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Abstract. Let A be an abelian variety defined over a number field F. Let P be a

point in the Mordell-Weil group A(F ) and H a subgroup of A(F ). We consider the
following local-global principle which originated with the support problem of Erdös

for the integers: the point P belongs to the group H, if for almost all primes v of

F, the point P (modulo v) belongs to the group H (modulo v). We prove that the
principle holds for any abelian variety A, if H is a free submodule and the point P

generates a free submodule of A(F ) over the ring EndF A.

1. Introduction.

The main result of this paper is the following

Theorem A. [Thm. 4.1, Cor. 4.5]
Let A be an abelian variety defined over a number field F. Let O:=EndF A denote
the ring of F -endomorphisms of A. Let l be a prime number such that the Tate mod-
ule Tl(A) of A is integrally semi-simple (cf. Definition 3.1). Let Λ̂ be a submodule
of A(F )⊗Zl which is free over the ring O⊗Zl, where Zl denotes the ring of l-adic

integers. Let P̂ ∈ A(F )⊗Zl be a point which generates a free O⊗Zl-submodule of

A(F ) ⊗ Zl. Then the following local-global principle holds for A, Λ̂ and P̂ :

The point P̂ is contained in Λ̂, if and only if, the point P̂ (modulo v) is contained

in the group Λ̂ (modulo v), for almost all primes v of F.

The same local-global principle holds for any A, l and P̂ as above, and for any Λ̂
which is torsion-free over the ring O ⊗ Zl, provided the ring O ⊗ Ql is a division
algebra and O ⊗ Zl is a maximal order.

We prove that any abelian variety defined over F is isogeneous (over F ) to an
abelian variety with all Tate modules integrally semi-simple cf. Proposition 3.5.
This implies the following
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Theorem B. [Theorem 5.1]
Let A be an abelian variety defined over a number field F. Set O := EndFA. Let Λ
be a free O−submodule of A(F ). Let P be a point in A(F ), which generates a free
O−submodule of A(F ). Then the following local-global principle holds. The P point
is contained in the module Λ, if and only if, the point P (modulo v) is contained in
the module Λ (modulo v), for almost all primes v of F.

The question of the local-global principle for detecting by reductions if a point
belongs to a given subgroup of the Mordell-Weil group of an abelian variety orig-
inated with the support problem of Erdös. This question was formulated by the
first author in 2002, in a letter to Kenneth Ribet. For an abelian variety A with
O=Z and dim A=2, 6 or an odd integer, the local-global principle was proven in [3],
Theorem 4.2, if H=Λ is a free subgroup and P is a non torsion point of the Mordell-
Weil group A(F ). Note that the assumption on the dimension of the variety in loc.
cit. can be dropped. In order to see this, it suffices in the proof of Theorem 3.12,
[3] to apply the stronger Proposition 2.2, [4] instead of Theorem 3.1, [3]. More gen-
erally, if A is an abelian variety with a commutative ring of endomorphisms, then
due to a result of Thomas Weston (cf. [14], Theorem) the condition P (modulo v)
belongs to H (modulo v), for almost all v, implies the relation P ∈ H+A(F )tors,
for any subgroup H of A(F ) and P∈A(F ) non torsion over Z. One should note
however, that neither the method of the proof of [3], Thm. 4.2, nor of the Theo-
rem of Weston seem to extend to abelian varieties with non commutative ring of
F−endomorphisms.

Our proof of Theorem A is based on methods of Kummer theory for abelian
varieties and Galois cohomology developed in papers [3] and [4], augmented by an
idea of Larsen and Schoof used in [9]. The combination of these methods enabled us
to treat the problem of detecting linear dependence by reductions for any abelian
variety with no extra assumptions on the ring of endomorphisms nor on the dimen-
sion. When this paper was revised, we learned that Antonella Perucca proved a
similar result to our Theorem B by a different method cf. [15].

The organization of the rest of the paper is as follows. In Section 2 we introduce
necessary notation and basic definitions from Kummer theory for abelian varieties
developed by Ribet in [12]. In Section 3, following [9], we discuss the notion of inte-
grally semi-simple Galois modules. The proof of Theorem A is contained in Section
4. In the last section of the paper we prove Theorem B and collect few corollaries
which the reader may find of independent interest. In particular, Corollary 5.6 gen-
eralizes to isogeny classes of abelian varieties the solution of the multilinear version
of the support problem of Erdös obtained by Stefan Barańczuk in [2].

We would like to thank Grzegorz Banaszak for stimulating discussions and for
some help with an argument in the proof of Theorem 4.1. W.G. would like to
thank John Cremona, Gerhard Frey, Christian Kaiser and Don Zagier for helpful
comments and remarks concerning the results of this work.
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Finally, we greatfully acknowledge the work of two anonymous referees whose
critical reports helped us to strengthen the results and to improve the exposition.

2. Kummer theory for abelian varieties.

Preliminaries on Galois cohomology.

Let A be an abelian variety of dimension g, defined over a number field F. We
denote by O :=EndF A the ring of F−endomorphisms of A. For a prime number
l, let ρl : GF −→ Gl2g(Zl) be the representation of the absolute Galois group
GF := Gal(F̄ /F ), which is associated with the Tate module of A at l. For k ≥ 1,
we denote by ρ̄lk : GF −→ Gl2g(Z/lk) the residual representation attached to the
action of GF on torsion points A[lk] := A(F̄ )[lk]. We put Vl(A):=Tl(A)⊗Ql. Define
the groups: Hlk :=kerρ̄lk , Hl∞ :=kerρl, Glk :=Imρ̄lk and Gl∞ :=Imρl and the fields
of division points on A: Flk :=F̄H

lk and Fl∞ :=F̄Hl∞ .

Consider the long exact sequence in Galois cohomology:

H0(GF , A(F ))
×lk

−−−−→ H0(GF , A(F ))
δ

−−−−→ H1(GF , A[lk]) −−−−→

induced by the Kummer exact sequence:

0 −−−−→ A[lk] −−−−→ A(F )
×lk

−−−−→ A(F ) −−−−→ 0.

The boundary homomorphism δ induces:

φ(k) : A(F )/lkA(F ) ↪→ H1(GF ; A[lk]),

for H0(GF , A(F )) = A(F ). By definition of δ (cf. [5], p. 97): φ(k)(P+lkA(F ))(σ) =
σ(Q) − Q, where P ∈ A(F ), σ ∈ GF and Q ∈ A(F ) is a point such that lkQ = P.
There are commutative diagrams:

(2.1)

A(F )/lkA(F )

×l

��

� � φ(k)

// H1(GF ; A[lk])

H1(GF ;×l)

��
A(F )/lk−1A(F )

� � φ(k−1)

// H1(GF ; A[lk−1])

which after passing to the inverse limit with k give a monomorphism:

(2.2) A(F ) ⊗Z Zl ↪→ H1(GF ; Tl(A)),

(note that A(F )⊗Zl = lim←A(F )/lkA(F ), by finite generation of the Mordell-Weil
group A(F ), and lim←H1(GF ; A[lk])=H1(GF ; Tl(A)), by finiteness of H0(GF ; A[lk]) ).
Consider the restriction map in Galois cohomology:

(2.3) res : H1(GF ; Tl(A)) −→ H1(Hl∞ ; Tl(A))Gl∞ ,
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induced by the embedding Hl∞ ↪→ GF . The fixed point set on the right hand side
of (2.3) is computed with respect to the action induced via the exact sequence of
profinite groups:

0 −→ Hl∞ −→ GF −→ Gl∞ −→ 0.

Since Hl∞ acts trivially on Tl(A) by definition, we have:

H1(Hl∞ ; Tl(A))Gl∞ = HomGl∞
(Hl∞ ; Tl(A)).

Lemma 2.4. The restriction map (2.3) has a finite kernel.

Proof. By the inflation-restriction sequence [5], p. 100:

0 −→ H1(Gl∞ , Tl(A)Hl∞ )
inf

−−−−→ H1(GF ; Tl(A))
res

−−−−→ H1(Hl∞ ; Tl(A))Gl∞

we get ker(res) = H1(Gl∞ ; Tl(A)Hl∞ ) = H1(Gl∞ ; Tl(A)). On the other hand:

H1(Gl∞ ; Tl(A)) ⊗Z Z[
1

l
] = H1(Gl∞ ; Tl(A) ⊗Z Z[

1

l
]) = H1(Gl∞ ; Vl(A))

where the last group vanishes due to the theorem of Serre [13], Cor.1, p. 734.
Hence, ker(res) is a torsion group. The lemma follows, since the Galois cohomology
group H1(GF ; Tl(A)) is a finitely generated Zl−module. �

Definition 2.5. Define the homomorphism:

φ : A(F ) ⊗ Zl −→ HomGl∞
(Hl∞ ; Tl(A)),

by the composition of maps (2.2) and (2.3).

Lemma 2.6.

For every prime l: kerφ = A(F )tors ⊗ Zl. In particular, the group kerφ is finite.

Proof. Clearly HomGl∞
(Hl∞ ; Tl(A))⊂Hom(Hl∞ ; Tl(A)), but Tl(A) is a free Zl−

module, hence HomGl∞
(Hl∞ ; Tl(A)) is a free Zl−module. Let

∑
j Pj ⊗ αj ∈

A(F )tors ⊗ Zl, and let n ∈ N , be such that nPj = 0 for every j. Then 0 =
φ(

∑
j nPj ⊗ αj) = nφ(

∑
j Pj ⊗ αj) ∈ HomGl∞

(Hl∞ ; Tl(A)), so φ(
∑

j Pj ⊗ αj) = 0,

and
∑

j Pj ⊗αj ∈ kerφ. To finish the proof apply Lemma 2.4, and use the equality

(A(F ) ⊗ Zl)tors = A(F )tors ⊗ Zl. �
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Kummer maps and reductions.

Let Λ̂ be a finitely generated, free Ol := O ⊗ Zl−submodule of A(F ) ⊗ Zl.
All modules over the ring O (respectively, over Ol) considered in this paper are by

definition, left O−modules (resp., left Ol−modules). For P̂ ∈ A(F )⊗Zl and k ∈ N,
define the Kummer map:

(2.7) φ
(k)

P̂
: Hlk → A[lk]

by φ
(k)

P̂
(σ) = σ(Q̂)− Q̂, where Hlk = G(F/Flk ) and Q̂ ∈ A(F )⊗ Zl is a point such

that lkQ̂ = P̂ . It is easy to check that the map (2.7) does not depend on the choice

of the point Q̂. For the rest of the paper, any point Q̂ such that lkQ̂ = P̂ will be
denoted by 1

lk
P̂ .

Remark 2.8. Note that, if P ∈ A(F ), then φ
(k)

P̂
= res(k)(φ(k)(P + lkA(F ))), where

P̂ = P ⊗ 1 and res(k) : H1(GF , A[lk]) → H1(Hlk , A[lk])G
lk = HomG

lk
(Hlk , A[lk]) is

the restriction map in Galois cohomology.

Let us fix a basis P̂1, P̂2, . . . , P̂r of the module Λ̂ over the ring Ol. We define the

homomorphism: Φ(k) : Hlk →
⊕r

i=1 A[lk] by Φ(k) = (φ
(k)

P̂1
, φ

(k)

P̂2
, . . . , φ

(k)

P̂r

). There

are commutative diagrams

Hlk

��

φ
(k)

P̂ // A[lk]

×l

��
Hlk−1

φ
(k−1)

P̂ // A[lk−1]

which after passing to the inverse limit with k give the homomorphism:

(2.9) φP̂ : Hl∞ → Tl(A).

Observe that by Remark 2.8, for any P̂ ∈ A(F ) ⊗ Zl, we have: φP̂ = φ(P̂ ). Let
Φ : Hl∞ →

⊕r
i=1 Tl(A) be defined as Φ = (φP̂1

, . . . , φP̂r
).

Proposition 2.10.

The image of Φ is an open subset of
⊕r

i=1 Tl(A) with respect to the l−adic topology.

Proof. [3], Lemma 2.13.

For a prime v of good reduction for A, and for a prime number l, we denote
by r̂v the map rv ⊗ Zl : A(F ) ⊗ Zl −→ Av(κv)l−torsion, where κv := OF /v is the
residue field at v, and rv : A(F ) −→ Av(κv) is the reduction map at v.
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Proposition 2.11.

Let Λ̂ be a free Ol-submodule of A(F ) ⊗ Zl. There exists a set Π of prime ideals
of the ring OF of algebraic integers of F, such that Π has positive density and
r̂v(Λ̂) = 0, for every v ∈ Π.

Proof. The proof is similar to the proof of Proposition 2.2 in [4]. For the convenience
of the reader we give here the argument for the current setting, i.e., for the group
A(F̄ ) ⊗ Zl. In order to simplify notation we put: Tl = Tl(A), T r

l =
⊕r

i=1 Tl,
A[m]r =

⊕r
i=1 A[m] and Av(κv)l := Av(κv)l−torsion = Av(κv) ⊗ Zl. We fix an

Ol-basis P̂1, P̂2, . . . , P̂r of the module Λ̂. Define the fields: Flk( 1
lk

Λ̂) := F
ker Φ(k)

and Fl∞( 1
l∞

Λ̂) := F
kerΦ

. Consider the following commutative diagram:

G(Fl∞( 1
l∞

Λ̂)/Fl∞)

��

// T r
l /lmT r

l

��
G(Flk+1( 1

lk+1 Λ̂)/Flk+1)

��

// (A[lk+1])r/lm(A[lk+1])r

��
G(Flk( 1

lk
Λ̂)/Flk) // (A[lk])r/lm(A[lk])r

where the horizontal maps are induced by Kummer maps Φ, Φ(k+1), Φ(k) and m ∈ N
such that lmT r

l ⊂ Im Φ. The number m exists by Proposition 2.10. For k ≥ m, the
images of the homomorphisms:

G(Flk(
1

lk
Λ̂)/Flk) → (A[lk])r/lm(A[lk])r

and

G(Flk+1(
1

lk+1
Λ̂)/Flk+1) → (A[lk+1])r/lm(A[lk+1])r

are isomorphic groups. Hence, the homomorphism:

G(Flk+1(
1

lk+1
Λ̂)/Flk+1) → G(Flk (

1

lk
Λ̂)/Flk)

is surjective, so:

Flk(
1

lk
Λ̂) ∩ Flk+1 = Flk ,

for k ≥ m. For such k we have the following tower of fields:
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Flk+1( 1
lk

Λ̂)

JJJJJJJJJJ

rrrrrrrrrr

Flk( 1
lk

Λ̂)

id

MMMMMMMMMMM

Flk+1

h

sssssssssss

Flk

F

By the theorem of Bogomolov ([1], Cor. 1, p.702), for k large enough, there exists
a nontrivial homothety h in the image of ρl, which acts on Tl by multiplication by
1 + lku0, for u0 ∈ Z×l . We choose

γ ∈ G(Flk+1(
1

lk
Λ̂)/Flk) ⊂ G(Flk+1(

1

lk
Λ̂)/F )

such that γ|F
lk

( 1

lk
Λ̂) = id, γ|F

lk+1
= h. By the Chebotarev theorem (cf. [8], Thm

10.4, p. 217) there exists a set Π of primes of OF , with positive density, such

that, for v ∈ Π, the Frobenius element Frv in the extension Flk+1( 1
lk

Λ̂)/F equals
γ. For such a v we fix an ideal w in OF

lk+1( 1

lk
Λ̂) over v. Consider the commutative

diagram:

A(F ) ⊗ Zl
r̂v //

��

Av(κv)l

��
A(Flk+1( 1

lk
Λ̂)) ⊗ Zl

r̂w // Aw(κw)l

The vertical maps in this diagram are natural injections. Now we proceed as in Step
4 of the proof of Proposition 2.2 in [4]. Let lci be the order of r̂v(P̂i) ∈ Av(κv)l,

where ci ≥ 0 and i ∈ {1, . . . , r}. The point Q̂i := 1
lk

P̂i ∈ A(Flk+1( 1
lk

Λ̂)) ⊗ Zl

such that lkQ̂i = P̂i, maps to the point r̂w(Q̂i) ∈ Aw(κw)l of order lci+k, because

lci+k r̂w(Q̂i) = 0. By the choice of v we get:

h(r̂w(Q̂i)) = (1 + lku0)r̂w(Q̂i),

where h is the homothety chosen before. The choice of v implies also that r̂w(Q̂i) ∈

Av(κv)l, hence h(r̂w(Q̂i)) = r̂w(Q̂i), so lk r̂w(Q̂i) = 0. This is possible only if ci = 0.

Hence, r̂v(P̂i) is zero. �
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Lemma 2.12.

Let P̂ ∈ A(F ) ⊗ Zl be such that the Ol−module OlP̂ generated by P̂ is free. Let

k ∈ N and let Q̂ ∈ A(F ) ⊗ Zl be such that lkQ̂ = P̂ . Let Flk( 1
lk

P̂ ) := F
ker φ

(k)

P̂ ,

where φ
(k)

P̂
is the Kummer homomorphism (2.7). Let w - l be a nonzero prime

ideal of OF
lk

at which A has good reduction. Then the following two conditions are
equivalent:

(1) r̂w(P̂ ) ∈ lkAw(κw), where κw = OF
lk

/w,

(2) Frw(Q̂) = Q̂, where Frw ∈ Gal(Flk( 1
lk

P̂ )/Flk) is the Frobenius automor-
phism at w.

The proof of Lemma 2.12 is an easy exercise which we leave for the reader.

3. Integrally semi-simple GF−modules.

In this section we collect material on integrally semi-simple Galois modules fol-
lowing Section 4 of [9]. The main technical result in this section is Proposition 3.6,
which generalizes [9], Lemma 4.5.

Definition 3.1.

Let T be a free Zl−module equipped with a continuous action of the Galois group
GF and let V = T ⊗ Ql be the associated rational Galois representation. We say
that the module T is integrally semi-simple, if for every GF−subrepresentation
W ⊂ V the exact sequence:

0 −→ T ∩ W −→ T −→ T/T ∩ W −→ 0

of Zl[GF ]−modules splits.

Lemma 3.2.

Let V be a finitely dimensional Ql−vector space with a continuous action of GF

such that the associated representation is semi-simple. There exists a lattice T ⊂ V
which is an integrally semi-simple GF−module.

Proof. Since every GF -invariant subspace W admits a decomposition into isotypic
components corresponding to the isotypic decomposition of V, without loss of gen-
erality we can assume that V = V1 ⊗Ql

Qk
l , for an irreducible representation V1 of

GF , and k ∈ N. Since GF is compact, there exists a GF−stable lattice T1 ⊂ V1.
Let T = T1 ⊗Zl

Zk
l ⊂ V1 ⊗Ql

Qk
l . We check that T is integrally semi-simple. Let

then W ⊂ V be a subrepresentation of V . Then W = V1 ⊗Ql
W0, for a subspace

W0 of Qk
l . Hence:

W ∩T = (V1⊗Ql
W0)∩ (T1⊗Zl

Zk
l ) = (T1⊗Zl

W0)∩ (T1⊗Zl
Zk

l ) = T1⊗Zl
(Zk

l ∩W0).

Consider the exact sequence of Zl−modules:

(3.3) 0 −→ Zk
l ∩ W0 −→ Zk

l −→ Q −→ 0.
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Since W0 is an l−divisible group, the quotient group Q = Zk
l /(Zk

l ∩W0) is torsion-
free, so Q is a free group, and the exact sequence (3.3) splits. Tensoring by T1 we
obtain the exact sequence of Zl[GF ]-modules:

0 −→ T ∩ W −→ T −→ T1 ⊗Zl
Q −→ 0

which splits. �

Observe that the representation Vl = Tl ⊗ Ql is semi-simple if the module Tl is
integrally semi-simple in the sense of Definition 3.1.

Lemma 3.4.

If A is an abelian variety defined over a number field F, then for l sufficiently large,
the Tate module Tl(A) of A is integrally semi-simple.

Proof. We fix an embedding of F in the field of complex numbers C. Let M =
H1(A(C); Z) ∼= Z2g. Then O = End A acts on M , i.e., there is an embedding
O −→ End(M) ∼= M2g,2g(Z). Let C denote the commutant of O in End(M). We
put Ol := O⊗Zl, Cl := C⊗Zl. By comparison of the singular and étale cohomology
we get: EndZl

(Tl(A)) = End(M)⊗Zl
∼= M2g,2g(Zl). By the theorem of Faltings [7],

Satz 4 and Bemerkung 2, for every l, the commutant of Ol in End(Tl(A)) equals the
Zl−module generated by matrices from the image of ρl(GF ). If (W ∩ Tl(A)) ⊗ Ql

is a GF−submodule, then it follows that Tl(A)/(W ∩Tl(A)) is a finitely generated,
nontorsion Cl−module. On the other hand, for l large enough, Cl is a maximal
order in C ⊗ Ql. By [6], Thm. 26.12, it follows that any finitely generated, non
torsion Cl−module is projective, if l is large enough. Hence, the exact sequence of
Zl[GF ]−modules:

0 −→ W ∩ Tl(A) −→ Tl(A) −→ Tl(A)/(W ∩ Tl(A)) −→ 0,

splits for l � 0. �

Proposition 3.5.

Every isogeny class of abelian varieties defined over a number field F contains an
abelian variety A such that for every l, the Tate module Tl(A) is integrally semi-
simple.

Proof. Observe that an isogeny of degree a power of a prime l′ 6= l does not change
the module Tl(A). Hence, by Lemma 3.4, it is enough to show that for every
rational prime l, there exists an abelian variety B isogenous to A, for which Tl(B)
is integrally semi-simple. The vector space Tl(A)⊗Ql contains a lattice Λ which is
integrally semi-simple by Lemma 3.2. Multiplying by a power of l, if necessary, we
can assume that Λ ⊂ Tl(A). The quotient group Tl(A)/Λ defines a finite GF−stable,
l−torsion subgroup D of A. To finish the proof we put B = A/D. �
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Proposition 3.6.

Let M, N be free, finitely generated Zl−modules with continuous actions of GF .
Let N be integrally semi-simple. Assume that there are given homomorphisms of
Zl[GF ]−modules:

α : M −→
r⊕

i=1

N and β : M → N

such that for every m ∈ M and every k ∈ N:

if α(m) ∈ lk(

r⊕

i=1

N), then β(m) ∈ lkN.

Then there exists a homomorphism of Zl[GF ]−modules: γ :
⊕r

i=1 N → N such
that γ ◦ α = β.

Proof. We put: Wα := Im α ⊗ Ql, Wβ := Im β ⊗ Ql and V :=
⊕r

i=1 N ⊗ Ql. Since⋂
∞

k=1 lkM=0, by assumption, if α(m)=0, then β(m)=0. Hence, ker α⊂ker β and
the space Wβ=M/kerβ⊗Ql is the quotient of the linear space Wα=M/ker α⊗ Ql.
Let ξ : Wα −→ Wβ denote the quotient map. Since N is integrally semi-simple, the
Zl[GF ]−module,

⊕r
i=1 N is also integrally semi-simple and there exists a Zl[GF ]−mo-

dule P ⊂
⊕r

i=1 N , which is the complement of Wα∩
⊕r

i=1 N in
⊕r

i=1 N . We denote
by π :

⊕r
i=1 N −→ Wα ∩

⊕r
i=1 N the quotient map, which is a homomorphism of

Zl[GF ]−modules. Define the homomorhpism γ :
⊕r

i=1 N −→ N ⊗ Ql by the com-
position:

⊕r
i=1 N

π

��

γ // N ⊗ Ql

Wα ∩
⊕r

i=1 N
� � // Wα

ξ // Wβ

?�

OO

By construction, for every m ∈ M we have γ(α(m)) = β(m). To finish the proof it
is enough to show that Imγ ⊂ N . Since π (and hence also γ) has trivial restriction
to the submodule P , it is enough to show that γ(Wα ∩

⊕r
i=1 N) ⊂ N . If n ∈

Wα ∩
⊕r

i=1 N , then there is k ≥ 0, such that lkn ∈ α(M), so lkn = α(m) for an

m ∈ M . If k > 0, then by assumption β(m) ∈ lkN, hence:

γ(n) = l−kγ(lkn) = l−kγ(α(m)) = l−kβ(m) ∈ N. �

4. Proof of Main Theorem.

Theorem 4.1.

Let A be an abelian variety defined over a number field F. Let O:=EndF A denote
the ring of F -endomorphisms of A. Let l be a prime number with the following
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properties. We assume that the Tate module Tl(A) of A at l is an integrally semi-

simple GF−module. Let Λ̂ be a submodule of A(F )⊗ Zl which is free over the ring

Ol:=O⊗ Zl. Let P̂ ∈ A(F )⊗Zl be a point for which the cyclic module OlP̂ is free

over the ring Ol. Then the following local-global principle holds for: A, Λ̂ and P̂ .
The point P̂ is contained in Λ̂, if and only if, the point r̂v(P̂ ) is contained in the

group r̂v(Λ̂), for almost all primes v of F.

Proof. For a profinite group G and a rational prime l we denote by

Ĝ = lim
←

Gab/lkGab

the l−adic completion of the abelianization Gab = G/[G, G] of G. Let jl : G −→ Ĝ
denote the natural homomorphism of topological groups. Every group homomor-
phism Hl∞ −→ Tl(A) induces a homomorphism Ĥl∞ −→ Tl(A) of Zl−modules.
Hence, the Kummer map φ of Definition 2.5 induces a homomorphism of Zl−modules:

φ̂ : A(F ) ⊗ Zl −→ HomGl∞
(Ĥl∞ ; Tl(A)),

such that the following diagram commutes.

(4.2)

HomGl∞
(Hl∞ ; Tl(A))

A(F ) ⊗ Zl

φ
44iiiiiiiiiiiiiiiii

φ̂

**UUUUUUUUUUUUUUUU

HomGl∞
(Ĥl∞ ; Tl(A))

Hom(jl;Tl(A))

OO

The proof of the theorem will be in two steps. First we deduce the claim of the
theorem from an additional condition. Then, assuming that the extra condition
does not hold, we obtain a contradiction with the assumption of the theorem.

Step 1.

For a basis P̂1, P̂2, . . . , P̂r of the Ol-module Λ̂ we denote by Φ̂ : Ĥl∞ −→
⊕r

i=1 Tl(A)

the map Φ̂ = (φ̂(P̂1), . . . , φ̂(P̂r)). In the first step of the proof, we assume that for

every basis P̂1, P̂2, . . . , P̂r of the Ol-module Λ̂, for every n ∈ N, and for every
σ ∈ Ĥl∞ :

(4.3) if Φ̂(σ) ∈ ln(
r⊕

i=1

Tl(A)), then φ̂(P̂ )(σ) ∈ lnTl(A).
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We apply Proposition 3.6 to M = Im Φ̂, N = Tl(A), α = Φ̂, and β = φ̂(P̂ ). It im-
plies that there is a homomorphism g :

⊕r
i=1 Tl(A) −→ Tl(A) of Zl[GF ]−modules

such that g ◦ Φ̂=φ̂(P̂ ). Let gi : Tl(A) −→ Tl(A) for 1 ≤ i ≤ r, be the restric-
tion of g to the ith component of the direct sum

⊕r
i=1 Tl(A). Hence, gi is an

Zl[GF ]−endomorphism of the module Tl(A) and we have:
∑r

i=1 giφ̂(P̂i) = φ̂(P̂ ).
By the theorem of Faltings [7], Satz 4: EndZl[GF ](Tl(A)) ∼= Ol. It follows that there

is an element f̂i ∈ Ol such that giφ̂(P̂i) = φ̂(f̂iP̂i). Since φ̂ is a homomorphism of
Zl−modules, we get:

(4.4) φ̂(

r∑

i=1

f̂iP̂i) = φ̂(P̂ ).

The diagram (4.2) and Lemma 2.6 imply that: ker φ̂ ⊂ A(F )tors ⊗ Zl. Hence, by

(4.4): P̂ =
∑r

i=1 f̂iP̂i + R̂ for some R̂ ∈ A(F )tors ⊗Zl. To complete the first step of

the proof, it is enough to show that R̂ = 0. By Proposition 2.11, there exist infinitely
many v (even positive density) such that r̂v(Λ̂) = 0. In particular r̂v(Q̂) = 0 and

also r̂v(P̂ ) = 0 because r̂v(P̂ ) ∈ r̂v(Λ̂), by assumption. Hence, r̂v(R̂) = 0, for

infinitely many v. This implies that R̂ = 0, as it is well-known that, for almost all
v, the restriction of the reduction map r̂v to A(F )tors ⊗ Zl is an injection.

Step 2.

We assume to the contrary that the condition (4.3) does not hold, i.e., that there

exist: a basis P̂1, P̂2, . . . , P̂r of the Ol-module Λ̂, a natural number n and σ ∈ Ĥl∞

such that

Φ̂(σ) ∈ ln(

r⊕

i=1

Tl(A)) and φ̂(P̂ )(σ) /∈ lnTl(A).

Since Hab
l∞ is a profinite abelian group, the l−adic completion Ĥl∞ is isomorphic to a

closed subgroup of Hab
l∞ . Let σ̃ ∈ Hl∞ be a lifting of σ defined by this isomorphism.

Since Tl(A)/lnTl(A)=A[ln], it follows by the definition of φ̂(P̂ ) that σ̃ acts trivially

on the points 1
ln

P̂1, . . . , 1
ln

P̂r, and acts non trivially on the points 1
ln

P̂ . Define

the field Fl∞( 1
l∞

Λ̂, 1
l∞

P̂ ) := Fl∞( 1
l∞

Λ̂)Fl∞( 1
l∞

P̂ ). Consider the open set in the

group G(Fl∞( 1
l∞

Λ̂, 1
l∞

P̂ )/F ) consisting of elements which act in the same way as
σ̄ := σ̃|Fl∞( 1

l∞
Λ̂, 1

l∞
P̂ ). We claim that there exists k ≥ n and an element γ in this

open set, such that γ acts as a scalar congruent to 1 modulo lk but not modulo lk+1,
on the Tate module Tl(A). Indeed, by the theorem of Bogomolov [1], Cor. 1, p.702,
in Gl∞ there exists a nontrivial homothety τ=αI2g such that α ∈ Z×l is congruent

to 1 modulo l. Lifting τ to a homothety h ∈ G(Fl∞( 1
l∞

Λ̂, 1
l∞

P̂ )/F ), we define the

element γ := hlk σ̄ which has the desired property, if k is sufficiently large. Next, we
apply the Chebotarev density theorem to choose infinitely many prime ideals v in
OF in such a way that the Frobenius element Frv is close enough to γ, so Frv acts
trivially on points of A[lk] and on points 1

ln
P̂i for 1 ≤ i ≤ r, but acts non-trivially
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on all points 1
ln

P̂ . Let w be a prime in Flk which is over v. Since Frv is the identity

in the extension Flk/F and Av(κv)[l
k] = Aw(κw)[lk] = Av(κv)[l

k] = (Z/lk)2g,
reducing modulo v, we obtain Av(κv)l = (Z/lk)2g. It follows by Lemma 2.12

that the elements r̂v(P̂1), . . . , r̂v(P̂r) are divisible by ln, and that r̂v(P̂ ) is not

ln−divisible in the group Av(κv)l. Hence, the orders of r̂v(P̂1), . . . , r̂v(P̂r) are
divisible by at most lk−n, and the same is true for any element of the subgroup
of Av(κv)l = (Z/lk)2g generated by these points. On the other hand, the order of

r̂v(P̂ ) in Av(κv)l is divisible by at least lk−n+1. This holds true for infinitely many

prime ideals v which we have chosen above. Hence, r̂v(P̂ ) /∈ r̂v(Λ̂), for infinitely
many v, contrary to the assumption of the theorem. �

We are indebted to the referee for the following observation.

Corollary 4.5.

The same local-global principle holds for any A, l and P̂ as in Theorem 4.1, and
for any Λ̂ which is torsion-free over the ring Ol, provided that the ring O⊗Ql is a
division algebra and Ol is its maximal order.

Proof. This is an immediate corollary of Theorem 4.1, since any torsion-free, finitely
generated module over the maximal Zl−order Ol contained in the division Ql−al-
gebra O ⊗ Ql, is a free Ol−module cf. [11], Exercise 1, p.181. �

5. Corollaries.

Theorem 5.1.

Let A be an abelian variety defined over a number field F. Let Λ be a free O−sub-
module of A(F ). Let P be a point in A(F ), such that the module OP is free over
O. Then the following local-global principle holds. The point P is contained in the
module Λ, if and only if, the point rv(P ) is contained in the module rv(Λ), for
almost all primes v of F.

Proof. If P belongs to Λ, then rv(P ) belongs to rv(Λ), for all primes v of F because
rv is a group homomorphism. In order to prove that the converse implication
holds, we assume that rv(P ) ∈ rv(Λ), for almost all v. Fix a prime number l. Let
α : A −→ B be an F−isogeny, where B is an abelian variety over F for which
the Tate module Tl(B) is integrally semi-simple. The isogeny α was constructed
in the proof of Proposition 3.5. Note that the degree of α is a power of l. We put
deg(α)= lm. To simplify notation, we use the same letters to denote an F−isogeny
and the associated group homomorphism on the F−points. We apply Theorem 4.1

to: the variety B, the point α̂(P ):=α(P )⊗1, and the module α̂(Λ):=α(Λ) ⊗ Zl. It
is easy to verify that the assumptions are satisfied in this case. In particular, the
module OlP̂ where P̂ :=P⊗1, is free over Ol because the O−module OP is free,

by assumption. This implies that the cyclic module generated by the point α̂(P )

over the ring EndF B ⊗ Zl is free, as well. Hence, by Theorem 4.1 the point α̂(P )
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belongs to the module α̂(Λ). Let β : B −→ A be the unique F−isogeny such that
the compositions β ◦ α and α ◦ β are multiplications by lm. By applying the map

β ⊗ 1 to the relation α̂(P )∈α̂(Λ) we obtain the equation: P̂ = Q̂ + R̂, for some

Q̂∈Λ̂ and R̂∈A[lm] ⊗ Zl. We prove that R̂ = 0 using Proposition 2.11, as in the

first step of the proof of Theorem 4.1. This shows that the point P̂=P ⊗ 1 belongs
to Λ̂=Λ ⊗ Zl, for every l. To prove that the point P belongs to the module Λ, it
suffices to consider the subgroup X of the quotient group A(F )/Λ generated by the
coset of P, and use the fact that X = 0, if and only if, X ⊗ Zl = 0, for every prime
number l.

Remark 5.2. One can prove the local-global principle for detecting an inclusion
between two free O-submodules of A(F ) by reduction maps, by using the method
of the proof of Theorem 5.1. We are indebted to John Cremona for this observation.

Remark 5.3. Weston showed in [14] that, if A is an abelian variety with a com-
mutative ring of F−endomorphisms, then for any subgroup H and any point P
in A(F ), the relation P ∈ H + A(F )tors holds, provided rv(P ) belongs to rv(H),
for almost all primes v. One can clear the torsion ambiguity in the statement of
Weston’s theorem by using Proposition 2.11, if H and PO are free O−submodules
of A(F ), as in the first step of the proof of Theorem 4.1.

Remark 5.4. Proposition 2.11 gives a proof of the following result of Richard Pink,
which was proven in [10], Prop. 4.1 by another method: Fix a rational prime l. Let
A be a simple abelian variety defined over the number field F. Let P ∈ A(F ) be a
point of infinite order and let Q ∈ A(F )l−tors. Then there exists a set Π of primes
of F of positive density, such that, for v ∈ Π, the l−part of rv(P ) coincides with
rv(Q). In order to see this, observe that the point P − Q is of infinite order, and
that the ring O ⊗ Q is a division algebra. It follows that P − Q is nontorsion over
O. By Proposition 2.11 there exists a set of primes Π, with positive density, such
that, if v ∈ Π, then r̂v(P̂ − Q̂) = 0 in the group Av(κv)l−tors.

The method of the proof of Theorem 5.1 provides the following two corollaries.
Note that Corollary 5.6 extends Theorem 8.2 of [2] to abelian varieties with non
commutative algebras of endomorphisms.

Corollary 5.5.

The claim of Theorem 5.1 holds true, if we replace the condition: rv(P ) ∈ rv(Λ),
for almost all v, by the following: the order of rv(P ) divides the orders of rv(P1),
rv(P2), . . . , rv(Pr) in the group Av(κv), where P1, P2, . . . , Pr is an O−basis of the
free module Λ.

Proof. The proof is very similar to the proof of Theorem 5.1. For a prime number
l, we put P̂ :=P⊗1, P̂i:=Pi⊗1, for 1 ≤ i ≤ r, and Λ̂:=Λ ⊗ Zl. First we have to
modify the argument in the proof of Theorem 4.1. In Step 1 of the proof, assum-
ing the condition (4.3), we show that if the order of r̂v(P̂ ) divides the orders of

r̂v(P̂1), r̂v(P̂2), . . . , r̂v(P̂r) for almost all v, then the point P̂ ∈ Λ̂. Then assuming
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that the condition (4.3) does not hold, we show that there exist infinitely many

prime ideals v, such that the images of the points P̂1,. . . , P̂r by the reduction r̂v

are not lk−n+1−divisible, but r̂v(P̂ ) is divisible by lk−n+1, for k ≥ n chosen as in

Step 2 of the proof of Theorem 4.1. Hence, the order of r̂v(P̂ ) is larger then the

orders of r̂v(P̂i), for those v, and for 1 ≤ i ≤ r, which contradicts the assump-
tion of the corollary. The rest of the proof repeats the argument of the proof of
Theorem 5.1. �

Corollary 5.6.

In every isogeny class of abelian varieties defined over a number field F there exists
an abelian variety A with the following property. Set O=EndF A. Let P1, Q1, P2,
Q2, . . . , Pr, Qr ∈ A(F ) be points which generate free modules over O and such that
the following condition holds. For all sets of natural numbers {m1, m2, . . . , mr},
for almost all v, in the group Av(κv) we have:

if
∑r

i=1 mirv(Pi) = 0, then
∑r

i=1 mirv(Qi) = 0.

Then there exist endomorphisms f1, f2, . . . , fr∈O and torsion points R1, R2, . . . ,
Rr∈A(F )tors such that Q1=f1P1 + R1, Q2=f2P2 + R2, . . . , Qr=frPr + Rr.

Proof. Let A be an abelian variety for which all Tate modules are integrally semi-
simple. Such an abelian variety exists in every isogeny class by Proposition 3.5. We
describe the changes in the proofs of Theorem 4.1 and Theorem 5.1 which suffice
to deduce Corollary 5.6. The condition (4.3) is being replaced by: Assume that for:

all prime numbers l, all n ∈ N, all σ ∈ Ĥl∞ , and 1 ≤ i ≤ r:

(5.7) if φ̂(P̂i)(σ) ∈ lnTl(A), then φ̂(Q̂i)(σ) ∈ lnTl(A),

where P̂i:=Pi ⊗ 1 and Q̂i:=Qi ⊗ 1, for 1 ≤ i ≤ r. In the first step of the proof, we

apply Proposition 3.6 to every pair of homomorphisms φ̂(P̂j), φ̂(Q̂j), for 1 ≤ i ≤ r.
The first part of Step 1 of the proof of Theorem 4.1 repeats in this case, which

shows that, for every l, Q̂i = f̂iP̂i + R̂i, for f̂i ∈ Ol, a torsion point R̂i, and
for every 1 ≤ i ≤ r. This implies that Pi ∈ OQi + A(F )tors, for 1 ≤ i ≤ r
(if the condition (5.7) holds). Note that this time we can not remove the torsion
ambiguity because Proposition 2.11 does not apply. In the second step of the proof,
we assume that the condition (5.7) does not hold for A and a prime l, i.e., there

exists a natural number n, an element σ ∈ Ĥl∞ and an index 1 ≤ j ≤ r such that

φ̂(P̂j)(σ) ∈ lnTl(A) and φ̂(Q̂j)(σ) /∈ lnTl(A). Observe that to get a contradiction
with the assumption of the corollary, it suffices to consider the reduction maps
r̂v : A(F ) ⊗ Zl −→ Av(κv)l−torsion. In the same way as in Step 2 of the proof of
Theorem 4.1, we find k ≥ n, such that for infinitely many prime ideals v of OF , the
order of r̂v(P̂j) is bounded from above by lk−n while the order of r̂v(Q̂j) is bounded
from below by lk−n+1, and Av(κv)l = (Z/lk)2g. To get the contradiction we take:
mj = lk−n and mi = lk, for i 6= j. �
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