertion).

6.6.3. Let D be a total decomposition of A and A, be a face of A .
Then an easy inductive argument shows that Ai N c(A,D) = c(&i,DlAi) and

that c(éi'DiAi) is a face of c(A,D).
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6.7. From now on M will be an a.s. of depth zero and p: A-+M will
be a proper submersive weak morphism sending strata onto strata, all the
faces of A being p-vertical (recall that O < depth(A) <= ). Some of
these conditions are not necessary in all what follows, but since they
are necessary for the main constructions we prefer to consider them

from the beginning.

6.7.1. A commutative square

q
E——-»b-‘
el ly
S
(8) . .
—'-M
A —, Y

is called regular if
(i) N is an a.s. of depth zero;
(ii) for any stratum Y of B let X (resp. Z) be the stratum of

A (resp. N) containing £(Y) (resp. q(Y)); then the diagram
qlyY

Y——*——»Z

£ly l | 1glz
X -'ST)T"'p(X)

is regular (see 3.1.).

This last condition is easily seen to be equivalent to
(ii') let X = A x, N be the fibre product of A and ¥ with
respect to p and g and define ¥ §"’“‘§ by ?(b) = (£(b),q(b));

then ¥ is submersive.

N
Remark. The notation being as above, f is an a.T.m. and the squd
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me
WD 2d— —f N

g
S) II,IN Pla,x) = x
N

is regular.

If S 1is regular and in addition

(iii) q is proper, submersive and sends strata onto strata;

(iv) B has at most one q-horizontal face Bh (which is necessarily
f-horizontal),
them S 1is called basic.

If S 1is basic and all the faces of B are q-vertical, them S
is called admissible of depth zero.

Let n > 0 and assume inductively that we have defined the notion

of admissible square of depth n-1. A commutative square

(s) : £

= +4——— 'z
]

W e i W

N—t
—

is called admissible of depth n if

(1) N is an a.s. of depth n;

(2) there is given a g—compatiblé decomposition As = (N , N+, P>
e, ¢} of g 3

(3) there exist closed subsets B , B, and B* of B, endowed with
V.a.8. structures g-, gx and §+ respectively such that £ = fIB‘ : B

> A (resp. £* = £|B* : B —A, resp. £ = g8 : 8" A) is an a. T. m.
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from E- (resp. Ex, resp. E*) to A ; Bo'- 3* n B* is an

f+-horizontal face of §+ and an fx-horizontal face of gx and

= B* nNB- is an fx-horizontal face of gx and an

£ -horizontal face of B~ and gxlnh - g-[Bh ; B'nNB =@ and one can

consider B U h Ex U, §+ ; the inclusions of B, B* and B' in B
B B

determine an isomorphism from f U, £ U . £ :B U, By .B —=>a

P 5?0 = gt = g0- =

f: Br——+ A over lA;

(4) B = q-l(N+), q+ = q[B+ :8 >N isa quasimorphism,

q‘l(No) = BO and the square
+ * +
B /\J—il__.ep §
(s™) f+}: 1' g = g]N+

is admissible of depth n -1 ;

(5) B = q'l(N*), q =q|B” : B > N is a weak morphism and the

square
”
(sT) £ T
!
A

is basic, the q -horizontal face of B~ being B® ;

(6) 1lat nh - glgh - g'lgh - ;xlnh and f: gh x [O.I] -4 be



be the a.T.m. given by 'E(b,t:) = £(b); then there exists a weak isomorphism
8 : r_shx[o,ll -+ B such that 85(b,0) = b, es(Bh x (1)) = 8° ,
Q(es(b,t)) = #([q(b),t]) (thus q(B") € N°) and (es, lA) is an isomor-

phism from f to £,

(7 Let DS be the g-compatible total decomposition of N defined
inductively as follows: if n = 0 DS is the obvious total decomposition

of the a.s. of depth zero N; if n>0 sec DS - {As} Ud , . Then
S
vs is regular.

Now it is easy to check by induction that

(8) q 1is proper;

(9) all the faces of B are q-vertical;

(10) for any YEB , q(Y) 1is closed in N ;

(11) for any strata X€ A, YEB and Z€N with f(Y)c X and

Z< q(Y) there exists a such that the diagram

_ (w_oq)|W
WeYN q '(r‘;) —_—f
£|w ‘ glz
) ¢ p(X)
pIX

is regular.



(12) let M be an a.s. of depth zero and let § PN —— and

[}c]

M — -+ M be submersive weak morphisms such that g = §°§ . Let
B

(R
o

A XM l:4 (with respect to p and g) and define f :
A+ M by £(b)

-'X and

T U

(£(b), g(q(b))) and p(a,x) = x. Then £ is an

a.T.m. from B to é » P 1is a proper, submersive, weak morphism sendi

strata onto strata, all the faces of é are S-vertical and, if Ds i

g-compatible, S induces a structure of admissible square of depth un

B A—>Y
(5) El Lg
AT TN
= p =
as follows: A§ = As ’ 6§ - es and the squares $* and S are respl
+ * +
B At ¥
ﬂf{ l g|v*
A 7§
- p =
and
- q
— >
- - ~ ok
£|B g|N
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Later it will be useful to comsider the squares

X
X q -
B AL
T T
(s) £ l L g = g|N
A —> M
= P
and
- X 9, -
B =F Y, Aoy
r |
(Se) fei lg
- A - M
= p =

whose maps are the restrictions of the corresponding maps in S.
From now on the notation introduced in this section will be used

without any other mention.

6.7.2. Consider the commutative diagram

A, - > §
'l’\ - /
B AL
| .
£ EI lg g
A ——— —p g
- P =
v P
v | ,
A - ~> ¥
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and let S (resp. S) denote the exterior (resp. interior) square. The
quadruple (¥, @, y, ¥) is called an isomorphism from S to S if (¥, ¥)
is an isomorphism from f to f and ¢ and @ are isomorphisms.

Assume now that S and S are admissible squares of depth n. If
n =0, an isomorphism from S to s is also called an admissible
isomorphism. Assume we have defined inductively the notion of admissible

isomorphism between admissible squares of depth n-l. An isomorphism

(Y, &, Y, ®) from S to S is called admissible if
(1) ¢ 1is compatible with A and A4;

(2) W(B+) - i*, ¥(B*) = B* and Y(B~) = B ;s let v* .t > §+,

Y8+ 8%, ¥ i3 +8, ¥h:eRaBR ot i NT+N', O N N

* x ok
and ¢ : N > N Dbe the restrictions of ¥ and ¢ respectively;

(3) (Y+, ¢+. Y, @) is an admissible isomorphism from st o

S* (this makes sense by induction);
%) (v, Q*, ¥, @) is an isomorphism from S to S ;
(5) ¥ ep_ =6=o(¥2x1 ) .
S S fo,11

Two admissible squares of depth n, S and S, are called admissibly
equal, denoted S = g, if B = 5, A= Z, N = ﬁ, M= ﬁ and
(lB, IN’ lA’ IM) is an admissible isomorphism from S to S. If B = E,
A= K, N = i, M =M and (13’ IN' IA’ lM) is only an isomorphism from
S to S (i.e., f = E, q= ;, g = E and p = ;) then S and § are
called equal, denoted S = s.

Consider again the diagram from the beginning of this subsection

and assume that S 1is admissible of depth n, § is arbitrary and



(¥, ¢, ¥, ¥) 1is an isomorphism from S to S. Then § has a unique
structure of admissible square of depth n such that (¥, ¢, ¢, ®) 1is an

admissible isomorphism (the construction is obvious and left to the reader).

6.7.3. Let

(s) £

be an admissible square of depth n and Bi be a face of B . Let Ni

be the corresponding face of N . Notice that Bi is f-vertical (horizontal)

if and only if Ni is g-vertical (horizontal). Consider the square

L

|
L]
[

-_.‘u.w
—

(slni) £,

-
1> ——
0 & —
o9
e

i P; 7 =i

whose maps are the restrictions of the corresponding maps in S (if Bi

is f-horizontal, then A, = A and M = M ; otherwise Ai and M, are
faces of A and M respectively and B, = f—l(Ai), N, = g-l(Mi),

A = p“l(Mi)). Let n, = depth(N;). We shall endow §|B; (by induction
on n) with a structure of admissible square of depth r, as follows. If
n =0, then n, =0 and S'Bi is obviously admissible of depth zero.

Suppose n > 0.
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Case I: n. <n . Then Ni is a face of g+, Bi is a face of §+
and SlBi = S*IBi . By induction S+]Bi can be endowed with the required

structure and therefore slBi too.

Case II: n, = n. Take 4 = A [N, . Notice that B; =B, N B,
—— i §'i i i

SIBi
Bz = B, N B* and B; - Bi N B~ are faces of §+, B and 5-

respectively. Take B, = B'|B) , B; = B*|B; and B, = B”|B; . Since
=) = 1l =] 1 -
+
+ 9y + o+
B. N> N. =N [N AN
=}l =)
N .
i.L &;
A 7 4.
P; 1

is just S+|B; , it is admissible of depth n-1 (by induction). Since

B} =BT N B = B, N BY . we can take ©

: B! x [0,1] + BX to be the
1 b 1 b 8 1

slni
restriction of es . A direct verification shows that all the conditions

involved in the definition of an admissible square are satisfied.

6.7.4. Consider nov two admissible squares

B
(s") £ T | g'

! !

4 —™> I
and

"2 ,\J,-EZ-->."N
(s™ £" "



of depth n' and n" respectively. Let 'B1 be an f'-horizontal face

of 'E and "Bl be an f"-horizontal face of "B . Suppose that the

admissible squares

'By f\f'il"——)"ii
(s']'s.) £! T l '
1 1 l J/ 8
A — o —> ¥
and
5

(s"]"8,) £ I i g}
A
are admissibly equal and that we can construct 'B U.BI"E . Let
g-'gu,nl "B, N= 'gu,Nl "N, f=f' U,Bl " :Br——+a,
qQ=4q' U,Bl q" : BA~>N and g = g' U.Nl g" : N— = M. Consider the
Square S = §' U.Bl s" given by
B\ —— ¥
|
(s) £ ]. 8
} |
4 — 5 ¥

Let n = max{n',n"} and m = n' + a". Using induction on m we
shall introduce a structure of admissible square of depth n on S as
follows. If m = 0, it is clear that S is admissible of depth zero.

Assume next that m > 0.
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Case 1: n = n' > n". Then depth ('gl) = depth (“§1) < n" and thus

'N1 N'N = @. Hence 'B1 N'B =@ = 'B1 n '8* and therefore 'Bl is a

face of '§+ . Thus

+ - ]
ls linl lsl .Bl = lls| 'Bl

and, by induction, the square st U'B "S is admissible of depth n-1.

1
- - + + .
Take A = 8,5 Uy Bug s B = 's” , Bx' 'EX' B" = 'B U.Bl "B and
st=s* U.B "S , Thus S' is admissible of depth n-1., The other condit:

1
in the definition of an admissible square are easily checked.

Case 2: n =n" > n'. This case is similar to Case 1.

Case 3: n=n'=n"> depch('§1) = depth("§1). Then 'N N ' =9
"N, N "N , hence 'B, N 'B" = 'B N 'B" =@ ="B, N"B" = "B, n"B
(= 'BI) is a face of "B

-

and therefore 'B, is a face of '§+ and "B

1 1

Thus

's+|'31 = 'S"Bl = "SI"Bl = ns"'lnnl

and, by induction, the square st U.B "s* is admissible of depth n-l.
1

Take As = A'S U'Nl A"s R E- = 'E-UNE‘ . Ex - 'EX LJ"EX’

8" = '8" Uy, "' and s’

st Usg "s* . Thus S* is admissible of
1 1
depth n-1. The other conditions in the definition of an admissible squar

are easily checked.

Case 4: n=n' =n" = depth('&l) = depth("gl). In this case

'B, N 'B = 'f‘l('N1 n 'N*) - "f'l("u1 n "n*) - "Bl N "8~. Denote this

1
set by 'BI . Similarly, let 'B: = 'Bl N '8% = "Bl n "g* and



+ + . - .
1" '81 N'B = "81 N "8* . Then 'B1 (resp. 'B?. 'BI) is a face of

both 'E- and "E- (resp. 'gx and "gx, 'B°  and "§+) and we can

'B

construct B = 'B- U _"B", B = 'BU _"B* and B' = 'B*U "p* .
= E 'Bl = = = 'B])f = = = 'B+ =
Notice that
+ T +
ls I'Bl = IS I'Bl
and thus, by induction st u . "s* is an admissible square of depth n-l.
1]
B1
Take Ag = By Uy Bug and ' 2 'sT U _"S" . Then S* is admissible of
1 'B
1

depth n-l. The other conditions in the definition of an admissible square

are easily checked.

6.7.6. LEMMA. Given an admissible square of depth n

B A=Y
(s) 13 I ] g

| |

A —, ¥

and ¢ : M —— 5: » consider C(q) and E(p)E (see 5.3.6). Define

f5 : C(q) + C(p) by
fs([b,t]) = [£(b),t], DE€B, O0<t<l
£,([x,0]) = [g(x),0], x €N .

Then fs is an a.T.m. from g(q) to g(p)e.

. € .
Proof. Note first that (cf. 5.3.6) C(q) is a w.a.s. and C(p)~ s

an a.s. It is obvious that fs is a submersive weak morphism. Condition
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(5.5.2) is a consequence of (viii) in 5.3.6 (since f is an a.T.m. and

N is an a.s.). Condition (5.5.3) follows from the construction of

C(q), using the fact that f is an a.T.m. Finally (5.5.4) is a
consequence of (11) in 6.7.1 for strata 2 < 2' of C(q) with z€< iq(N)
and 2' ¢‘iq(N), of 5.9.6, 5.3.6 (ii) and of the fact that f is an

a.T.m. for strata Z < 2' of C(q) with 2 Ciiq(N), and of 5.9.4 and

5.3.6(v) for strata 2 < 2' of C(q) with 2'€< iq(N). Q.E.l

6.7.6. Let S be an admissible square of depth n. Besides fs we can

also consider the a.T.m.'s f . d g(q+)r- - E(p)e and fs : g(qe) r--»vgh
S e

defined in the same way as £. Let qo = q|B° : 8% > N%. Then C(qo) is a

face of both g(q*) and g(qe) and we can consider g(q+) u

c(q ) .
C(q = e

0y

In view of 5.9.8, we can also consider the a.T.m.

T=£_u S g(q+) v c(q,) P?-*-g(p)e. Let also
s* c(q® Se cg® = e

G : g(q+) U o g(qe)- — C(q) be the weak isomorphism constructed in
Cc(q) ‘

5.3.8 (notice that q = q+ U g qe). A direct verification shows that
B

(G, lc(p)) is an isomorphism from f to f£_. In particular, the diagram

S
cqHu c(q,) —t 5
c(q ) ‘{//////
C(p)

is commutative.
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6.7.7. Later on certain comstructions will lead us to consider squares

IR e — g
()

in which N and B, or A and B, or B are the empty sets. Such a square
will also be called admissible of depth n = depth(N) (depth(@) = -1 by

definition). All the comstructions performed until now are still valid.

6.8.1. From now on f : B — A will be an a.T.m., A and B being of
-1, % *
finite depth and depth(A) > 0. Let B, = f 1(A ) and f, : B > A Dbe

the restriction of f. Since B, is a closed union of strata, EIB exists;

*

denote it B, « PFrom Remark (2) in 5.5, it follows that f, 1is an a.T.m.

from B, to g*. By 5.9.4, B, 1is an a.s. Since depth(B,) < depth(B) < =,

* * *» )
we can consider (B,) , demoted B, . If B, # @, depth(B,) = 0; if so let

=k
* * * * *
fo ¢ By~ — A Dbe the restrictiom of f and choose &§ : B, — - R, and
* *
€A —— §+ such that all the conditions involved hold on Tle and
eix . * ' * elX elX' .
Txl » YE B , X€ A . By (5.1.9), 'rxl n'rxl. =@ if X # X' are

' *
Strata of ﬁf and Tg'Y n Tle =@ if Y # Y' are strata of B, . Let

€) - elx 8) - GIY -1,,¢€) ' .
A ‘ ’* TX and Be) (\~'j* TY ) nf "(A7") and define
XeA YE B,

$)

* »* X
ne) : A€) + A and “6) : B°L » B, by nS)lTilx = wxlT;l and

) €) *
8),.8(Y -1, .¢) s[Y -1,,¢) . . €)
"g)ITY‘ nf (A°) = nYlTY[ nf (A*'). It is obvious that 7
(resp. wgg)’ is a submersive weak morphism from QE) - QIAE) (resp.
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* *
22; = 1-;{32;) to A (resp. B ). Consider the fibre product g: xA* QE)
with respect to fI and 1% (see 5.9.3). Since f: !1!3 - 1) '(flng)

. §) o €) s)
we can define a map g : Be) + B, xA* A by g(b) = (ne)(b), £(b)).

Locally this map is just the map constructed in 5.9.5 and therefore

(cf. Remark (1) in 5.5) g is an a.T.m. from 1_32; to E: X o €) .

6.8.2. A decomposition of f is a quintuple V = {4, B_, B , S, Y}, where

(i) A= {zf, é*, P, €, ?} is a decomposition of A

(ii) B (resp. §+) is a w.a.s. structure on B_ = f°1(A-)

-1,,.+ -
(resp. B+ = f (A )), f- = le- H 2--— - ﬁ (resp. f+ = fln+ : 2*__ _>£

is an a.T.m., Bo =B_ N B = f-l(Ao) is an f_-vertical (resp. f:verti.cal]

face of 8_ (resp. B)), B [B, =B [B,, ome can construct B_U, B  anc

0

the inclusions B_ < B, B_'_ ©B, A_SA and A+ S A determine an

isomorphism from the a.T.m. £_ UB f+ : B_ UB E,,"" - ﬁ- v 0 é* to the
0 0 A

a.T.m. £ : B+ —+ A (as a consequence B|B, exists and

= f|Bo : B, = 2[30-—--—» éo is an a.T.m.);

f0 =0

(iii) S is an admissible square of depth n = depth(B,), namely

20 f\:-‘-———" B
T |
(s) EOl l £,
A0

——#A*
[

' €
(iv) (¥,9) 1is an isomorphism from the a.T.m. f.s : C(q) r— Q(P)
to the a.T.m. £_: Bi=— A" such that ¥([b,0]) =b if b €B, and

¥([b,1]) = b if b EBO .
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Remarks.. (1) If depth(A) = 0, giving a decomposition V = {A,g_,g*.
S,?}'of f is gguivalent to giving the regular and f-compatible total decom—
position DS of B=B,. If By =@ and V = {A,E_, §+,s,?} is a decomposition
of f, then B_ =0 = Bg» B, =B and V is completely determined by 4 .

(2) Let V be a decomposition of f. Since depth(A ) = depth(A) - 1,
£,: §+h-->5* is "simpler" than f. On the other hand, since ES is complete-
ly determined by S and since depth(éo) = depth(A) - | and depth(er) =0,

f; is "simpler" than f£. If depth(B,) > | notice that f; can be decomposed

into f , and fs (see 6.7.6) which in turn are "simpler" than fs .
S e

6.8.3. Let £ :Br—A and £ : B -+ A be a.T.m. 's,

Wl nol

V= {4, B, B, S, ¥} and V = {4, B, §+, S, ¥} be decompositions of £

and f respectively and (G,F) be an isomorphism from f to f. (G,F) is

called compatible with V and V if

(i) F is compatible with A and A (see 6.1.2);

(ii) if G : B + B denotes the restriction of G, then

(G_, F) 4is an isomorphism from £_ to £

(iii) if G; : B - §+ denotes the restriction of G, then (G, F)

is an isomorphism from £, to £

&>
‘ . ~ 0.,0_  =~0
(iv) let G, : By +B,, G, : B +B , F :A >4 and
* * ~% .
F : A + A be the restrictions of G and F respectively; then
(GO’ Gy» FO, F*) is an admissible isomorphism from S to S ;

(v) G(¥([b,t])) = ¥([G(b),t]), bEBy, 0<c<l.

Two decompositions V and V of f are called equal, denoted

Va 6, if (13, IA) is compatible with V and 7.
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Let again f:go——vg.\' and E:Bi—-vz be a,T.m. 's, V be a

decomposition of f and (G,F) be an isomorphism from f to f. It is
easy to see that there exists a unique decomposition of £, denoted GV,

such that (G,F) is compatible with V and G,V.

6.8.4. Let V = {V, B,B,S, ¥} be a decomposition of f. Let also
B, #9 be aface of B and fi : gir- - ei be the restriction of £
(recall that A; = A if Bi is f-horizontal). Suppose that

depth(A.) = depth(A). We shall define a decomposition VIBi' of f. as
follows. Notice first that we can consider A|Ai . Next noée that
(Bi)* = le(Ai n A*) = Bi N B, is a face of B,, (Bi)- =B_0N Bi is a
face of B_, (Bi)x = Bx n Bi is a face of B.» (Bi)+ = B+ n Bi is a

face of §+ and (Bi)0 = (Bi)+ n (Bi)- =3 N Bi is a face of EO . If

0
q goftfe»g; is the quasimorphism of the square S, then q-l((Bi)*) = (I

and thus S[(B;), is the square

!

£0,i l l fas

0,,0 *, *
~——-§ "
A7|AT n A, P Ala na;

the mappingsbeing restrictions of the corresponding mappings in S. It is
obvious that Y, = ch(qi) : Clq) — g_l(Bi)_ is a weak isomorphism.
Finally, a straightforward verification shows that

- i iti the
V|Bi {AIAi, g_l(ni)_, §+](Bi)+, sl(ni)o, ?i} is a decomposition of

a.T.m. fi. : §il-—> éi .

6.8.5. To a decomposition V = {4, B_, B, S, ¥} of £ one can associate
two weakly controlled vector fields Ev and g, which will play an import?

role in what follows. Before defining them, let us fix (and recall) some
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more notation.

S being the square

5% A~A—~— &
fo L l £y
*
80 — —
- p =
let As - {2;, g:, Pyx» 8, ®,} be the associated decomposition of B, » let
+ q +
B ——> L
. g -
(s") foJ, lf*
0 ‘ *
£ ———> 4

be the adwissible square of depth n-1 associated to S (n = depth(g*))

and let
BT ¢ B
0 T T m
) P | .
(s) O‘L l *
0 *
8 — > A
x -
be the basic square associated to S. Let also B.» Bg = B0 n Bg,
h 0 x + 0.0 0 + -
eszgox[o.ll—»gg, By=B,NB, and q : B +B =B NB  be
the other data associated to S.
+ + + +
Let next F. :U' +B. xR » P, U +B , r :U0. +R and
Bo Bo 0 + Bo Bo 0 BO Bo +
3 i B, of B, and F :0U* +a% xR
nBO be the data associated to the face o °f B, Ao : AO +
P* | AN AO SRR + R and n+ be the data associated to
0 * oo + A°
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the face Ao of g" « We can (and shall) assume that

v} cf‘l(u*o) ,
0 A

+ +
df °n, =n
B 0
0 A

and the diagram

is commutative. If in addition f is proper, we can (and shall) assume th

Ul - £y,
(4] A

Set U

v v

0

£
Eg EXE(UV\B*) by

mv(v([b.c])) =t, ([b,c]€ c(q),

@g(b) = 1 + r;O(b). b€ U;O .

nv(‘i’([b.t])) = ﬂq([b’t])p [b,t] € C(Q).
1.(b) = q(ps (b)), be U’ ,
v Bo Bo

Ev[B.‘B* = d(Y e ‘Oq) + (0 x d/dt),

+ +
£gl% -
vI"By © B,

+
=B_ UIJB and define tov t U, > R+, m

v

H Uv > B* an
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(nq : C(q) + B, and (Dq : B0 x [0,1] » C(q) are defined in 5.3.6). It

is clear that

df &g = §) 5 @y = cvo(fIUV);

{(b,e) € (U B,) x Ry -9 (b) <t <0} = {(b,e)€E D, ; t <0}

2
‘l’([b,t]) = )

A
—
-

Ev(b.t-l). be By, 0<tg

tAl

+

€y

(=

* .
rBo(b) - ()\Ev(b,l- ®g(b)), @ (b)-1),

ﬂv(lgv(b.t)) = mg(b), (b,t) € ng :

‘Dv(lgv(b,c)) = cov(b) +t, (b,t)€ DEV .

In a certain sense EV determines the "horizontal" structure of B
near B, . However, in general, this is not enough to determine the
structure of B near B, : B has also a certain "vertical" structure. Part
of this structure will be determined by the vector field & which we

Proceed now to construct.

Let P~ :U . +B xR and F" : 0" » B xR be the collars
S S g0 g2 0 ¢
0 0 0 (4]
h . - o . + . - +
of B, in B_ and B. in B. respectively. Let n and n be
0 0 0 0 h BO
Bo 0

the associated vector fields. Set

WO.UhUBQUUBO.cB_O
0
fo
and define T, € X, (W.) by
0 EO 0
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o U = o
0! n b
B By

X

‘o"o = d8g * (0 x d/de) ,
+ +

Co'"Bo “no
0 0

+
Next let L {v e UBO

determined by

and

+
dt .C '00
Bo +

Since q is proper, we may assume that

q-1w+o) - u+°
B B
* 0
and the diagram
+
qlun°
+ 0 +
0 > Ug
0 By
+ +
Fno Fno
0 ®
0 0
By x R 5 > B xR,
9 x 1lp
+

is commutative (the right vertical map is the collar of 32

L
W = (uAs\n*) U ¥Co (W, x (0,11))

;p;O(b)e Wol and lec g € X

[1- .

+*

+

in B,).

*(w’) be

Set
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and
WV-W_UW+.
It is obvious that Wy 1is open B. Define &g € X;(wv) by

*
g lU NB, = § ’
\' As * AS

cvlwwq(wo x (0,1])) = d(¥ » wq) " (gg x 0),
cV[w+ =%,
From the definitions it follows immediately that
df *Lg = 0
and
[CV! Ev] = 0 .
We shall also define maps wv : Wy * R and ;V : WV »> B: by

Vg (b) = -r7 (b)), ’A‘v“” = q(b) if b €U, ;
. Bo Bo

W) =€, Fo(b) = q(bg) if b= O:(bo,6) €8y , by €BY, O <<y

bo(b) =1 + r;o(b), 7, (b) = M @®), if b€ u;o 5
0 0

¢v(b) = ¢v(p;0(b)), ;V(b) = ;v(pgo(b)) if bE W (the right sides are

already defined;

Up(b) = Yo (by), mo(b) = mo(b)) if b= ¥([b ,e]) € W_, b, € W, ,
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0 <t <1 (the right sides are already defined);
~ R *
wv(b) =9, (v), nv(b) =, (b) if bdE U, NB, .
S ] S
Notice that mv is controlled, iv is & submersive weak morphism “-

*
to B and

= ]
dyg - Gg = d/dt, dyg Eg = O,
dnv .;V = 0, dnv 'Ev = 0,
"y T Tag (nglvg) .

For later use set

3" = ¥(c(qa*)), B: =¥(C(qQ")), B = ¥(C(q)).

6.8.6. Let V={4,B,B,5 Y ad T={58,8,5, ¥ be

decomposgitions of £f. It is obvious that if V = 7 then B_= B .

B_=38_ , Uy = U near B_, £y = Ex near B_, Wy = Wy near B_ and
CV - CV near B_ .
The converse is not true because the above equalities do not imply

$=§ (however, they imply that A = K, B = § » B = §+ and Y = ?;

- -2 4

thus, if in addition S = S, then V = .

6.8.7. Let A = {é‘, §+. Py €, ¥} be a decomposition of A and

v = {4, B, E*. S, ¥} be a decomposition of f. Let U be an open subset

of A containing A~ and let V be an open subset of B containing B_

and contained in f-l(U). Set f
v,u

Vg,u = {8/, B, B,|B NV, S, ¥} is a decomposition of £y , -

- £|V 2 §|Vt--» élU . Then



- 111 -

6.8.8. Given a decomposition V = {4, B, B,,S, ¥} of f, set

B = ¥(c(a™), B = (p; )'1(38), B =8 yB", £ =f8":8" >0
0 T

+
and ¥ = YIC(q*) : C(q+) -+ Bi . One can endow B:, B: and B with

a

. + + ' 3 +
canonical w.a.s. structures B, B  and B respectively such that ¢

+

B> S+, W+} is a

is an a.T.m. from g+ to éIUA and ~ V+ = {AiUA,AE:, B

o +
decomposition of f .

Consider also Bg = Y(C(qo)i, BS = (p; )-I(Bg), 80 - BS v B?,
- leo : B0 » U, and ¥ . WIC(qO) : C(ch > B? (recall that
a® = 8] : B » 3D). Notice thar °
B? -'B: n8% and ¥0 W+[C(qo). We can therefore consider the decomposition
V+]Bo of £9. We shall denote it ©° ; it is obvious that 70 s of the
form 7° = {é[UA, gg, ng, s°, wo}, vhere §0 = s*lsg .

f0

is a face of ’§+ and BS = B: n Boa

~ : * )
Let now A = (élUA) X 4 B, » the fibre product being taken with
1 .

* ~ ~ .

respect to "A and f, , and let fo : Bo + A be given by

Eo(b) -'(fo(b), ;v(b)). A direct verification shows that EO is an a.T.m.

from Bo to A . The decomposition ‘A of A determines a decomposition
= . - . o=

B={E, 2. P, ¢ 8} of & as in 6.1.10. In view of (12) in 6.7.1

the square

~——f A
[= 3 =
£~
Tc
— —— o
"
%+ O

(= =]

0

determines an admissible square
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23 AL—— 22
(§0) ElBg I. \\\\ Pa
59 - S é’ - §:
where the identification of é* = é* X . 2: with E: is given by

(a,b)» b and p, is the weak morphism involved in the decomposition 4g

of B, (in order to apply (12) of 6.7.1 we have to use (7) of the same
subsection). Now it is easy to check that P . {a, 22, 22, §°. ?0} is a

decomposition of Eo .

6.8.9. Assume now that f : Br— + A is proper. Let V = {a, B_, By S
be a decompogition of £, let A = {é-. é’. Py €,%} and let .

* -
HiA == 5](0,1). Since f is proper, we may assume that Uv = f 1(UA)

and df -Ev = EA. Consider the decomposition Au = {g_. §+. P»r €, ®} of

e 13

A (see 6.1.7). We shall define a decomposition Vu - {Au, 8,8,S, ¥}

f as follows. By definition i_ = fol(;‘) and 5* - 5'1(1+); thus

By = £ (A%, ser £ = (uem oD € X.f!(uv B,); then df -E = (uom,)E,

We can endow i_ (resp. i*) with a w.a.s. structure §_ (resp. i*) wh

verifies 6.8.2(ii) and such that the vector field associated to its face

is a restriction of §{. Next define G : Bo + EO and F: Ao -+ Xo

By

by setting

G(d) = x_ (b, u(uA(f(b))) -1),
v

2

F(a) = \_ (a, u(wA(a)) - 1)

Sa
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and notice that in the commutative diagram

| q
50 Y > By
1
~ q
EQ ~———> B,
fo fol \L f* f*
A’ >4
; P
F
RV \
: A0 A*

(G,F) is an isomorphism from the a.T.m. f, to the a.T.m. f . By
6.7.2, we can enddw g, the interior square, with a structure of an

admissible square. Finally ¥ will be determined‘by the condition EV = £,
: u

It is useful to'obsefve that we can take Uv = UV’ WV = WV and
: H W )
then gv = (u o‘nA °f)€v , -n'v = nv, (,pv = (1/}1 oﬂA o f) ‘pv ’ CV = CV'
u H u H

by = .
\7“l v

6.8.10. Assume ‘again that f : B +— - A is proper, let A be a

decomposition of A, let u:a — > 5[(0,1) and let 7 = {Au, g_, §+, S, ¥}

be a ﬂecomposition of f. Later on, we shall be interested in finding a
decomposition V = {4, B, B,» S, ¥} of f such that Vu = 7. 'This can be
done exactly as above (see 6.8.9) if we can take Ug = f_l(UA ) and UA = UA

(in contrast with 6.8.9, we must now "“enlarge" U to equal E-I(UA)).
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Clearly, we can take UA = UA. Then using Proposition 5.6 and a partition

u
of unity argument, we can construct a vector field § € xg(f I(UA)\B*)

such that § = EV near E_ and df - = E;A . Now we can take the collar
u H

of B. in B  to be defined on UL = f '(U~AT)UE. and determined by th
0 =t Bo A 0

condition: "its associated vector field is EIU% ". From the construction
of U this means that U, = f-l(u ).

v v A

H H

As a matter of fact, we shall need a slightly more general version of
this construction. Namely assume fhat in addition to our previous
hypotheses there is given I ]:B and for any i € I a decomposition
Vi = {AIAi,...} of fi : giv——b ﬁi such that (Vi)ui - VIBi (here

* * *
W= u|Ai ; notice that, since AlAi exists, A = A; N A'). Then ve can

take V with the additional property that V'Bi -9 . i€r.

6.8.11. Consider the a.T.m. £ : B — A and assume that there exist
closed subsets IB and 23 of B, endowed with w.a.s. structures 12 and

2§ respectively, such that

(1) ‘£ = flln : *Br—-+ A is an a.Tum., i=1,2;

. - 'Y 2
(2) OB -'13 0 ZB is an lf-horizonl;al face of 15 and ll_llon - §|0B
(3) one can construct 11_3 UB 25 and the inclusions IB <B and
0
2 . . . 1 2, 1 2
Bc B determine an isomorphism from f U B £: B uU B Bi-— A to
0 0

f :BpFr—-+ A over IA.
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Let also Vi = {4, 12_, 1§+, _Si, ‘l’i} be a decomposition of "f.
i=1, 2, such that VIIOB = VZ[OB - We shall construct a decomposxt::.on
NUa% -8 e, B,» S, ¥} of f as follows.

First notice that B, = 13*. U ZB'*' B = BN B, = IB* n ZB* is a

0% ¢
face of both 12* and ZE* and the inclusions lB*C B, and ZB* c B,
’ ' *
determine an isomorphism from lf* u B zf* : IB* v B ZB*i-— - A to
- 07k 0% =
*
£, ¢ B F—-+ A over 1L,
A
. 1 2 . i .
Next notice that OB- = B_N"B_ is a face of B (i=1,2),
IEJOB_ = ZE_IOB_ and we can construct B ="._1B U B ZB_\ . By a-similar
. ) = E- L3 o _ = "
argumeat, we can const t B = ]'B U 23 Let B, =B N B = E-I(Ao)-
gu » We can ¢ ruct B ""034-"". 0 . - 4
it is a face of both B and B_ and E_IBO = =§+IBO . Denote this w.a.s.
Structure on BO by 20 + Let fd : EO»——+ QO be the restriction of f.
1 2 . . 1 2 -
Note that BO = BOU 'Bo and the mglusmns BOC Bo and 80 Bo
1 2 0
determine an isomorphism from lf v 2 B,V B.bk——= A" to
0 B 0 30 B 80 =
00 00
£ ‘B!——>A° 1 (here B -IBHZB = B NB  is a face of
0° =0 s over 1l 00 0 00 0
both 120 and. 220, etc.). Consider the diagram'
1 2
13 u 23 By U B By

N
=0 OBO . /\/ I 0 »

20 W%*
1 2 T e y 2
£f. U £ £ £ B fa
0 "By 0 olo L* 0B+

l:»
W
">
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in which the exterior square is SI'U B s2 (see 6.7.4), u and Vv are
00

the weak isomorphisms mentioned above and q 1is the unique map which makes
the diagram commutative. Let S denote the interior square. Since

S.U . 8
1 "o8g

isomorphism from si U B S2 to S, we can endow S with a canonical
00

structure of an admissible square (see 6.7.2).

2 is an admissible square (cf. 6.7.4) and (u, v, 1, 1) is an

Finally, let ¥ : C(q) + B_ be the unique map which makes commutative

the diagram

¥ 1, 2
C(q,) UC(qo) c(q,) =————————>pB_= "B_ UoB- B_
¢ 1
c(q) - ->B_
i i

where q; Bo + B, (i=1,2) is the quasimorphism of the square Si.
qq ¢ OBO -+ OB* is the restriction of q » ?Ic(qi) = ‘!’i : C(qi) > 13_
(i =1,2) and ¢ is the homeomorphism defined in 5.3.8. Now one can

verify easily that V.U _V, = {A, B , B, S, ¥} so defined is a
1 OB 2 an’ a4

decomposition of f.

A ]

6.9. THEOREM. Let f : B+~ -+ A be a proper a.T.m., A and B being

of finite depth and B, # §. Let A = {g.. §+. Py €, §} De a dc_comgosiciot

of A. For any i€ ]ZB let fi s gip-—r éi be the restriction of £

(recall that Ai = A if i€ Ih'f). Let I :1:B and assume that for any

i €I the following conditions are satisfied.
(a) dcpth(éi) = depth(A) ;

(b) there is given a decomposition v, - (Ai. g:. g:. S;» ‘li} of
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the a.T.m. £, ¢ B, —+ A. , where A, = AlA. ;
1 =1 =1 .1 1

(¢) if JEI and depth(éiIAiﬂAj)'-depth(éi) then vi]ainnj -
= V.|B,NB, .
11 )
- Then there exists a decomposition V = {4, B, B, S, ¥} of ¢

such that V|B, = Vv, , i €1I.
1 1

Proof. If depth(A) =0, in view of Remark (1) in 6.8.2, the theo-

rem follows from Theorem 6.5. We assume therefore that depth(é) >0 .

We shall proceed by induction on depth(g*). The case
depth(g*) = 0 is "easy" and left to the reader (the arguments are similar
to those which follow, but much simpler). Thus we shall assume that
m = depth(g*) > 0 and that the theorem is true for any proper a.T.m.
£' B'—— é' with depth(B;) < m. In order to point out the main steps
of the proof, we shall also assume that I = @ (however, at a certain point,
we shall use the inductive hypothesis in its all generality). At the end
we shall indicate the necessary changes for handling the general case.

*
and the weak morphism f, = £|B, : B, —— A .

Consider the a.s. B,

By Theorem 6.2 there exists an f, ~compatible decomposition
- 4
& = {By» Bys Py» 8, &,} of B, .

*
For any Y € B choose now a continuous B(Y) : Y + R, such that all

B(Y)

the control conditions involved hold on TY and
Y x
B(Y) o B(Y) ‘ *
(6.9.2) “Z*|TY n B, = (0 /8 n) Ty N B, Y EB,

&
* ?

(6.9.3) B0 g an BP0, ves

(6.9.4) 28(Y) < §|Y, Y € 3: .
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* * *

Choose also a controlled iU : A -+ R+ such that, for any X € A,

all the control conditions involved hold on r;‘x, Au)c UA’

uix | u|x ux u|x -1,,u) (.
"AlTx "xITx , tpAl‘rx - (px/ewrx)l'l'x and £ (A") < ZLEJB ‘tB
(the last condition can be fulfilled because f is proper). 1In view *of
Lemma 6.8.10, it is sufficient to construct a decomposition of f of the

form V = {Au/2"”} . Therefore, there is no loss of generality in

assuming that

W)
(6.9.5) Uy = A7" =4,
(6.9.6) T, - ™ and @, = p")/e o) ’
(6.9.7) . U A3

In order to simplify the notation, we shall assume that

rg(z’-rz. z € B

and
pix *
'rx Tx ’ X €EA .
Let 2z,, zze B \8 » 2y < z, (then f(zl) and f(zz) are
‘ - -
contained in the same stratum X of A ). Let bE~ l(Z Ny, )N« '(z no, ).
* *
Since cpA* is controlled on UA:B* , we have
@, (m, (b)) = (1l (n (b))) .
A "2, s,

Since T, (nz (b)) = 7, (b), it follows that
1 %2 3

b = b
A,, z,( )) cpA.(n (b)) .
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Thus if we denote

~ ~ * ‘
we can define 0: W~ R+ by setting

(b)) = 0y (1, (), bE nglczn v

~ -~ *
Similarly define w : W + B, by

m(b) = "A*("Z(b))’

SR | . .
b€nz(anA) .

*
Let Y € B, . One checks immediately that

W NTy = m [Wn

T

Y

(use the definition of T and (6.9.3)).

Similarly

elWwn Ty = (py/6emdiW N T,

(use the definition of c; and (6.9f2)). Thus if we set V = W U( \ }

‘ %
We can define p: V-~ R+ and 7 :V~+B by

QW = 9, w[TY=pY/6°nY

TW =7, n[TY =

*
It is obvious that 7 is a weak morphism from E{V to B

0lw is controlled.

Tes

(Y e BY) .

(Y € 8:) )

*
Y €8,

Also

T,)
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ASN T\‘T B: =Y
MV AN :\
n, B, = YUZ
‘o -, B = TYiJTz
o tY‘- R 3 f = vertical
projection
By
. A —— At A=U,
A* N\,

L
Consider the fibre product P = B,

® L g -
Be A and IA:A-UA*A;

5.9.3).

+ P P
P,p,c€,

= {g-.

=P and £, = (0x EA)IP\P‘ .

u
P A

A
) *
Since f, % = m, o (£lW (use the

the f -compatibility of A,

g(d) = (m(b), £(b)), bEV. Let Z€ B,

Consider the commutative diagram

-1
T, (zn UA)

since depth(g,,) =0,
The decomposition A of A determines a decomposition

OP} of P as in 6.1.10. Notice that we can

.
*

*

x A with respect to f,
- =

y .

a.s. (see

af .

gi:an

take

fact that f is a weak morphism

and (6.4.3)) we can define g : V+ P by

*
~B, and X € A" with £(2)¢

%
\ *
P-B*x*A
A

in which

- the fibre product (ZNU, ) x, T

, 4,
+ZNU, +X and wx;

A,

flznu

A,

X X

> (z N UA*) x

-~

XTX

is taken with respect to
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- the horizontal map is given by b (n’z(b), f(b)); in view of 5.9.5

and Remark (2) in 5.5 it is an a.T.m.;

- the right oblique map is given by (b,a) = (w(b), a); it is easily

seen to be an a.T.m.;

- the left oblique map is the restriction of g ; in view of 5.9.9
it is an a.T.m.

Thus glﬁ is locally an a.T.m. and Remark (1) in 5.5 implies that
gla : glﬁ —~= P is an a.T.n. Since for any Y € B: R gl’!.‘Y is an
a.T.m. from §|TY. to P (cf. 5.9.5), it follows that g itself-
is an a.T.m. from Y to P , where V = B|V.

The decomposition A, of B, being f ~compatible we can assume,

possibly after shrinking U that df 'F;A = 0. Since
: *

A* »

dw 'EA* = dﬂA* .EA* = 0, it follows that dg - EA* = 0. By Proposition 5.6

applied to g]ﬁ, there exists n € Xg(W)i such that dg *'n =0 and

* S
ull NB, = f, . We can now shrink U and the B(Z) 's (and also )
8 4, By

such that the contrel conditions involved in the definition of n hold

B(2)

on W nrz. (= W nt, by our convention) for any. Z € B with

Z0 W4 g,

0 0

Set B = cp'l(l) and B = cp'-l((-w, 1]); by (6.9.4), B < W.
It is also clear that B~ is closed in V ; as a matter of fact B~ is
closed in B too (the verification is tedious but standard; the assumption

(6.9.7) is essential).

_ *
), Z € 8*58* + We have

-1
Let b€ L (zn UA*-

d@ - n(b) = dcpA* . (dﬂ'z ‘n(b)) = d “’A* ‘n(nz(b)) = dcpA* -E;A*(Trz(b)) = d/dt .



-122 -

Thus
(6.9.8) : d@-n=d/dt on ﬁ .

We can therefore apply Proposition 5.11 ; it follows that B~ can

be endowed with a w.a.s. structure g-, g = g|B” is an a.T.m. from
0

B to P, B isa g-horizontal face of B~ and g

a.T.m. from §° = g-lBo - EIBO to P.

- g|80 is an

since XE(H) ©XI(#) and &-n=0 implies dfn=0, we
can apply Prop;;ition ;.11 to f too. Let B = B\(B-\Bo). It follows
that we can endow B' with a w.a.s. structure §+ such that f' = f[B+
is an a.T.m. from B' to A and f = £[B” is an a.T.m. from B~ to
A (the w.a.s. structures obtained on B~ by applying Proposition 5.11 to

g and £ are equal since both of them verify (i) and (iii) of the

mentioned proposition). Moreover, Bo is an f-horizontal face of both

g" and 2-. §*|B° = 'B.-IBO and the inclusions B c B and B'c B

+

determine an isomorphism from £ U 0 £ gf ] o‘g*l--» A to f.
B

Since VN B, =U and ojU, = ©, it follows that

b, A,

%
(Bo)* - QB*)O and thus depth((go)*) < depth(B,). By induction there exists
a decomposition 60 = {AP. 22. 22, So. Yo} of go : 20'___* P . Set

v0 - {2, BO’ B0 0

Was .-0-'

s, Wo}; clearly Vo is a decomposition of fo : §° ——

Since (§+)* - 5: and depth(g;) < depth(B,) we can apply the inductive

hypothesis to £ §+h—-» A and find a decomposition

v* = {8, 8%, BY, 5T, ¥'} of £ such thar v[8° - v0 . Since £ and
g are proper, we may assume that U _ = (f+)-1(UA) - B" and
v
U, =gru ) =28,
50

vP
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B, = YUZ

+ O
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Consider now A : D + W, the flow associated to n. Since

*
n[UA NB, = [ it follows that
*

A,

B) x (-1,01< D .

*
By Lemma 6.10 there exists a continuous v : 80 » R, such that

\)|B°\82 is controlled ,

8% x (~v,0) €D .

0

*
There exists also a controlled a : BY + R* such that

Bo x (~v,a) & D .

Let W' = A(B® x (~v,a)) and X =A% x (~v,@) : BO x (~v,a) > W'.
A direct verification (by now it is standard) shows that X is a weak
isomorphism from 20 x (=v,a) to §|W' (notice that W' is open in B)
and dX - (0 x d/dt) = n.

Using arguments similar to those in Lemma 6.10 we can construct a

. *
continuous v' : BO + R such that

vi(b) =1, bEBY,

v' |B°~32 is éontrolled ,

v'(b) < w(b), b€ BO~8Y .
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Set B = v/V' . One can now construct (the construction is standard) an

isomorphism F : E? x (-8, a).~» B0

x (~v, a) with the following properties:

(1) Fb,t) = (b, Fy(b,e)) ;
(i) F(b,t) = (b,t), (b,t) € 8% x (~v', q).

Let ¢ = d(X «F) - (0 x d/dt) € x&w'y < xg(w'). From (ii) above

and the definition of X.

- %
 =n near BO U (B,~B,) .

Notice also that B(b) =1 for b€ Bg » B(b) >1 for b E Bosnf and
0
B x (8, a) t:.DC .
Return now to the decomposition 60 of go : 20 == P and recall
0
that U . = BY , Let ¢ € X8 (BO‘BO) be its first associated vector
79 =0 0 *
v
field. Define £' € X (W') by
E' = d(k oF) * (g_; x 0).
v
From the construction, it is evident that
. ' =
df - EA
and
dr ' = 0 .
* ;
Congider the a.s. P =B, XA* A and the vector field
0 x EA € X* (3: x (A\A*)) . Since d1-rA .EA = 0 it follows that
B x4

(0 x EA)'|P~P* € XP(P~P*) .
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The vector fields

T R -
- _ 80
DR A R -
- - - - e
DR S S R R
4’.,*-4-4-@4'\-1'@*4.
- v - - -
«-""QQ
< -~
L—k <
&~ < “
B, w - .
& w -
ai ,,// e -
“ »” . &
& -~ I
'__/'/ a«’
- & P
I 24 <
’_,/ ¥4 b
® . . Pas
L -~ -
» LL/

and £

4

-
- -
-~
0 - Lo -
< L= -
P f-
?.h
B
0 o~ «© =—
-

-

- -
Zk(_.q- k'(—*(— :
- = 4= b= o e = - e d e - & 4 &
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By Proposition 5.6, there exists £" € Xi_(B‘\B;) such that dg~ +£" = 0 x Ep 0

or equivalently

dE -E" = g,

and
dw "E" =0 .

Let W = (i oF)(~/B, a). Using a partition of unity argument, we can

patch together £' and £" and obtain £ € X _(B"~B_) such that
B

df *E" =g, ,
dn g =0,
E7|W N (B™~B) = E'|W n (B7~B]) .
Since B - §+ u 0 B~ and U . " B+, we may define S € X:(B\B*) by

B v
* -— - I - »
€|B+~B = £ , aund £|B ~B, = £ (the definition is correct because
v

0 ; 0 -1 g0 -
gv*ln B, = €v° - £€° =E'|B°~B, = £ |B~B, and gv* and § are
Parallel to the faces). Clearly df °{ = EA . By Proposition 5.10, we can

endow B = f-l(A-) and B_= f-l(A+) with w.a.s. structures B and

B, respectively which verify (ii) of the definition of a decomposition of an

3.T.m. (see 6.8.2). Moreover, these w.a.s. structures can be chosen such

-1..0
that the vector field associated to the face Bo =B_N B+ = £ “(A") of E_

(resp. B ) is a restriction of §.

Define ¢ € C:(W) by the relation

W(X(F(b,t))) = 1l+t, (b,t) € 8% x (-8, a) .



- 128 -

It is clear that
dp * 7 = d/de

Y
Y = @ near BO U (B,~B,)

and
vl = 0o71) - 8°
+ + + 0 0
Set now BO =B N BO (= (B )o), Bo =B N Bo ’
-1 ~ 0 -1
By = By N 47 ([0,1]) = (X «F)(Bg x [0,1]), B} = By N ¥7(0) and
Ba = (Bo (B; U Bg)) U Bg » Since df °n = 0, from the construction of
. f
¢ it follows that df °7 = 0 and therefore ;IBO € .XBO(W' n Bo). We
.0 _
can apply Propositionm 5.11 (to ¥V and {) and endow B;, B; and Bo

. + X -
with w.a.s. structures 20’ 20 and EO

"condition (3) of the definition of an admissible square (with £ : B »~ =

respectively which verify

replaced By fo : gor-—* eo, see 6.3.1). Moreover we can choose

these w.a.s. structures such that the vector field associated to the face

Bg (resp. Bg, Bg, Bg) of 2; (resp. g;, g;, ga) is a restriction of
" Define 6 : By x [0,1] + By By 8(b,t) = A.(b,t) and notice that

6 1is a weak isomorphism from Eg x [0,1] to 2; . We can define

q Bz + B, by setting

a*(8(b,£)) = 0,([q"(b),e]), (b,t) € BY x [0,1]
(here ¢, : g(p*)6 + E; is the isomorphism given by the decomposition A4,

of B, and q+ : §;f\f-'§: is the quasimorphism of the square s* of th

decomposition v of £ §+o--» A Bg - (q+)-1(32)) .
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Observe now that Ba cB = ‘0—1((-«’,1]) S V and we can define q :

* ¢ s * -
BO + B, to be the restriction of 7 : V + B, . Clearly q is a

- *
submersive weak morphism from EO to B, sending strata onto strata; Bg

is the unique q--horizontal face of EO . Moreover, since f 1is proper

and B; is closed in Bo, one checks easily that q 1is proper. Consider

the square

- q- *
B — — 5L
T 1.
£ J, £,
0 %
A — >t

It obviously verifies conditions (i),(iii),(iv) of the definition of a basiec
square (see 6.7.1). One checks directly that condition (ii) of that
definition is also satisfied (or one can use Propositions 5.10 and 5.11 and

the fact that g : Ve—~— P is an a.T.m.). Thus the above square is basic.

Define q : B, + B, by setting

0

+

alBy =q", aq|By=q, q|By=qa .

Summing up the above remarks it follows that the square

EO ’\J“S""> B,
fol l fe
éo — é*

is admissible of depth m.
In order to complete the construction of the decomposition V of f,

it remains to construct the weak isomorphism ¥ : C(q)— -+ B_ . To this
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end we set

¥([b,t]) = A (b,e-1), b €B,, 0<c<l,

12

‘l’(tbool) = Q(b)p b € BO ’

¥([b,0]) = b, bE B, .

Let b€ B, . Let us check that

0
(*) linm Ag(b, t-1) = q(b).
ty0
Case I: b€ B; . Then Ag(b, t-l) = AE (b,t-1) and (*) is t1
At

Case II: b€ B; . Them b -e(bo,s) for some bo € Bg and 0 <
Since k;(e(bo,s), t-l) = G(XE(bo, t-1), s), this case can be reduced °

Case I.

Case III: b € Ba . Let (sn) be é sequence in (-1, 0), conver

to -1 and such that the sequence (A_(b, sn)) converges to b, . Set

13
b = Ag(b,sn). Since df ¢f = EA it follows that b € B, . Notice tt
*
N2B*uU Az(B0 x (~1,0]) is an open neighborhood of B,~B, in B

any y € N~B, is of the form y ..XE(YO’ t) with y,€ BO‘BS and

*

t > -1, Assume that b, € B,~B, . Then, for a sufficiently large n,
- = . i " . i e

bn EN B, and therefore bn *g(bn,o' s) with bn,o € Bd\B Sinc

the other hand b = A_(b, s ) with b€ B, , we get a contradiction.

£
* - - -
It follows that b, € B, . Since E|B~B,  =§ and dr-§{ =0, we

deduce that

n(bn) = (A (b,sn)) = 1(b) = q(b)

g
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and therefore
b* = n(b*) = lim ﬂ(bn) = q(b).

Now an easy topological argument (based on the fact that f 1is
proper) shows that this implies (*).

There are no more difficulties in verifying that ¥ 1is a weak
isomorphism and that V = {4, B,B.,S, ¥} 1is a decomposition of f.

Return now to the general case when I # §. The proof follows exactly
the same lines as above. In order that v, = V. for any i €I, the

data constructed above must satisfy the following additional conditions:

(a) A*l(Bi)* = Asi for any 1 €J ={j €1 ; (Bi)* = Bi nB} =

(€1 ; depth(gi)* = depth(g*)} A is the decomposition of (Ei)*

S.
i

involved in the definition of the admissible square Si);

(b) (B.)X\B* CW, ¢ =y near (B,)" ~ B: » T=C near
1l - * Vl 1l - Ai

X - » .
(B,)_ ~By , e;lni NB, = gvi (i €J) ;

(e) (Bi)+ =B, N B" and V+I(Bi)+ = (Vi)+, for any i € I (see

6.8.8 for the meanings of (Bi)+ and (Vi)+).
Next some remarks about the possibility of satisfying these conditions:
- (a) follows from Theorem 6.2;

- the first condition in (c) raises no problem; the second one

follows from the inductive hypothesis;

- for (b), one has to "thicken" Wy ~mear B, then to extend in the
i
obvious way WV.’ CV. and EV. on this thickening of in and finally to
i i | )
Patch them to §, 7 and £ respectively, which are defined as above. Q.E.D.
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LEMMA 6.10. Let A be awv.a.s., AO © A be a closed subset and D < A x

be an open subset such that A x {0} €D and (Ao x R+) ND=A_ x {0,1)

0

' *
Then there exists a continuous £ : A > R+ such that
L]
(1) flA~A0 € Cé(Aon);

(2) f(a) =1, a € Ay s

(3) A x [0,f)<D.

Proof. For any a € A set t_ = sup{t € R 3 {a} x [0,t) < D}.
Let Un ={a € A; e > 1 -1/n}, n> 2; then Un is open in A, Ao c U}
and A= U u, - Choose open subsets Vn (n>1) of A such that
V=4, cl(V)eU AV _

® . :
¢ € CQ(A) verify

1 (n_>_2) and Aosnvn.Letalso

(i) wn(a) =1, a€ v,
(ii) t.pn(a) =0, at Un n.vn-l
(iii) wn(a) € [0,1], a € A.

Choose £, € C:(A) such that £ (a) >0 for any a€ A and

A x [O,f.l) ©D. For n > 2 define inductively fn € C:(A) by
fn = (1--1/11)q>n + (1 - wn)fn_l .

It is obvious that fn(a) >0 for any a € A, fn(a) =1 -1/n for any
*
a € vV, and A x [O,En) <€ D. Finally, let f : A+ R_ be given by

f(a) = lim fn(a). A straightforward verification shows that f has the
nso

required properties.
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6.11. As before f : B*=—+4A is an a.T.m., B and A being of finite

depth. Let n = depth(ﬁ) >0.

6.11.1. A total decomposition of f is a sequence D = {Vl,...,vn*l}

Petalnp

vhere V » S, ¥} 1is a decomposition of £ and, inductively

o+

if n>0, D = {VZ,...,Vn+l} is a total decomposition of f = le+
+ . e e . .
§+F—-*-é (since depch(é*) = n-~1, the definition makes sense by inducti-

on). If n=0, then D = {V]} , B, = P = A+, B =B, A=A and DS

is a regular and f-compatible total decomposition of B (see 6.7.1 (7) );

thus in this case a total decomposition of f reduces to a regular and
f-compatible total decomposition of B .
A total decomposition D of f determines a total decomposition

DD of A as follows: if n=0, set DD - {Al} ; if n>0, set UD =

- (a!, 42,..., Ao

} , where {AZ,..., An+l} - DD
+

6.11.2, Let D= {Vl’...,Vn+‘} be a total decomposition of £ , Bi be a

face of B and fi : gih--» éi be the restriction of f . Let depch(éi)
{‘6k*l ~n+l)

,-..’v

of f.

= a~k . One defines a total decomposition D]Bi - i

as_follows. Let éj have the same meaning as in 6.3.2 and set Bl =
- f-'(AJ) and £ = fiBj : B) »al . Then BJ has a canonical w.a.s.
structure §J . fj is an a.T.m. from gJ to QJ ’ - {AJ. (QJ)_, (gJ)+,

| 1 j+1 j ie .
s?, ¥} s a decomposition of £7 and gJ = (BJ)+ if j <n . By depth
k+l . k+l
arguments, A, is a face of A . and therefore B, 1is a face of B .

~k+] +3 +]j . : -
Take ¥<7J -«Vk Jlnit1sk J y J = lye..,nk*l . Notice that DDIBi DDIAi'

u+l}

: 1
6.11.3. Two total decompositions D= ..., and D' = {'7,...,

1 1 n+|
-

LA Y are called equal , denoted D= D', if ¢ ='9,..., ¥

- |vﬂ*l )
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6.11.4., Assume now that B = 'B UC"-B- and f = *'f Uc"f , where C =

= 'BN "B is an 'f (resp. "f)-horizontal face of ‘B (resp. "B ) and

'f 'B—+ A and "f : "gi--»é. Let 'n-{'v',...,'v“*'} and "D

1]
- ("v',..., vnﬂ) be total decompositions of 'f and “f respectively

such that 'D|C = "D|C . We shall define inductively (on depth(A)) a tot

decomposition 'D Uc"D -(Vl,...,vnﬂ} of f as follows:

(a) Vl = 'v' Uc"vl (see 6.8.11);

(b) if n>0, then B, = 'B, UC’"&* » vhere C_= 'B_NC ="B

is a face of both 'g* and “g* ; by hypothesis (and by definition)

¥

'D,|C, = "D |C_ and thus, by induction, we can consider 'D, Uc "D, it
+

'D Ue "D is determined by (a) and the relation

('D uc "ﬂ),, - 'D+ uc*nn‘. .

6.11.5. Let M be a compact a.s. of depth zero and define 'f“ : BxM
A by fM(b,x) = £f(b) . Clearly £y is a proper a.T.m. Given a total d

omposition D= (v',...,v“"} of f we define a total decomposition [

n+l 1

]
-{v:‘,...,vM } of fM as follows. If Vv -{A',g_,_*,s,v} , set VM

- ‘{Al,g_ﬂ'd, B, xM, S YH} » where S is the square

M L §
qx 1
onb.{c\/——’—>§*x§
(£)y J (£,
g — —

and ¥, : C(qx 1) +B_xM is the map given by ¥, ([(b,x),t]) =

= (y([b,£]),x) . It is obvious that v:‘ is a decomposition of £ (the
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structure of admissible square on SM is the obvious one; for example
(SM)+ - (S+) ). If n =0, we are done. Otherwise 1)M is determined

by V; defined above and the relation
(DM)+ = (D+)M .

6.11.6, Let f£' : g"—-'e_\' be another a.T.m., let (G,F) be an isomor-

phism £ to f' and let D be a total decomposition of f . Then there

exists an obvious total decomposition G, (D) of f' (if p = {vl,...,vn+l

}

then G,(P) = {'v',...,"v™"} wien 'v' =, (v') , ete.) .

6.11.7. Consider the regular square

B —"—u
T |
(s) £ 14
| !
A~ — M
= 4 =

and let £3 B.—-+'As = Ax N be the a.T.m. given by fs(b) = (£(b),

M

o(b)) (see the Remark following the definition of a regular square). A
decomposition ¢ = {4,B_,B,,S,¥} of f is called s-compatible if

(i) A is wx-compatible;

(ii) the total decomposition Dg of B, (see 6.7.1 (7)) is
(o|B,)~compatible;

(iii) dg*g, = O near B_ .

From (iii) it follows that (o|B,)ewy, = ¢ near B_ and from (ii)

we deduce that

(iv) doeg, = 0 near B_UBT.
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Assume that YV is s-compatible. Then by (i) we can consider the d-
composition A% = a8 of és (see 6.1.10). A direct verification (using

induction on depth(B,) ) shows that the square

(s (£%)

is admissible (the notation is obvious). It follows that Vs-{A’,‘B R

-|me

B Ss, ¥} is a decomposition of £2 . From (i) and (ii) we also deduct

.-.-’
. + + * )
that o =a|B_: B,+N and » =nA : A +M are weak morphisms

and the square

[+
§+ -t—'}i
(s,) £ T I g
l |
A —,—u
r

. is regular.

A total decomposition D= {(V = Vl, vz,..., Vn+l} of f is calle

s~compatible if V is s-compatible and, inductively if n > 0 , the tot
decomposition D _ = (vz,..., vn+l} of £ _ is (s )-compatible. If D
is s-compatible then DD is w—compatible and we can define a total decot

~{ s

! as follows: V =9  and , induc'

position D° - {?l,..., vV '} of £3

vely if n >0, (D’)+ = (D+)'* . Notice that DDS - (Dn)z.

6.11.8. Let now
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Tq

B = e 42
Je

(s) f

|
|

> 4~ —y

be an admissible square of depth m and , if m > 0, let

+
2+ g E4-
(s+) f+]_' ’ g-(»
K {
4 — — M
™
x -
Py
(% f,_T | .
¢ V8
A — — M
= " =
and
E_..._O-—-» 1‘-‘*
(s ) f-T , g*
| |
A == —— M
= ™ =

be the associated squares (s’ is admissible of depth m~! and s is ba-

$l¢ , hence regular). A total decomposition D of f is called s-compati-

ble if either m « 0 and D is s—compatible (in this case s 1is regular)

.. + x - +
°C m> 0 and there exist total decompositions D , D and D of £ ,
X

f -
ad £ respectively such that
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(1) D is s--compacible (s~ is regular !);
(2) D+ is s+-compatib1e (this makes sense by induction);

(3) = (°s)*((”-'8h)[o,|1) (see 6.7.5 and 6.7.6);

) o8’ = o"js? ;
+ x -
(5 p=Dp U_.D U_. D .
Bo Bh
6.11.9. Let D= {Vl,..., Vnﬂ} be a total decomposition of f : Br-

and let Vl - {Al, B, B

[ =e?

S, ¥} . D is called regular if either n:

or n>0 and

(i) D is a regular total decomposition of A
(ii) D, is a regular total decomposition of £, : B gf (chis
makes sense by induction on n );

(iii) D = D+|BO is an S-compatible total decomposition of £

I
0 3
(

- éo and the total decompositions D; of f.; : 'B.:)'O—" A, D; of f
gg -— 1}0 and D of fa t By - — éo associated with D) (see 6.11.

are regular.

6.11.10. Let D be a regular total decomposition of f , let Bi be ¢
face of B and let fi : gih-’éi be the restriction of f . Then tt

total decomposition DIBi of £ is regular.

6.11.11. Counsider a regular square

.
l

0 ¢— —
(]

(s) £

0 «— —inm
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and let D be a regular and s-compatible total decomposition of f . A
direct verification shows that the total decomposition D of £ : B

- és (see 6.11.7) 1is regular.

6.11.12. The notation being as in 6.11.4, assume that the total decompo-
sitions 'D and "D are regular. Then the total decomposition 'D Ue "D

is also regular.

6.11.13. Consider the submersive weak morphisms 7 : A-— + M and g : N

“*H¥, N and M being of depth zero and all the faces of A being

Twrtical. Let B=aAxyN andlet f:B-+A and 0 :B~-~+N be the

canonical projections. The square

I
l

X € — 2
[

(s) £

0> ¢ — 1o

— iy
T

is clearly admissible of depth zero. Given a T-compatible, regular, total

decompogition P of A , there exists a wique s-compatible regular total

D

decompogition D = D’ of f such that DD =D,

To construct D we proceed as follows. Let D = {A’, Az,.... An”} .

! | .
Define V' = (A, B,B,, S, Y} bysetting B =4 X N and 3 -~
+ *
- 0 - 1
A %¢ ¥ < Then go.é XM!’ B,=4 %, ¥ and S 1is the square
q *
0 > =
By=4a % 4 %N~ B
»
A - A
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the mappings being the obvious ones. ¥ is the obvious homeomorphism of
C(q) on B .
. p* 2 +1
By induction on n , we can define now D+-D = {V ,...,Vn }.

Finally set D = {Vl, Vz,..., v,

6.12, THEOBREM. Let f : B~— A be proper, let

- =
]
——— ————r

(s) £

" ¢— —| 1w
g — — &
()

be an admissible square of depth m and let 0 be a regular and x-compa-

cible total decomposition of A.Lt Ic IB and for any i €1 let Di

be a regular and (slBi)-compat:ible total decomposition of fi : Eiv—-—' A

o . . |B. . = D.|B, . i,3 I.
Assume that DD:’. DIA1 and Dxlsx n BJ DJl31 n BJ for any i,j €
Then there exists a regular and s-compatible total decomposition D of f

such that DD = D and l)IBi =D, forany i€1I.

Proof. Let n = depth(é) , D= {AI,..., An+ } and Di = (V;_.-n.

vziﬂ}, vhere n, = depth(éi) < n . We begin with the following remark.
Assume m = depth(N) = O . Then s is regular and we can consider

s
the a.T.m. £° : Br— é‘, the regular total decomposition 8 of A
s|B;

i

and the regular total decompositions of (f‘)i : gir-—v (é‘)i ’

i€l .Let D be a regular total decomposition of £° such that 05 -
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~ B,
= 0% and D|Bi = l)iI 1, i€ 1. Then there exists a unique regular and
s-compatible total decomposition D of f such that D = p? . DD =D and
1)|Bi - Di » L € I . Now, using induction on m (as in Steps II, III and IV

below), we can see that the Theorem follows from the following weaker asser—

tion :

(*) "Let £ : B—-+ A be proper, let 0 be a regular total decomposition
of A, let Ic IB and for any i € I let Di be a regular total decompo~
sition of £ : B,—— A, . Assume that DDi = DlAi ;and DilBi n Bj -

= DJ-IBi n Bj for any i,j € I . Then there exists a regular total decompo-

sition D of f such that Dp=0 and DIBi =D, forany i€r".

We shall prove (*) by inductionon n = depth(é) « If n=Q, B
is an a.s. and a regular total decomposition of f reduces to a regular
and f-compatible total decomposition of B ; the assertion follows from
Theorem 6.5. Assume now that n > O and that (*) (and hence the Theorem
too) is true for any a.T.m. f' : B'+~—A' with depth(A') <n .

Step I. By Theorem 6.5 there exists a decomposition v . {Al, B,
E,,,. S, ¥} of £ such that VilBi = V; for any i € I with depth(éi) -

= dep tb(é) .

Steg II. Let

By — 94— 1

i T I,
(s) fo 1 lft
Y —
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be the basic square associated to S . Then, by induction, there exists a
regular and S--compatible total decomposition Da of fa such that
* 0 - - - *
vDa D |A", nolai NBy=(D)y, LE€I.
Step III. D, = (o ),((n'lnh) ) 1is a regular and Sx-compatibl
2%ep 222 Do S 0'"o’[0,1]
total decomposition of £, such that D x = D+|A° ’ DxlBh = D-IBh and
0 Dy 0'"0 0'"0
X, X X .
DOIB0 ns, = M)y »1i€L
Step IV. By induction there exists a regular and S+~compatible to-

tal decomposition D; of f; : gah--» ép such that DD* - D+|Ap .
0

+. .0 x, 0 +,_+ + .

D°|Bo Dolno and nblso NB, =)y, i€I.

Step V. D, = D; v 0 DU D, isa regular and S-compatible total

BO 0 Bg 0
decomposition of fo : EOF--* éO such that DD =- D’IAQ and DOIB0 n Bi

0
= (D,)qlBy N B, .

- Step VI. By induction there exists a regular total decomposition

2 +
D = (v%..., Vn*l} of f :B¥r—-—+ é+ such that DD* =0 , D+|30 =D
and D+|B+ n Bi - (Di)+lB+ n Bi », LETI .

n+l} is a regular total decomposition

Step VII. D= (v', ¢3,..., ¥
of f such that DD = D and D|si = Di » i €1, Q.E.D.

1
6.13, Let D = {Vl,..., Vn+l} be a total decomposition of f . Let V
= {Al. B, B, S, ¥} and let Ds be the corresponding total decompositi
of By . If n=0 set c(B,D) =c(B,0) ; if n >0 define inductivel
¢(BsD) = c(By0g)Lde(B,,D,) . It is obvious from the definition that

c(B,D) 1is a manifold with faces and that c(£,D) = £|c(B,D) : c(B,D) —
c(é.vn) is a submersion compatible with the faces. c(B,D) is called tb
p-core of B.

1f B, is a face of B then it is easily seen that B, n c(s,0) =
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= c(8;,0|B,) and c(B;»D[B,) is a face of «c(8,D) .
Assume next that B ="'3B UC“§ and f = 'f Uc"f » where 'f : 'B

~+A and "f: "B~ » A are a.T.m.'s. Let "D and "D be total decom~
positions of 'f and "f respectively such that 'D|C = "D|C and let
D="'D qc "D (see 6.11.4). Then c(g,"'D|C) = c(C,"D|C) and <(8,D) =
= ¢('B,'D) Uc(g,'DIC) c("B,"D) (this follows directly from the definiti-

ons).

6.14. Let now

(s) £

be an admissible square of depth m and let D be an s-compatible to-
tal decomposition of f ; let also (s+), (s), (s), D and D be the
associated data (see 6.11.8). If m = 0, set cs(g,D) = c(B,D) and if

- - 4+ "
m>0 , define inductively c (B,D) = c(B ,D y]e +(§+-D Y . e, (B,D) is
s

is called the (s,D)-core of B ; it is clearly a manifold with faces. If

m> 0, notice that
- - x b 4 + +
<(B:D) = e(87,07) U gh o7ty (B0 Ul p* |y <@ 400
h ~-i,h
and c(gx.Dx) is diffeomorphic through Bs to c(B,D [B™) x [0,1] . By

taking the restrictions of f, g, 0 and 7 we obtain the regular square

of manifolds with faces
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* ¢ (o,D)
CS(EDD) —_— c(gﬁps)
(sp) ¢ (£,D) l 1 e(g.D)
c(A,0p) — M
c(ﬂ,DD)

If B, is a face of B, we can consider slBi and D|B, . Itis

obvious that

CSlBi(Qi’DlBi) = CS(E,D) n Bi

and this manifold with faces is a face of c_(8,D).

6.15. The assumptions and notation are as in 6.11.13. Then

C(g,D) = CS(E:D) = c(éiv) xM ! .

7. TRIANGULATION OF ABSTRACT STRATIFICATIONS

In this chapter we shall prove that any a.s. of finite depth can be
triangulated. All notions concerning simplicial complexes and triangula-

tions of topological spaces can be found in the Appendix.

7.1.1. A relative manifold (with corners) is a pair of topological spa~

ces (V,8V) such that 6V is a closed subset of V and V ~ §V is a

manifold with cormers.

Examples. (1) If X is a manifold with corners, then (X,8) is
a relative manifold.
(2) Let A be a w.a.3. and X be a stratum of A. Set X=

clA(X) and X = XN6X. Then (X, 8X) is a relative manifold.
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7.1.2, Let (V,6V) be a relative manifold. A triangulation (K,p) of V

is called smooth if K contains a subcomplex &K such that
(1) o(|&K|) =56V ;
(ii) for any closed simplex g < K the restriction of ¢ to
lo} ~ |6K| is smooth (see [Mu], Section 8.1);
(iii) for amy x € |K| ~ [6K| the differential do, of ¢ at x

is injective (see [Mu], Section 8.2).

7.1.3, If X is a manifold with corners, a smooth triangulation of X

is just a smooth triangulation of the relative manifold (X,®).

7.1.4, Let now X be a manifold with faces. A triangulation (K,9) of

X 1is called compatible with the faces if for any face Xi of X there

exists a subcomplex Ki of K such that

(M ok, ]) =x; ;

(2) the map x—¢ ' (p, (9(x))) from «o"(uxi)clxl o |k
is piecewise linear near IKiI t

(3) the map xr—r rx.(¢Kx)) from <D-l(Uxi) to R 1is piecewise
linear near |[K,| . ;

A triangulation (K,¥) of X is called good if it is smooth and
compatible with the faces. Any subdivision of a good triangulation is
still a good triangulation. If Y is another manifold with faces and
f:X+Y is smooth and compatible with the faces, a triangulation

(K, 0),(L,9)} of £ is called good if both (K,p) and (L,y) are

good,
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7.1.5. Let (K,p) be a good triangulation of the manifold with faces
X and let Xi be a face of X . Then Xi has a natural structure of
a manifold with faces (see Remark (2) in 4.1) and the triangulation

(Ki,(plll(il) of Xi (cf. (1) in 7.1.4) 1is obviously good. We shall de-

note (xi,¢||xi|) by (x(,c::)lxi .

7.2.1. From now on A will denote an a.s. of finite depth, M an a.s.

of depth zero and f : é == M a proper and submersive weak morphism.

We shall fix aregular total decomposition D = {Al, Az,..., A"} of A
with a' = (a",a%,p,6,0} , 0% = (a%,..., 2®} ana 00=0%|0. 1n

order to simplify the notation we set c(a) = c(é,D). c(éo) 'c(éo,ﬂo)
and c(gf) - c(é+,0+). 1f Ai is a face of A, set Di = D'Ai and
c(éi) = c(éi.ﬂi). If D is f-compatible, we shall consider the follo-

ving restrictions of f : f*: A* + M, foz A°—> M, f : A — M,

f+ : A+-—* M, c(f) : c(é) ~ M, c(fo) : c(éo) - M, c(f*) : c(zf) g
. ) . 0 »

M, fi : Ai—v Mi and c(fi) : c(éi) -—'Mi. Let also c(p) : c(A”) — A

be the restriction of p .

7.2.2. Let (K,p) be a good triangulation of c(A). Since c(A) is
the disjoint sum of A* and c(zf) we can consider the restrictions
(K*.¢+) and (K*,(p*) of (K,p) to c(gf) and A* respectively. If
D 1is f-compatible and {(K,p),(L,¥)} is a good triangulation of c(f)
it is obvious that {(K',0"),(L,¥)} and {(K*,o*),(L,¥)} are good

triangulations of c(f+) and f£* respectively.

7.2.3. Let (K,p) be a good triangulation of c(A) and let A be a
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face of A . As noticed in 6.6.3, c(éi) is a face of c(é) . By 7.1.5,
(K;»0,) = (K,m)lc(éi) is a good triangulation of c(A;) . Assume now
that D is f~compatible and let {(X,9),(L,)} be a good triangulation
of c¢(f) . Let (Li,wi) ] (L,\I))IMi be the restriction of (L,y) to Mi'
Clearly {(Ki,wi),(l.i,wi)} is a good triangulation of c(fi); we shall

denote it ((K,w),(n,w)}lc(fi) .

7.2.4. A good triangulation (K,¥) of c(A) 1is called regular if either

depth(A) = 0 or depth(A) > 0 and
. + + . . . . +
(1) K,p) = (K,w)]c(é ) 1s a regular triangulacion of c(é ) ;

i) if ®%,¢") = «%,0"c?), then (&%,¢%),(Xx*,0*)} isa

.triangulation of c(p).

7.2.5. Let (K,p) be a regular triangulation of c(A) and let Ai be a
face of A . A direct argument shows that (K.w)’c(éi) is a regular tri-

angulation of c(éi) .

7.3, LEMMA. Assume [ is f-compatible. Let {(K,9),(L,y)} be a good
triangulation of c(f) and let (L',y) be a subdivision of (L,y). Let

I C:IA and for any i €1 let (Ki,wi) be a subdivision of

(K,0)|c(A,) such that

(a) {(Ki'¢ﬁ)’(L"w)|Mi} is a good triangulation of c(f,) ;
(b) (Ki,mk)lc(é) NA; N Aj = (Kj’¢ﬁ)|°(é) na, n Aj for any

i, jetr (the restrictions make sense !).

Then there exists a subdivision (K',0) of (K,9) such that
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{(K',0),(L',¥)} 1is a good triangulation of c(f) and (K',w)lc(éi) -
= (Ki,¢k); i €I, 1If (L',y) and (Ki,wi), i €I, are bariceantric
subdivisions then (K',¥) may be chosen to be a baricentric subdivisio:

of (K,9) .

The proof of this lemma uses the same type of induction as that
used in the proof of Theorem 6.5. Since it raises no difficulty, we

omit it.

7.4, LEMMA., Let N be a manifold with faces, let g : N + M be a prop:
submersion compatible with the faces and let (L,p) be a good triangul:
tion of M. Let also I < IN and for any i € I let (Ki,wi) be a

good triangulation of Ni such that

(a) {(Ki’wi)'(L’w)IMi} is a good triangulation of g : N, + M
the restriction of g ;

(®) (K;,@)(N, N N, = (xj.«pj)lni AN, JET.

Then there exists a subdivision (L‘,p) of (L,Jy) and a good
triangulation (K,¥) of N such that

(1) {(k,9),(L',¥)} is a good triangulation of g ;

(2) (K,¢>)|Ni is a subdivision of (Ki,¢k), i€1.,

Proof., One argues exactly as in the proof of Corollary 2.3 of
[P]. I want to point out the following two facts:
(i) As in [P] one has to construct "product type" triangulation:

of UN s L €I, and then fit them together to obtain a triangulation o!
i
neighborhood U of \__} Ni . This is possible because of condition (b
i€1

above and of conditions (2) and (3) in 7.1.4. Notice also that, if U is
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sufficiently small, then the restriction of £ to U will be piecewise li-

near with respect to the so constructed triangulation of U and (L,y).
(ii) 1In [P] one obtains a triangulation of N with respect to

vhich £ is only piecewise linear. To obtain our stronger assertion,

one has to apply Theorem 3.6 in [Hu] . Q.E.D.
Remark. The above Lemma also follows from (J 1 1.

7.5. LEMMA. Assume 0 is f-compatible and let (L,¥) be a good triangu-
lation of M . Let also I < IA and for any i €1 let (Ki,wi) be a
regular triangulation of °(éi; such that {(Ki.wi).(L.w)IMi} is a tri-
angulation of c(fi) and, for any j € I, the restrictions of (Ki,&pi)
and (Kj.‘oj) to c(a) NA, N Aj are equal. Then there exists a subdivi-
sion (L',¥) of (L,¥) and a regular triangulation (K,9) of c(A)

such that {(K,9),(L',¥)} is a triangulation of c(f) and for any i €I

(K.‘D)Ic(éi) is a subdivision of (Ki,wi) .

Proof. We proceed by induction on depth(A). If depth(A) = 0,
the assertion follows from Lemma 7.4. Assume now that dept:h(é) >0,

Step I. By Lemma 7.4 we can find a subdivision (Ll,tp) of (L,y)
and a good triangulation (ﬁ*,w*) of A* such that £ is simplicial
vith respect to (R*,9") and (L',y), and (K%,9")[|a* n A, is a subdi-
vision of (K.,0)]A" NA, if ATNA $6, i€

Step II. Let i € I be such that A*nAil‘G. Then AonAi}‘O
and is a face of both éo and A;; clearly c(z}o) A =c(a)n A0 -

- c(éo'Ao nAi-0°|A0 n Ai)° Since the triangulation (Ki,cpi) of c(éi)
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is regular, it follows that c(pi) - plc(ép) n Ai : c(é?) n Ai Y Ai
is simplicial with respect to the corresponding restrictions (which exist)
of (Ki,wi) . Now, as in Lemma 7.3, we can subdivide and obtain a regular
triangulation (Kg,wg) of c(ﬁp) ﬂ.Ai such that {(Kgaag),(ﬁ?,w*)lA?flAi}

is a triangulation of c(pi) and, for any j € I with ApflAi n Aj ¢ 0,

the restrictions of (Kg,wg) and (Kg,wg) to c(é?) n Ai n Aj are equal.
Step III. By induction there exist a subdivision (if,wf) of H
(ﬁ*,w*) and a regular triangulation (Kp,wp) of c(é?) such that
(%,0"), & 6"} is a triangulation of c(p) and (K,¢")|e(a’) N &,
is a subdivision of (Kg,mg) if i €I and A" N A, # @ . There is no
loss of generality in assuming that {(Kp,mp),(Ll,w)} is a triangulation
of c(fo) : c(ép) + M ., Indeed, if this not so, we can first subdivide Ll
and K* to make f' simplicial (Theorem 3.6 in [Hul) and then subdivide
Ko to make c(p) simplicial (Lemma 7.3); since fIAP = (flAf)op. the
assertion follows.
Step IV. Arguing again as in Lemma 7.3 we can find regular trian-
gulations (Kz,wz) of c(é{) = c(é;,0+|Az), where é; = Q*IA+ n Ai s

such that
+ +. ., . . . +
(1) (Ki,mi) is a subdivision of (Ki’wi)lc(éi) :
(2) ((Kz,wz).(L'.w)lui} is a triangulation of c(fz) : c(é{) - Mg
(3) if i, €I and c(é+) n Ai n Aj # & , then the restrictions
of (KI,w;) and (K;,w}) to c(§+) n Ai n Aj are equal (note that

c(é*) N Ai n Aj is a face of both c(éz) and c(é}) and therefore the

above restrictions make sense);
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(4) if i €1 and A* n A, #9 (this is equivalent to U A, #

+ r

# @), then the restrictions of (K.,wz) and (Kp,wo) to c(ﬁp) n Ai -

-

- c(ﬁz) n Ap are equal.

Step V. By induction there exist a subdivision (L',y) of (Ll,w)
and a regular triangulation (i+,m*) of c(é+) such that {(E+,w+),
(L',¥)} is a triangulation of e(e) , (ﬁ+¢p+)[c(é?) is a subdivision
of (,0") and, foramy i€, &",0")|c(a;) is a subdivision of
;0.

Step VI. By Lemma 7.3 we can subdivide (Ef,w*) and obtain a
a good triangulation (K?,w*) of A* such that f* is simplicial with
respect to (K*,w*) and (L',¥) . Next we can subdivide (E+,m+)|c(éo)
to make c(p) simplicial and then extend this subdivision to a subdivi-
sion (K*,¢+) of c(§+) which is regular and such that {(K+.w+),(L'.¢)}
is a triangulation of c(f+) . Finally, since c(é) is the disjoint sum
of A" and c(§+) R (K*,w*) and (K+,¢+) fit together and give rise to
a regular triangulation (K,9) of c(A) wicth the required properties.

Q.E.D.

7.6. A smooth triangulation of a w.a.s. B is by definition a triangu-

lation (K,9) of B verifying: for any stratum X of B there exists
a subcomplex Ky of K such that .(Kx,mllel) is a smooth triangula-

tion of the relative manifold (X,6X) (see Example (2) in 7.1.1).

7.7. PROPOSITION. Let (K,9) be a regular triangulation of c(A). Then
there exists a canonical (but not unique) comnstruction of a smooth trian-

gulation (ﬁaB) of A, called a canonical extension of (K,p), such that
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(1) (K,@)|c(a) exists and is a subdivision of (K,9);

(2) if Ai is a face of A and (Ki,tui) is the regular triangu-
lation (K,‘p)lc(éi) of c(éi) (see 7.2.5), then (i,&:)lAi exists and
is a canonical extension of (Ki,wi);

(3) if D is f-compatible and {(XK,9),(L,¥)} is a good triangu-
lation of <c(f), then f 1is piecewise linear with respect to (ﬁ,a) and
(L,¥) (as a matter of fact we can construct (E,&) such that £ is sim

plicial with respect to (i,a) and a subdivision of (L,y)).

Proof. By induction on depth(A). If depth(A) = 0, then A = c(A)
and we can take (ﬁ,&) = (K,p). Assume now that depth(é) > 0. By defi-
nition (K+,(p+) = (K,(p)lc(é+) is a regular triangulation of c(§+). By
induction we can construct a canonical extension (ﬁ+,$+) of (K+,cp+);
it is a smooth triangulation of ;}f. By (2), (12",(3*) [Ao 'exis‘cs and is
a canonical extension of (KO,c.po) -'(K*,tp'b)lc(éo); set (ﬁo,x;o) -
= (ﬁ+,a+)|A°. Since the triangulation (K,¢) is regular, c(p) is sim
plicial with respect to (Ko,gpo) and (K*,0*) = (K,)|A*. By (3) and
Lemma 9.6.2 there exist a subdivision (ﬁ*,cp*) of (K*,p*) and a subdivi-~
sion (IEO.AO) of (120.:;) such that »p : A0 + A* is simplicial with
respect to (IZO,AO) and (ﬁ"’,‘p*). Let sp : [20 +K* be the correspon-
ding simplicial map, i.e. p = (p*olsp‘o(;o)-l . Let K be the simpli-
cial mapping cylinder of sp and T IK,p[ + C(p) :e the homeomor-
phism constructed in 9.4.2. Clearly (K,p,Q-(psp) is a smooth triangula-
tion of é. . Choose now a subdivision (f("',a’) of (ﬁ",:fz*) which ex~

tends the subdivision (Ksp,d’-wsp)le of (ﬁo,ho). Clearly (i‘,"?)
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and (xsp,oowgp) fit together and give rise to a triangulation (K,¥)
of A . It is easily seen that (ﬁ,&) is a smooth triangulation of A
and that it verifies (1) and (2). To check (3), use induction, the re-

. 0 *
lation £ = £ ep and 9.6. Q.E.D.

7.8. THEOREM, Let A be an a.s. of finite depth. Then there exists a
smooth triangulation (K,¥) of A. If f : A~— M is a proper submer-
sive weak morphism, M being of depth zero, and (L,y)) 1is a good trian-
gulation of M, then one can choose (K,®) such that £ is simplicial

with respect to (X,¥) and a subdivision of (L,¢).

Proof. By Theorem 6.5 there exists a total decomposition U of
A . By Lemma 7.5 there exists a regular triangulation of c(é,D).
The first assertion follows from Proposition 7.7. The second one also
follows if ghe total decomposition ¥ of A is chosen f-compatible and
the triangulation of c(A,0) is chosen such that c(f) is simplicial

with respect to it and a subdivision of (L,y). Q.E.D.

7.9. COROLLARY. Any subanalytic set is triangulable. In particular
(real) analytic, semianalytic, algebraic or semialgebraic sets are trian-

gulable.

Proof. By [Hill or [Hal] any subanalytic set can be endowed with
the structure of a Whitney stratification and then, by [Gib, Chap. II],

with the structure of an a.s. Apply the above theorem. Q.E.D.

The notions and notation involved in the next corollary are stan-

dard, see for example [Br].
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7.10. COROLLARY. Let M be a smooth manifold, let G be a compact Lie
group and assume that G acts smoothly on M. Let M/G be the orbit space
Then there exists a triangulation (K,9) of M/G such that the image unde

@ of any open simplex of K consists of points of the same orbit type.

Proof. It is known that one can endow M/G with an a.s. structure suc
that the strata consist of points of the same orbit type. Apply Theorem 7.8.

Q.E.

Notes. By now there are several published proofs of the triangulatibil
of abstract stratifications (or similar objects) without boundary ([GI]’ [J]
[Ka],[Ve3]) and also some unpublished ([He], (Ma]l). (Johnson and Matumoto
consider stratifications in the sense of Thom [Tll and only compact ones.)
The proof given above combines ideas of [GIJ and [Vesl; it is the most
general one since it gives the possibility of triangulating proper
controlleﬁ submersions and the strata of the a.s.'s considered are allowed
to have faces. |

A first attempt to triangulate orbit spaces is due to Yang [Y], but,
as mentioned in the introduction of [12£], Yang's proof is incomplete.
Illman [12) proves the triangulability of orbit spaces in the case of smoot!
actions of finite groups (he also proves a uniqueness result). Using the
same arguments as in 7.10, the general case (smooth actions of compact Lie
groups) was settled in [Ve3]. The case of compact orbit spaces was also
derived in [J1] and [Ma].

First attempts to triangulate (real) algebraic and analytic sets are
contained in [W], (Lel, [K-B] and [L-W]. Rigorous proofs in the more

general case of semianalytic sets are due to Lojasiewicz [Lo] and
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Giesecke [Gi]. The triangulability of subanalytic sets was first proved by
Hironaka [Hi‘] and Hardt [Hazl. In the semialgebraic case, simpler proofs
are due to Hironaka [Hil] and Delfs [De] (see also [Cos]). All these proofs
are direct and the triangulations obtained have additional properties (e.g.
in the case of subanalytic (resp. semialgebraic) sets they are subanalytic

(resp. semialgebraic)).

8. TRIANGULATION OF NICE ABSTRACT THOM MAPPINGS

8.1.1. In this chapter f : Br— A will denote a proper a.T.m., A and

B being of finite depth. We shall fix a regular total decomposition D =

2 l}l Vl'{AivB)B

| s’

0, 7™ ot £, wien o) - (!, 4%, A" s,

¥} and A‘ - {é-. é"" P» €, O}, D, (resp. DO’ Da, D;,...) will always

denote the regular total decomposition of f+ s §+n——- é* (resp. fo : §0

- AO £ :B. — — AO, f+ : B+l—-> Ao) induced by D . On A* (resp. Ao.
= 0 =() = 0 =() = = -
B »+.:) we shall always consider the regular total decomposition DD ,
+*

(resp. DD ’ Ds....) induced by D. In order to simplify the notation we
0

shall omit D, D seves DD, DD pesey Ds,... in expressions like c(g,n),
+

c(ftn)l c(g*)n+))oo-’ C(éyvn))ooo, C(L.vs),oo. and denote them c(!),
c(f), c(§+),..., c(A)seees c(g*),... . If Bi is a face of B , the same
convention applies to the restriction fi: B~ >4 of f endowed with

the regular total decomposition | B, .

8.1.2. Let {((L,p),(K,0)} be a good triangulation of c(f). Since c(B)
(resp. c(A)) is the disjoint sum of c(By) and c(B)) (resp. A* and

e(é*) )» we can consider the good triangulations {(Ls,¥s),(K*, 9"} =
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= (L), (R,®}Helfs) and {(L,,¥,), K" ,0")} = (L), KO }He(£,) of

c(fy) and c(f+) respectively.

8.2.3. Let {(L,9),(K,#)} be a good triangulation of c(f) and let Bi
be a face of B . Then the restriction {(L,W),(K,w)}lc(fi) exists and is
a good triangulation of c(fi) .

Example. With the notation introduced in 8.1.2, we can consider
{(L+,¢+),(K+,¢+)}|c(fo). This good triangulation of c(fy) will be denoted

{(LO’wo);(Koowo)}'

8.3.3. Consider an admissible square of depth m

B A— Y
(09 £ T l g
| |
A——r N
= w =

and assume that D is L-compatible (see 6.11.8; we shall use the notati-

on introduced there). Let

3 B.D cz(a)'cz(ctn) 0 N
cz(.) = Cz(.’ ) ¥ C(!, z) - C(.).

(zn) cz(f) - cz(f’n) C(S) = C(S’vz)

c(a) — M
c(n)=c(m, DD)

be the square constructed in 6.14.
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The good triangulations {(L,¥),(K,p)} and {(F,T),(E,p)} of c(f) and
c(g) respectively are called L-compatible if there exists a good trian-

gulation ((Lz,wx),(xﬂp)} of cy(f) such that

(i) ((Lz.wz).(F,r)} is a triangulation of ¢;(0) and {(K,®),
(E,p)} is a triangulation of c(m) ;
(ii) if m =0, then (L;,¥p) = (L,¥) (in this case cy(B) =
= c(B) 1);
(iii) if m >0, then (Ly)|c@’,0"), @,¥)|c@,0) and
(L,$)|c(B ,D ) exist and |
(ii) (@ le@’, o), ®e)} and (F,0)lc®’,0.4),(E.0}
are L'-compatible (this makes sense by induction);
(iii)) (L)@ ,07) = Ly, ¥p)|e@,D) ;

(iii3) let pPT, : c(gx,nx) +> c(gh,D‘lBh) and pr, : c(gx,Dx)

+ [0,1] be given by e;l(b) - (pr](b).prz(b)). 8

2

gt B x[0,1] — 3
being the weak isomorphism associated to the square I (see 6.7.1(6));

by 6.14, ez(c(gh.n'lnh) x [0,1]) = c(gx,Dx); then PT, (resp. ptz) is
simplicial with respect to (L,w)lc(g*,nx) and (L,w)[c(gh,D-|Bh) (resp.

a linear triangulation of [0,1]).

Remarks. (1) (Lp,¥p) = (L,9)|cp(B) -

(2) set (L,¢) = (L,¥)|e(8",0") and ™= (e;' le(B™,0 ) e y* :
IL*| » c8",07[8®) x (0,11 . Then (L%,§™) is a good triangulation of
c(gh.n'lnh) x {0,1] and (iii3) just says that (Lx,mx) is the product of
(L.W)|c(§h,D.|Bh) and of a linear triangulation (J,v) of [0,1] , for

some orders on L and J (see Lemma 9.2.4).
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8.3.4. Let I be as above, let B, be a face of B and let {(L,¥),(X,p)}
and {(F,t),(E,p)} be good triangulations of c(f) and c(g) respectively

which are I~compatible. Then the good triangulations {(L,W).(K,w)}lc(fi) and
{(F,T),(E,p)}lc(gi) of c(f;) and c(gi) are (ZlBi)-compa:ible (see 6.7.3

for the definition of EIBi).

8.3.5. A good triangulation {(L,y),(X,9)} of c(f) is called regular if
(1) (K,9) is a regular triangulation of c(A);
(ii) (Ly¥y) is a regular triangulation of c(By);
(iii) if depth(A) > O, the good triangulations {(Lo,wo).(Ko,wo)}
of c(fo) and {(L,,V,),(K*, 0"} of c(f,) are S~compatible;
(iv) if depth(A) > 0, the good triangulation {(L+.w#),(K+,¢¢)} of

c(f+) is regular (this makes sense by inductionm).

8.3.6. Let {(L,9),(K,9)} be a regular triangulation of c(f) and let B,
be a face of B. Then {(L,w),(K,w)}lc(fi) is a regular triangulation of

c(fi) .

8.4. Let (K,p) be a regular triangulation of c(é) . It seems more or less
plausible that there should exist a regular triangulation of c¢(f) of the
form {(L,¥),(X',#)} , K' being a subdivision of K . ﬁovever, for certain
technical reasons I cannot prove this fact for all a.T.m.'s, but only for the
nice ones (see 8.4.1). Fortunately the class of nice a.T.m.'s is large en-
ough to contain interesting examples (e.g. if B and A are semialgebraic
open sets in Euclidean spaces, f : B + A is polynomial and the restriction

of f to its critical set is both proper and finite to one, then ome can
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endow B and A with w.a.s. structures B and A such that

f becomes a nice a.T.m.)

8.4,1., The proper a.T.m. £ : Bi~— A is called nice 1if
(1) depth(B,) <1 ;
(ii) if depth(A) > 0 and depth(By) = 1, then f£} : Bf— A* is fi-

nite to one and in the admissible square (of depth zero !)

+
+ +
B b
) £ T 1 £y
b
py— — A

g; is the fibre product of §: and ép with respect to f: and p, and
q+ and f; are the canonical projections;
(iii) if depth(A) > 0 and depth(B4) = 0, then either f, : B, = BE

—> A* is finite to one, or in the admissible square (of depth zero !)

(s) £

§° is the fibre product of B, and éo with respect to f, and p, and

q and fO are the canonical projections;

(iv) if depth(é) > 0, then f* : B - é+ is nice (this makes

sense by inductiom).
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8.4.2. 1f f 1is nice and Bi is a face of B , then fi : gir--* éi is

also nice.

8.4.3. If B=B'U,B" and £ = £' U, £", where £' :B'~ >4 and f":

c

B"~ -+ A are a.T.m.'s, then f is nice if and only if f' and £"* are

nice.

8.5. LEMMA. Let f be nice. Then c(gg) = c(éo) x B: . If (@, K,0)}
is a regular triangulation of c¢(f), then (L-¢)|°(§8) is the fibre pro-
duce of (K%,¢%) = (K,@)|c(a?) and (L¥)[B] over (K*,¢*) = (K,0)|A*

(wvith respect to some orders).

Proof. The first assertion is an immediate consequence of 8.4.1
(iii) (notice that depth(gz) = 0 !). The second assertion follows from the

first one, 8.3.5 (iii) and Lemma 9.3.4. Q.E.D.

8.6. LEMMA. Let f be nice, let {(L,9),(K,p)} be a regular triangulation
of c(f) and let (K',qp) be a subdivision of (K,p). Let I cIB and for
any i €I let {(Li’wi)’(xi'¢k)} be a regular triangulation of :(fi) such
that (Li,wi) is a subdivision of (L,¥), (Ki’wi) - (K',q»]c(éi) and
(Li.wi)lc(Bi) n Bj = (Lj,wj)[c(ni) n Bj for any i,j € I. Then there exists
a subdivision (L',¥) of (L,p) such that {(L',¥),(K',0)} is a regular

triangulation of c(f) and (L"W)|C(Bi) = (L;,¥;) for any i €1L.
Since the proof of this lemma is more or less obvious, we omit it.

8.7. LEMMA. Let (K,yp) be a regular triangulation of c(A). Let I C:IB

and for any i €1 let {(Li.wi),(x,qﬂlc(Ai)} be a regular triangulation
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of c(f;). Assume that (Li,\yi)|c(§i) ns, = (Lj,v.pj)lc(gi) n B, for any
i,j € 1 . Then there exists a regular triangulation {(L.w).(i‘.w)} of

c(£f) such that

(1 ('E,w) is a subdivision of (K,yp) ;

(2) (L,¥)|e(B) is a subdivision of (L;,¥;), i€ I.

Proof. If depch(é) = 0 , the assertion follows from Lemma 7.5. We
can therefore assume that depth(&) > 0 and that the assertion is true
for any nice a.T.m. f£' : B'+~—+ A' with depth(B') <« and depth(a') <
depth(é). _

Step I. By Lemma 7.5 there exists a good triangulation {(Ly,¥s),

(XK*,0*)} of c(fe) such that (L.,¥s) is a regular triangulation of
c(Bs) » (K*0*) 9 (K,@)|A* and (Ly,¥s)|c(Ba) N B, 9 (L0, ) c(Bs) N B, .

Step II. We can subdivide (if necessary) (X,y) and (Li,wi) and
assume that (K*,0*) = (K,0)|A* and (Lu,¥s)|c(Ba)N B, = (Li,npi)|c(r_;,.)'n B,
i€l.

Step III. Let (K0,07) = (X,0)|c(A”) and (Ly,4)) = (L,.4,)[B, .
Clearly {(Ko.wo),(l("‘,w*)} is a triangulation of c(p) : c(éo)* A* and
{(L:.WI),(K*.W)} is a triangulation of f: : B: + A*. Since c(gg) =
= c(go) *A* B: (cf. Lemma 8.5) we can consider the triangulation
(L;.Wg) - ®%,¢% X, (L:,lb:) of c(gg) with respect to some orders on
&0. L: and Kk* (sée Lemma 9,3.4). Moreover, these orders can be chosen

+ + +* + . .

such that (Lo,wo)lc(go) ns, = (Li.wi)lc(go) NB, , i€I. There is no
difficulty in checking that {(L;.wg),(l(o,cpo)} is a regular triangulation
of (£ t (B + ca)) .

0 + ¢+ 0 h 0 . h
Step IV. Set (Lg,wo) - (Lo,wo)lc(go) and Lo - I‘O ; define wo :
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|Lg| -+ c(gg) by wg(x) = Bgl(wg(x)). Then, obviously, {(Lg,wg).(xo,w°)}

is a regular triangulation of c(fg) : c(gg) -+ c(éo) and, for any i € I,
(Lg.wg){c(gg) n Bi - (Li,wi)]c(gi) n Bg (this last assertion follows from
8.3.3 (iiia) ). By induction there exists a regular triangulation
(g R%0D} of e(£]) & c(By) + (4 such thar R 6% « &,0D,

-- h h ,h - - h h
Lovple(By) < (Lgbg) and (Lobgdle(By) N B, 9 (L,¥)|c(B;) 0 By,
i €I . After subdividing (if necessary), we can assume that (ﬁo,wp) =

0 0 - - h h - -
= (K,0), (Lg¥yle(@y = (L),¥p) and (Lg,¥p)|e(@) n B, =
h .
(L9 e(B) NBy, 1€1.

Consider the commutative diagram

Ll 1%y
Iage) l l ol
K% ——— |x*|
s,

where (L%,y3) = (L,,9,)[B: and u = (w:)-' oq-'owg . Since Isf:I is
finite to one (cf. 8.4.1), it is easily seen that u = Isq-l for some
simplicial map sq- :L =1L . It follows that {(L;,wa),(L:,wi)} is a
good triangulation of e(q ).

Step V. Let (L;,$ ) = (Lg x J-¢§ x V), where (J,v) is a linear
triangulation of [0,1] , the product being taken with respect to some or-

ders on Lg and J . Clearly (L;.ﬁ ) 1is a good triangulation of c(gg)x

[{0,1] and therefore, if w; - (es|c(§:) x [0,1])-»@ , then (L;.WS) is a

good triangulation of c(gg).
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Step VI. Clearly (Lj,¥g)s (Lg,¥g) and (Lg,¥) E£it together and
give rise to a good triangulation (Lo,wo) of c(go) with the following

properties :

(v1,) {(LO.WO).(KO.wO)} is a regular triangulation of c(fj) ;

(v1,) (Lo,wo)lc(go) ns, = (Li,wi)|c(§0) nNB, , i€1I.

Step VII. By induction there exists a regular triangulation {(L+.
4,0, &, @)} of c(f) such that (L9, |e(By) 4 (Ly¥g), (K',00) <

+ .
K,@|c(aA) and (L,¥)[c(B) B, s (L ¥)|cB)NB, ,i€I.

Step VIII. By taking some well chosen subdivisions of (La¥a),
(L,,¥,) and (K,p) and fitting together the two first ones, we get the

required triangulation {(L.W).(E;qﬂ} of c(f). Q.E.D.

8.8. PROPOSITION. Let {(L,¥),(K,p)} be a regular triangulation of
c(f). Then there exists a canonical construction of a triangulation
{(f,@).(ﬁ,&»} of £ (such a triangulation of f 1is called a canonical

extension of {(L,¥),(K,9)} ) with the following properties:

(1) (£,$) is a smooth triangulation of B and (ﬁ,&)lc(g) is

a subdivision of (L,¥) ;

(2) (ﬁ,a) is a canonical extension of (K,p) (in particular it
is a smooth triangulation of A );

(3) if B, is a face of B , then {(£,$),(£.$)}!fi exists and
is a canonical extension of {(L,W).(K,qﬂ}lc(fi) H

(4) consider the submersive weak morphisms ¥ : A ==+ M and
g:N8-—+M, M and N being of depth zero. Assume that B = A xM N

(vith respect to 7 and g)), that £ : B~— A is the canonical projec~
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tion and that D .is I-compatible, I being the square
g
n——-—

() £

g(a,x) = x .

N ¢ =z
o

W

In view of 6.15, c(g) = c(é) XM N (with respect to c¢(w) and g ) and
c(f) 1is the canonical projection. Assume further that (L,y) is the fibre
product of (K,p) and a good triangulation (F,T) of N (over a good tri-
angulation (E,p) of M ). Thean (i,a) is the fibre product of (ﬁ,&)
and (F,t) over (E,p) (with respect to some orders).

(5) Assume that £ = f' U, £" : B' U

C c
and f" : B"~— A being nice a.T,m.'s and that D = D' Ue D" , for some

B"~—— A, f' : B'—— A
= -

regular total decompositions D' and D" of £' and f" respectively
(see 6.11.4), Then, in view of 6.13, c(B) = c(g') Uc(C) c(B") . Assume
further that {(L,¥),(K,9)}|c(£f') and {(L,w),(K,w)}Ic(;") exist and
are regular triangulations of c(f') and c(f") respectively. Then
{(L,90), (K, D} E' and {(L,9),(K,M}|£" exist and are canonical exten~

sions of {(L,¥),(K,@}|c(£f') and {(L,¥),(K,0)}|c(f") respectively.

Proof. By induction on n = depth(A). In n = 0 , the proposi-
tion follows from Proposition 7.7. Thus we may assume that n > 0 and
that the proposition is true for any a.T.m. f' : B3'—— A' with
depth(é') < n . Assume also that depth(B,) = | (this is the most diffi-

cult case)
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Let {(L*.w+),(K+,¢r)} = {(L,W),(K,m)}lc(f+) . By induction there
exists a smooth triangulation {(£+,$+),(ﬁ+,&¢)} of f, with the required
properties. By (3), ((io,$o),(i°,&9)} = {(£+,$+),(ﬁ+,$+)}|fo is a canoni-
cal extension of {(L,w).(K,qb}lc(fo) . By (5), ((Lo,wo) (K ,w )} =
= {Qgs0g) &M . (@500, @8N = (dg.dp), @D ES ana
{(is,aa),(ﬁo,ao)} = {(io,ao),(io,ao)}lfa exist and are canonical extensions
of the corresponding restrictions of {(L,}),(K,0)} . By (4), (ia,aa) is
the fibre product of (ﬁo,ﬁp) and (L:,wz) = (L,w)IB: over (K*,¢*) =
= (K,w)|A*, with respect to f: and p . Since ?+ : C(q+) -+ B: is a ho-
meomorphism, we can use 9.5.2 and obtain in an obvious way a smooth trian-

Ao

gulation ((i:,;:),(x-,w-)} of f: : B: + A (to be more precise, K is
the mapping cylinder of sp : ﬁo - Kk* , 6- = Qopg L: is the fibre pro-
P

A + . . »
duct of K and L, over K* (with respect to the canonical retraction of

K~ on K* and S+ ) and w: - ?+-uovl, where v : |£:| + C(p) XA* B:
L.

and yu : C(p) XA* B: - C(q+) are the homeomorphisms constructed in 9.3.4

and 9.5.1 respectively).

Using again (4), we see that (i;,@g) = (ig,es°;;) » where (ﬁ;,&é)

is the product triangulation of Bg x [0,1] obtained from the triangulation

. . 0
;,@%}lB of Bg and a linear triangulation of [0,1] . Since "VIBO :

Bg -+ B* is simplicial with respect to (£8,$;)|Bg and (L:,w:) , it follows
that Wi =, Vlﬁx : ﬁz - B: is simplicial with respect to (£;,$3) and
,w:) Let s : i; - L: be the corresponding simplicial mapping.
From the comstruction of (i:,@:) it also follows that ng - V[B? :
BE-—» BY is simplicial with respect to (if,&?) = (i:.@:)lBo and (Ly,¥3) 3

let sg H if g L: be the corresponding simplicial mapping.
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We can fit together L  and i; along Lg and obtain a new simplicial com—

plex LY 5 30 and s

x

also fit together and give rise to a simplicial map

o

v:LV'—’L:o

0 x

Set BY = B_ U B, and let 7 : BV » B] be given by nleg -

. Define also ¢v : |LV| +BY by ¢v||£g| - &2 and

"
X

0

wvlligl - &; . Clearly (Lv,wv) is a triangulation of n’ , the correspon-

VX
and w IBO T

ding simplicial map being sv .

Define a homeomorphism a : C(wv) - Bf as follows :

- if [b,t] € c(xY) with b € 8%, then b = ¥([by,s]) with by €

- 0
Bg ; let bh € Bg be given by es(bh,l) = bo and set
al[b,t]) = ¥([ag (b, ,),e81) ;
- if [b,t] € c(nY) with -b € B; , then b = Gs(bh,s) with bh €
Bg ; set

a([b,t]) = ?([es(bhscs)st]) .

A direct verification shows that o is a homeomorphism. Define a
triangulation (L:,wf) of Bi by setting Lf - st (the mapping cylinder
of s') and w: = a9y (qgv : lev[ + C(1") is the homeomorphism
constructed in 9.4.2).

. * . . . oL s .
Since fx4 B: — A 13 proper and finite to one, it is a covering

and therefore q- : By — B: is necessarily simplicial with respect to

(£B.$B) and (L:,wz) . Then (ﬂ:,ﬁ:) - (K. 'V-‘¢L ) 1is a triangulation
_ q- q
of B_ and, if the barycentric subdivisions involved are chosen appropria-

tely, {(f:.$:),(ﬁ,G»|Af} is a triangulation of f_ . By subdividing
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(ﬁi.@i). (i:,a:) and (£+,$+), we can fit together these triangulations
and (£:,$:) » and obtain a triangulation (i,@) of B with the required

properties. Q.E.D.

Combining the above results we obtain

8.9. THEOREM. Let f : Br-—+ A be a proper and nice a.T.m., B and A

being of finite depth. Then f 1is triangulable.

8.10. Consider now two smooth manifolds without boundary, M and N. We
shall endow c"YM,N) with the (fine) d’-topclogy. A smooth map £ : M+ N

is called topologically stable if there exists a neighborhood V of f in

d'(M,N) such that for any g € V there exist homeomorphisms ¥ : M + M

and P : N+ N making commutative the diagram

]

¥y —— M
£ lg
N

N ——————
L

By definition, the subset d:-st(M’N) of topologically stable mappings is
open in d'(M,N) . Let Cpr(M,N) denote the set of proper mappings from M
to N . As conjectured by Thom and proved by Mather [MaZ] (see also [Gib]

0 R . 0
the subset ct—st(M’N) n Cpr(M.N) is dense in C (M,N) N Cpr(M'N)’ We shall

prove now the following:

8.11. THEOREM. Let M and N be smooth manifolds without boundary. Then

any proper, topologically stable smooth map f : M+~ N 1is triangulable.
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Proof. Let Qk(M,N) < C:_st(M,N) n Cpr(M,N) be the subset introduced
in [Gib, Chapter IV, Proposition 4.1], k being sufficiently large.

Step I. We shall prove here that any f € Qk(M,N) is triangulable.
From (the proof of) Proposition 3.3 of Chapter IV in [Gib] it follows that
there exists a Thom stratification (A,A') of £ such that

(1) A' = {£(X); X € A} U {(NNE(MD} ;

(2) if I <M denotes the set of critical points of £ , then for
any YEA , £ (¥)NEZEA, £ (Y)NT €A and the restriction of £
to f-l(Y) NI is finite to one.

Let T' = {T,; Y € A'} be a controlled system of tubular neighbor-
hoods of the Whitney stratification A' of N and let T = {Tx : X € A}
be a T'-controlled system of tubular neighborhoods of the Whitney strati-
fication A of M . Let M (resp. N ) denote this w.a.s. (resp. a.s.)
structure on M (resp. N ) (see [(Gib] for the notions used above).

Let Y € A' be such that @ # X = f-l(Y)\Z € A . We can assume

that f('rx) < TY ; then the diagram

is commutative and an easy dimension argument shows that the canonical map
a 'rx - 'l?Y xYx (i.e. a(u) = (f(u),wx(u)) ) is a local diffeomorphism.

Since X = f-l(Y) N (MNL), it is obvious that a|X is a diffeomorphism
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onto a(X) =Y Xy X« A standard argument (see for example [Go], pag. 150,
Th. 3.3.1) shows that o is a diffeomorphism of a neighborhood of X on
a neighborhood of a(X) . But this implies immediately that f is a nice

a.T.m. from M to N . By Theorem 8.9 it is triangulable.

L oD
Step II. Let f € ct-sc(M’N) n Cpr(M,N) and let Vv<=C (M,N) be

a neighborhood of f with the property required in the definition of a
topologically stable map. From the proof of Corollary 4.5 in Chapter IV
of [Gib] it follows that there exists g € Qk(M,N) NV.Lt pu: M +M
and Vv : N + N be homeomorphisms such that wvef = gol . By Step I there

exists a triangulation {(K,9),(L,¥)} of g . Then {(K,u-qow),(L,v-low)}

is a triangulation of f . Q.E.D.

Combining the above result with the fact that C:Lst(M,N) n Cpr(M,N)
is dense in quM.N) n Cpr(M,N) ([Mazl , LGibl) , we obtain the following

corollary which was (implicitely) conjectured in [Tl] :

8.12. COROLLARY. The set of proper smooth mappings from M to N which

are triangulable is dense (even generic) in C (M,N) N Cpr(M’N) .

8.13. In [Hazl it is proved that any proper light subanalytic map is tri-
angulable. Using other results of Hardt [Hal], one can show easily that
such a map can be endowed with the structure of a proper nice a.T.m. From

our Theorem 8.9 we reobtain the triangulability of proper light subanaly-

tic maps.

8.14. 1t is perhaps worth mentionning the following remark due to Hirona-

ka [Hﬁg. Let f : X+ Y be a surjective complex—analytic map of connected
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complex-analytic manifolds. If f- is triangulable, then it is flat.

8.15. Returning to Theorem 8.9, one would like to prove the following
more general result: any proper a.T.m. £ : Br- A with B and A of

finite depth is triangulable. The main difficulty in proving this consists

in the following. Let

be a commutative diagram in the category of ordered simplicial complexes

and increasing mappings. Assume that the canonical map L -+ K XE F is

surjective. Let p : C(|¢|) — c(|p|) denote the canonical map induced by

Iul and |\) . Does there exist a triangulation of p extending the given
triangulations of [u| and |v| ? The answer is positive in two particular
cases : (1) |v| is finite to one, and (2) L = K xF, ¥ and u being

the canonical propjections. These cases appear in the proof of Theorem 8.9.
9, APPENDIX

9.1.1, We consider only countable and locally finite simplicial complexes
(s.c.). Given a s.c. K we denote by |K! its geometric realization and
assume that |K| is contained in some Euclidean space R" , the inclusion

k| R® being linear on the simplexes of K . If K' is a subdivision
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of K , we identify |K'| and |K| in the usual way.

By subcomplex we always mean full subcomplex and use the notation
L 9K to express the fact that L is a (full) subcomplex of K (thus if
the vertices of a simplex O of K are in L , then O itself is in L).
A sigplex of K 1is also viewed, as usually, as a subcomplex of K . If
L 9K, then |L| is considered as a subspace of |K| , |L| € |K| , in
the usual way.

A triangulation of a topological space A consists of a pair (K,¥),

K being a s.c. and ¥ : |K| + A a homeoworphism.

If (XK,9) is a ériangulation of A and K' 1is a subdivision of K,
then, since |K'| = |K| , the pair (K',9) is also a triangulation of A ;
(K',#) 1is called a subdivision of (K,®) . If A< R® is a polyhedron, a
triangulation (K,p) of A 1is called linear if for any simplex G of K
the restriction of @ to |[g| is linear. For example (K'llKl) is a li-
near triangulation of [K| .

Let (K,p) be a triangulation of A and let A, € A be a closed

1

subgset. We say that the restriction of (K,9) to Al exists if w-l(Al) =

= IKll for some subcomplex K! of K ; if this is the case, then (Kl’
W'IKII) is a triangulation of A called the restriction of (K,¥) and
denoted (K.(D)IAl (we shall also say that (K,9) 1is an extension of

.0 %, 1) ).

9.1.2. Given a simplicial map (s.m.) s : K+ L we denote its geometric
realization by |s| : |K| + |L| . The s.m. is called proper if and only if

the preimage of any vertex of L consists of finitely many vertices of K .
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Clearly s 1is proper if and only if Isl is proper (i.e. the preimge
through |s| of any compact subset of L is compact).

A continuous map f : B + A is called triangulable if there exist

triangulations (K,p) and (L,¥) of A and B respectively and a sim
plicial map Sg ¢ L+ K such that £ -'(polst'nlf.l (we shall also say
that f is simplicial with respect to (L,¥) and (K,p) , or that the

pair {(L,¥),(K,p)} is a triangulation of £ ); notice that ¢ is com~

pletely determined by £ , (K,p) and (L,%) .

Let {(L,¥),(K,9)} be a triangulation of £ : B * A and let B, ©

B and A.1 < A be closed subsets such that f(Bl) G A, . Set fl - £|Bl :

1
B, * A . We say that the restriction of {(L,p), (K, @)} to £, exists if
the restrictions of (L,¥) to 31 and (K,p) to A1 exist ; if this is
so, then {(LiW)IB):(Kv¢)|Al} is a triangulation of fl , called the res-
triction of {(L,¥),(K,9)} and denoted {(L.!JJ),(K,tD)}Ifl (we shall also

say that {(L,¢),(K,p)} is an extension of {(L.tp),(l(.np)}lfl ).

9.1.3. An ordered simplicial complex (o0.s.c.) is a s.c. K such that any

simplex 0 of K is a totally ordered set, the order of any face T of
0 being induced by the order of o .

Any s.c. can be endowed with a structure of an o.s.c. More generally,
if L9K and L 1is endowed with a structure of an o.s.c., then this
structure can be extended (the meaning is obvious) to a structure of an

o.8.c. on K (the fact that L is a full subcomplex is essential here).

9.1.4. Let K be a s.c. and K' be a barycentric subdivision of K .
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Given a simplex O of K (denote this by 0 €K ), let G be its bary-
center. On K' we shall always consider the following order : o<1 if
and only if O 1is a face of T (denote this by 0 < T ). Together with

this order K' 1is an o.s.c.

9.2.1. Let K and L be o.s.c.' 5. We shall construct a new o.s.cC.

K x L , called the product of K and L , as follows: the set of vertices
of K x L is the cartesian product of the set of vertices of K and the
set of vertices of L ; ((vl’wl)""’(vn'wn)) is a simplex of K x L 1if
and only if VisesosVy (resp. wl,...,wn) are vertices of a simplex of K
(resp. L ) and v, <v

<ooo‘< . < <,.. < =1
2 S v, (resp. w, S w v, ); if

i 1 2 -
(vl,wl) and (vz,wz) are vertices of a simplex of K X L then (v‘.wl)

< (vz,wz) if and only if v, <v, and w, <w

1 2 1 2’
Let Py ¢ KxL~+K and Py ¢ K xL - L be the canonical projecti-
ons (they are s.m.'s !). We can therefore consider Ipll x Ipzl : |K x L]

-+ |K| x IL] . The next lemma is well known (see for example [E-S],Chap. 1I,

Lemma 8.9) .

9.2.2. LEMMA. (K x L,lpll x lpzl) is a triangulation of |K| x |L| .

We shall alsoc need the following result.

9.2.3. LEMMA. Let K and L be s.c.'s and let (N,y) be a triangulation
of |K| x |L| such that {(N,w),(K,lll(')} (resp. {(N,w),(L,llLl)}) is
a triangulation of the projection |K| x |L| — [K| (resp. |K| x |L] —

|L| ). Then K and L can be endowed with structures of o.s.c.'s such that
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(1) there exists an isomorphism u : KXL + N ;
(2) yelu] = lpll x lpzl » Py and Py being as in 9.2.2.
(3) if dim(K) > 1 and dim(L) > | , then the orders on K and

with the above properties are unique up to a simultaneous change to the

oposite orders.

Proof. Assume that dim(K) > 1 and dim(L) > 1 , the other cases

being trivial., Let O = (ul,uz) be a l-dimensional simplex of K . Set

u <u

1

hypotheses it follows easily that w-l(lcl x |t}) is one of the follow-

2 Let T = (vl,vz) be a lI-dimensional simplex of L . From the

ing polyhedra

12 Y22 V12 Y22

11 Va1 1 Va1

and w(wij) = (ui,vj) . In the first case set v < vy s while in the

1
second case set vy < v, . One can verify that this procedure determines
a structure of o0.8.c. on L . Next, starting with T = (vl,vz) and with

the order already determined on {vl,vz} , we endow K with a structure

of o.s.c. The lemma follows without difficulty. Q.E.D.

Th: next lemma is now obvious.

9.2.4. LEMMA. Let (K,9) and (L,¥) be triangulations of A and B

respectively. If K and L are endowed with structures of o.s.c.'s ,
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then (K *x L,8) , with 8 : |[K xL| + A x B given by 6(z) = (w(!pll(Z)),
w(lpzl(z))) , is a triangulation of A X B , called the product of (K,yp)
and (L,y) , and denoted (K,®) x (L,p) ; the projections A X B — A

and A X B — B are simplicial with respect to this triangulation of

A X B and the given triangulations of A and B . Any triangulation

of A X B with the last property is (up to an isomorphism) of the form

(X,9) x (L,¢) , for some orders on K and L .

9.3.1. Let K, L and M be 0.8.c.'s and let s : K*M and ¢ : L
+ M be increasing simplicial mappings. Let K xy L be the full subcom-
plex of K x I, whose verticas are all the vertices of K X L of the form

(u,v) with s(u) = t(v) . K XM L 1is called the fibre product of K

and L over M (with respect to s and t ). Let ;i : K XM L~—~XK
and ;2 : K *H L= L denote the restrictions of the projections P, ¢
KxL-—=K and P, ¢ K XL =1 respectively; define p : K x“ L—M
by setting p = ";l = to;2 .

Consider now the (topological) fibre product |K| x|M| L] =
= {(x,y) € |[K| x |L] ; |8](x) = |e](y)} . One checks easily that
oy x|y 12l & IRIxg Ll = R[>\ (L] given by (lpy] x)y 12,12 (C2)
= (15, 1€2). 17,1 (2)) = (lp,1(2),[p,(2)) 1is well defined and that

(IPll x IPZI)-l(IKI xIM|IL|) = |K "y L| . From Lemma 9.2.2 we get
9.3.2. LEMMA. (K x, L'l;ll || l;zl) is a triangulation of |K]| *|u| L] .

We shall also need the following generalization of Lemma 9.2.3.
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9.3.3., LEMMA, Let K, L and M be s.c.'s, let s :K+M and ¢t : L -+

M be s.m.'s and let (N,P) be a triangulation of |K| x |L] such

M|

that {(N,w),(K.l|KI)} (resp. {(N,¥),(L,! I)} ) is a triangulation of

It
the canonical projection |K| % x| L] = |K|] (resp. K| lel L] —
|L| ). Then we can endow K , L and M with structures of o.s.c.'s
such that

(1) s and t are increasing with respect to these orders;

(2) there exists an isomorphism pu : K XM L +N;

Proof. Choose any structure of o.s.c. on M . Given a vertex W of
M let Kw be the (full) subcomplex of K whose vertices are all the ver-
tices u of K with s(u) = w . Define similarly Lw 4L (with respect
to t ). Notice that «N’W)’(M’“bﬂ)} is a triangulation of the map |pley :
IN| » [M] ; let r : N+ M be the corresponding simplicial map. As above
we can define Nw 4N (with respect to r ). From the hypotheses it fol~-

lows that w(INw[) - Ile x ILwl < |k| x [Lt] and therefore (uw,w||nwl)

u|
is a triangulation of IKw' x lel . We can apply Lemma 9.2.3 and endow
Kw and Lw with structures of o.s.c.'s with the properties stated there.
Together with assertion (1) in the present lemma, these structures determi-

ne the required structures of o.s.c.'s on K and L . The remaining veri-

fications are left to the reader. Q.E.D.

The next lemma is now obvious.

9.3.4. LEMMA, Let (K,¢) , (L,¢y) and (M,§) be triangulations of A , B
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and C . Let £f: A+ C and g : B+ C be simplicial with respect to

these triangulations and let 8¢ ¢ K+ M and sg : L+ M be the corres—

ponding s.m.'s. If K , L and M are endowed with structures of o.s.c.'s

such that s ans sg are increasing, them (K x L,8) , with 6 :

M

|F Xy L| = Ax_ B given by 6(z) = (w(lS,l(:)).w(lSZI(z))), is a trian=-

c

gulation of A x_ B , called the fibre product of (K,9») and (L,{) over

Cc
C (with respect to £ and g ) and denoted (K,9¥) xC (L,y) ; the projec-

tions A Xa B~ A and A *e B — B are simplicial with respect to this

triangulation of A x_ B and the given triangulations of A and B . Any

c

triangulation of A X, B with the last property is, up to an isomorphism,

c
of the form (K,®) Xc (L,$) , for some orders on K , L and M.

9.4.1. Let s : K+ L be a proper s.m. Given a barycentric subdivision
L' of L we can always find a barycentric subdivision K' of K such
that s extends to a s.m. s' : K' + L' and |s*| = |[s| . For any sim~
plex ¢ we denote by d the corresponding vertex of the barycentric sub—-
division.

We recall first the definitioan of the simplicial mapping cylinder

Ms of 8 . The set of vertices of 'Ms is the disjoint union of the sets
of vertices of L and K' . A finite set (vl,...,vm,sl,...,an) is a
simplex of Ms if T = (vl,...,vm) is a simplex of L and %’5 sYal) s
3' < 82 € vee < an (recall that o' < 0" means that o' is a face of
¢" ). In the above definition the vi's (or the ai's ) may be omitted,
with the obvious changes in the defining conditions. Thus a simplex of
M, is of the form ts*A (the join of T and A ), T being a simplex

of L, A being a simplex of K', A = (31.....3n) and T <$'(31) . It
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is therefore clear that Ms is a subcomplex of the s.c. L *K' , the join
of L and K' . There exists a canbnical subdivision M; of M defined
as follows. The set of vertices of M; is the disjoin union of the sets
of vertices of L' and K' , and a set (%l""’?m’al""'an) of verti-
ces of M; is a simplex of M; if '-El € eee < %m 53’(31) and 8‘ < ees
< Gn . Thus M! is a subcomplex of L'=*K'.

There exist canonical simplicial mappings L M; - L', is : L+ Ms.

" .ot ' s . op! 21, et ' : . ) = 3
ig s L -»Ms » 3g ¢ K +Ms and ig K -vMs defined by : rs(r) T =
=i!(7) if T is a simplex of L, r (3) = s(o) = s'(3) , igle) = i@ =

=g if ¢ is a simplex of K and i.s(v) =y if v is a vertex of L .

Consider now the topological mapping cylinder clsl of |s| : |K| »
L] « Recall that clsl is obtained from (|K| x [0,1 DU (|L] x {O})
(disjoint union) by identifying (x,0) € |K| x [0,1] with (]s|(x),0) €
|L| x {0} . The image of (z,t) € (|K| x [0,1DLI(JL]| x {0}) in cls|
is denoted [z,t] . Define Tis| clsl -+ |L} ilsl A -»Clsl and
jlsl : K| -»Clsl by setting rlsl([x,t]) = |s|(x) , j|‘|(x) = [x,1] if
x € |K| and t €[0,1] and rlsl([y,O]) =y, ilsl(y) = [y,0] if y €

|[L] . The following result is well known.

9.4.2. PROPOSITION. Let s: K+ L be a proper s.m. Then there exists a

homeomorphism 9 |Ms| > Clsl with the following properties:

(1) 1f Kl 4K and I.l 41l are subcomplexes, s(Kl) cLl and

s, ¢ Kl -ol.‘ is the restriction of s , then ws(!usll) - clsll and

®, I“s | = ©, (of course, the barycentric subdivisions of K, and L
1 1

1 1
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are those induced by K' and L' ).

(2) The diagram

ligl
li'| IM'I"_"——-;-—"——- L'
13l " il n
K] = [K'| ————— M| “_‘/——'—ILI
L8|
"DS
x l 4

sl

is commutative.
(3) Let J be as.c.and let g:K'+J and h: L"'+>J be

g.m.'s such that g = hes' . Define V¥ : C‘s| + |J| and s‘p : M; +J by
setting ¢([x,t]) = |g](x) for x€ |K'| = |K| , ¥([y,0]) = |h|(y) for

sb(%) = h(T) for TEL' and sw.(a) = g(3) for O € K'.

Then {(M;.CD’).(J.IIH)} is a triangulation of ¢ , the corresponding

Yle'l"'LI s 3

s.m. being s

w L]
Proof [G']. Let o = (“l""’um) be a simplex of K , T = (vl,...,
vn) be a simplex of L and assume that s{(0) < T . Given x = L a;u. €

lo| and 1€£j<n sec @ = = o and, if @l >0, ¥ -

s(u.i)'-vj

= = (a./a.)u. .
s(u.)=v, I
i’ 7]

Let now 0*A be a simplex of Ms with A= (31,...,31:), <
s(d;) and 0,<0,<...<0_ <0 (thus 8<0); lec z€ [B8xA]c M.
Then there exist t € [0,1] , x€ |A| = |o|] and y =% ijj € |8] such

that z = tx + (l-t)y (if t#0 and 1 , then x,y and t are uni-



- 180 -

que). Since 8 < s(ol) » it follows that for any vertex vj €8 ,al 40

and we can define xy € |o|] by setting x = I 8.x3 . Define next
v.€8
J

‘pS)G’T(Z) € CISI by

Y

s,a,r(z) = [tx + (l-t)xy. t]

(notice that |s|(xy) =y ; thus vhen t =0, ws,a,r(Z) - [xY,O] = [y,0]
is still well defined ; when t =1 , ws g T(z) = [x,1] is also well
1 ] »
defined).
If 3,7,08 and A are other simplexes satisfying the same gon—

ditions as ¢ , T, 8 and A and if =z € i§ *RI , then one can check

= . ~ - i H '
that ws,o,r(z) “E,o,r(z) We can therefore define @ ,MSI - C|3|

by ‘Ds(z) =

s,c,t(z)’ 2,0, 1T and A being as above.

Assertions (1), (2), (3) and the continuity of @, are easy to ve~
rify. In order to prove that ®, is a homeomorphism it is sufficient
(by (1)) to consider the case K= 0 and L =T =3s(c) ., If 0 =1 and

g = lU , denote Ms = Ma ’ CI - CIUl and ws -cpo . In this case

s|
| 1 1. . . .
CIOI = |g| x [0,1] = o} x [a l (A" 1is the standard i-dimensional simplex

with vertices O and 1| ), Mo = g' x A (o' 1is considered with the or—

. .

d:r defined in 9.1.4 and A' with the order 0 <1 ) and @, lo' x Al|
+ |o| x IAl] is the map determine? by the projections of o' x sl on
o' and Al « By Lemma 9.2.2 it is a homeomorphism.

Return now to the general case s : g+T = s(0). Let O = (ul,...,
up) amd T = (v),...,v ) . For x € |s]-l(?) define s_ : lt] + |o| by

J

= - H
s (y) = I yix .y T ¥iY; € it] .
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It is clear that
(9.4.2.1) Is| °os = llol .

-‘ Define also Fx :IMT] -+ IMSI and Gx : CITI - cls! as follows.
Let z € le*(%l,...,%r)l c IMTI - I"n |  (where 6 < LT =1 < ...

T
<1, <T), z=ty+ It T with y €|6| and t+Ze =1.Le 0 =

k 'k

=3 l(’ri) and let A be the simplex of ©' generated by 0, < ... < ar .

1
Then B8*A is a simplex of Ms and we can define Fx(z) € |e*xa]| = IMSI

by setting
Fx(z) =ty + L tksx'(‘rk) .
In view of (9.4.2.1) the definition is correct. Gx is defined by

G (ly,eD = [s (¥),e], [y,t]l€cC o

There are also canonical projections Trs : Ms - M'r and P ¢ Clsl - C|T|
given by
ws(vj) = vj and ns(ao) = 3(0g) for ogg <o

ps([x.t]) = [|s{(x),t], I[x,c] € Clq| -

A direct verification shows that the diagram

F, |1r8|

] —3—s | —2 |

(9.4.2.2) w‘l o, lcp.r
— ——

Ci7t Te, > Cist e, S

is commutative. From (9.4.2.1) it follows that
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(9.4.2.3) [ns( oF = lIMTI

and

(9.4.2.4) p oG =1 .
s x CIT|

Since |o| =U sx(lrl) , x running in Isl-l(?) , and since
sx(lrl) n sx,(lrl) Nlol> =8 if x# x' (|o|° is the interior of o ),
the commutativity of the diagram (9.4.2.2), the relations (9.4.2.3) and
(9.4.2.4) and the fact that 9. is a homeomorphism prove that L is a

homeomorphism too. Q.E.D.

9.4.3. LEMMA. Consider the following commutative diagram of s.m.'s

K
al
M

and assume that s and t are proper and |B| : |L] - |[N| is finite to

Z 4¢——
w0

r—
t

one, Let N' be a barycentric subdivision of N and chose barycentric
subdivisions M' , K' and L' of M, K and L respectively such that
t,B8,a and s extend to s.m.'s t' : M' +N',B':L'+N',a':
K'+M' and s' :K'+L' and |t| = |e'|, [8] = |B8'] » |a] = la']

and |[s| = |8'| (this is always possible: one choses first M' and then
K' such that |t'| = |t| and |a] = |a'] ; L' is uniquely determined by

. * . = [ M -
the condition |B'| = |8|). Define sy P Mg T M, and 9 cls] - cltl by
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setting

s (v) = B(v) for any vertex v of L ;

L

sw(a) = a'(3) for any simplex o of K ;

W(ix,c]) = [|aj(x),t] for [x,t] € C|3| with x €. K] ;

¥([y,01) = [|8|(y),0] for [y,0] € Cjy| with y€ L] .

Then {(Mh’ws)’(nt’wt)} is a triangulation-of 1 , the corresponding

s.m. being s

w L]
Proof. Using (1) of Lemma 9.4.2 and the fact that |B| is finite to

one, it is sufficient to consider the case K =0 , L=N=71, M=08 and

B = - This case can be settled by a direct verification. Q.E.D.

9.5.]1. LEMMA. Let f : A+ B be a proper continuous map and let B : B,

+ B be continuous. Let A‘ = A XB Bl (with respect to £ and 8 ) and

let fl : Al - Bl and a : A] + A be the canonical projections. Let Y :

Cfl -+ Cf be the continuous map induced by @ and B and let re : Cf + B

and rfl : cfl - Bl be the canonical retractions. Define h : Cfl »>

Cf XB Bl by h(z) = (Y(z),rfl(z)) (the fibre product is taken with res-

pect to r, and B8 ). Then h is a homeomorphism and h-loY and h-lorf
- l
are the canonical projections of Cf s Bl on Cf and Bl respectively.

The proof of this lemma is simple and left to the reader.

9.5.2. LEMMA. The notation is as above. Assume that f and 8 are tri-

angulable with respect to some triangulations of A and B, and the

1
same triangulation of B . Then Y 1is triangulable.
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Proof. There is no loss of generality in assuming that A = x| ,
B =L ,B=|L], £= |s|] and B = |t] . By subdividing first L
and then K and L, » we may further assume that A = k'l , 8= |L'],
B, = IL{{ , £ = |s'] and B8 = |t'| . We can therefore comsider K =
K* XL, L; and, by 9.3.2, we can identify Al
identification a = l;ll and £, = IEZI , 1;1 and ;2 being the projec-

with lKll ; under this

tions of Kl on K' and L; . Let r_: M; + L' be the retraction.
Since M; hag an obvious structure of o.s.c., we can consider M =
- M; X L; » with respect to r and t' . Using the homeomorphisms
M ' x ! e de ' = XY
FARES lusl ILIh‘ll of 9.3.2 and Iusl *Clg| = C¢ of 9.4.2 and
Lemma 9.5.1 we get a homeomorphism ¥ :|M| +C, . One checks that

i

{(M,\b),(M;,a)’)} is a triangulation of Y . Q.E.D.

9.6. Let ACR" and BCR" be polyhedra. A continucous map £ : A+ B

is called piecewise linear if its graph is a polyhedron in R xR =

‘Rmm .

If s :K+L is a s.m., then |s| : |K|] + |L] is piecewise
linear. The following partial converse is also true: given a pfoper piece~-
wise linear map f : A + B , there exist linear triangulations of A and B

such that f 1is simplicial with respect to them (see [Hu] » Theorem 3.6).
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