Algorithms for Sparse Rational Interpolation

by

Dima Yu. Grigoriev* Marek Karpinski[†]

MPI/91- 5

^{*}Steklov Institute of Mathematics, Soviet Academy of Sciences, Fontanka 27, Leningrad 191011. Visiting the Max Planck Institute of Mathematics in Bonn.

[†]Dept. of Computer Science, University of Bonn, 5300 Bonn 1, and International Computer Science Institute, Berkeley, California. Supported in part by the Leibniz Center for Research in Computer Science, by the DFG Grant KA 673/2-1 and by the SERC Grant GR-E 68297

Abstract

We present two algorithms on sparse rational interpolation. The first is the interpolation algorithm in a sense of sparse partial fraction representation of rational functions. The second is the algorithm for computing entier and the remainder of a rational function. The first algorithm works without apriori known bound on the degree of a rational function, the second one is in the class NC provided that the degree is known. The presented algorithms complement the sparse interpolation result of [GKS 90b].

,

1 Introduction

We address a question of computational complexity of sparse rational interpolation and connected question of algebraic manipulation of sparse rational functions. We study the most general method of representation of rational functions by black boxes (cf. [KT 88, GKS 90b]) and restrict ourselves in this paper to the univariate case only. For the technical developments which lead to this paper see [GKS 90a, GKS 90b, DG 90]. We discuss also these questions in view of the hardness results of Plaisted [P 77a, P 77b] on the sparse polynomial divisibility.

We present two algorithms. For the first one we consider the partial-fraction representation of a rational function and the corresponding notion of sparsity as the number of terms in this representation. An algorithm is designed for finding partial-fraction representation without knowing the degree. An independent interest, apparently, has a constructed new code (see Section 1), being a generalization of Goppa and BCH codes. The second algorithm finds an entier of a rational function, so a polynomial part of a partial-fraction representation. We show that finding an entier is in NC provided that the degree of a rational function is known. Here we measure the complexity in the size of an output. As a subroutine we apply the approximative analogue of sparse polynomial interpolation ([GK 87, BT 89]).

2 Extending BCH and Goppa-codes by involving multiple roots

Assume that a polynomial $f \in \mathbb{Z}[Y]$ is unknown, deg f = d is also unknown. In addition let $(\alpha_1, \ldots, \alpha_d)$ be an unknown vector. Denote $f = \prod_i (Y - c_i)^{\beta_i} = \sum_{\substack{0 \le i \le d \\ 0 \le i \le d}} f_i Y^i$. Suppose that we can compute the expressions $g_k = \alpha_1 c_1^k + \alpha_2 k c_1^{k-1} + \alpha_3 k (k-1) c_1^{k-2} + \cdots + \alpha_{\beta_1} k (k-1)(k-2) \cdots (k-\beta_1+2) c_1^{k-\beta_1+1} + \alpha_{\beta_1+1} c_2^k + \alpha_{\beta_1+2} k c_2^{k-1} + \cdots$ for $k = 0, 1, \ldots$ where β_i summands correspond to c_i . The question is to recover f and $(\alpha_1, \ldots, \alpha_d)$. For an arbitrary $l \ge 0$ consider $(d+1) \times (d+1)$ Töplitz matrix

$$\tilde{G}_{l} = \begin{pmatrix} g_{l} & g_{l+1} & \cdots & g_{l+d} \\ g_{l+1} & g_{l+2} & \cdots & g_{l+d+1} \\ \vdots & \vdots & & \vdots \\ g_{l+d} & g_{l+d+1} & \cdots & g_{l+2d} \end{pmatrix}$$

and by G_l denote its $d \times d$ submatrix obtained by deleting the last row and the last column. Consider also $d \times d$ matrix (being block-diagonal)

and $d \times (d+1)$ matrix

$$\bar{C}_{l} = \begin{pmatrix} c_{1}^{l} & c_{1}^{l+1} & \cdots & c_{1}^{l+d} \\ lc_{1}^{l-1} & (l+1)c_{1}^{l} & \cdots & (l+d)c_{1}^{l+d-1} \\ \vdots & & & \\ l(l-1)\cdots(l-\beta_{1}+2)c_{1}^{l-\beta_{1}+1} & \cdots & \\ c_{2}^{l} & c_{2}^{l+1} & \cdots & c_{2}^{l+d} \\ \vdots & & & \end{pmatrix}$$

namely, the second row is the derivative of the first one, the next is the derivative of the previous etc. β_1 times, thus β_1 rows correspond to c_1 , then β_2 rows correspond to c_2 etc. Denote by $C_l d \times d$ matrix obtained from \bar{C}_l by deleting the last column.

Then
$$\bar{C}_l \begin{pmatrix} f_0 \\ \vdots \\ f_d \end{pmatrix} = 0$$
, since denote $\bar{C}_l \begin{pmatrix} f_0 \\ \vdots \\ f_d \end{pmatrix} = \begin{pmatrix} b_1 \\ \vdots \\ b_d \end{pmatrix}$, then $b_1 = c_1^l f(c_1) = 0, b_2 = \begin{pmatrix} \frac{d}{dc_1} (c_1^l f(c_1)) = 0, c_1 + c_1^l f(c_1) = 0, b_2 = \begin{pmatrix} \frac{d}{dc_1} (c_1^l f(c_1)) = 0, c_1 + c_1^l f(c_1) = 0, \dots, b_{\beta_1} = \frac{d^{\beta_i - 1}}{dc_1^{\beta_i - 1}} (c_1^l f(c_1)) = 0$, and so on. On the other hand $\det(C_l) \neq 0$, provided that $c_1 \neq 0, c_2 \neq 0, \dots$. Indeed, assume that

 $C_{l}\begin{pmatrix}h_{0}\\\vdots\\h_{d-1}\end{pmatrix} = 0, \text{ then denote } h = \sum h_{i}Y^{i} \text{ and } 0 = h(c_{1}) = h'(c_{1}) = \cdots = h^{(\beta_{1}-1)}(c_{1}),$ $0 = h(c_{2}) = \cdots = h^{(\beta_{2}-1)}(c_{2}), \dots, \text{ contradiction. The latter arguing is known in the}$

numerical analysis by considering Hermite's interpolation.

Then $\bar{G}_{l_1+l_2} = (\bar{C}_{l_1})^T A \bar{C}_{l_2}$, $G_{l_1+l_2} = (C_{l_1})^T A C_{l_2}$. Hence if $\alpha_{\beta_1} \neq 0$ and all other coefficients α_{β} which correspond to the highest derivatives, are distinct from zero, then $\det(A) \neq 0$ and therefore $\det(G_l) \neq 0$. Because of that $\operatorname{rg}(\bar{G}_l) = d$ and the linear system $\bar{G}_l Z = 0$ has a unique solution $Z = \begin{pmatrix} f_0 \\ \vdots \\ f_d \end{pmatrix}$. Thus, one can recover f by solving a linear system $\bar{G}_0 Z = 0$, hence $c_1, \ldots, \beta_1, \ldots$, by polynomial factoring [CG 82], representing c_1, \ldots , as the roots of the irreducible over \mathbb{Q} polynomials.

Finally, one can find $\alpha_1, \ldots, \alpha_d$ by solving a linear system

$$(\alpha_1,\ldots,\alpha_d)C_0=(g_0,\ldots,g_{d-1}).$$

Remark that for pairwise distinct c_1, \ldots, c_d the described code converts into Goppa code [MS 81].

Note: If we take a Töplitz matrix

(gı	<i>gl</i> +1	•••	gi+d1
	g_{l+1}	<i>g</i> 1+2	• • •	g_{i+d_1+1}
	:	:		:
	g_{l+d_1}	g_{l+d_1+1}	•••	gi+2d1)

for $d_1 \geq d$ then its rank = d.

3 Partial-fraction sparsity of rational functions and finding highest terms

Let $f_1/f_2 \in \mathbb{Q}[X]$ be a rational function given by a black-box. We assume that the black-box at every point (including ∞) gives a value of f_1/f_2 at this point (including

 ∞). And the same concerns any rational function which will appear at the intermediate calculations.

We suppose also that together with the black-box for f_1/f_2 we are supplied with a black-box for the derivative $(f_1/f_2)'$. If f_1/f_2 is given by a short straight-line program, then $(f_1/f_2)'$ can be represented also by a short straight-line program e.g. by virtue of [BS 83]. If (f_1/f_2) is given by a certain physical process, then also one can get $(f_1/f_2)'$.

With the help of $(f_1/f_2)'$ one can recover the highest term of f_1/f_2 at ∞ . Namely, if $f_1/f_2 = ax^m + O(x^{m-1})$, where $m \in \mathbb{Z}$, $a \neq 0$, then $x(f_1/f_2)'/(f_1/f_2) = m + O(x^{-1})$, so we recover m and then calculate in NC x^m and since $(f_1/f_2)/x^m = a + O(x^{-1})$, we recover a.

A rational function f_1/f_2 is uniquely represented as a sum of its partial fractions $f_1/f_2 = P + \sum_i \frac{\alpha_{i,1}}{x-c_i} + \sum_i \frac{\alpha_{i,2}}{(x-c_i)^2} + \ldots$, where $P \in \mathbb{Q}[X]$ is a polynomial, $c_i, \alpha_{i,j} \in \overline{\mathbb{Q}}$. We call $P = [f_1/f_2]$ an entier of f_1/f_2 (see the last section). We call f_1/f_2 t-sparse if the number of nonzero terms in this representation is at most t. We'll assume in the sequel that f_1/f_2 is t-sparse. The problem we deal with is to find partial-fraction representation.

Firstly we find P term by term starting with the highest one. Thus, we can suppose that $f_1/f_2 = \sum \frac{\alpha_{i,1}}{x-c_i} + \ldots$ Then $\operatorname{res}_{\infty}(f_1/f_2) = \sum_i \alpha_{i,1}$, and if it does not vanish then $\left(\sum_i \alpha_{i,1}\right) x^{-1}$ is the highest term. Thus, we can find $\operatorname{res}_{\infty}(f_1/f_2)$. Later on we'll calculate $g_k = \operatorname{res}_{\infty} x^k (f_1/f_2)$ for different k, we call them successive residues. Remark that $g_k =$ $\sum_i \alpha_{i,1} c_i^k + \alpha_{i,2} k c_i^{k-1} + \cdots$, thus it coincides with the formula for g_k in the extended Goppa code (see the previous section).

Observe that if $(f_1/f_2)^{-1}$ is also sparse then one can recover both f_1/f_2 and f_2/f_1 by applying extended Goppa code (or even the usual Goppa code) to $(f_1/f_2)'/(f_1/f_2) = \sum \frac{m_i}{x-c_i}$ (being sparse by the same token) where m_i is the multiplicity of the pole c_i (when $m_i < 0$) or of the root c_i (when $m_i > 0$) of f_1/f_2 . Thus, one can find c_i, m_i and considering expansions in the neighbourhood of c_i , to find (involving the procedure for recovering highest terms) the terms of the form $\frac{\alpha_{i,j}}{(x-c_i)^j}$.

4 A bound on the least nonzero successive residue

If $f_1/f_2 = \sum \frac{\alpha_{i,k}}{(x-c_i)^k} + \cdots$ then we call k an order of f_1/f_2 . Evidently $g_j = 0$ for j < k. Let us estimate the least j_0 s.t. $g_{j_0} \neq 0$. Denote $\tilde{g}_{m-k+1} = g_m/\frac{m!}{(m-k+1)!}$ Then \tilde{g}_{m-k+1} plays the role of g_{m-k+1} for the function $\sum \frac{\alpha_{i,k}}{(x-c_i)} + \sum \frac{\alpha_{i,k+1}}{(x-c_i)^2} + \cdots = (f_1/f_2) = \sum \frac{\tilde{\alpha}_{i,1}}{(x-c_i)} + \sum \frac{\tilde{\alpha}_{i,2}}{(x-c_i)^2} + \cdots$ in other words all the exponents in the denominators of partial fractions are diminished by (k-1). Assume that $\tilde{g}_0 = \cdots = \tilde{g}_{N-1} = 0$ for some N. Consider any $N_1 \leq N$. For any *i* denote by $d_i(N_1)$ the maximal $j < N_1$ s.t. $\tilde{\alpha}_{i,j} \neq 0$, and by $d(N_1) = \sum_i d_i(N_1)$.

We claim that $d(N_1) > N_1$. Indeed

$$\begin{pmatrix} \tilde{g}_0 \\ \vdots \\ \tilde{g}_{N_1-1} \end{pmatrix} = \tilde{C}(N_1) \cdot \begin{pmatrix} \tilde{\alpha}_{1,1} \\ \vdots \\ \tilde{\alpha}_{1,d_1(N_1)} \\ \tilde{\alpha}_{2,1} \\ \vdots \\ \tilde{\alpha}_{2,d_2(N_2)} \\ \vdots \end{pmatrix}$$

where the matrix

$$\tilde{C}(N_1) = \begin{pmatrix} 1 & 1 & \\ c_1 & 1 & c_2 & 1 \\ c_1^2 & 2c_1 & \ddots & c_2^2 & 2c_2 & \ddots \\ \vdots & \vdots & \vdots & \vdots & \vdots \end{pmatrix}$$

is similar to the matrix C_l (see the previous section), it has $d_1(N_1)$ columns which correspond to $c_1, d_2(N_1)$ columns which correspond to c_2 , etc. If $d(N_1) \leq N_1$, then the columns of the matrix $\tilde{C}(N_1)$ cannot be linearly dependent (see the previous section); that proves the claim.

Recall that the sequence $\tilde{\alpha}_{i,j}$ is t-sparse and let us find out how large can be $N_0 = \max\{j: d(N_1) > \frac{N_1}{2} \text{ for any } N_1 \leq j\}$, being a stronger property than is necessary in our case, but we will need it later in this stronger version. Let us prove that $N_0 \leq 3^t$ by induction on t.

Assume the contrary. Then by inductive hypothesis in the segment $[0, 3^{t-1}]$ there are t-1 indices j such that $\tilde{\alpha}_{i,j} \neq 0$ for a suitable i and in the segment $(3^{t-1}, 3^t]$ there are no

such indices. Again by inductive hypothesis for these indices $j_1 \leq j_2 \leq \cdots \leq j_{t-1}$ holds $j_l \leq 3^{l-1}$. Therefore $d(3^t) \leq \frac{3^t}{2}$ that leads to the contradiction.

Thus, the order of f_1/f_2 is at least $N-3^t$ where N is the least index for which $g_N \neq 0$, and we denote later $\tilde{g}_{s-N+3^t} = g_s/\frac{s!}{(s-N+3^t)!}$, also $\tilde{\alpha}_{i,j} = \alpha_{i,j+N-3^t}$.

5 Finding swarms of terms

We say that an integer N_2 creates a *swarm* of terms of the rational function f_1/f_2 if $0 < \tilde{d}(N_2) < \frac{N_2}{2}$, where $\tilde{d}(N_2) = \sum_i \tilde{d}_i(N_2) = \sum_i (d_i(N_2) - N + 3^i)$. In this case the rank of the matrix

$$\tilde{G}_{N_2/2} = \begin{pmatrix} \tilde{g}_0 & \cdots & \tilde{g}_{N_2/2} \\ \vdots & & \vdots \\ \tilde{g}_{N_2/2} & \cdots & \tilde{g}_{N_2} \end{pmatrix}$$

equals to $\tilde{d}(N_2)$ (see the section about codes).

A swarm means that in the segment $[1, N_2]$ there is some gap, in which there are no indices j such that $\tilde{\alpha}_{i,j} \neq 0$ for some i.

The Algorithm calculates $rk(\tilde{G}_0), rk(\tilde{G}_1), \dots, rk(\tilde{G}_{3^k}), \dots, rk(\tilde{G}_{3^{l^2 \log_3 t}})$. There exists a sequence $t \leq l, l+1, \dots, l+2t \log_3 t \leq 2t^2 \log_3 t$ such that in the segment $(3^l, 3^{l+2t \log_3 t})$ there are no j such that $\tilde{\alpha}_{i,j} \neq 0$ for some i. Since $\tilde{d}(3^l) \leq t3^l$, then $rk(\tilde{G}_3 l + \log_3 t) =$ $\dots = rk(\tilde{G}_3 l + 2t \log_3 t) = \tilde{d}(3^l)$.

Conversely if $rk(\tilde{G}_3l + \log_3 t) = \cdots = rk(\tilde{G}_3l + 2t\log_3 t)$ for a certain *l*, then in the segment $(3^{l+\log_3 t}, 3^{l+2t\log_3 t})$ there are no *j* such that $\tilde{\alpha}_{i,j} \neq 0$ for some *i*. Indeed in the opposite case there would exist $j_0 < 3^{\frac{l+2t\log_3 t}{t^2}}$ in this segment such that in the segment (j_0, t^2j_0) there are no *j* such that $\tilde{\alpha}_{i,j} \neq 0$ for some *i*. Then

$$rk(\tilde{G}_{3^{l+2i\log_3 t}}) \ge rk(\tilde{G}_{tj_0}) > rk(\tilde{G}_{3^{l+1}s_3 t})$$

because $2tj_0$ creates a swarm. Thus, we have proved that in the segment $(3^{l+\log_3 t}, 3^{l+2t\log_3 t})$ there are no j such that $\tilde{\alpha}_{i,j} \neq 0$ for some i. Hence $3^{l+4\log_3 t}$ creates a swarm and the algorithm recovers it by means of the extension of Goppa code.

Actually, there could be different swarms and the algorithm will recover a swarm, after which there is a large gap, much larger than it is required by the definition of the swarm. After finding a swarm of terms, we subtract it from the function f_1/f_2 and so reduce a number of terms (sparsity) and continue until exhausting.

6 Analysis of the algorithm

Let us assume that we are supplied also with a black-box for computing a factorial (as a preconditioning). Then the number of arithmetic operation necessary to fulfill is at most $3^{O(t^2 \log t)}$, and the number of parallel steps is $O(t^5 \log^2 t)$ by Mulmuley [M 86].

So, it is independent from the total degree d of the rational function. If to count bit complexity, then the time would be bounded by $(dM)^{O(1)}$, where d is the degree and M is the bit-size of the coefficients, and the parallel time $\leq \log^{O(1)}(dM)$ (again by [M 86]).

<u>Remark</u> about using [CG 82] for finding roots of denominator (see Section 2).

$$f = \prod_{1 \le i \le t} (Y - c_i)^{\beta_i} \quad , \deg f \le 3^t .$$

The number of c_i is at most t because of t-sparsity of f_1/f_2 .

 $(f/GCD(f, f') = \prod(Y - c_i)$ - apply to it [CG 82], find $c_i \longrightarrow$ find β_i in parallel time $O(t) \longrightarrow \alpha_i$)

7 Finding an entier of a sparse rational function is in NC

Let a rational function $q \in \mathbf{Q}(x)$ be given by a black-box and we assume that q can be represented in a form q = f/g, where polynomials $f, g \in \mathbb{Z}[X]$ are both t-sparse and form a minimal t-sparse representation of q (in the sense of a degree of denominator g) and the leading coefficient lc(g) = 1. Unlike the previous sections we suppose that we know a bound d on the degrees $\deg(f), \deg(g) < d$. Under this supposition we'll show that the problem of finding the entier $[f/g] = h \in \mathbb{Z}[X]$ is in the parallel class NC (cf. [C 85, KR 90]). Denote $d_1 = \deg(f), d_0 = \deg(g), M$ is a maximal of bit-sizes of the coefficients of f, g (they are not supposed to be given). Represent $q = f/g = [f/g] + \frac{\operatorname{Rem}(f,g)}{g}$. We call a rational number $0 < c \in \mathbf{Q}$ big enough if $\left|\frac{\operatorname{Rem}(f,g)}{g}(c)\right| < \frac{1}{2}$. Our next purpose is to construct explicitely a big enough number. Take succesive primes p_1, \ldots, p_t and for each p among them calculate (by black-box) $q(p), q(p^2), \cdots, q(p^{2t^2+1})$. For at least one p all these values are defined (let us fix it).

Lemma At least one of $q(p), q(p^2), \dots, q(p^{2t^2+1})$ has an absolute value greater than $2^{M/2t}/t^{4dt^2}$.

PROOF Denote $\mathcal{N} = \max\{|q(p)|, \cdots, |q(p^{2t^2+1})|\}$. Denote $f = \sum_{1 \leq i \leq t} \alpha_i x^{j_i}, g = \sum_{1 \leq i \leq t} \beta_i x^{k_i}$. The homogeneous linear system in the indeterminates α_i, β_i

$$\sum \alpha_i p^{sj_i} = (\sum \beta_i p^{sk_i}) q(p^s), \quad 1 \le s \le 2t^2 + 1$$

has a unique solution, since the polynomials f, g provide a minimal t-sparse representation of q, hence these equalities imply that $(\sum \alpha_i x^{j_i}) / (\sum \beta_i x^{k_i}) = q(x)$. Therefore, each α_i, β_i equals to an appropriate $(2t - 1) \times (2t - 1)$ minor of this system. Then $2^M \leq \max\{|\alpha_i|, |\beta_i|\} \leq (\mathcal{N}p^{2t^2d}2t)^{2t} \leq (\mathcal{N}t^{4dt^2})^{2t}$. Lemma is proved.

Then one can produce in NC ([BC 86]) an integer t^{4dt^2} and multiply it on \mathcal{N} , so we get a rational number greater than $2^{M/2t}$. Then again involving [BC 86], one can construct a rational number $N_0 > 36 \cdot 2^{3M} \cdot d^5$.

Calculate $q(N_0)$. W.l.o.g. assume that lc(f) > 0. Then $f(N_0) > N_0^{d_1} - dN_0^{d_1-1}2^M > \frac{1}{2}N_0^{d_1}$, $g(N_0) < N_0^{d_0} + dN_0^{d_0-1}2^M < \frac{3}{2}N_0^{d_0}$. Thus, $q(N_0) > \frac{1}{3}N_0^{d_1-d_0}$. On the other hand $f(N_0) < 2^M dN_0^{d_1}$, $g(N_0) > N_0^{d_0} - dN_0^{d_0-1}2^M$, therefore $q(N_0) < 3 \cdot 2^M dN_0^{d_1-d_0}$. Thus if $q(N_0) < \frac{1}{3}$ then $d_1 - d_0 < 0$ and h = [f/g] = 0, if $d_1 - d_0 \ge 0$ and $q(N_0) < \frac{1}{3}N_0$ then $d_1 - d_0 = 0$. Assume now that $d_1 - d_0 > 0$. Notice that the absolute value of each coefficient of $\operatorname{rem}(f,g)$ is at most $\left(2^{M(d_1-d_0+2)}\right)(d_1 - d_0 + 2)^{d_1-d_0+2}$ (see [L 82]). Calculate then $N_1 = q(q(N_0)) > 3^{d_0-d_1-1}N_0^{(d_1-d_0)^2}$. We claim that N_1 is big enough. Indeed, $g(N_1) > N_1^{d_0} - 2^M d_0 N_1^{d_0-1} > \frac{1}{2}N_1^{d_0}$, $|\operatorname{rem}(f,g)(N_1)| < \left(2^{M(d_1-d_0+2)}\right)(d_1 - d_0 + 2)^{d_1-d_0+2}$. Indeed, $q(N_1) > N_1^{d_0} - 2^M d_0 N_1^{d_0-1} > \frac{1}{2}N_1^{d_0}$, $|\operatorname{rem}(f,g)(N_1)| < \left(2^{M(d_1-d_0+2)}\right)(d_1 - d_0 + 2)^{d_1-d_0+2}$. Thus also a big enough number.

Having a big enough integer N, we'll find the entier [f/g] = h by a method similar to [BT 89] (see also [GK 87]), which one can call an approximative polynomial interpolation. We compute $q(N), q(N^2), \ldots, q(N^{2t})$ and take the nearest integers to them, respectively, A_1, \ldots, A_{2t} . Then $A_i = h(N^i), 1 \le i \le 2t$, since N is big enough, and one can apply BCHcodes (as in [BT 89]) to recover the powers of X occurring in h, and also the coefficients.

Arithmetic complexity of the whole procedure for finding entier h is $(t \log d)^{O(1)}$ and

parallel complexity $O(\log t \log \log d)$.

Acknowlegment: We thank Mike Singer for the number of interesting discussions.

References

- [BS 83] Baur, W., Strassen, V., The Complexity of Partial Derivatives, Theor. Comput. Sci., 1983, 22, pp. 317–330.
- [BC 86] Beame, P. W., Cook, S. A., Hoover, H. J., Log Depth Circuits for Division and Related Problems, SIAM J. Comput., 1986, 15, pp. 994–1003.
- [BT 89] Ben-Or, M., Tiwari, P., A Deterministic Algorithm For Sparse Multivarite Polynomial Interpolation, Proc. STOC ACM, 1989, pp. 301-309.
- [CG 82] Chistov, A. L., Grigoriev, D. Yu., Polynomial-Time Factoring Multivariable Polynomials Over a Global Field, Preprint LOMI, E-5-82, Leningrad, 1982.
- [C 85] Cook, S. A., A Taxonomy of Problems with Fast Parallel Algorithms, Information and Control 64 (1985), pp. 2-22.
- [DG 90] Dress, A., Grabmeier, J., The Interpolation Problem for k-sparse Polynomials and Character Sums, to appear in Adv. App. Math., 1990.
- [GK 87] Grigoriev, D. Yu., Karpinski, M., The Matching Problem for Bipartite Graphs with Polynomially Bounded Permanents is in NC, Proc. 28th IEEE FOCS (1987), pp. 166-172.
- [GKS 90a] Grigoriev, D. Yu., Karpinski, M., Singer, M., The Interpolation Problem for k-Sparse Sums of Eigenfunctions of Operators, to appear in Adv. Appl. Math., 1990.
- [GKS 90b] Grigoriev, D. Yu., Karpinski, M., Singer, M., Interpolation of Sparse Rational Functions Without Knowing Bounds on Exponents, Proc. 31st IEEE FOCS 1990, pp. 840-846.
- [KT 88] Kaltofen E., Trager, B., Computing with Polynomials Given by Black Boxes for Their Evaluations: Greatest Common Divisors, Factorization, Separation of Numerators and Denominators, Proc. 29th IEEE FOCS 1988, pp. 296-305.

- [KR 90] Karp, R. M. & Ramachandran, V. L., A Survey of Parallel Algorithms for Shared-Memory Machines, in Handbook of Theoretical Computer Science, North Holland (1990).
- [L 82] Loos, R., Generalized Polynomial Remainder Sequences, in: "Computer Algebra", Springer, 1982, pp. 115–137.
- [MS 81] Mac Williams, F. J., Sloan, N. J. A., The Theory of Error Correcting Codes, North-Holland, 1981.
- [M 86] Mulmuley, K., A Fast Parallel Algorithm to Compute the Rank of a Matrix Over an Arbitrary Field, Proc STOC ACM, 1986.
- [P 77a] Plaisted, D., Sparse Complex Polynomials and Polynomial Reducibility, J. Comput. System Sci. 14 (1977), pp. 210-221
- [P 77b] Plaisted, D., New NP-Hard and NP-Complete Polynomial and Integer Divisibility Problems, Proc. 18th IEEE FOCS (1977), pp. 241-253.