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Eisenstein Cohomology of Arithmetic Groups
The Case GL2

G. Harder

Introduction: This is the first in a series ofprospective papers which con-
cern the Eisenstein cohomology of arithmetic groups. The Eisenstein cohomo-
logy of an arithmetic group I is the part of the cohomology of ' which in
a sense comes - or better is induced - from the cohomology of the boundary of
the Borel-Serre compactification of the locally symmetric space attached to

I' (comp. Epdﬂ). The Eisenstein cchomology classes are represented by differ-
ential forms which are Eisenstein series in the sense of Langlands and Selberg
(comp. [Iq]) . The Eisenstein cohomology has been studied by several authors

in different cases and from a different point of view (EHa. 1-4] ' [5chw] '

[sp]).

The goal of this paper is to give a general and systematic account of

the case of the group GL., over an arbitrary number field. This case has

2
also been treated in my papers [Hal] ' [Ha3] and l:Ha4] but always under some
special agsumptions. This paper here will contain the proofs of the main
results announced in [ﬁal] more than twelve years ago. One reason for the

delay in the publication of the proofs is that it took me some time to find

the general framework in which the results can be stated in a somewhat definite

form, so that we also have a good starting point for the induction to higher

dimensional groups.

This paper will also cover the results in IHa4| and we shall follow

to a large extent the pattern of that paper. There may be also some repe-



tition in the exposition if the generalization from [ﬁag] to the situation

here is not so obwious.

In the first section we recall some general facts about the cohomology
with coefficients. The coefficient systems which we consider are obtained
by rational representations of the underlying algebraic group which in our
case is GL, . We shall also discuss some algebraicity properties of the
system of cohamology groups if we vary the coefficients, this means we in-
vestigate how the cohomology changes under the action of the Galois group if

we change the coefficient system by a Galois automorphism.

In the second section we compute the cohomology of the boundary as a
module under the group of finite adeles. The basic result is that the cohomo-
logy of the boundary can be described in terms of algebraic Hecke characters
on the maximal split torus and the types of these characters can be read of
from the data entering into the coefficient system. The cohomology of the
boundary as a module under the action of the group of finite adeles is a sum

of modules induced from these characters (Thm. 1 ’ [Halll, Thm. 1.).

In the fourth section we describe the image of the global cohomology -
i.e. the cohomology of the locally symmetric space - in the cohomology of the
boundary. We compute this image in terms of the given data, i.e. the algebraic
Hecke characters. The image will depend on the types, on special values and
on poles of the Hecke L-functions attached to these characters (Thm. 2, and

Thm. 2 in [Ha4], Thm. 2.1. [Hal]).

In section five we construct certain homology classes depending on a
quadratic field extension of our ground field and on certain algebraic Hecke

characters whose type is again depending on the coefficient system. We can



evaluate the Eigenstein cohomology classes on the cycles and the result of
this evaluation is essentially given in temms of special values of
L-functions attached to the characters - and combinationg of them - which

provide the classes (Thm. 3).

The results of section four and five have arithmetic applications. The
Eisenstein classes are defined over a number field which depends on the al-
gebraic Hecke character which defines the Eisenstein class and we can keep
track of the action of the Galoisgroup on the cohomology and the homology
classes. This gives us algebraicity results for special values of L-functions

(Cor. 4.3.1,Cor. 5.7.2).

In a subsequent paper we shzil generalize part of the results of this
paper to GLn . Again we will get algebraicity results about special values
of L-functions attached to algebraic Hecke characters. The results combined
with the results of Don Blasius [DB] will provide a proof Deligne's conjecture
on special values of L-functions attached to algebraic Hecke characters (see
ﬁﬂ). We have to use Blasius' results since in our approach we always get

ratios of special values where the periods predicted by Deligne cancel out.

I. Generalities

1,0. Notations and conventions: Throughout this paper 5' will be the field

of algebraic numbers in the field of complex numbers € .

Let F/p be an arbitrary finite extension of { , we do not fix an em-
bedding of F into @ . Let O CF be the ring of integers in F . The
places of F will be denoted by v,w and if we refer to finite places we

denote them by :‘,91. Let S, be the set of infinite places. The completions



of F with respect to these places will be denoted by Fv or F ., At a

finite place 1; we denote the ring of integers. of Fﬁ} by qi . Por any

place we denote the normalized absolute value by lxv‘v for x, € Pv .

The ring of adeles (resp. the group of ideles) will be denoted by AF

(resp. IF ) . We abbreviate A = AQ and I = IQ . We have the usual de-

camposition

Bp = Bpw X Bp g and I = Ip,%XIp¢

into the finite and infinite part. We shall denote adelic variables by undexr-

lining them and we decompose
x = (’.‘m"_‘f)

A character in Fx\IF is a continuous homomorphism ¢ : F*\Er > , we do

not require it to be unitary. For any character we have a decomposition
d(x) = g b (%) = (X)) ¢ de(x) .

Occasionally we shall drop the subscript and write ¢(xv) = ¢v(xv) '

d(x,) = ¢,(x,) and ¢(§f) = ¢f(§f) .
The Tate character is given by the absolute value
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1.0.2 Let GO/F = GL2/F . We put

G/Q = RF/Q(GO/F)



where R?/! is the restriction of scalars For any subgroup
HO/F -+ GO/F_ we denote by H/Q = RP /0 (HO/F) the corresponding subgroup of
G/@ . Let BO/F . Uo/F and TO/F be the standard Borel subgroup of upper

triangular matrices, its unipotent radical and the standard maximal torus
(1)

in BO/F respectively. Let To

/F TO/F be the subtorus of elements with

determinant 1 . We shall identify

Yo ¢ G /F > 'rél)/F
(1.0.3)
Yo ¢ a -+ (: :..1)
for a € G (F) . Then
m
Y & RGP 3 R.F/Q(Té”/l?) - oWy . (1.0.4)
The positive simple root defines a homomorphism
a.o : BO/P -+ Gm/F
o : + t,./t .
o 1772
. 0 ¢
We get a homomorphism
a : B/g ~* RF/Q(Gm) . (1.0.5)

Restricting this to the adele groups we get a, : B(A) +» I, and we put

lal = | oo, . (1.0.6)

1.0.7 PFor any algebraic group H/Q and any ring A containing @ we

write H(A) for the group of A valued points. We ghall abbreviate

H = H(R) .



From the definition of the restriction of scalars we get

Gm = G(IR) = GO(R @F) = Il GLZ(FV)' .
vE S

(-

We choose a specific subgroup K C G, where K = I &v and

VES
.9
K, = SO(2,R) *Z (R) = SO(2,R)* R if F =R
X ~
K, = U(2)+ Z () = U() T if F =C .

Here ZO/F is the centre of GO/F . We notice that the Kv and hence K,

are always connected.

Let X=6G/K = 1 GL,(F_)/K. be the symmetric space associated to
® ves, 2 V'
o

-3

G, /K, - We have a base point x, = K, € G /K, , of course X may have sever-

al connected components.

The group GLZ(Fv) has two connected components if Fv = R . We repre-

sent the components by matrices

€0
= *
(0 1) € GL, (IR) € = *1

and using these representatives we may view the group wo(Gw) of connected

camponents as a subgroup
'rro(Gm) C G, (1.0.8)

which normalizes K, .

1.1. Cohomology with coefficients

For any choice of an open compact subgroup Kfc G(Af) " we put

K=KK:C G(aA) and define the space



s, = G@\G(r/x
(Por a geometric description see [Ha@], 1.3.). Let
p : Gxg + GL(M)

be an irreducible representation of the algebraic group G X_ @ , where M

]
of course is a finite dimensional E;vector space. We define a sheaf
ﬁ/sK = ﬁp/sK by describing its section over small open sets in SK . Let

T : G(A)/K + SK be the projection, then we put for a “small" open set U C,SK

¢ 1is locally constant and for
MU = {s:7 ) *M|all a€G(® and wET (U} (1.1.1)
; we have s(au) = p(a) * s(u)
We can also describe the stalks of these sheaves. For x € sK the stalk is

given by (comp. [Gr])

~

(1.1.2) B = {s: 700 +»u|sla) =pla) s for a€a@uen (0}

1.1.3 At this point we have to be aware of the fact that in general the
action of G(@) on G(A)/K will always have fixed points even if we take
Ke to be s;all. The reason for this is that K, 2 2z, = Z(IR) . Hence we shall
always have a subgroup Exf of the group Eo of units of 2Z(Q) = F* which
is of finite index and which fixes every point in G(A)/K . The restriction
of p to Z2X_ Q is a one-dimensional character ®_ and if we want that

] P

My O for some K, we must have that |EK £ 1 . This means that «_ has
b 4 p £ P

to be the type of an algebraic Hecke character (see discussion in 2.5.). We

shall assume that this is always the case.



1.2. We may now define the cohamology groups
H (S.,M) .

If we take the description of SK in [ﬁa4], I, 1.3. into account and if we
assume that Kf is sufficiently small then this cohomology is the sum of

the cohomology groups of the connected components and on a component we get

o\ = wsoPe .

f
This of course implies also that dim H.(SK,E) < o , If we pass to a smaller

compact open subgroup K% C:Kf we get an obvious map
H (Se,M) + H (S, ,M
and we define the limit
H (S,M) = lim H (S_,M) .
+ K
K
1.2.1 As in |Ha4|, I we may consider S to be a "symbolic" letter for

a "space" whose cohomology is the right hand side. But it is actually very

easy to verify that for

the above equation becomes true.
We check very easily that for any element (see 1.0.8)
g = (e,gf) € "o(Goo) x G(Af)

the multiplication from the right by g defines a map



+ g
Sg 111(3_

(¢ normalizes K_ ) which extends to a map between the sheaves. Hence we

get also a map between the cohomolgy groups

H (S M) + H (S M)
X -1
g Kg

and if we pass to the limit we get

H.(g,ﬁ) is a ﬂo(G )XG(Af)ﬂmodule .

1.3. _P-structures on the cohomology

At this general stage there is no point to assume that the representa-

tion
p : G x@ @ > GL(M

is irreducible. We could as well start from any reéresentation
Py G/@ * GL(V)

where V is now a -vector space. We gain that the cohomology groups

H.(§,V) are Q-vector spaces, this fact will be important for our application.

But for the statement of our results lateron it will be important to work with

absolutely irreducible representations. One way out of course would be to
start from an irreducible Py and to decompose Py Xg i' into its irreducible

pieces and to keep track of the action of the Galois group of ayﬂ .

Here we propose a slightly different way how to recover the "Q-structure”

of the cohamology.
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Let A be a finite set together with an action of the Galois group
Gal(@/@) on A
Gal(/@) x A + A
(c,A) =+ o°*A .

Moreover, we assume that we have a E;vector space VX for each A € A and

for any A €E A and 0 € Gal(Q/@) we have a O-linear map

We want this system {Vk'¢k G} to satisfy the following two conditions.
[4

Ao

1) (Continuity) For v € VA ‘here exists a finite extension Q(v)

of @ such that

% WV =V for all 0 € Gal(/Q(v)) .
2) For all A€ A and o0,T € Gal(Q/@) we have a commutative diagram

%
0
A5 > Vo
[
¢A,cr / ‘bl,r
~J
me

If these conditions are satisfied then we say that {Ql O}A o
' ’

has a @-structure. The

defines

a @-structure on {Vk}k or that {VA'¢X G}A o
’ [

¢A g Bare called the transition maps of the {-structure. It is a simple
’

excercise in Galois theory to prove that
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Wo - {("'vk"')AEAEOVX"’)«,G(VX) avol for all )\,0}

is a @-vector space and W, QQ Q= @ VX . We call W, the underlying
AEA
{-vector space.

and {x ,¥ _} 1)then

If we have two such systems {V,, AE A U U,0°UEM
1 -

%, o
a {-rational map between them is the collection of data

1) A subset PC AxM which is invariant under the action of the

Galois group.
*2) For each (A,l) €EP we have a map

H -»>
VX X

A H

such that for all o € Gal(Q/@) the diagrams

¢

o

Y\

> %
Y QXIU l \yu.U
X

vO')\ — ou

AM

cammutes.

‘We may extend the system of maps QA u to all of AXM by putting
(4
QA u =0 if (A,H) fg . It is clear that then this system of maps defines
’
a linear map

® .V)""G
A€EA HEM

and the commutation condition in 2) is equivalent to the condition that ¢
is the extension of a map Oo between the underlying {~vector spaces.

We do not need the finiteness of A and M , we only need that the
Galois group has finite orbits on both sets.

1.4. We want to introduce a @-structure on the system H.(§,§) it

we conjugate M by

1) ‘Here M , P are the capital greek letters My , Fho .
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the action of the Galois group. This is very easy. We observe that
Gx @ = { { GL,/R
b T: F>Q 2
and hence our irreducible representation p is a tensor product
M = _ M
T: F>+@Q
where M‘r is an irreducible representation of GLZ/E . We realize these re-

presentations explicitely, we write

Moo= M(d(1),v(T)) ar)e X , vV NE Z
where M(d(1),v(T)) is the Q-vector space of homogeneous polynomials of
degree d(T) in two variables X T’ Y't on which GLz(a) acts by

v(T)

a ab
c ) : P(XT,YT) hd P(aXT+cYT,bXT+dYT)det(c d) .

o o

pT(

The character module Hom (T XQ E,Gm) = X(T XQ @) is isomorphic to

X@x @ = @ X(T_)

T: F+Q

and the pair (d(t),v(t)) defines a character

)\T : To > G,
. (&1 0 a(t) v(T)
AT : (o tz) >t (tyt) .

Hence we can consider M as determined by the character

A= A o= (e — € X(T XD

T:F+Q [}
On the characters we have an action of the Galois group for ¢ € Gal(@ﬂ)

we put



- 13 -

g
N ('”XGTH')T:F"E .

So the value of A’ at Tt is )‘or . We have an obvious O-linear map

bg ' M = MO > M%)

given by

g
®_ PT(XT.YT) + @_ PO.T(XT,YT)

T: F+Q T: F+Q

where the superscript ¢ means that we apply o to the coefficients. If

A is the orbit of A under the action of the Galois group then the system
{n 0, }

has a P-structure. The action of (pP) on the M(A) commutes with the
transition maps, we get also g-linear maps between the sheaves M(1) and

hence we get a system of transition maps

¢;'° : H (S,M(\) + B (5,80

and this defines a Q-structure on the system of cohomology groups

{w’ (§,M(1) )"¢;‘,o}X€A , on which "o(Gw) X G(Af) acts by @-rational maps.

II. The cohomology of the boundary

2.1. We look at the embedding

Sg T 5

where EK is the Borel-Serre campactification of the space sK ([B-s_] '

§9 ). We want to recall briefly the main properties of this compactifi-
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cation. We consider the projection map

P : BANGWI/KK, > G@\G(AI/KK., = s, .
On the left hand side we define a level function

n : BE\GAI/XKK, + R,
by the following formula: Write any element g € G(A) in the form

g = bk
where b € B(A) and k € K_XxTI GLz(og ) and we put

3
n(g) = |a|()

(1.0.6) . Then the reduction theory implies that for a suitably large choice

of ¢ >0 the map p induces an open inclusion
-1
Bt o0 (e + GO\GRI/KEK,

(comp. for instance |Ha4|, 3.1 and |Ha2|,§3), and for any t, € (c,®) we

have by the geodesic action (IB*SI, |Ha2|, § 3
-1 -1
n ({(c,®) = n (to) x (c,») .
We get the Borel-Serre compactification by embedding
-1 -1 -1
n ((c,®)) = n (to) X (c,®) + n (to) x (c'm] .

This allows us to extend the sheaves to the compactification, we have ob-

viously

H(S.,M) = H (EK.M)
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He (3S,,M) = H (BD\G(A)/KK M)

wher 3SK is the boundary. The last assertion is a generalization of Pro-

position 3.1 in [Ha4] to this case.
2.2. Again we pass to the limit and write

lim H (3S_,M) = H (35,H) |,
pre K
Ke

the right hand side is now a 'rro(Gm) x G(Af)-module and the map
r : H(S5,M -+ H (35,M)

is a morphism of ﬂo(Gw) x G(Af)-modules. We may also apply the consideration
of 1.5.1 to the right hand side and introduce a (-structure on the system

{a'(aé,ﬁ(m},‘ with the same set A and the system of maps

rll)\ H H (va()\)) + H (QS,M()\))

will be a Q-rational map in the sense of 1.5.

2.3. The aim of this section is to compute the cohomology of the
boundary as a wo(Gw) X G(Af)-module. We also have to keep track of the Q-struc-
ture of the system of cohomology groups if we vary M over its conjugates
under the action of the Galois group. At the end we will have a generalization

of Theorem 1 in [HM] , which will be the Theorem 1 in 2.6.

2.3.1 We need an algebraic version of the van-Est theorem Erz] We put our-
selves in the following general situation: Let U/Q be a connected unipotent

v/
algebraic group, let AW/Q = Lie(U/Q) be its Lie algebra. Let L/q be any



- 16 -

extension of @ and let us assume that we have a representation

: X
o UxyL > GLOW

where M 1is a finite dimensional L~vector space. Let I‘UC U(@) be an
arithmetic subgroup, then the quotient space I‘U\Jm will be a compact nil-
manifold. The same construction as the one given in 1.1. gives us a sheaf

~

M on I‘U\Um and the van-Est theorem says that we have a natural isomor-

phism
H (rrN’w’") * H (M) . (2.3.2)

Usually this theorem is stated for the case L =R or € and the proof

uses the de-Rham isomorphism.

But there is a very simple algebraic way to prove it. At first we notice

that
r v
HO(T NG, ) = M7 = w = HO (e, M)
since PU is Zariski-dense in U . Then one uses the fact that U/ and as
well M/L can be filtered so that the successive quotients become one dimen-
sional and a simple argument with spectral sequences shows that the functor

H (/G,'M) is effaceable ([ ], ). Hence we get a natural map from
L] (V4 L] -~
H (uM) > H (T \Uo™)  «

Using the filtration argument a second time, now also for the right hand side,

we get that this map is an isomorphism.

After this excursion into homological algebra we come back to our

original situation. We put K: =B, NK, and 1(: = K. N B(A

£ .f).mhavean
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embedding

B@\BA/KCKE + B(ANG(AI/KK,

where the image is a union of connected components of the right hand side

((Bad}, p. 109). We introduce the m_(B_) X G(Ag)-module

HUM = Lin 8 (@N\a()/EKE, )
K b d

o

£

and as in [334], pP. 117 we show that

. o~ ~ T (G) XG(ag) |
H (05,M) = I"dno(Bm)XB(Af) Hy (M)

Hence we are left with the computacion of K;(ﬁ) . We consider the torus

T/@ = (B/U)/Q and let K. , Ky be the images of K, , Ky in T_, T(A.) .

We have a projection
T, T
P : B@NBAI/KK, + T@\T(A/KEK, .
This is a fibration whose fiber over the point 1 is
: u
U@\uia/k, = TNU,

with I'U =U(@ Nuy,° KU . We apply 2.3.1 and get

£
H(T\U, M = H (M) .

The right hand side is a module for the Torus T 0 @ ., we get this module
structure since M and /4: are B-modules. Using the same construction as in

1.1. we get a sheaf

B gLw  on  T@N\MA/KK, .
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It is now a little bit painful but straightforward to check that this
sheaf is actually the sheaf of cohomology groups of the fibers the sheaf of
cohomology groups of the fibers of the map p with coefficients in M .

Hence the spectral sequence for the map p becomes

. e oo . B_B
HO(T@\T(R) /KK, (M) => 1 (BONB@/KKe M) .

We shall see that this spectral sequence degenerates and we have to do the

following:

A) Compute the T X Eﬂuodule H (/IM) and decompose it into one

2

dimensional pieces.

B) For each one dimensional pir:e we have to compute
. T
H (T(Q)\T(A)/xmxf,QY)

as a T _(T,) X T(Ag)~module. Here Y is a character on T X Q. EY is a one

dimensional Q-vector space on which T X i acts by vy .

]
We go back to A). To compute the cohomology we have to apply the Kinneth-

formula and get
1 (M) H (w8 @,M) 3 ® H () M)
’ = I} > - ’
a /”Q . T:F=>Q /*o T

where ;"o is the standard unipotent Lie-algebra of Uo/l' extended by T to

D . We have to be careful since this isomorphism is not
canonical, the identification depends on an ordering of the set

{t]t : P > @} and may change sign if we choose another order.

But now it is very easy to find the characters of T X i occuring in

e
pll)

. WV
H (/u,M) . For each T the torus o /F acts upon M and has a highest

and lowest weight vector
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- a(r) = y3(1
®a (1) X v e q(1) Y

and the weights on the torus are td(T) t-d(n respectively (1.0.3). It

’

. w [ %4
acts on Mo by the weight t2 « In Mo ve have the generator

(o)

Q

0
0

v
and let u: be the element in Hom(/ab ,F) which does

Q

v
ua(

© o

Then it is well known and obvious that

Ho(v M) = Qe Hl(v M) = Qe su
Mo My Qeg(ry - 7o M Re_g(1) o
Hence the torus To = {(;1 22)};‘, GL2/F is acting on the cohamology

LA 4
H (,u.b,u,r) by the two characters

t1 0 . LA v(Tt)
teaiy ™ o e2’®a(n) B Teg
(2.3.2)
v a(r)+v(t)+1 _v(T)=-1 v
team * % T %2 1 ®a(m) ®* % -

If Y. € X,(T) is one of the above two characters we put deg(y,) = 0 or
1 according to whether its eigenclass sits in degree O or 1 (or whether

it's the first or second).

Now we get from the definition of restriction of scalars for tha

character-modul of T XQ 6

X(TxQ) = @_ X(T,)

T: P*Q
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B (fM) = @ QT = @ n‘(/lu)(y) (2.3.3)

y€ecCoh(m) Y ¥ €Coh (M)

where Y € Coh(M) are the characters

Y = (”.YT.'.)T:F‘*E

and YT is one of the two characters in 2.3.2.

2.4. We want to discuss the P-rationality of the decomposition (2.3.3).
Given A which determines the module M (see 1.4.) we looked at the orbit

A of X in X(Tx@) and we have a Q-structure
{’i‘*"¢x,o}x'EA .

For A € A we may look at the set of y in Coh(M(1)) and we define
M = {u=O, |2 EA and y € cohMA))} .

We have a Galois action on M and the projection
Bo:ouo> A

commutes with the action of Gal({/@) . But then it is obvious that the map

¢X,0 induces

. R (oM + ' M%) (%)
0 o ¢+ H (MO (M) (i y

and we get a @-structure on the system

frgwonmae, booyen -

The spaces H'{/:M(l))(y) are of dimension 1 over {§ . Hence we can choose

a system of generators

e(\,y) = e(u € u'(/l’,u(l))(y)
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which are mapped onto each other by the transition maps, the means that for

u=(\Yy) and 0 € Gal(Q/Q)

*

g
,q (e{)) = e(u) .

The existence of such system is a consequence of Hilbert's theorem 90. We

shall call such a system a rational system of generators.
For 4 €M we define the field of definition @(u) in the obvious way
cal(@amw) = {o € cari@m | u® = u}-
If we have two rational systems of generators
{ew}  ana {e*}-
then we have e'(y) = alule(n) where a(u) € @) and a(w? = at?) .

2.4.1 There is a very explicit choice of a rational system of genera-

tors. For any u = {(A,y) we shall construct a generator
o VvV
e(}\»chw) €EH (/(,M) (‘Y)

which depends on a total ordering < of the set {tv|T: F+ @} . This

generator is defined in the following way: Our character vy 1is of the form

Y = ('°'YT"')T

and for each T the character YT is one of the characters in (2.3.2). We

consider the set
. 1, v
I(y) = {TI \ is the character on H gqb,nr)}

and we numerate the elements of I(y) according to the total order
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I(y) = {rl,rz...,rs} .

Then s is the degree of the cohomology group H.QLZM)(Y) = nsgiﬁu)(y) .

We define our generator by giving an explicit representative
s v
E(A,Y,<) € Hom(A (@/Uro) M)

v
for it. Let u € ® L be the element whose T component is (g

a,T ) and

1
o

whose other components are zero, then

E(A,Y,<) (u reees ) = @ e ® @ e
Ty % Ty rety 3O U ET( 40
and E(X,v,<) is zero on all other s-tupels.

Then is obvious that

¢;l’0(e(>\lY;<)) = e(XU:YoKO) .

To get rational generators we have to look at the stabilizer of (A,y) = u
Gal(p/@(w)) € Gal(@/® .

The group Gal(D/@(u)) fixes the set I(y) and o € Gal(®/®(u)) induces

a permutation p(0,y) on I(y) . Then it is clear that for such a o
e(A,v,<%) = sgn(plo,¥)) * e(r, v, <) .
We have a homomorphism

Gal(Q/@(y)) =+ Z/2%

o + sgn(p(g,Y))

and this defines for us a square class
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a € g */ew? .

If we choose a square root &(u) = vYd(p) in @ , then the element

6(we(A,Y,<) will be invariant under Gal(@/@(u)) and the system
{800%0%%, <N}

will be a rational system of generators.

We have done A) and go to B) and tackle the cohomology groups

. TT ~
H (T(Q)\T(A)/Kwa,QY)

where Y € Coh(M) . But at this point it seems to be reasonable first to

study the cohomology of tori from a more general point of view. So we go to

2.5. Intermission: The vcohomologx of tori

The general situation to be studied is this: Let T/@ be an arbitrary torus
over @ , let X = X(T * ©) be its character module. Any y € X gives us
a representation

Y o 'rxqi > GL(EY) .

Here i is the vector space 5 on which T X i acts by vy . In

Q
T, = T(IR) we choose a connected subgroup 1(: which is of the form

. z(r)° = KO

Here K: is the connected component of the maximal compact subgroup in Ty ¢
the group Z is a subtorus of the torus T/@ and z(R)® is the connected

Ccomponent of its real valued points. We define

’ T
sg = T@\T/K,'C * K
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for any open compact subgroup Kg CT(Af) . The representation Yy defines
a sheaf iY on st (see 1.1.) and we are interested in the structure of
the 1r°('1‘°°) x T(Af)-module
1 (T,8) = 1mu'(sl,p)
By D Bely
Ke
(Here it is not necessary to pass to the limit in order to get a module

structure.) The answer to this question is given in proposition 2.6.1 .

2.5.1 Remark: The choice of the torus Z/@ will turn out to be rather

irrelevant. If we take 2/Q to be the split component itself then we have
the advantage that S;I(‘ will be compact, if not we get something compact

-

times an uninteresting factor (R* ;* . In general the choice of 2Z/@ is

>0
dictated by induction hypotheses. In our special case for instance it is

the choice of the K_C G(IR) in 1.0. which will dictate the further choices.
We made the choice of K  in 1.0. in order to kill some absolutely uninter-

esting contributions to the cohomology.

The above cohomology will be described in terms of algebraic Hecke
characters of type Y and we want to recall briefly the definition and basic

properties of these (see [Se ], II1, §3 ).

2.5.2 The (rational) character Yy defines a homomorphism

Y, : T(R) y
N
T(C)

A continuous homomorphism

¢ : TaENT(A) +
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is called an algebraic Hecke character of type Y if the infinite component

satisfies

-1
b = Y, (2.5.2.1)
1% () °(R)

where T°(R) is the connected component of the identity.

2.5.3 We can recognize an algebraic Hecke character of type Yy from

its restriction

X
¢f : T(Ag) + T

First of all we observe the following fact: If a € T(Q) N TO(R) = T, (D)

(i.e. totally positive) and if a is the projection of a to T(Ag) then
(2.5.2.1) implies
oe(@) = y(a) eg™ . (2.5.3.1)

If we use the fact that ¢f has to be trivial on an open compact subgroup

T

Kf and that T(Q)\T(Af)/l(g is finite we get that ¢£ takes its values

in Q% 1If we now assume
¢£ : T(Af) - 5"

is given, continuocus and satisfies (2.5.3.1) then we may define ¢ on

T(m) x T(A) by
Blegt) = Yo (L) * bglty)
and ¢ 4is a homomorphism from

¢ + T, @\ x TAY > O
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which estends by a theorem of Tate (B&ﬂ), which says that
T(Q) > no(Tm) is surjective, to an algebraic Hecke character of type Yy .

2.5.4 We may read (2.5.2.1) in a different way. Given ¢ and y we

could say that there exists a signature character
€ : W T {1}
such that
€ Yw = ¢co . (2.5.4.1)

We shall call € the signature of the pair ¢,y . We want to extend ¢f by

abuse of language to

—=X
¢ = T (T) X T(A) > D
by the obvious formula
be(n,te) = eln) * b (cp) (2.5.4.2)

If we have a € T(®) and project it to (am,af) € ﬂO(T“) x T(Af) then we

still have Qf(;;,af) = y(a) .

2.5.5 The (rational) character <y has to satisfy a certain condition
if we want to have algebraic Hecke characters of type Yy . Since such an

algebraic Hecke character has to be trivial on some x?

” it follows

that it has to be trivial on
T

B, (k) = {a €T, (@)]a €K}

which is subgroup of finite index in the group EO(T) of units in T(Q)

(elements which are in the maximal compact subgroup at all places). Since Y

T

is rational it has to vanish on the Zariski closure E(Kt) . If we use
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Chevalley's theorem ([Ch] ' ) which guarantees that every subgroup

of finite index in EO(T) is a congruence subgroup we find the following

fact:

2.5.5.1 A character Y admits algebraic Hecke characters of type Y
if and only if Yy is trivial on the torus H/@ + T/@ which is the connected

component of the Zariski closure of the units EO(T) in T/Q0 .

2.6. We now come back to the computation of

~

[ T =
H (SK'QY) .

Let us assume K;IE‘ sufficiently small so that E(x':) = {faerp|ac€ K':}
has no elements of finite order ard all its elements are in T°(R) . Then

a connected component of s;l(' is of the form
T, T T
T@\T@ * T2(R) * £° K K/KK, = E(xf)\'r°(m) . t/K,
and we have to compute first the cohomology of such a component

. T () T,0 =
H (B(KN\T (R) + /K a) -

T
The space ‘l‘o(lR) ylé"ois contractible. If we put I‘,r = E(xf) and
I'z = I‘T N z(@) then I‘,l,/I‘z is a free abelian group which acts without fixed
points on T°(IR) yx:"?. (This is the place where the choice of Z and hence

K. enters.) It is clear that 6Y is equal to zero unless Y|I, =1

(comp. 1.1.3.), so we shall assume this. Then we get

] '1" ~ [ -—
B IN\TO (R /K700 ) = B (TyT5,R) .

The group T,/T, acts upon EY by the restriction of Y to I, and then



- 28 -

it is clear that

o yIPT 1
H ([ /T,,8) =
Y . —
A" (Hom (T, /T, ,@)) Yltp 21 .

Of course for small K: the group FT/PZ is simply a subgroup of finite

index in the group of units in T/2 , so it is free abelian and if we pass

to a smaller Kg this group gets changed into a subgroup of finite index.

This means that

Hom(T/T;,@) = Hom(Ty/T,,Q) 8, @

is independent of the choice of the congruence condition, i.e. of K: . Let

us put
Hom(T,/T,,@) = 3¢ (1/2)

then we find that in the case Y!FT Z 1 the cohomology of a camponent is
H (I'T/I'Z,QY) = A (R(1/2)) ® 2, -

Then we get from the definitions

. ~T (3 _ o ~T ~ L3
H (S ,QY) = H(S .QY) sQ A (H(1/2))

and this an isomorphism of ﬂo(T“)><T(Af)qmodnles, the action on the exterior
powers is trivial. Let us assume that we select a generator e(y) € E& , then

I claim that every algebraic Hecke character ¢ of type Y gives us a section
e, (ely)) = e, € u(ET,R)
) ¢ Ry

which is defined as a map
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& * T/ > T
e

o ¢ & de(Erpely)

(see 2.5.4.2), where t, is the image of t, in m_(T,) . This map is

locally constant and satisfies for a € T(D)
e (at) = a t
¢ (2&] Y( )e¢(_)

and hence it is a global section (see 1.1.1). It is clear that the e¢ form

a basis for H°(§T,ﬁy) and we have

Propogition 2.6.1. Under the conditions formulated in 2.5 we have

' (3".0) - (‘U Te, 8, A" (R(r/2))
Y ¢ : algebraic Hecke
character of type Y

where 1r°('rw) X T(Af) acts via ¢f on Qe

¢ °
We apply this to answer question B.). Our torus is

T = % /Q(Gm) X RP /Q(Gm) and Z = Pl_., /Q(Gm) embedded diagonally. Then

T/2 = RF/Q(GII) and P (T/2) = Hom(U(F),D) where U(F) is the group of

units of F . Before we apply 2.6.1 we have to take into account, that we

divide T(R) by K. = K.'°Z(R) in the situation of question B.). Let

Z be the image of x:‘: in “o(Tw) . 1f we apply proposition 2.6.1 we sum

only over those ¢ which satisfy ¢,|2 =1 .
Now we go back to our spectral sequence in 2.3.. We have

o 3 T 'f\.’_) .
n'(§"',a'(/4,m) = @ H (S, (A,M(Y) = H (M) .
Y € coh(M)
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¢ Vv —
The H (/-t,M) (Y) = @°e(y) , so they occur with multiplicity one. Therefore

the spectral sequence must degenerate. We apply proposition 2.6.1.

Proposition 2.6.2: The action of 7 _(B) X B(A,) on H (M) factors

over T (T,) X T(Ag,) and as w (T,) X T(Ag)-modules

Hy () = ® ® 2 ey 0 A/ .
YECoh(M) ¢ : ¢ of type Y ,
¢z =1
Here we introduce a simplification in the notation. If we choose a generator

e(y) = e(),Y) for the space H.(u,M) (y) then e¢° e(A,y) would be a

generator of H°(§T,H.(u,u) {Y))(¢) and we call the generator e¢ again.
Combining this with our considerations in 2.3.1 we get

Theorem 1: As a ﬂo(Gm) x G(Af)-module the cohomology of the boundary

is given by
. 7 (G )*XG(A.) _ .
H (9s,M) = @ @ Ind"°(:)x3(:) ) e 8 A (_¢(1/2))
YECoh(M) ¢: ¢ of type Y o' ® 4
¢f]2‘ =1

2.7. We have to discuss the @-rationality of this decomposition.
Actually it is rather obvious what we have to do. Pirst we observe that we
have an action of the Galois group on the algebraic Hecke characters. If we

look at the finite part of such an algebraic Hecke character then
—X
b, = T(Ag) + @
and it is obvious that for o € Gal(@/@) and

delty) = (e’

¢g is again the finite part of an algebraic Hecke character ¢a . It is



- 131 -

also clear that this operation commutes with the formation of the type

(The Galois group acts trivially on T(Af) .). Now we consider triplets
U= (Y. 9) Y ECoh(l) , typeof ¢ =7y

and we have a Galois group action on these triplets. If Ml is any orbit un-

der the group Gal(Q/Q) we have maps

T, (Gy) X G(AL) _

v, = Ind e, (=V )
¢ T, (B,) X B(A.) ¢ ¥y

considered as a submodule of n'(a§ ,fi) then we define a system of transition
maps

g
s VvV + VvV
¢u1 0 ¢ ¢°

by sendimj e ¢ into e, , where we assume that the e(A,y) have been

¢C

chosen as a rational system of generators (see remark after Thm 1 and 2.4.1).

Then we have the addendum to Theorem 1:

2.7.1 The system of maps H.(3§,ﬁ(l)) »> V¢ is a Q-rational system of

maps between {H (35,M(A)}, ., and {"¢}u,€§'

2.8. We want to discuss Theorem 1 in some special cases. The first case
is that the field F is not totally imaginary. In this case it is well known
that for T = RP /Q(To) - RF /Q(Gmem) the torus H (Zariski closure of the

units) is given by the kernel of the norm map, i.e. we have an exact sequence

1 » B » R?/Q(Gmem) - (GmXGm)/Q + 1
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(comp. lSe l, II, 3.3 ). This means that for
YEXTX @ = (::}__ X_(T)
e T:F>Q °

the condition Y|H = 1 is equivalent to

‘Y = (...Y...)T:F+6

i.e. all the components must be equal. So if we look at classes
€ 1 (M (y) ® H (M)
e = _ ‘
Y T:F+Q /‘b T
and want them to contribute to the cohomology of the boundary then the fol-

lowing conditionsmust be satisfied

(2.8.1) A = (...XT...)T must be constant
i.e.
. t1 0 d | v
Ap ¢ b &) > & (5t

or stated otherwise M = ? M(d,v) .

2,8.2 We have the two possibilities

a v ‘

tl(tltz) for all T
Yo "

tg+v+1 tr-l for all T

If the first case in (2.8.2) holds then

Yo (°"YT°")T

gives cohomology in degree zero, in the second case

Y, = (...YT...)T
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gives cohamology in degree n , where n = |P:p| . Then Theorem 1 simplifies
because we have a serious restriction on A and for any ) there are

exactly two possible types in Coh(l) which admit algebraic Hecke characters.

2.9. The situation is more complicated and also more interesting if

the field F is totally imaginary. In this case we put E?Q] =n =24 .

Since we assumed PC T we have the complex conjugation in Gal (E/Q) '

for T : P> i let T be T followed by the complex conjugation. We group
{rlz:e+q} = [...1,7,...0,0...}

into pairs. A character vy € X(T Q @) is given by its components
Y = (...YT,YT...YO,YB_...)

where each Yo is a character on x('ro) . Then it is clear that Yy can ad-

mit algebraic Hecke characters of type 7Y only if
4 - + = w(y) (2.9.1)
Yr 'Y__F Yo YU Y

for all pairs {t,7} , {0,0} (|se |, II, 3.3 ). We call w(y) € X(T,)

the weight of Yy . If our field F is a M-field then this condition is

also sufficient.
If we give ourselves the module
M = M) = ® _ M(a(T),v(T1))
T: F+Q

then 2.9.1 restricted to the centre gives

W T) +V(T) = v for all T,T
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a condition which we always assume, otherwise we have no cohomology at all

(see 1.1.3).

If we now want to analyse for which Y a constituent H 9u,n)(y) can
contribute to the cohomology of the boundary we may restrict to the torus

T(l)/Q which we identified with RF/Q(Gm) (see 1.0.4). Then

Y|T(1) XQ ﬁ'= Y(l) is a 2d-tupel of integers
(1) =
Y (...nT,nT...nd,nU...)
and w(Y(l)) =W=n + n_ does not depend on {T,?} . If we decompose
T
o o
H (u,M) {vy) = : H }uO,MT)(YT)

then we know from 2.3 especially 2.3.2 that for each T the number n. has

to be one of the two numbers

n. = a(t) if deg(YT) = 0

n. = -d(t)-2 if deg(YT) = 1 .

Hence the above weight w has to be taken from the following list
Lw = (d(T)+d(T),d(1)-4(T)-2,d(T)-d(T)-2,-d(T)-d(T)-4) .

« v « L
The members of list correspond to classes in H Sfx'"r’ 8 H QLS,HT) which

sit in degrees 0,1,1,2 respectively.

Now we should distinguish two cases

2.9.2 The weight w = w(Y(i)) # -2 . In this case we see that for each

pair {T,;} exactly one member of the above list is equal to w . If

w= -1 or =3 then this member corresponds to cohomology in degree 1 , if
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w > O then it corresponds to cohomology in degree O or 1 , if w < -4
then it corresponds to cohomology in degqgree 1 or 2 . We refer to this

case as the non-unitary case.

2.9.3 Wé have w = -2 . This can only happen if d4(T) = d(T) for
all pairs {‘l',?}' and then there are exactly two members in the list which
give that weight and they correspond to cohomology in degree 1 . This is

the unitary case.

2:9.4 Let s = (__? é) € G(p) be the non-trivial element in the Weyl
group. Then 8, defines an involution on X(T XQ i) as well as on the
algebraic Hecke characters on T(Q)\T(A) and this involution commutes with
the formation of types

8

o
8, Y = a+yY

8
s°°¢ - ‘“No

(see 1.0.5 and 1.0.6) where Ys° and ¢s° has the obvious meaning. If we

restrict this action to the characters (algebraic Hecke characters) on

(1)

T then

o,y = a-y® o e o g

(1), -1
° )

o(¢

(1)

and the above numbers change as follows: nt-*-n,t-t-z , and w(so'yu)) =-d-w(y ).

If the character Yy correspords to cohomology in deg(y) = 2 deg (Yr)
T

then 8, °Y corresponds to cohomology in
deg(s_*y) = 2n - deg(y)

We call vy balanced if deg(y) = deq(s°° Y) = n which is certainly the
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case if Y is unitary. If the field is not totally imaginary then we are

always in the non-balanced case.

II1 Cohomology and representations

The material in this section is more or less well -known, many of the results
are just specialization of general results to the case GL2 . I want to review
it briefly, because it seems to be difficult to find it in the literature and

I want to give a rather complete treatment of the case GL2 in this paper

3.1. We consider the kernel of the map r

H(S,M) = ker(u (S,M) + 4 (3§,M) .

This is a TTO(G“,) X G(Ag)-module and it can be described in terms of autamor-
phic forms. This description is given by the so called Eichler-Shimura iso-
morphism. We want to explain this in the given context.

We have @ C ¢ and extend M, = M 8_ T , the corresponding sheaf on
Sy 1is denoted by ﬁm . The cohomology grogps H'(Sx,ﬁc) can be computed in
terms of the de-Rham-complex and the de-Rham-camplex is isomorphic to a re-
lative Lie algebra complex, so the cohamology can be expressed in texrms of
(cem.l(m)-cohanology, where %m = Lie(G,) (comp. [B-WJ, vii, 2.7. ). Ve
want to state this more precisely. The centre 2/p of G/p acts on Ht by

a character ® € X(2 XQ @) , we define the space
E . caNsan ™)
which consists of all C o-functions on G(Q)\G(A) which satisfy

£lz,g) = w (z)f(g)
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for all gz € zZ) CZ(A) and g € G(A) . We recall that £(g) = £(g,.g,)
is called O _ if it is C _ in the variable g, and right invariant
under the transformations of a suitably small open compact subgroup

KeC G(Af) . If k, = Lie(K_) we can identify the de-Rham complex of forms

with coefficients in ﬁc to the relative Lie algebra complex

0 (Bl = Hom (A'(91 /%) G G@NGMI/XY) @™ e ny
(comp. [B—W:[, viIi 2.7. , [M-M], §1), and passing to the limit we get
an isomorphism of wo(Gw) X G(Af) -modules

3,4y > u'(ﬂ,,x,.l,',(cm)\sm)(m") N .

Borel developed very general methzds which allow us to-investigate the struc-

ture of the subspace ﬁ.(g,nc) by functional analytic methods.

We introduce the Hilbert space

12 (G(Q)\;(A) y ™

of those functions which transform under z: by a).l and which satisfy

o { |£(9_)|2|m(g_)|zd§_ <o

2°G(@N\G(A)
This is a unitary G(A)-module, the discrete part of this space is the closure
of the sum of all irreducible closed subspaces, one knows that this space

is a direct sum
t2e@\ea) ™) = TH,
a‘™ r ¥

where each isomorphism type of G(A)-modules which occurs, occurs with multi-

plicity one. One knows furthermore
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~

3.1.1 If dim H < = then H = n:$ where ¢ factors over the deter-

minant, i.e.

- det 1]
¢ : c@\eca Fx\IF -~

and ¢ is a character on Fx\IF

3.1.2 If dim H =® then H is contained in the space of cusp

forms Li(G(Q)\G(A))(m-l) (For all this: |G-J|, 4.2.).

It is known that the G(A)-modules I-i" can be decomposed into a tensor-

product of local G(A)-modules

n L Te veEs, T, m
{comp. [Fl], [Go], §3,2 ). 1In H  we have the subspace H,'(Tx“) of
o0 o

K,-finite vectors, this is a (%w,l(m) -module (Harish-Chandra module) ([B-w:],
I, 2.2, [VO], Ch. 0, § 3) and for these modules we have the notion of

((gm,xm)—cohomology with coefficients in MI': :

1 (g oK, 'H(Koo) sup = u (om (A'Gh/K) a5 ey .
(-]

Kao)

We say that w € Coh(M) if H(%ml(m,( GMB);‘O and we say

TECoh (M) if ™ in addition occurs in the space of cusp forms.

The condition T € Coh(M) 4is only a condition at infinity. The problem
of determining the unitary (%“,K) -modules which have cohamology is solved
in full generality, this means for all real semi-simple Lie algebras

([vol . [vz], ). We shall describe these results in our spe-

cial situation briefly in 3.3.
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We have an inclusion
® B ®H - C Se@\e@n w ™
T € Coh (M) b £

and this induces a map

. (X)) .
I, : o H( ,K,BE  )eH -+ H(M) .
4 " reconm G, Te €
The following two assertions are special cases of a completely general re-

sult of Borel (|Bol|, Thm. 3.5 , |Bo2|, Cor. 5.5).

3.1.3 The image of I

a contains H (S'ME) .

3.1.4 The restriction

® (&) ® e
4,0 Ty T
TE Coh_(M) £

is an injection. Moreover
I“(Id,o’ CH (s,mp) .

One ugually calls Im(Id °) the cuspidal cohomology and it is denoted by
I
chsp(s,ut) .
3.2. Now we have three spaces

ac“p(s,ﬁc) C ® (§,Mc) C Im(1,)

and we want to study the relationship among these spaces a little bit more
closely. We have to understand the contribution of the one dimensional

spaces to the cohomology.

1f we have

n'(g,.x,.c&a M) £ O
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then the following two conditions must be satisfied.

3.2.1 dimm, = 1 (comp. |Bo3|, 1.6).

3.2.2 $(det(z)) = $(z) = alz) ' for =z €22 .

Hence our representation M = M(A) is of the form

Gx_ @ P > o =g

~J
R R
and XA = A o det|T . Of course we shall keep in mind that we always assume,

that klz is the type of an algebrai.: Hecke character, this is also our

character ® . Now we get a map

3.2.3 I, @  u wKer 8 @ M (M) > H(S,M.(N))

type ($) 1z = w !

and hence we get a decomposition
Im(Id) = Im(Id,o) ® Im(Jd) .

(The fact that the sum is direct follows from multiplicity one (for

instance).) Now we want to investigate

may = 0 0@ g wox,.he x.0)
d $: F*\IF‘*E 4 %Q Ml:
type($)|z -

The Lg »-module l:$ -] Ml:()‘) is trivial and hence we get

a'(gm,x“,n:& eM.(\) = €§®Hom (A ok o)
[- -]
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The Lie algebra % o and the group K decompose into

= = Il K
% vEs‘év b vESa v

and with kv = Lie(Kv) we get

K d
A (6] /%) V = A°((gv/kv) oA "(%‘/kv)
where dv = 2 (resp. 3 ) if v is real (resp. complex), we have

m=dim X = 2 a .

v
v SQ

Proposition 3.2.4: Let A be as above, let ¢ be an algebraic Hecke

character for which type($) |z = )\-1|z . Then we have

(i) The image of

Hanx“(Ao (Yo%) /E) @ cd

under I3 is not contained in ﬁo(g,ﬁm()\)) .
(1) © Hom (Y () o ks ®) @ o) ¢ (5, (N)) .

V>O

(iii) The kernel of Ig restricted to this component is

Hm(Am((Qc/k“),l:) ech .

This proposition is more or less equivalent to proposition 2.3 in [Hal] .
which is stated there without proof. For the purpose of completeness I will
prove it here, the proof is rather unpleasant. The proposition is not really

needed in this paper.
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To prove the proposition we go to a fixed level, i.e. we choose a Kf

and we write

s, = L.J I‘(i)\x

i€ ‘n’o(SK)

(see 1.2.). We look at a single connected component which we will denote by
F\x . On this component we have the invariant differential forms
o, = /\
= vel v
where I C S, and w, is the volume form on the factor xv . These classes

span a graded ring A(X) , we are investigating the map
ax) » B (N\x,o) .

Now we are actually back in the situation of |Ha 1|. The first assertion in
the proposition is obvious, to prove (ii) and (iii) we have to work with some

considerations on the growth of differential forms.

If we have a boundary component in the Borel-Serre compactification
P\?' then it is associated to a Borel subgroup B/@ + G/Q (which for this

proof is not necessarily the standard one). We put FB =T NB(P) and we

have the map
Pg ¢ Ta\x » I\

the group B_ acts transitively on X and we define the level function
n(x) = nlbx) = [a],(b,)

(see 1.0.6 and 1.0.7). It is known that for ¢ sufficiently large the set
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ST\t = nTl((eo & Tk

and this set I‘B\x(c) is homotopy equivalent to the boundary component

attached to B . We use the usual description of the de~Rham complex

L] [} K
QX = HomKB(A (ba/bw),tw(I'B\Bw))

where Kz =B, N K, . We may choose a torus T C B, for which T NK, = K::

is maximal compact in T_ , and we put Am = Lie(T_) . Then we get

Hom _ (A" (b /b),C (T \B ) =
[

1<B
achT(A°(4m/4§) ® A'sL;),C,,(rm\s,n ;

Now we prove (ii). We assume that we have an invariant form Wy with I #¢
whose restriction to the boundary gives a non-trivial class. We may assume
it is non-zero when we restrict it to I‘B\x by pg since I‘B\X is homo-
topy equivalent to the boundary camponent YB . We know that there exists
a class

Ee Pl U -

| " g = 1
such that [mI] AEE ol (¥5,€) is non-zero. We computed the cohomology of
the boundary from a degenerating spectral sequence (see 2.3 and [Hal],
prop. 1.1) and we may write

E = €
ptq Zm—i-dl P,

PoatyF1¥r2-1 . q
where Ep,q € H((8") H (PU\U‘,,,B))

(see [Hal] §1 ). We shall see in course of the construction of the
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Eisenstein classes (see4.2.2 ) that we can represent Ep a by a form
!

3 P K qY '
@ o € HomKT(A (4 /4 ) ® A, C(T\B))

[« <]

which satisfies a growth condition if we approach the boundary Yy namely

|o?

T, ...T ,U
p,q( 1 p’

U B < ce (Jal )™

for |a| (b)) >c and where T,...T  and U ++-U, have to be taken from

1-Tp L
v
a fixed basis in A,m and/*m . (We know that only q=0 , n/2 and n

are possible.) Then the above cup-product is given by the value of the

integral

g £

= 2 f_l wIA @
qn

wla [€] = W AW

)
and the individual summands are independent of t . But the volume of n.1 (t)

with respect to the invariant metric is

vol(n-l(t)) = aot:-1

(comp. [Hao] , prop. 1.2.1) and hence we get

lim f w. A W = 0
t90 n-l(t) I qu

if g<n=|F:p| .But if q=n then I claim that mI/\mngO.To
'

see this we look at the value

€

w
P:n

mI(xl,...,x (

q )

X reedX)
I dI+1 ™

where the X; € 4 «/‘45 e/t:u“ . (This splitting is not canonical but /CZ“ is

an intrinsic submodule of bw/bg .} For this to be non-zero the xl,...,xd
I

have to form a basis of
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© b6 - o qn

vel veEL
when we project them into this space. Among the xd +1,...,xm we must find
I

v/
n vectors lying in but then X,,...,X cannot be linearly indepen-
/“' ) 1 m

dent, but this shows that

£

mIAmp'n(xl,...,xm) = 0 .

This is a contradiction to the assumption that Wy does not vanish on the

boundary.

To prove (iii) we pick a form w, with I #g , s , let I' §

I
such that II! + lI'l = Is.,,l ¢« i.e. a form in the complementary degree. Since

we know (ii) we may write
w, = ng+ ad
and then we integrate

A, = n
r\:{(c) ¥ I’\){(c) I

Here I‘\a((c) is the submanifold with boundary which we get if we chop off

Aw, + [ adA e, .

at all cusps at a certain level far enough out. The right hand side becomes

+ ) b Aw

NeA . .
I 2(M\X(e)) I

I‘\{((c) T

The first term is the cup-product of the compactly supported class [nI]

and [‘”I] evaluated at the top class up to a sign. Let us assume that we

know

lim ] SAG., = O . )
o 3(NK(S)) t

Then we have
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fmI/\m, = f nI/\wI, .

The left hand side is different from zero if and only if I UI' =38 and

this implies (iii).

It remains to prove (%) which is unfortunately a little bit technical.
Again it is sufficient to see what happens in the neighborhood of one cusp,
the one corresponding to B/ . We have to exploit the fact, that we can
choose the form ¢ in such a way, that it is of logarithmic growth ([BO{], 7.2,
Thm. 7.4 ) and then we shall see that (*) holds. The condition for ¢ to
be of logarithmic growth (near the boundary component belonging to B ) is
formulated as a growth condition with respect to certain coordinates which
describe a neighborhood of the cusp. Tnis condition can be translated into

a growth condition for ¢ when we view it as an element in

. v
Hom (A (4 /45 @ /-LJ:C,(I’B\%” :

We shall give the result of this translation. We have a map

n
B, > T /K -2z = 'rc(o“ x A

where A = nf;o and the decomposition is obtained from the decomposition of

T = B/U into its split and itsanisotropic part. We write
m(b,) = (m (b)), fal (b)) .

For a relatively compact set CLT(I)

o we write

x(Q,¢) = {b €B, | m(b) €Qlal (b)) 2c} .

Then the condition for ¢ to be of logarithmic growth is equivalent to
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Por any U and ¢ large enough we have a constant Cg andan NE€ N

such that for X, ,...,X; from a fixed basis in (ra/&: we have
1 e

ld’(ad(b;l)xil,...,ad(b;l)xi )b | <
e
( loglal (b ¥ for all b€ x(2,0) .
CQ @" © (3

It is rather straightforward to check that this definition is equivalent
to the definition of Borel ([Bol] ¢ loc. cit.). Now we choose a basis for
%“ = @ % v where the basis is made out of basises of the /:v and a

vEs K
basis of 20‘/4 w + Then we may write

b = (...bv".)

and if we modify by an element in the centre then

tv*
bv-
o 1
1

; < _
(up to conjugation). Then for X, € 4 /A4 _ we have ad(b ) "X, = X, and

(Y4
for xi E/.ov we have
1 -1

ad(b,_) X, o= tx .

Hence we get

¢(aab) "'x 4o ,ad(b;l)xie) (b,)

mv
moe, o éx ""'xie”b»)

1

where m is the number of basis elements X i € /l:v . Hence the growth
v
condition can also be written as

m
N \'4
|¢(x11,...,x1‘) () | ¢ Colloglal b )" vgs“ e, |
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1/2

where Itvl = ‘tvlv for v real and ltvl = ltvlv

for v complex.
Since we required that m (b)) €EQ we find easily that

m (va)/n

\'4
I ole,l 7 < c,tal )

where n = IF:QI . hence the growth depends on the "number of tangent vectors

in direction of U_ " in xil,...,xie .

Now it is easy to prove (#). We use the same argument as in the end of

the proof of (ii). Since I' # @ , the form a)I, "uses up some tangent

vectors in direction u, " and therefore
[ OA ) (XyeeeX D) | € Cge (loglal o™ « lal, (b,

where 0 < B <1, and the (#) follows since the volume of a(r\x) (c)

shrinks faster than ¢ A Wp. grows.

3.2.,5 If dim Mc =1 and if @ is its central character then we put

m~1
~ o~ ~ v
g Bl = 350 ) e e Mk
type(a;)‘z=m-1

and we put Hres(s’Mu:) =H (S'ME:) n Hres(s,uc) ;, our proposition 3.2.4 tells
us that for this module we have to sum from Vv =1 to m -1 . Now our

previous discussion yields
If dim Mc > 1 then
chsp(s'MI:) = H (S,M)) .

If dim Mt = 1 then
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One important consequence of this result is that the cuspidal cohomology
which is actually defined by transcendental means can be defined internally
in the cohomology theory of sheaves. To see this we pass to a finite level

and discuss the decomposition

H (SK'MI:) = chsp(sK'Ml:) + Hres(sl('nl:) °

We introduce the Hecke algebra

anf = 3. xAG(a /K

of compactly supported a-*valued functions which are biinvariant under L
This algebra acts by convolution on the cohomology
. ~ * o~ ~ Kf

H (SK,M) = R (S,M)
(see 1.2.1 , [0-1], § 9 ). It follows easily from well known theorems
in the theory of automorphic forms (for instance multiplicity one, |J-L|, prop.
11.1.1) that we can find an operator P c € a(Kf which is a projector to
the subspace H; usp(gl('it) in the above decomposition of " (§K,ﬁc) . Since
ﬁ.(gx,ﬁc) is defined as the kernel of r we get that H;usp(sx'ﬁm) is
internally defined.

This implies that we have a decomposition of i'-vector spaces

> . ~ ~® ~ o~

H(S,M) = © (8,M) o H

Moreover if we put A to be the set of weights parametrizing our represen-

tations M , so M = M(\) for some )\ then the systems
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inherit the (Q-structure of the system

{u (s,u(k))})\ er -

From the transcendental description of H::usp (§,,ﬁc) we get that this coho-
mology is a semisimple module under the action of the group ﬂo(G“) x G(Af) .

we get

H  (S,MA) ) = @ (S, M) ) m) .
cusp [ TE le'_l_o(M()\) ) cusp

If we go to a finite level then we get a decomposition of a{K -modules
£

(SKI“(A) ) = (-] (sxlu(x) )(ﬂ' ) .

c TE Coh (M(M)) feusp

cusp

There is only a finite number of T for which

(SK'M()‘) )(n) # O

cusp

K K
and one knows that Te is equivalent to w; if and only if ﬂff ~ (wp £
K
provided wff is not trivial. Hence by the same argument as above we get a

decomposition defined over E

(5,M(A)) = @ n'<§.u(x))(1rf)

Fousp TE Coh (M)
——0

and if we introduce the set

M = {(A,ﬂ'f) | x € R, Te finite part of a cuspidal automorphic

form mE Coh (M(A))

then the system

{1 (5,M(1)) ("f)}()\,Tl'f)



- 51 =

gets a Q-structure s.t. the system of projections
B (5,u00)) + B (5,800)(n))
ig defined over @ .

This fact has been used in IHaSI to prove some rationaltiy results for
special values of L-functions. It is clear that one does not need the full

strength of proposition 3.2.4.

3.3. We have to recall some facts concerning the cohomology of Harish-
Chandra modules for the two groups GLZ(IR) and GL, (€) . We shall also

need some results on the cohomology of non-unitary modules.

If we study the ((a“,x) ~cohoniology of a Harish~Chandra module H then

‘"N

we will always know that
g, = 0 8 .
Moo veE S, 1"v
(If 7, 4is the infinite component of an automorphic form this is in {r1],

|G0| ¢+ § 3 .) Then we have a Kinneth-formula

. (K,) . (x,)
H ( K,H OM) = O R (N _,K ,H o M) .
'ﬂm - [ 4 vES ‘év v, v

Here (g v is the Lie-algebra of the real group RF v/m(GLZ/Fv) - Gv/n R
we have
GX R = n G .
e vE S, v
If v is a real place then it corresponds to an embedding T : F +* R and

if v is complex then it corresponds to a pair of conjugate embeddings
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which can also be viewed on the two continuous isomorphisms T, T:F v T.

In the first case we have Mv =M - ®_C and in the second case

Q
M *x M M
v —
T,C T,C
as a module for Gv XRI: = Il GL2 .
T: Fv‘*m

T continuous

We consider Harish-Chandra modules for ((év,l\’) and recall the proper-

ties of those which have cohomology with coefficients in M .

We give Tv/m . Bv/m etc. the obvious meaning (1.0.2). We start from

a character
. *
A 'rv (R) » [

which is also considered to be a character on B v(m) ; then €+ ) will be
the one dimensional Tv(m)-module on which- Tv(l!) acts by A . If

T
4, = Lie(T/R) and K =T (R) N K =B (R) N K , then we get by dif-
ferentiation a (4V,K3) -module also denoted by A . We consider the induced

Rarish-Chandra module

Vy = {f:G(R) + €| £(bg) = A(b)£(g) for b € B_(W)

g € Gv(:lR) and £ is xv-finita

We are interested in the cohomology

H ('3 v'Kv'VA ® uv)
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and recall the procedure:developed by A. Borel and P. Delorme which gives
us a formula for it, since we are interested in some infomations falling

out in course of the proof we reproduce it in some detail (|B-W| « IIXI, 3.3,

|Del|, ).
We decompose the Lie-algebra
4 (g
(ﬂv = Lie(Kk)) + Lie(B (R)) = (k+&) oL .
We arranged ouxr data in such a way that we get an identification

J/% = 4 /4% e i, (3.3.1)

which is compatible with the action of l(s on both gides. This gives us an

identification
[ K ~ .
Hom (A (4/4, 0 M) Th oM = Hom (A (G /%)y @ 1) (3.3.2)
v

We want to describe this identification explicitely. Let M: - Han(Mv,E) be

the contragredient module. The element ® in the space on the left can be

evaluated on
peder ‘/45 O/.:,v) LR

and the result igs a number w(D ® §) € €L = LA . The corresponding element

on the right is given by the rule
@D e o(g = (DO NMBI = AlbJoadk e plxHe) (3.3.3)

and it is clear that &(D @ &) (g) € V, . Here of course g = bk with

bGBv(IR),kVEKv.
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The Lie-algebra ,(Iv acts trivially on TA and exploiting the argu-
ments of Kostant (|Ko |, Thm. 5.14) Borel and Delorme show that we have a

degenerating spectral sequence

. T . e ®
H (dv,xv,u (o, M) 800 => H (ﬂv,xv,vx eM) .

. s e~ T
The Lie-algebra A'v acts semi-simple on H (/“'V'MV) and l(v acts trivially

on A’v . hence we get

Hom(A* (4, /4 ) (8 (LG M) 8 B (0) = B (] K,V @ )

where (0) indicates that we take the weight zero space. This is the Borel-

Delorme formula.
We now separate the two cases v 1real and v complex

3.4. F_= R: We have Mv = M(d,v) and then we know

—— v

o, ™ 1, v v
B (M M) = Teg , H (,u,v,uv) = Cle_y @)

(see 2.3.). We choose the two characters

t *
A e ! I I O B
o 1 172
o t,

t, * '
A, i ! > 297 (e eV
1 2 1*7172
o] t
2
(see 2.8.2). Then the above formula of Borel and Delorme tells us
q { € q =i,
H ( ’ ’ oM ) = .
‘av v A:L v (o] otherwise
But actually we know a little bit more, we represent the classes generating

w
the cohomology H (/u. v’Mv) by explicit classes

e. € Hom(ACAL , M) 8 v’ € mom(AL L M)
d Mty v %q % Yy on /u'V'MV
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and hence we constructed explicit generators

(i) o, ; K iw i
e € HouKT(A (4‘/4v) e A/u.v,ui ® M) Hom(A (gv,‘kv) V) 8 M)

i
v

representing the generators of Hi(‘gv'xv'vx ] Hv) . We define the character
i

s : tl * s 8
a, = + Iav(h)l = |t1/t2|v

O t2

and it is standard that we have an intertwining operator

T s Vv >

\'J
s 8 s
llav xoav

vhich for Re(s) > -1/2 is given by

01, 1 u

T, @ = [ fu ] g Poraw .
R

The following facts concerning these intertwining cperators are well

known and important for us and the general cohomology theory of

( ‘va'xv) -~modules.

(i) For s = o the operator

has an infinite dimensional kernel. This kernel is the direct sum of two

irreducible (‘ev'xv’) -modules

+ -
ker('ro) = D)‘ ODA .

1 1

{(1i) The differential form

e e H""xv(A1 (9] /%) ,v)‘1 o M)

constructed above maps to zero under ‘ro .
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+
(iii) The two modules Di are the only irreducible infinite dimensional
1

unitary (gv,l(v) -modules which have cohomology with coefficients in Mv .

All these assertions can be derived from IGol, § 2, Thm. 2 or |B-Wl,

VI, § 4.  The assertion (iii) can be found in |Vo| Chap. 5.

3.5. F =2 ., In this case we have

Mv = M(Ad(t),v(1t)) ® M(d(T),v(T)) = M(dl'vl) e M(dz'\’z) .

Let us assume that dl > d, and let us identify Fv == [ by means of the

2
map T . Again we understand the cohamology

. ~ . 54 L

and the generating cohomology classes are given by explicit representatives

v v
e, 8e ;U 8 e e , e, ®(u _®e_ ) ,
d1 d2 o, T -d1 d d1 a,T -dz

u ®e 6u ®e

@t 9 a,T 4,

let us call these classes
{i,3) i v b P
(e l €n(fa_,M(d),v,)) @ H (fagrMdy,vy))

We know that these classes are eigenclasses for the action of 'l‘v(]R) and

the action of

ft, ©
Tv(m) = { ( 1 l 1:1,1:2 € I:* - F;}
0 t2

on these classes is given by the characters (listed in the same order)
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a, v, d, v, d1+1 o vy a, v, d1 vl_dz"'l
{£, (£e,) t (t'. 5) £ (L) (t Q) Tt ee) B, E (t tt)
a,+1 v, a_+1 v
s | 122" e ——— V2,
t, £ o (tt) Tt t, (g t) }-o.
Let {A_ A, A } = A be the list of inverses of the above

0,0'"1,0" "0, 1’ 1,1
characters listed again in the same order. Then the Borel-Delorme formula

tells us
nd (gv.x 'V eM) = cle'P] o Hom(A.(A‘/A-l:) /C)

where [e(i' j)] has degree i+j and is represented by the above form
(i,3) o K i+j v
el ¢ ncnKT(A 4./4,) ©A j/“'v'm‘i,j 8 M)

v

i+]
!icmxv(l\ (gv/kv) .in ; M) .

Again we have intertwining operators

T (E)(g) = { £0(_,

which certainly converges for Re(s) large enough and which has meromorphic

continuation into the entire complex plane. For the measure

du we choogse the Tamagawa measure. Again we collect some facts:

vy
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(i) The operator

has an infinite dimensional kernel which is isomorphic to VA = VX .
1,0 o,1
The image of T |is Mz = Hom(Mv,m) . The operator induces the zero map on

the cohomology

H (‘QV'KV'VX @ Mv) + H ((gv' v’ )‘o ® Mv) .

1,1 0

(ii) The operator

v
1,0 >‘o,l

is an isomorphism. It yields

e (100 o2, Jlos)

)y =
d1 d2+1

T(

on the level of differential forms.

(iii) The modules vy N are the only irreducible infinite dimen-
1,0 o,1
sional (g}v,Kv)-modules which have cohomology with coefficients in M, . If

él) is the derived Lie-algebra then the restriction of vl to
1

0

= d L

(z}(l) K(I)) is unitary if and only if 4, 2

v v

The first assertion (i) is stated in [Go ], § 2, 4 , the fact that the
operator is trivial on the cohomology follows from the Borel-Delorme formula,
the left hand side has cohomology in degree 2 and 3 , the right hand side

has cohomology in degree O and 1 .

The first assertion in (ii) is also in [Go ] loc. cit.. We shall prove

the formula stated there after the following lines.
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For the assertion (iii) we refer to [EnJ, [Du ] and

[vo] . This has been pointed out to me by G. Zuckerman.

We have to prove the formula stated in (ii). We have to analyse the

Kv-types occuring in VA and VX first. To do this we consider

1,0 o,1
(1) - ’ 14

K, K, n SLZ(C) . If we restrict *1,0 to the compact torus

i0
o]
(n ° (1)
T, -16 = T (R) N K

0 e

we get the character

eie (o]
o e-ie

10 (-d1-d2-2)

<>

This implies that

A 1 = @ 3-(\))
1,0| X, v = d +d,+2

'/
1 72
v mod 2
where {7}v) is the irreducible representation of Kél) which has highest

weight Vv . If we restrict Mv to Kél) we get a Clebsch-Gordon decompo-

sition

d,-4,

Mm@ U
x! v =d 44,

Vv mod 2

(remember that we assumed d, > 4, ) and hence we find

1
dim Homxv(h.(ggv/kv),VXI . e Mv) = 1 .

’

{1,0) {o,1)

Then it becomes clear that T maps e to a multiple of e . We

have to compute the proportionality factor.
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This means that we have to compute the integral

1
[ el gt an .
T a
Here we recall i @C= & _ AL =[CX ®FCX_where X_ = (oo € j‘-o '
T: FV+C a a

and the result of this integration is a vector in Mv which is proportional

to e

a, ¥4

1 2

. Hence we can say

' (1,0) o1
[ e ot
T o 1 0

and we have to compute the proportionality factor ¢ . Now we follow very

closely the computation in |Ha3| p. 72 . We introduce polar coordinates

and write u=1r ° ele and get

© 27 i6
2 [ [ Ml DT
o O

a

If we carry out the integration against 6 we get zero for all components

e ® e_ except for the component e, 9 e where the integrand does not
a b dl --d2

depend on 08 . Hence we have to compute the factor ¢ in

ar [ MO Trar = cre, 0o, .
o o ’ 1 2

We decompose

172 ~1/2 -1/2 \n

(1+r2) "~ -r(1412) -(142%)

( .
o (1+4r2) 172 (14-1:2)'.1/2 -r(1+r2)-1/2/

(o} 1r
-1 )(O 1) = b(r)*k(x) =

O

and we consider the matrix coefficients

ad k(r) *X, = eee + C(x) * X_
a
p(kir))e ®e = ,..D(r) * e, Be
-dl‘ -!-d2 dl -d2
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(comp. lHaBl, P. 72) vwhere we take the standard basis on
M, = H(dl,vr) ® M(dz,vz) built by the weight vectors with respect to Tv/n!
and the basis X, xu_, H in i; /%, (comp. |Ba3|, p. 66) . we have to
compute
(-]
am { Ay o(P(®)) * C(r) D(x) rar .

We have

-1/72(4,+2-4.)
Aol = () 12

clr) = (14rd)~}

To compute D(r) we recall that

kr) = b - (SHED
and we find easily that
D(r) = ety T
Hence we have to evaluate
- 4n 7 (14-:2).(11."(12-1 rdr = - afggf;f
-] 1 72

and this gives the desired formula.

Remark: a) This formula differs by a factor 2 from the result in
lﬂa3|. p. 72 » if we take 4 = dz = Q0 . This ig due to the different

choice of the measures on T (|Ha3|, p. 70, line 6 bottom).

b) We are here in the domain of convergence for the intertwining opera-

tor, we could actually also compute
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1 1 :
Ts : HOanv(A (g\/kv) ,V)\ S) > HmKV(A ((A\/kv) v -8)

1,Q.GV l°'1°(!v
and define e;I'O) ' efg'l) and get
(t,00), _ _ 27 (o0,1)
Teleg } = std,ad.+1 ©S-g
1 72
(comp. |Ha3|,§2, where eél'o) = a ).

3.6. We are now able to say something much more precise about the de-

composition
B (5,M(0\) C:) 1 (5, M) (1)
S, = ’ 4
cusp T E Coh_(M(g)) £
which we discussed in 3.2.5 . We have T = T, % ﬂf and T,= © "v .
vES
00
The condition T € Coh (M()A)) is egaivalent to
——o )
. (Kv)
H ((gv,xv,uﬂ ® Mv) # .0
v
(Kv)
where HTr is the Harish-Chandra module attached to Ty * We also know
v
that m, ~restricted to the derived group Gil)(IR) = SLz(Fv) has to be

unitary. Then we get

3.6.1 1If there is a complex place Vv = {T,;} for which
M, = M(a(1),v(T)) ® M(a(T),V(T)) and for which d(t) # A(T) then we get

Coho(M(A)) = ¢ . Let us call this case the non-selfconjugate case. Since

in this case we also cannot have contributions from the one dimensional case

we get

P ~o

#(5,M)) = o

in the non-selfconjugate case.
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The selfconjugate case is the case where d(t) = d(T) for all

v = {1,T} . In this case we get

3.6.2 If M(\) is selfconjugate representation then we have for each
v exactly one irreducible representation of GLz(Fv) which is unitary on
SLz(Pv) and has non~trivial (2ngKv)-cohomology with coefficients in

Mv = Mv(kv) . This representation is given by the following construction.
3.6.2.1 If v 1is real then we start from a character
A€ : B(R) ~ T

described in 3.4. but eventually twisted by a sign character € which factors

over the determinant. Then we know that the kernel

+ -
DX c e DX c ™ kexr (T : Vk

v, )
1 1 A

08

18
has a unique positive definite invariant scalar product, let c(kv) =7, the
completion of this space with respect to this scalar product. This becomes a
representation of GV(IR) = GLZ(JR) which does not depend on the choice of

e ., If H" = Hc(l ) is the space on which Gv(IR) acts then

v v
()
v + -
H = D @D
c(lv) Xle Ale
and
(x,) C+C for q=1
a ( 1 4 ’n e ) - .
g;v Kv c(Av) Mv 0 otherwise
3.6.2.2 If v is complex, then we choose c(kv) to be the unitary
completion of our representation vy constructed in 3.5. Then

1,0
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(K ) T q=1,2

q
H ( rK +H M ) = -
g c()\ ) o otherwise

Therefore we may summarize the Eichler-Shimura isomorphism to

(K.)
. \'4
(SM(X)) = @ H (01 _,K _,R eM)eH
cuSP T cuspidal autam. VES gv vomy v “f
form, T, = © 'nv

VES,,

and W, ~ c(kv)
where H is the subspace of Li(G(Q)\G(A)) (m-l) of type T (see intro-

duction to this section). This holds of course only in the selfconjugate case.

IV The Eisenstein cohomology

We now focus our attention onto the map
® e e . ~ o~
r : H(S,M =+ H (3s,M) ,

we want to describe the image in terms of the description of the right hand
side given in II, Theorem 1, and we want to give a section from the image
back by means of Eisenstein series; this section will be defined over

in the sense explained before. We put

Ty (6,) x G(Af)

Vo = Ind w(B)xB(A) Qe¢

(see 2.7.), we have (Thm. 1)
H(38,M) = @ @ v, ® A’ (R (1/2))
YECoh(M) ¢:¢ of type Yy

where we have of course to take into account that V¢C Hdw) (3S,M) where
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d(¢) can be computed in terms of the type of ¢ (see 2.8. and 2.9.). We
also recall that for ¢ with type (¢) = y € Coh(M) we have that

8 s
5, ° = |a|° ¢ ° has type (s°¢) =+ Y °e Coh(M) (see 2.9.).

In the above decomposition we group the pairs corresponding to ¢ and

s°'¢ and get

H (38,M) = @ (Vg @V, ,4) @ A (e/z)) .
{b,s ¢} o
o
We have always ¢ # so~¢ (This holds on the level of types.). We define for

each (4] = {¢,s°'¢}

Imrr,) = Im(r) N (v¢ ® vso.¢) 8 A (1/2)) .

give
Our second main result will¥Yus an exact description of Im r[¢] in tems

of the given datum ¢ and data derived from it and it asserts that

Im(r) » (] Im r[

(4] ¢} -

(1)

4.1. If we restrict the character ¢ to the torus T then we

have seen in 2.9. that

(1) (1),

wid ") + w(s°'¢ = =4

if w(¢(1)) ¥ -2 then we label the pair {Q,s°'¢) in such a way that
W(¢(1)) < =2, if w(¢(1)) = -2 then we don't have a specific labeling so
we could interchange k¢. and s°'¢ . If the degree of the cohomology corre-
sponding téb ¢ is higher than the middle dimension, then we have auto-

matically v(¢(1)) < =2 (see 2.9.2). If we have labeled our pair {¢,s°°¢}
(1)

in such a way that w(¢ ') < -2 then we say that ¢ is in the fundamen-

tal chamber.
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4,2. Now we assume that ¢ 1is in the fundamental chamber, we want to

construct a system of intertwining operators

If we say system we mean of course that we want to have a system of operators

defined over @ . In 2.7.1 we constructed the @-structure on the system

{v where W, = (A,Y,$) € M, . We want ploc

¢u1 ¢

and we want it to define an isomorphism over @ , we observe that s, de~

to be defined for all ¢

fines an automorphism of M .

This construction has been discussed in |Ha4|, 4.7., 4.8. and we can

use IHa4| loc. cit. with only one modification. We put

where T $ maps the spherical function

‘Po,g(g,x) = ‘p°"g(b“sk"3) = 13 ,g)¢11x(det(k,3))
(if ¢<El : = ¢1 (_t;.l) . ¢2(t_:2)) in case that the character 0(1) is
o]
unramifieqd. ;i ¢(1) is ramified we put
o1 1 u
T¢3 (lPB)(g,g - UI(P u»g((_1 °)(o 13)9 )du‘g

Y’

where du‘3 is the local component of f.he Tamagawa measure on U o/r defined
by the differential form dx . The integral is actually a finite sum. It is
clear that the system of operators T;oc has the required properties. The
only difference to the case treated in [Ha4], 4.7. is that we may encounter

situations where T ¢ is not an isomorphism. This can only happen for

3
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one special character, namely

oh - a2

(we assumed that ¢ is in the fundamental chamber). In this case ¢(1)

is of course unramified and we get a diagram

. _
2 v
s°'¢1a’
where ¥ is the spherical function in V . The kernel of T
o, So'fbg ¢3
in this case is denoted by V¢, .
3

We are now able to state our second main theorem

Theorem 2. Let M = M(A) and ¢ € Coh(M) , [¢] = {¢,5 *¢} , we assume

that ¢ is in the fundamental chamber. Let t = dim J{(T/Z) = rank of the

group of units of the field F , let n = [F:Q].

1) If ¢ 4is not balanced and therefore deg(¢) > deg(so'tb) then we

have

Im Te] = Ve © A 0(1/2)

unless we have ¢'!) = la]? .

2) 1f o't - Iuiz then dim M(A) =1 and

Imrgy = ® v ez e T, e ART/z) @ Be, . @ ATR(/)
[«}

Here \7¢ c v¢ is the subspace generated by those tensors for which at least
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one finite component is in V$ and e, ¢ is the spherical function

3) In the balanced case we get

Inm r[¢] = x¢ @ A (Q0(1/2))

where
(1)
~172 —2m.™? L't -1 | loc
x, = {(v,]a_] == . =2 . %)) | v e v}
() F d+1 L(¢(1),0) ¢ ¢

and d = |d(1) - a(T)| for any pair of complex embeddings of F .

Moreover we have

Im{r) = @ Im r

and we have a decomposition

H(S,M) = H (§,M) @ Hy, (5,0

into "o(Gw) x G(Af)—modules and no irreducible submodule of H (§,N)

twines with any subguotient of l-l;is(g,ﬁ) .

We have a rational structure on the system {V¢} bEM (see 2.7.1)
1
hence we get a rational structure on the system of the Im r[ ¢] where

(4] € Ml/{so} . The above theorem gives us

Corollary 4.2.1: The splitting in Theorem 1 gives us a section

Eis : Imrpy) * H(S,M) = H (5,M(\) .

®
(6] ¢
$ € Coh (M)

The system of these sections is defined over @ .

inter-~
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This corollary is obvious fram Theorem 2. The theorem 2 itself is a
generalization of the corresponding theorem in IHa4| and in a certain sense
it is also a special case of the results in my earlier paper |Ha1|. The
point is that here the information is much more precise and specific (see

|Ha2|, concluding remarks).

We shall now give the proof of theorem 2, and we shall of course
pretty much follow the arguments in our earlier papers. We start from an
algebraic Hecke character ¢ , let Y be the type of ¢ . We assume that

¢ is in the fundmanetal chamber and Y € Coh(M{\)) . We identified
vy ® AeT/2) € H (38,0

where v& gets mapped into the cohomology of degree d(¢) (Theorem 1). We
recall briefly that this identification was depending on a choice of a

generator (see 2.4.1)
e(h,y,<) € n°(/&',um)(y)

which depends on an ordering < of the set {t|T:F+Q} . Given this

generator and given ¢ we selected an element
e

L &
A n°(§T.u°(/a..m )

(see 2.6.) and this choice provided the above embedding. We can look at

this embedding in a different way. We consider the Harish-Chandra module

G, .
V@a - IndBm ¢, -
This Harish-Chandra module is the tensor product of the modules VA con=-
v

sidered in 3.3. Then
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G(n) *
V@m © Vb'c IndB(A) $ V¢

where we now consider ¢ as a character on B(A) and where we take
K -finite functions at the infinite components. Since ¢ is trivial on

B(@) we get an embedding
*
1, = vy > € m@N\em)
and hence we get a map

H (gw,K ,v ® M(A) ) © Vo * H (g o Kop? tw(B(Q)\Q(A))G M) =

= H (BS,M()\)E) .

We keep our ordering < and we assume that pairs of conjugates are con-

secuting each other.

Then
H ( ,K,V en(k))=® H ( ,KV @ M(A)))
&g“’ VES gSV ' M
by the Kinneth formula. Using the Borel-Delorme formula we constructed
- d(¢ )
e(cbv) € Hom, (A (g‘/k ), V e M(XV))
\

in 3.4. and 3.5. (The ¢_ correspond to the A, or A and the &(¢.)
v i i,3 v

(i) e(i,j) )

to the e or . We then get an identification

. . K
B ((QV'KV'V‘bv @M\ ))) = € ¢ [e(¢)] @ Hom(A (4 40,00 .

Multiplying the generators together we get
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“.“3@'%"’% s M) = cle] e vgs Hom (A" (4—/4—5),::)

cle(d)] e Nde(T/z) .
Hence the choice of the generator [e($)] provides an embedding

I; : cléd) oA JT/2) B V

$,€ + H (BS,H(X)C)

and it is simply a question of keeping track of the different identifications
to convince oneself that the embedding I3 is simply the complexification
of the embedding of Theorem 1, the generator €(¢) is simply the product of

the~local generators selected in 3.4. and 3.5..

The identification (3.3.1) gives us an identification

O/m = AT 8

vhich is compatible with the action of K: =T NK =B NK .We twist
the character by a complex power of the Tate character \a\ and then we get

an identification of type (3.3.2) namely
Hom (A" (4 /4" 0 i) .50+ 1F @ MO 3
om (A" (44, 0 Ak ) e e1f @ w ) BV, o
Ke
3 Hom, (A°(O]/k) .V _ @M .
omKbo :3 ¢°Iaf [

Here we notice that the left hand side does not depend on s € € , since the

K:-module E¢°|qf does only depend on the restriction of ¢-|af to K: .

Hence we get for any

L] K [ ]
£ € Hom(A (A’J 4¢Q) /C) © C‘E(AIY'N) € HGILK (A (‘Aa/km) ' [ M(A)c)

¢, lals

(see 3.3,) and any § € v¢ ¢  differential form
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w(g,¢+]al®,E£,9) € Hom (A"(U]/Kk), V' ® M(A))
TR G

defined by (see 3.3.3)

wlg,¢*|al®,E,p) (DB ®) = wibk -g..élal®E,p)De e = (4.2.2)

8,25(5,) * V(g E(ad( I @ p" (K 1)e)

o0 Qo

(comp. |Ha4|, p. 123). Here we have to take D € A.(%%blﬁn) and
® € M(l); = M(Av)m . Now we know that for Re(s) >> O we have an intertwining

operator

»

pis® v*l e \A(G(Q)\G(A))
¢elo

given by the formula
. *
Eis () (g = Y (ag)
a €B(@N\G(D)
where the right hand side is the space of automorphic forms on G(A)
(comp. &uﬂ p ﬁxﬂ ). If we apply the Eisenstein-intertwining

operator to our differential form w(gj¢fa[s,€,¢) we get a differential form

Eis(g,¢+|al®,E,¥) € Hom (A’ (%w/kw) JAUGENG(R) @ ML) ) .

As in [ﬁal] and [Hazl we have to study the behaviour of this differential form
at s = 0 , we have to find out under what conditions it is holomorphic at
8 = 0 and yields a closed form, To do this we have to compute the constant
term of the Eisenstein series first, the constant term is given by the integral
E(ug,¢la|®,y*) au
U(@N\Uu(a)
where du is the Tamagawa measure on U(A) = UO(AF) . We recall that this

means that
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- -1/2
du lagl L

where voldu (ois) = 1 for all finite places of F and
duv = Lebesque-measure for v real
duv = idzAdz = 2 X Lebesque-measure if F, = T.

We have voldgfu(mf\p(h)) = voldng(Fﬁ\Uo(AF)) = 1 and the standard compu-

tation of the constant term yields

Eag,¢+]al®¥Mdn = ¥ @ + [ VVis cupan = vHig + 1"
' )

U(@N U(A) u(a ¢+]al®
Here we have w*(g_) € v¥ | lg C.,,‘U(A) T(Q)\G(A)) and the second term is
¢ela
contained in
v C Z:Q(U(A)T(Qf\G(A)) .

s°o¢o ia‘-s

*
The second term is a product of local integrals and hence the operator T ‘ ‘s
$la

is a product of local operators for Re(s) large enough. A standard compu-

tation yields that

T = T [
¢ela|®  ¢_eal ¢ af

and-

. o ne® ey | ec
8 (1) s
ISR AR b5l

where the operator Tlocs is the above local intertwining operator (IHa4],
Pee
I11).
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The operator

T s ® T s
9ol vES, ¢.a

and the local operators at the infinite places are given by integrals, which

are convergent in the neighborhood of s =0 .

Now we have to distinguish two cases. The first case is that

L't s-1)
Lo, s

is holomorphic at s = 0 . In this case the Eisenstein operator

Eis : v© s A @\c(a))
¢+ |al

is defined at s = 0 and the formula for the constant term tells us that it

is an injection. If we apply this to our differential form we get

[ Etag,édf.Eprau =

(1)
= m(g_,(b'hf,g,d)) + ldF‘-l/z %q,(_fis_l)— > wig,s '¢10L| (E) T¢-h(s(¢))

where T_ s(E) is the effect of T g ©on our differential form
¢mu'ao
E €N (A (U /x, ),v ® M(A)_) . We may choose £ = ® £ and we
cml% (Q a € vEs, v
know that (see 3.4., 3 8] '1‘¢ maps Ev to a zero form or at least trivial
v
cohomology class unless we are in the case that v 1is a complex place and

¢v is one of the characters )\01 or )\10 in 3.5., in which case we have to

compute

(1 0) (0,1)

'r¢ o? : Han oA 4‘/41( - HomK (A 4‘/"&.118

vyv v

) -

We claim that this operator is given by multiplication by
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-2
d(t)-d(T)+1

where we assume that d(r) > d(1) since ¢ is in the fundamental chamber.

(1,0)

s )

This is the content of 3.5. (ii) on the subspace Hom T(A.O.( 4‘/45) ,Ce

Ko

by the result is the same on the complement

1 K, . (1,0) 2
uomKT(A 4 /4 Ee ) = HomKT(A (4 /x ).V e M)y
v

v ¢vu'v
since we are dealing with the same K, -type in v g ° We get that the con-
¢ a
vV

tribution of the second term in the formula for the constant term is always
zero, unless all v € S, are imaginary and the local components of ¢ at
these places are of the above type, i. e. we are in the balanced case. Then

our computations in 3.5. (i) yield the formula in Theorem 2, 3).

In the second case we assume that the ratio

L(Q(” ;8-1)
L(¢(1).s)

has a pole at 8 = O . We analyse the consequence of this assumption for the

type 7(1) of ¢(1) . We have seen, that our assumption, that ¢ is in the
fundamental chamber is equivalent to the assumption that w(Yu)) < -2

(see 4.1 ). This implies that the Euler product for the L-function
L(¢(1),s) is konvergent in the half-plane Re(s) > w(Y“))/2+1 . this is
80 because ¢(1) (m_) = N%‘Yu’)/z for a uniformizing wg at a placa,:

vhere ¢‘!) aces not ramify. But this inplies that 1(¢'),8) 1s certainly

holomorphic at s = 0 and L(¢“),o) #0 (ILg |, XV, § 4 ), or we have
(1)

¢ "' = |a| . One checks easily with the results in 2.8. and 2.9. that this
last case does not occur. This implies that the numerator in

L(Q,(“ (8-1)

Lis'D,e)
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has to be responsible for the pole and this means that we must have
¢(1) = |a|2 . and in this case we definitely get a pole. Looking into our
lists in 2.8. and 2.9. again, we find that ¢ € Coh(M) implies d4(t) =1
for all Tt and it also implies that deg(¢) = n (So we are certainly

not in the balanced case and our Theorem is proved in that case.).

Now we have to discuss the effect of the pole to our previous argument.

The Eisenstein operator

Eis' : V. _ > (AGI@\G(A)

* . .
does not extend to an embedding of V¢ at s = O . But the point is that

the Eisenstein differential form E(g_,d){oﬁs +£,¥) may be holomorphic at s = O
and may be even a closed form. This is due to the fact that the local inter-
twining operators

T HEA'S > Vv

s *¢_-qa
vV vy o'V Vv

S

have codimension 1 kernels at s = O under these special circumstances
and therefore the local intertwining operators help to cancel the pole of

the Z-function.

The Eisenstein differential form is holomorphic at s = 0 if and only
if the constant term
s -1/2 L(Q‘l),s-l) -8 loc
w(9_1¢lal E0Y) + ‘dFl m * m(ilso°¢|al ITQ S(E) Py o s('p))
L(9 ,8) ! ¢la
is holomorphic at s = 0 . We want to find out when this is the case. We

may choose
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where

V{v) K
E, € nonx,r(h. 4 /4 e )
v
and where e, is one of the canonical representatives in
 \w
Hom(A/uv,t¢v ° M(Av)c) which we selected in 3.4. and 3.5.. Unter our
assumption we have
1 v 1is real
deq (ev) =
2 v is complex
we have seen already that the degree of ¢ must be n . The number Vv(v)
may be O or 1 and we saw in 3.4. and 3.5. that the intertwining operator
T evaluated at s = 0 maps Ev to zero if v(v) = 0 and maps &v not

b0y
to zero if v(v) =1 . This means that

] T s (® £E)
VES 4’\ra'v VES, v

has a zero of order F{v € s_| v(v) = o} .

The degree of £ is n + 2 v{v) . Since we have to map
VES,

e (W44 + MR/

VES,
we see that we always have at least one v(v) = 0 and therefore we have
always a cancellation of the pole, i.e.

L _(1) 5-1)

loc
w(g,s d|alfT, (E), T ()
L't e © T8 gt

is always holomorphic at 8 = 0 , and it is even zero if

deg(g) < ntr.+r,-1 = tén , i.e. it is not in the top degree. But then we can

2
conclude that the constant term at s = O, which consists only of the first

term
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w(g,9,E,¥) € Homxm(A (t;';a/km).v¢ ® M(A) )

is closed, because it was constructed so. This proves that
m

(:) v& ® A (1/2)

m< t

is contained in Im r[¢] because

E(S_ld)lgrlp)

is closed and restricts to the given class. But if deg(f) = n+t our above
considerations produce only a first order zero of Tm's(E) at s = 0 . Then
the second term in the formula for the constant term is not necessarily zero
and then we cannot conclude that the Eisenstein form is closed at s =0 .
But we may take a

v E Y, Y = i; ¢%$

where we have Y € V! for at least one 1; . (We can identify the vector

¥ Oy

spaces V¢ s (see |G-J|, §3 ) since the functions in these spaces
. O
¥y ¢
are determined by their restrictions to the maximal open compact GLZ(OE;)
and « is unramified.) Then the operator
T s (¢B)

¢ .0

¥y Y
will produce another zero at s = 0O and our previous argument applies again.
This proves that the second summand in Theorem 2, 2) is contained in Im r[¢]-
But the last summand

O, .~ "™
° eso.¢ € H(d5,MN) )
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is obviously contained in Im T ¢] because we simply have to take the right
cambination of constant functions on the components. Hence we proved
Imr o Imx
2
and that Im r[ #) always contains at least that subspace of
V¢OA°ae(f'r/Z) () Vs .¢8 A'a{(-r/Z) which it is supposed to be equal to. But now
o

we use the standard Poincaré-duality arqument (|Se2|, Lemma 11 , |na2|, 4.6.).

We have the pairing
[ 3 ~ ~
' (3,M00 ) x B F,H0N )+ 10,0

where M(Av) is the contragredient representation. It is well known that
Im{r) and Im(rv) have to be orthogonal, then it is clear that Im(r) and
Im(r’) cannot be larger than the spaces described in Theorem 2. Hence the

theorem is proved.

Corollary 4.3.1: If ¢ € Coh(M(\)) is a balanced character then the

nunber

(1)
cio) = lag GELv2 LM tl) e g
| % a+l 1${1),0)
and for any o € Gal(Q/@) we have that ¢° € Coh(H(AU)) is also balanced

and
c? = c? .
Proof: We have identified the sum
A A'R(T/2) @ v, ® AQe(T/2) € H (38,M(\))

[+]

in theorem 1. To get this identification of the left hand side as a subspace
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we had to select generators

S(H) * e(A,y,w) ’ S(u') - e(l,so'Y,&))

g () (M) (y) and gd(so$)

}J:M(X)) (s *Y) where Y = type ($)
{(see 2.4.1). Here U = (A,y) u' = (Y,so°y) and « is a total ordering of
the set {t|t: F+@} . With this choice of generators the isomorphism in

theorem 1 becomes an isomorphism of Q-structures. We have to recall the de-

finition of &§(y) and 6(u') . We have

Gal(@/@(u)) = Stab(u) = Stab(y') = Gal(@/@(u'))
hence Q(J) = P(U') . But now it is clear that the set

1y = {t|t:F>@, deqgly) =1}-

is a CM-type, i.e. contains exactly one out of any pair of conjugate
elements T . Then I(s°°Y) is the complementary CM-type and O € Gal(D/@ (1))

induces permutations
P(GIY) ] P(UISO'Y)

on I(y) and I(sooy) . If O € Gal(p/@) is the complex conjugation induced

by the embedding @ & T the multiplication by 6 induces a bijection
0 : Ily) + I(s_ey) .

This implies that p(o,y) and p(o,so-y) have the same signature and this
implies that we may choose &§(u) = §(y') . The image Im r[“ in theorem 2
has been computed with respect to the generators e(A,Y) , G()"SO’Y) with-

out the correcting factors 6{u) . But this means that for the embedding

vy® A UT/2) @ v, 8 A"30(T/2) ¢ H (3§,M ()

O.¢
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which is defined by means of the modified generators and gives an embedding

over {§ the image Im r[¢] is given by

Im r[¢] = { v,C(¢) Tloc(v)l v € V¢ (] C}

and then the corollary is a fact of the @-rationality in theorem 1.

4.4. In this section we discuss the compatibility of the above corollary
with Deligne's conjecture (comp. [D ]) on special values of algebraic Hecke

characters.

We consider our imaginary quadratic extension F/Q , let
*
w:I?/F‘*C*

be an algebraic Hecke character. Here we should view Y as an algebraic

Hecke character on the torus T(l) = RF/Q(Gm) in the sense of 2.5.2 . Then

we have x('rm) = @ _Z and the type of ¥ is simply a collection of
T: P>Q@
integers

type(y) = (...nT,n___...)T .
T
We have two numbers, the weight and the width
w=w) =n+n_ =n_+n_ § = min|n_-n_| .
T‘t 60 TTT

For the Hecke L-function L({y,s) we have absolute convergerce in the half-

space Re(s) > §-+ 1 , the centre of the critical strip and the centre for
the functional equation is ¥'+ %-- !%l . Deligne looks at special values of

this L-function at the critical points. These are the points

w+d

2 - \V] \Y = o,.-.,G-I
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in this special case. He attaches a non-zero complex number {Q(J) to the

character { , the so called transcendental period and he predicts that

n
1‘_\) 2|d I-\)/z
F w+d -
L(w'T-\)) E Q fOr \)’0,...,6"1
Q)
and that for o € Gal(ayg)
n
Vv = vV =
2 -\/2 o) 2 -v/2
T %la] m “la_]
F L(w,-"-’-;ﬁ-u) - E x.(w°,‘l2"-6--v) .
Q) n(“)or)
v

The transcendental period is very hard to understand. The factor T
can be interpreted as the period of the Tate-motiv Z(-1) over F and

passing from Vv to v+l means twisting by the Tate-motiv.

Deligne's conjecture implies that the ratio of two consecutives of these

numbers satisfy

provided the denominator does not vanish and it also implies that this ratio
behaves the right way under the action of Gal(EVQ) . We claim that this con-

sequence of Deligne's conjecture follows’from our corollary 4.3.1.

First of all we observe that it suffices to look at the values

v = o,...,vo where

§-;—1—1 if § is odd
vV o= .
° 8

3" 1 if 8§ is even

The value vo is the value for which E%Q - vo - 1 is either the centre of

the critical strip or the first critical value left of the centre of the
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critical strip. The rest of the cases can be taken care of by the functional

equation. If |a] is the Tate character on I then

Sww _
L(d),%‘i--v) = L(w-lalz ,0 .

The only thing we have to do is to construct a representation M(A) of
G XQ @ such that we have a balanced algebraic Hecke character ¢ & Coh(M()))

such that

S+w

= -V

¢ = y - |al .

This is simply a question of types we must have

S+w

— )

type(y+ || 2 y =y

where Y € Coh(M(A)) . We have

Stw _
typee ol 2 ) = Gen - Hay,n -Bay, ) -
T _T_8 T _t_8§8
= (...—3 -7V, —3 7tV

For each pair of conjugate embeddings T , T the sum of the two components

in the type of ¢ ‘al (w+$)/2-v

is < -2 because of our restriction on v
and one of the components is > O . This defines a complementary pair of

CM-types, one of them is

. n_=-n
T, = f|S5=-%+vz0 .
We choose

afr) = L8,

for t €, , then T € C_(y) and we put
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Ng—n
-, T "t §
-4(t) - 2 = —5—=-3+V .

With this choice of the d(T) we put
M(A) = @_ M(a(rt),v(t))
T: F->Q
where the V(T) are still at our disposal. We have to choose them in such
a way that the restriction of p = p(\) to the centre 2/ becomes the

type of an algebraic Hecke character. The type of this central character is
(e.., (1) + 2V(T),...) .

One way of choosing the v(t) is given by

0 if t€ L, W
vit) = .
-d(1)-1 if T € T_W
Since with this choice the central character on 2/Q = RF/Q(Gm) corresponds

to the type of

wid _
2
v« o
on T(l)/Q = RF/Q(Gm) , and hence it is the type of an algebraic Hecke
character.

V. The period integrals

In this section we want to generalize the results of [HaQ], IIXI to the situa-
tion here. This means that we shall evaluate the Eisenstein classes on cer-
tain "cycles with coefficients" which are constructed by means of the tori

in G/@ which correspond to quadratic extensions of our field F .
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5.1. We select a quadratic extension E/F and an embedding
»
E G‘I.2 (F) . The choice of such an embedding is nothing else than a choice
of an embedding

iﬂ : H/Q + G/
vhere H/Q = RE/Q(Gm) = %/Q(Rg/p(cm” . The group H(R) = H_ contains a
unique maximal connected compact subgroup K;H' and we put

H

8

H o
Kao - zco

We call a point g € G(A) adapted to the embedding i‘H if we have for

its infinite component

oo 'K, C X,

(see |Had|, 3.1). If we choose such an adapted point g , we can construct

an embedding
3@ ¢ R@\BMA/K + G@\G(RI/K,

given by h + hg . If we select a level subgroup Kf c G(Af) and if we put

H -1
Kelgg) = H(Ag) N geKege
then Kg(gf) "is an open compact subgroup in H(Af) and we put

H
sy = H@\B(R/KXG(g,)

The J(g) induces a map (denoted by the same letters)
H
J(@ : 8, + 8, .

If we have a sheaf M = M(A) on Sy which is obtained by a representation
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H

E then we may restrict this sheaf to SK

D
is of course the sheaf on sﬁ which we can construct from the representa-

p of G X and this restriction
tion p restricted to H XQ E', let us call this restriction M again.

We get a map
3@ : H(s,,M) -+ H (sD,M)
9g. 3 K’ K’
which obviously extends to a map between the limits

g : wGEm » g @ Wm .

5.1.1 One checks easily that this map depends only on the connected
component of G_ in which we select our adapted point. This is clear be-
cause the adapted points within a connected component form a contractible

set if we project to the symmetric space.

5.2. We apply proposition 2.6.1 to our torus H/@ and the local
system M . We recall that we wrote M = M(A) (see 1.4.) and then we have

a decomposition of M into one dimensional weight spaces with respect to

H X, 0

M(A) = @& M(A,u)
U

and this provides a decomposition

B @A) = e mTER,HOLW) (5.2.0)
i

and the above mentioned proposition yields

1" SHOLW) = @ z e APz . (5.2.1)
n: type(n) =p "
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Here ia is a one dimensional Q-vector space on which T (H,) H(Af)

acts by the algebraic Hecke character 1 .
5.2.2 We observe that the systems
2" &% mon}, , {8 & aoun}, and (D e AJe/2)}
A i (A1) n (A,u,n)

have obviously @-structures and that the systems of maps J'(g) and (5.2.0),

{5.2.1) are defined over ( .
5.3. We constructed the system of sections

Eis : Im r[¢] + H (S,M)

(Corollary 4.2.1), let us put Eis(¢,y) = Eis(y) for ¢ € Im r[¢] . Our

goal is to restrict these classes to §H . i.e. we want to compute the classes
3" (g) (Bis($,))
in terms of the description of the cohomology H' (57,H) given in 5.2.1.

5.3.1 First of all we analyse which are the cases of interest for us,
we look for the degrees d where the cohomology Hd(§u,ﬁ) is possibly non-

zero and where we have also Eisenstein classes. If n = [F:Q] = r1+2r2 in

the usual notation then the lowest degree (except O ) where we can have

Eigenstein cohomology is n if x, >1 and r, if r, = O . On the other

1 2 1

hand we have
rank (Y (H/2)) = r, +r, - 8

where § 1is the number of real places of F which became complex in E .

This means that we have only two cases where the degrees match, namely
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A) Both fields F and E are totally real,
B) Both fields E and F are totally imaginary,

and the degree we are looking for is the rank of T@f{H/Z) which is of

course equal to the dimension of §H

5.3.2 1If Pn is the projection operator to the n-component in (5.2.1)

then we are interested in the evaluation

B, (37 (@) (Eis($,¥)) = 3 (g)(ELs(d,¥))
where

3'(g) (Bis,¥)) € T @ A2 =L uyz)

and d = rank( 9¢ (H/Z)) . We may look at this from a different point of view.

We have the map

v o> {g+ 3@ @ison b (5.3.3)
which maps Im r[¢] to a space of functions on

T, (G,) X G(ay)

with values in 66 e Ad( ¥¢(B/2)) . Here we have to remember that : has
to be adapted on J'(g) depends only on the image of g_ in wo(G”)

(see 5.1.1). But it follows from the definitions that
3" (hg) (Eis(¢,9)) = n(h) * 3" (g) (BLs(d,¥9))

for h € wo(Hm) x H(Af) . Hence we see that the above map (5.3.3) is an

intertwining operator
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T (G XGAY) _ 4
I(¢:noiﬂ) : Im !'[¢] -+ IMWO(HQ)XH(Af) Qn ®A (X(H/Z)) v

we want to abbreviate

T G,) X GlAy) _

d ~
Indﬂo(!l,)"ﬁ(hf) Qn e A (R (H/2Z)) = wn .
5.3.4 At this point I want to recall that we have permanently to deal
with a problem of keeping track of various identifications. This problem is

related to the question: What does it mean to compute the intertwining ope-

rator
I(%n.ia) : Imr[(ﬂ + wn ?

To give a meaning to this we have to relate both spaces to certain reference
spaces. We know already (theorem 2) that Im r[¢] is related to the V@
which is a concrete space of functions on G(Af) but this relation depends
on certain choices of generators (see 4.3. ). If we want to relate W

to a reference space consisting of functions on G(Af) we may use Poincaré

duality. This will be explained in the next sections.

5.3.5 - If we want to specify the class J.(g_)(Eis(cb,w))n we may look

at the Poincaré-duality pairing
H H ~ 4, .H =
HO(5, M) x Hd(sx,n) + BOUS,,@)

where M’ is the dual representation of M and where K = ‘uﬁ: is a

suitable level. The tangent space of sH

K
o, " ea-xﬁf‘,mou&x‘é

(gH = jdentity in H(A) ) is identified to

at the point
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Lie(H )/Lie(K) = a?m/kg .

If we choose an orientation Qo in # m/k: we may transport it to any other
point by translations, hence it defines an orientation on Si . Using this

orientation we have the canonical homomorphism

tr, Hd(s’l:,i) + Q0

which maps the fundamental class on each connected component of si to
1€ i . If we extend the coefficient system from E to the complex numbers

then each class can be represented by a differential form of degree d and

trK([w]) = [ @ .
SH
K
This homomorphism is not compatible with the change of levels hence we

normalize it

where l(;l c,C.‘. B(Af) is the maximal compact subgroup of units. With this nor-
[

malization we get a commutative diagram

d, H— —

H(SK,)—————) ]
\ I
\V]

H(S@) ———> @

if K= xf}nc}‘: K' = 1(2(1(2) ' . Hence we get a pairing which doces not depend

on the level
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,2 H(S.M)"B(S,M)

Ny

H (erQ)

(5.3.5.1)

5.3.5.2 We want to give a more explicit formula for the homomorphism
tr which will be useful for computations lateron. The problem we have to

deal with is a pedantic consideration concerning the normalization of measures.

Let us put H= (0/2)/@ . 1f Kg is the maximal connected compact sub-

group in H_ then we have a map

P+ oB/K, > B/ .

Taking the definition of l(: {see 5.1) into account we see that p is
covering of degree 2" in case A and an iscmorphism in case B . In any

case we have an isomorphism of Lie-algebras

Lie(B )/Lie(K)) = a",/kf: > E’f;/kf :

We choogse an ordered basis Yl""'yd of Jm/k:: this can be extended to a
d-frame on gH by translations and it defines an orientation on sﬁ . This

basis provides by the exponential map local isomorphisms

where exp(ti,...,td) = exp( Z thv) . If we transport the Lebesque measure
v=1
form ]Rd by the exponential map to the two groups we get two invariant

measures



- 92 -

dhy on Hw/lé and dh! on E;/KE .
These measures are related by
dh! = dg - dn! (5.3.5.2.1)
where 47 is the measure on ker(p) that gives every element the volume 1.
We also may fix a measure dﬂ; on ﬁ; by the requirement
dh, = dk, ° dh} (5.3.5.2.2)
where di; gives volume one to KE..
If we have a d-form @ on Si which represents the class [w] then
w(Yl,...,Yd) = cu(sr1 eee Y3) o= m(YH)

becomes a function on sﬁ and hence it is a function on H(Q)\H(A)/K: . We

define a measure
an' = dhy x dng

on H(A)/Kg where dl.lf gives volume one to the open maximal compact sub-

group K? o of units in H(Af) . Then it is quite clear that
tr([o]) = / w(¥y) (h')dn’ (5.3.5.3)
H(@\ H(A) /KD

If w(Y )(h') turns out to be invariant under the action of 2Z(A) . In that

case we get

tr(lw]) = wvor, (z(@\z()/2D) « _ [ = wly)([@)an
dz HENEm/ B
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and voly, (Kg ) =1 (recall that 2./20 = ker(p))

f

where d§£ gives volume one to the image of Kg °
’

the maximal compact subgroup in generall). This follows from (5.3.5.2.1).

in .}?(Afz {This is not

Now we have

voly (Z@N\Z(8)/z3) = h,

where hP is the class number of F (in the narrow .sense) and using

(5.3.5.2.2) we get the final formula

ee(fuld) = ny o _ [ e @d (5.3.5.4)
H(@N\H(A)

where dE-dﬁ;Xdl_lf.

5.3.6 To specify the class J (g) (Eis($,J)) we may look at
3 (g) (Eis(¢,y)) as a linear form on Ho(sz,ﬂv ) and compute its restriction
to the n-l - camponent of this cohamology group. To do this we select a

generator
2 e = naah
and we define an element mv(n-l) € H°(s:,uv(u.-1)) by
" hm = ntmwetege’e™ = nlw s ntage’eh 5361
(see 2.6 and 2.5.4.2). Using the pairing (5.3.4.1) we may look at

<" (g) (Bis(4,9)) ,m" (n"1)>
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the result is a number in @ . This defines a slightly modified intertwining

operator

v, -1, .
I(¢,n,m (n )'lH) : Im r[¢] hd wn

where now

no(Gw) x G(Af)
Wn = Ind n
T (H,) X H(A)

this a space of functions on ﬂo(Gm) x G(Af) with values in 6' and it is

one of the reference spaces which we are looking for.
5.3.6.2 The system of induced modules

{wn} (u,n)

has again an obvious pP~structure. Of course we want that the system of linter-

twining operators

v, -1
I(¢,n,m (n )'iﬂ) : Imr[¢] + Wn

is defined over @ . It is obvious that the gystem I(¢,n,ix) in (5.3.3) is

defined over @ and hence we can say: The system

v -1
(2" ,u )}(X,u)

has a @-structure and hence the system 'I(¢,n,mv(u—1),ia) is defined over

@ 1if and only if the system of generators

v, -1
LS D PN

is defined over @ , i.e. is mapped inter itself by the transition maps
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(see 2.4.). Such a system exists by Hilbert's theorem 90.

Of course there is a more elegant way of looking at this. We may look
at Poincard duality as giving an identification

L M > W .
n ® M(A ,u ) n

If we tensor I(¢,,n,iH) : Im r[“ +> ﬁn by M(A.v,u-l) we get an operator

v -1
I(¢,n,1n) 81 : Imrw]OM(X M) > wn .

If we vary the data )A,$ and u,n we get systems of spaces on both sides
and both systems have natural (-structures and the system of intertwining

operators becomes -rational. We have the formula

e ea ) = reaa T, .

H

5.3.6.2 We want to treat the analogous problem for 1Im r[q’] , the

answer is in principle given by theorem 1 and 2. We have

Imr,) © V, ®A (K(1/2)) @ vso'¢ e A (R(1/2))

AV
H (38,M)

But if we recall Theorem 1 we see that the inclusion map I depends on the
identification
7,(Gy,) X G(Ag) _

Ind Qe, F /A
T, (By) % B(Ag)

i.e. it depends on the choice of a generator
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e(Y) = e,y € (LM .

So the natural diagram to write down is

Im Te] Vy 8 H (/w.M) (v) ® A (Q(T/2)) @ v5°'¢ B H (M) (s,°Y) ® A" (1/2))

|

v
H (3§,M)
where now the inclusion map is canonical. We remember that we are interested

in the case where we are in degree d = rank 3e(H/Z) and we have under

these circumstances

(d) a, . d*, o .
Imr[¢] -+ V¢GH (/u,u)()evs .¢sn (/"'“)(SDY)

i

this means especially that the factor A'(a(('r/z)) disappears, we are in

degree zero in this variable.
We have to distinguish the two cases again.

Case A: Then d = [F:Q] , of course we assume that ¢ is in the fun-

damental chamber. Then d' = 0 and we have

(d)

(9] if d>1

By V¢Qﬂd(/l:,M)(y) s+ Imr

or ¢ ¥ [af?

(1)

(6] if d =1

1, v ~
E : ' '
¢ V¢DH(/~.¢. M) (y) + Imr

ana ¢! = |o?
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(see Theorem 2). We compose the maps

Bis o By v; o 13 M) vy ~+ a4, 0 .

Case B: In this case we have 4 = [F:0]/2 and 4' = & . Assuming

that ¢ 41is in the fundamental chamber we define B¢ by the diagram

. a, - - (d)
E¢ : v¢ ® H (/-1 M) (Y) Im r[ﬂ

14 l Pry,
d¢ KM ()
v¢ ®H /~, Y

where pr:¢ is the projection to the ¢ coordinate.
Again we form the composite map
Eilso B, : V. ® ad( % M) (Y) + nd(§,’ﬁ) .
¢ ¢ /M

Selecting a generator in ad(/:, M) (Y) gives us a map

E¢(e.('r)) s v¢ + Im r

]

vhich then be composed with Eis. But on the other hand the datum e(Y)

nothing else than an element
K a,~
E(elY)) = E € Hom T(Ao(%,,/gm),l:) ® Hom (A" (4, M)
K
= Hom(Ad( )V, 8 M)
om %ka [ ¢“ H:
(see proof of theorem 2) which yields that the class

BRis B¢(¢.(Y))(W) = E($,e(y),V)

is
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over € is given by the Eisenstein series

Bis(g,$,E(e(Y)) ) € Hom, (Af’(gw/km).d(cm)p(m oM .

5.3.6.3 (In the following we want to ignore the case 4 = { and
(1
¢

attention to V' .)

¢

) - ]a|2 we just keep in mind that in that case we have to restrict our

We found that we have an operator

(d)

d, v ~
E¢ s v¢ea (f,M) (Y) + Imr[¢]

Composing this with (5.3.6.1) we get an operator

I(¢,n, i) Vo ® Hd(/:,m (y) @ M(Xv.u-l) > W

and again this gives us a system of linear maps defined over @ between the
two systems. (Note that still type(¢) =y and type(n) =y .) If we eva-

luate on generators in the second and third variable we get
v, -1 v, -1
I(¢,n.iH)(w ee(y) ®am (p 7)) = I($,n,ely),m (p ).iH)(w)

where

v, =1
I(¢'n'e(Y) lm (u )'iﬂ) : V¢ hd wn .

This last operator is an intertwining operator relating two "concrete"

spaées of functions.
5.3.7 We want to give the explicit integral formula for the expression
1@,ne(n ', i) W) (g = a’(g)zim,%w o e(y) ' (nh)>

which is obtained from (5.3.5.2). It is of course clear that our intertwining
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operator is zero unless the following condition is fulfilled
nlz(a) = ¢|z(a) (5.3.7.1)
which we shall assume from now on.

In the above expression we have to interprete the Eisenstein series as

a differential d-form on S:: with values in ﬁ()‘)l: . Here i(h) c is the

flat vector bundle whose fibers are the stalks of M(\) and where the local
sections in the sheaf are constant for the connection. (We assume Ke small
enough.) This differential form will be restricted via J.(g_) to S:: and
will be evaluated on the section mv(n-l) in the dual sheaf. The result of
this evaluation is a closed d-form on Sl; which represents a cohomology

class. We apply tr to it and the resulting number is the number we want to

compute. To apply tr we use (5.3.5.4) and here is the result:
< (@Eis(9,E (b ® o)) @' (n7))> =

n~! () <eistng, 6. Ee(v)) b,aata]) (1) ® p (g hm w>aE  (5.3.7.1)

Re

H@N\H(A)
vhere we have to take the following convention into account:

H
The element Yﬂ = YIA ...AYd where Yl,...,Yd is a basis of j'm/k°°
and dE is the measure on H(A) derived from this choice according to the
rules in 5.3.5. (Note that the choice of this basis cancels out up to the

sign, only the orientation given bv Y _ . counts.)

H

The proof of the above formula is a little bit painful but easy if one
uses the dictionary that translates the (\Sm,xa) -complex into the de-Rham

complex. If

@e HmKD(Ad(%_/k“) AAG@NGN) @ M) )
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we can define a class
o € HG@N\G(A) /K, BV )

where ﬁ(l) C is the above flat bundle. To define @ we pick a point

Et-_ € G(Q) G(A)/K_, and we choose tangent vectors Yl"”'Yd' at the point

I

Then we should have
w(x) (Yl"‘ .,Yd) € M(Mt,k: .

This means that for x € G(A)/K_, that projects to g we must have
w(x) (Yl'aa' 4 'i) € M),

and here are Y
V,x

the tangent vectors lying above the Yv . And we must

have for Y € G(Q)

w(yx) (Y reeesY

) = p(Y)w(i)(Yl,gt_""'Yd.;_t_)

1r,y_:£ a,yx

(see 1.1.2). Now we may write x = gx = where

x, = 1°K, mod K, € GA/K,

the differential of the left translation by g_-l maps the tangent space

at x isomorphically to the tangent space at X, 0 but this tangent space

is % o K, + Therefore we define the differential 4-form by

”.'Yd'.!”

W) () reenr¥y ) = Plo)a(g) (az.g_1 (¥ xr

it obviously has the required properties. This is the procedure that pro-
vides the isomorphism between the (cg“,xm) -complex and the de-Rham complex

(see |B-w|, viI, 2.7., |Ha2| § 1).
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Let us now assume that @ is our Eisenstein series and @ the corre-

sponding differential form. Then the differential

das(g) (h)

H

maps the tangent space of sK at h to the tangent space at hg and

{(5.3.5) yields that the above expression is
_J_ <u(ng moa x),a3(9) () (¥,) 8 a'(n"H)> dh
H@N\E(a)
where the Y.  is a basis element in Ad(;./k:) and this element and dh
are linked as in (5.3.5.4). (We assume (5.3.7.1) of course.) Using our

formulas above and exploiting the obvious formula

-1
4L -1, -1 o dAJ(g)(h)(¥) = ad(g, )(¥,)

we find for our integral

_ | <pihg )Eis(hg,$,E.9) (adlg) T m (> ah =
H(@) \H(A)

n () <®is(hg, .8, (ad(glh) (1)) 0" (g T (> a =

H@\H(A)

_ I ot <etstng, 4.8 aatglh (xy e pVtg > @R
H(Q)\ H(A)
For the last two steps we have to take the definition of the section mv(n-i)
into account (see 5.3.6) (11.-1 (hw)mv(u—l') = pv(h“)mv(u_l) 1). This is the

desired formula.

5.4. Before we proceed we want to look a little bit closer on the

possible choices of weights U € X(HX @ for which we may have a non-trivial
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I(¢.T|:iﬂ) with type(n) = u . Of course we get from (5.3.7.1) that

vlzx @ = ulzx_ @ (5.4.1)

where Y = type(¢) . Moreover we have to require that u is a weight of

H X @ in M(A) and that M is the type of an algebraic Hecke character.

We want to make these conditions a little bit more explicit. We have
X(HX Q) = @ _ =z
T: E>Q

so our element U is given as

We have 2Z/p -+ H/@ and we have
X(2 XQ D = @ I/ .
T: F+Q

If M= @ M(d(t),v(T)) then the central character is

T: F>Q
60 = (...,d(‘t)+2\)(T),...)T (P and 5.4.1 can be expressed
mytm, = a(t)+2v(T) (5.4.2)

where T : F-*i and T' , T" are the two embeddings lying above T .

Now we look at the constraints on | whichfollows from the assumption

that | is the type of an algebraic Hecke character. We have the two cases

Case A: We have m, =m, =n for all «t* , 1™ .

Case B: In this case we have that E is totally imaginary we do not
have such a simple necessary and sufficient condition. But we have the con-

straint that for any pair T , T of conjugate embeddings of E into 2
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a(1)+d(T)

> + v(1) + WT) (5.4.3)

m_r + n_f = w(j)

where w(u) is the weight of u . If E is totally imaginary this is the

only constraint.

Now we analyse the weight condition. Since we assume (5.4.1) we may
(1) (1

restrict 4 to H /@ , call this restriction U . The torus
g % § o+ oM x g = @_ s,
o 2 T:F+Q

(1)

can be conjugated (in several different ways) into the torus T XQ 6 .

We may identify

(1)

xfi)-@ z

T:F-"E

x(r

by selecting the positive root as a generator. Then we have a map in-~

1
2
duced by the above conjugation

X X -+ xat * D 3 xet * )
which is given by
(”.n‘["m‘t"'..)‘t':E-bQ' <> (-oo,t(mt'-mrn)looo)r:r+m

where again T' , T are lying above T and the sign depends on the choice

(1)

of the conjugation in the T-component. The weights of T x P i in

M= ®_ M(d(1),v(T)) 4in the T-component are 4d(t) , d(T1)~2,...,-4d(T) .
T: F+Q - -
Hence for all t:P+{Q and the two embeddings T',T" : E+ Q 1lying above

T ve must have
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and
m,m, I 4(0) mod2 .
Case A: In this case we have m,=mn for all t' , d(r) =4,

v(tT) = VvV , we have

M = @_ M(d,v) d = 0Omod 2
T: F*+Q
and uu) = U | Hu) i has to be the zero weight.

Case B: Again we have much more flexibility. Over each pair

T,T: P+ Q@ of conjugate embeddings we have four embeddings of E into i.

Let us draw a diagramm

'c“' S
T L E Q
T 57
T >

] ,

T
F
Q

We must have

+m_, = wy
T

and
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my ~m,| < atm
m_, ~m_,| < a(o
T
m, -m, = d(1t) mod 2
T T
m_,~-m, = a(t) mod 2 .
T T

This implies d(t) = A(T) mod 2 , since

- mr,| = ]mf, - mf,] the

inequalities have to be fulfilled for the smaller value out of {d(1),d(T)}.

n..

5.5. Our goal is to compute the operator

Ittb.n.e(Y).mv(u'l).i) '/ + W

H

and the answer will be given in th:orem 3. This theorem is the generaliza-
tion of the corresponding theorem in [Ha4!. We will give a formula for this

operator by comparing it to a local intertwining operator

oC
(¢rnniﬂ), = & I

3‘333
(We have to take into account that Tro(B ) ='T%(G ) ='“;(H } the induction

at the infinite places is trivial.)

We recall the construction of the local operators

G (r,,)
loc Y

I (¢ L) v + In
Y 4y Ty T Mhe My

given in |H341, 3.2.4 and explain the necessary modifications here. Our ¢
is the local component of a ¢ whose type is in Coh(M) , it is quite clear
that the system

{v, I
o 4,



- 106 -

has an obvious {-structure which is consistent with the obvious Q-structure

on the system
gly

which we introduced in 2.7. The same arguments also yield a @—-structure on

the system

b
where W = ]:ndH n . We want to construct a system of operators
n (Ey ) Y

Iloc

(¢ ,»n_,i) v > W
SO ¢g T

which is defined over @ in the sense ~f 1.3. Moreover we require that for

almost all :\3 for which ¢1£ and n y are not ramified we have
loc
I (¢ .ng,iﬂ)(lbg'o)(l) = 1 (5.5.1)
where w% o € v¢ is the standard spherical function (see 4.2.). The con-
’
k3

dition (5.5.1) guarantees the convergence of the tensorproduct of operators.
We shall show the existence of such a system of operators by exhibiting a

special choice which will enter in the formulation of our theorem 3.

As in |Had4|, p. 136 we define a system of local intertwining operators

as integrals

p -1 *

I (.m i) v > g > (e, ) (t g ldt}

et T N T By Tra "y e
where the measure da't is the quotient measure of those invariant measures

* *

on H(F ) =E and Z (F ) = F which are normalized to give volume
oy y o'y % |

one to the units. (Note the change of sign if we compare with lnul .)
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Lemma 5.5.2: a) The above integrals are convergent if ¢‘3 is in the

@sitivé chamber and n,.s satisfies the constraints in 5.4. They define

intertwining operators

G(P)

i ¢ , L) g .
X '.Sn'ai“ v%ec mda% e

b) These operators are actually defined over @ and the system of opera-

tors is defined over @ (if we vary ¢ and nx) in the sense of 1.0.3 .

Proof: We follow the argument given in [Had], p. 138 - 140. There is
no problem for those primes -2 which do not split in E , in that case
H (F'S is compact, the integral is a finite sum. In the case that
splits into 43 -‘?‘0 '?’ we decompose the integral into a finite sum and a
gecmetric series, we get an explicit formula for the intertwining operator
as in IHa l, p. 140 bottom. This implies that the system of operators is de-
fined over @ , once we settled the question of convergence (see remark
below) .

We have E® =E. XE' where E_ =E

' 2

= F . The component
3 ¥ e
of n can be written as

(x__,x,.,) = n (x_) *n (x ') .
ng 2R

n,;(x_,) ? o ’P P

The character ¢ will be written as

t
0 (;,‘

The computations in |Ha4| loc. cit. show that for the summation of the in-

et IS

) O (ty) ¢ oby(E)) .
2

tegrals we have to sum up the series
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o b

~1 AY -1 Y
(n. ¢, (m 1)) and n _(r_ ) "¢,(m,))
'? ’-P 1"y v )>: n o P ! K

in the case of non-ramification of the characters. (Otherwise we get finite

sums again.) So we have to worry on the absolute values

-1
In_(ms) 9. (m, )| and |n (1r Lo, (m )]
PP Y P ! 3
(the values are in q_;'*c ™ and we have to take the usual absolute values).

This cames down to the consideration of the algebraic Hecke character

X = n"1 . ¢1 ° NE/F on H(A) = IE . It is a well known formula and obvious

from the definition that for all primes ’1} of E (comp. [set], 1I, § 3,

prop. 2)

-1 wi/v

NUBSCE AL S (n?)l = Np

where w(X) 1is the weight of X and v =1 in Case Aand v =2 in

case B. Using the notations of 5.4. and the condition 5.4.3. it follows easi-

ly that
win) = - 9'212- in case A
wi(n) d_(_‘r)_-dz(_‘r)_:_g_ in case B .

The condition that ¢ is in the positive chamber means d(T) < d(t) , hence

we have w(X) < O and this proves the lemma.

5.5.3 Remark: Actually we do not need the convergence, we could cer-

tainly also define the intertwining operator by a formula like the one in
|Ha4|, p. 140 bottom and use analytic continuation to prove the fact that

it is indeed an intertwining operator. But we have to avoid the "pole of the
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geometric” series, this means we have to be sure that n';)(w )¢1 (m,.) ¥ 1.

P 3

The verification of this assertion requires of course the same argument as

above.
Now we put as in [Ha.{‘, p. 136
1)

(
loc L6 Y :0) L=
I (¢ ’ li )y = - eI (¢ 7 Ii ) .
gy "z‘“;’%g“z/r'm gy

Then this gives us a system of intertwining operators which satigfies (5.5.1)

for almost all ’3, .
5.6. The theorem 3 which we want to state will have the form

JTR RV R IS IR S (% P R
The factor ¢ will have the form

©global * e

where cql obal will be the ratio of two values of L-functions and c will
be the contribution from the infinite places. The factor ¢, must of course

depend on our data
c, = c,lely) .n"(u'l):inaﬂo) '

it has to bes bilinear in the first two variables and Qo is the orienta-
tion which we selected on &/kg . T want to define this number but I have

to introduce some additional redundant data to fix it.

First of all we want to specify the field extension E/F and the em-~

bedding
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i, = wa ~ &/ .
We recall that this embedding is nothing else than an embedding

E' + GL(F) .

We may write E = F(Y/A) for A € F® and we identify H/F to the torus

Ho/F for which
a b 2,2
Bm) = {(, ) | a"par0} .
The next thing we will do is to choose a total order < on the set
[t|t:r+c} .

If we are in the case A then this alsc defines a total order on the set of

places of F and moreover for each v € s, we have Fv = 1R.

If we are in the case B then a v € 5, is a pair {t,T} of conjugate
embeddings. But under our present circumstances the rational character vy

fixes a CM~type-
T = {t]aeglyy =1}-

(see 4.3.). Since we assume that Yy is in the fundamental chamber we have
always d(t) > d(t) for T € T(Y) . This allows us to define an order
on the set of places S_ , we identify this set with TT(y) and transport

the order. But it also selects an identification

where i is the identification induced by T € T'(y) if {T,;} =V .
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Wa go back to the general case. At each place v we select a square

2
root GV-A with GVEPV.Weput

-1

s o
v
gw = (..-o(o 1)"')\?65“ .

Let C o/F -+ GL2/F the maximal split torus given by
ab 2.2 ‘
c,® = {G ) |a*b*#o} .

Then we have for any v € S

8, o 6;1 o)
. 1)°H°(Fv) . o i c (F) .

This tells us first of all that g_ is adapted to H/Q , this is so since
the maximal connected subgroup of co(Fv) is contained in Kv ;s We put as

usual xfj ~c (F) NK, .
We write

o] . (01 - . v°
L:Le(co(rv)/xv) = JR (1 O) R Yv .
~1
Gv 0
o 1

) * Y% = ¥ will form an ordered basis of
H » and hence they define an orientation
o0

Then the elements ad (

ﬂ({6v}v,<)

on 8, (see 5.3.5). We compare this-to the given orientation and put

R({8,} ,<)/R = £1 according to whether they are equal or not.

In 2.4.1 we wrote down explicit representatives for the classes in

Bd(,l:- M) (Y) they were given by
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a, T

E(X,Y,<)(ua’rl,...,u d) a E(Y) (5.6.1)

where T < Tz <...< Td with respect to the giveh order, where the Ti

are the elements of (, (Y) in case B and where

®_ e_s in case A

T: F*+Q

E(y) = @
e ® e in case B

We called the class represented by the above element e(XA,Y,<) . (Recall

that they do not necessarily form a rational system of generators.)

The last datum entering is mv(u—l) . We saw in 5.4. that u(l)

(1)

has to be

the zero weight in case A and in case B the U was given as

(1) :
u = (.o. (mT'-mT“)'.../T:F'*E

m_,~m_,
ki 3 LA dgt) . Now we are

where T',T" 1lie above T . We put u(T) = %

ready to define Cp

Case A: We have M = <ED _M(4,v)) where d = Omod 2 (see 2.8.1
T: F+Q
and 5.4). We write

£ O*
¢ = 6;(g)) o () .
It is clear that (see 2.8.2)

type(¢1) = (...,\)-1,...)‘,1, . F"i

type(¢2) = (”"d+v+1'.“)‘l':F"'6

and hence we have for any v € S, that

-a-v-1
O ,v(ty) = & Ty vt 1 9y (k) = f Oy,v(t2)

where 01'v and cz'v are sign characters.
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Ve saw (comp. 2.6.2 ) that we must have ¢ =g = g_  otherwige
1,v 2,v v

the character ¢ cannot contribute to the cohomology of the boundary. We
also know that

tm(n) - (...,'i'+\"ooo)‘t :E"'i .
This implies that for v € S

* * *
nv:no(rv)-mxm-rl:

is given by

nyltyety)) = & Epelty) ° & * Egnlty) .

It is clear that 5.3.7.1 implies €gr ™ Eum = € 4 i.e. n must have the
same signature at pairs of places of E lying over one place of F . We

put

if there is a place v € S_ for which the product o, * €, A1 .
If for all v the product Uvev = | then we put

Culothy, ) (™) ,1 .8 (8 h =

2n Q({G }:<) -
P L g 2ty - W T T T g )
((a+1) )" o VES,

(Here we consider 6v € F, as elements of R .) We notice that a different
choice of the 6v also changes the connected component of the pinpoint g

and hence changes the intertwining operator.
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Case B: In this case we put

-1
cm(e(AlYl<) :mv(u ) Iiﬂlno) =

_ Q{8 },<) Ty -
emauhse . Ty ety 23, s
o TETZL (Y)
We observe that the result does not depend on the choice of the sign in
m_,-m
P sl LI 4
u(t) =% 3 =

We observe that in case B a different choice of the Gv does not affect

the value of this expression, our pinpoint stays in the same component.

Theorem 3: With the above conventions and under the assumption of 5.3.7.1

we have the following formula for the intertwining operator

1o ety O m i, {8 =

. Lg(n-d, o Ne /pr©)
L, (61,0

h

F . cw(e(l,Yr<).my(u-l),inuﬂo) * Iloc(¢:n:ia) .

Proof: We know already that we have to compute the integral
v, -1
I(¢:H:G(X:Y:<) M (Ll ) Iiﬂ) (‘P) (ﬁf) =

hF'—( ,\f-( y n" (b <®ts(hg,d,e(hy,<) ¥ sad (gL ) (x,) ® o¥ (g2 im" (w™)> db
H{QI\H(A

(see 5.3.7.1). Here g, is the element selected above and YK is the wedge

of the above Y, in the order < on the set S To compute this inﬁeqral

(-] .
we go along the same lines as in [Ba4] p. 138 ££f. We recall that the Eisen-
stein differential form is obtained by analytic continuation from an infinite

series (see 4.2.). By a standard computation we get that the above integral
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is equal to
-1 8 -1 v, =1, v, =1 -

J nTw<atng,élal®ier, <) .9) 8057 (1) 8 0V (g dm (WT)> ab

H(A)
evaluated at the point s = 0 (We drop the factor hl" ). This integral is
a product of local integrals, the finite places can be handled in the same
way as we did this in lﬁatll (see also 5.5.). The infinite places present
some problem, we have to take the coefficient system into account. To put
it in a slightly different form: The contribution of the finite places is
the ratio of the two special values of L-functions. At the infinite places
we have to compute c, this is new (to some extend). We have to evaluate
the integrals

-1 s . -1 v, -1 -1
J  ngh) wlhg .4 al.ey,<)),ad(g ) (¥,) @ p (g Im (W ))an, .
Ho(Fv)
Here we write
ah = O mr(u'l)
T:F>Q

and nv(u-l) - m.t(u-l) ® m__(u-l) it {t,T} = v . Recall that
T

we abbreviate pv(q;1 )mv(u-I) = w_. The factor ¢, is the product of these

integrals over all infinite places up to the sign factor

-1 ,
We write hvgv =g 9. hg = gvh"' vhere h, € co(Ev) . Since 9y € BO(FV)

we get for our integral

] -3, . 8 T
0,050, J  ny (hli<w(nhy.bale, )Y 0w >R, .
Co(Fv)
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Here we identify Ho(Fv) and co(Fv) by means of the conjugation by 9,

and transport the character n, from Ho(Fv) to C o(Pv) . We write for

*
t EF,
1+t 1-t
v v 11 t. o\ f1 -t
h(t) = 2 2 - 1 Jv .
v l-tv 1+t:v 2 -1 1 0 1 1
2 2

and this provides an identification of Fv and 30 (Fv) . Our above integral
becomes
0.0%(a) [, n it h)) - <whir),0.0%,e0,v,<))),Y_ 8 w>a't
vy 9y v v vl e v rie ) v v °

v

Here d*tv is an invariant measure on F: which has been specified as

follows:

- *
(1) ) by the exponential map into co(rv) = R

o

Case A: We map Yo = (
this gives us

cosh x sinh x )

x - expro = (
sinh x cosh x

and if we project down to EO(FV) we get

e-2x+1 1-e—2x
2 2
X =
1-e 2% 14e” 2%
2 2

™
ie. t= e2x and hence the measure is dx = %%t-'- - dtv .

Case B: In this case we have EO(FV) = l:' = m:o x s1 . The same

reasoning as above ylelds the measure
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dr.
—;-de

1

2

where [ 40 =1, and r is the variable in K .
S

Is is easy to check that the integrand does not depend on the circular
variable 6 in casé B and hence our integral becames
8
b9, (9,)

v

T2 [ n e <atmie) o 0oy, )Y, 8w > o

1tl]

%
where we integrate over R in case A and over m:o in case B.

We have to unravel the definition of the definition of

m(h(t),tbva:,e(l,y,q) . Recall that we may write (see 5.6.1)

da
G(LY.<) = /\ \1:' - [ E(Y) .
i=1 Ty

The element u; T (see 2.3.1, 3.4 and 3.5) has to be viewed as an element

s
v
u € Hom( /k._ ,T) .
'a,ri gvi A/

Then for any v we write
h(t) = hv(t) = bv(t) . hv(t)

and

8 -1, v
m(hv(t) ,¢vav,e()‘,y,<)) = ¢vav(bv(t)) . (ad(k (t) )u‘,.'_r L] p(kv(t))wv)

vhere v = {1,?} and t€ T (y) . The second factor lies in

Hom(«é‘/kv.c) oM

and can be evaluated on Yo ] W, e the result is a number in [ . Hence we

get for our integral
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b, (gy) s -1 v -1 at
‘—Z—‘—I n, (h(t) " )¢vav(g(t))<ad k(t) ua,‘r'Y0> s <p(k(t) )eYv,wv> Ter -
¢, a® (9 at
'--3-—- f n, (h(t)~ )¢ u (b(t))<u 2,1 .ad k(t)Y°> . <eYv,p (k(t)w > T

with the same domain of integration. The Iwasawa decomposition for h(t) is

1+t 1-t
1yt 1t —t_ . 2u(t) 2u(t)
2 2 u(t)
hit) = 1-t 1+t =
- (o] u(t) 1-t i1+t
2u(t) 2u(t)

2
with u(t) = (3—-’;“-)1/2 )

Now it seems to be appropriate to separate the cases.

Case A: In this case M = (X; _M(3,v) (see 5.4.), @ has to be
T:F*+Q@
even and the dual module M= @_ M(d,-d-v) . In accordance with our
T: F+Q
discussion of the definition of ¢, we find for the 4 factors in our

integrand:

The first factor is

d
-1 +-2-+\)

n e ) = e s e (1) . (1a)

The second factor is

t
— #
s u(t) -V+1 -a-2 it _.s/2
¢v°‘v ( o u(t) = ¢ u(t) (-——5') O’V(t) . (Ib)
u(t)
One verifies directly that
v t
<u. _,ad k(t)Yy > = . (1c)
a,T o a (t)2

The last factor requires a little bit more work, it is
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<e_jplk(t)w > .

(1)

The Cartan involution 6 : g + ‘-'g_1 acts as identity on K v and this

allows us to rewrite the Iwasawa decomposition

k(t) = bty enw) = by Cenv)? = v el .

Our last term becomes

D(t) e ah >

Now we take into account that e is a highest weight wvector for the

-d
opposite Borel subgroup and that v, is a weight vector for h(t) -1 then

we obtain

-d d/2

Q(t)ee_d,h(t-l)wv> = u(t) <°-d"'v> . (1d)

Multiplying all four terms (Ia-d) together we find the value

s
M .—-E?—T—z—-— |t's/ o' g (t) dt -
2 =* u(t)2d+4+s ltl
4 of(g ) - 20+1+8/2 £3+2, ¢ 5/2 0,6, () at_
vy v 2,d42+8/2 v Vv i3 ‘

B (14t?)
Since d is even the integral vanishes if ¢ vEv is an odd character, hence
we assume O € to be even and then our integral becomes

t;<1+1+s/2

o (1 +t2)d+2+s/2

@vav (’qv) 2

a+2+s8/2

dt L]

The substitution l+t:2 - ‘1—' transforms the integral into

} 2/ a/2ee/ay, | Tld/2s1vesa)

o I'(d+2+s)
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Now we put s = O and we find that the contribution from the infinite

places is

— -1

Qs },< 2n §° o ‘

b la) —— - 20D L L20° || (" )) <e_qv> -
o ((d+1)1) VES, o 1

But we recall that m' (u-i)

-1 v, -1 -1
Gm_r(u } and wv-p (gv)nv(u ) . If we

substitute this into the last bracket then

- -1 -1 -V -1
<e_gp g em > = <plge_gm wTH> = &V e<e_gm (nT)> .

v

On the other hand we have seen that

-1
i () 0
v V=1
o, la) = ¢"<(o 1 )) = &, *0,l8)

and the above expression simplifies to

m{;‘,}.q . pnla+2) @e2n?t | \ 6;1-0,,(6,,)'<2(Y>,m"(u"1)>
° (a+) " ves,
because
1 -1
ampa’ e = 1) e ma™s .
VES

This proves theorem 3 in the case A.

Case B: We proceed essentially in the same way as in case A. We have

i @

vES,

where

M, = m(d(t),v(1) e M () ,v(T))
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vwhere d(t) > 4(T) and we assume T € T(Y) . The type of n was denoted

by

type(n) = u = (

see T"m'?'.“)‘l" : E_’_a
I claim that this implies that for ¢t € n§ o

. vit)+v(T) + 9-(-9—;—‘5(—12-

n,hi{t) ) = ¢ ] (1a)

To see this we have to recall that n, was defined on C o (Pv) by trans-

-1
] o]
port from H o(?v) by means of the conjugation by 9, = v . We
o 1
identified
* ¥ h -
£ = F, + co(rv)
where
1+t 1~-t
2 2
h : t 1—t 1t € C (F,)
2 2

and h(t) was taken modulo the centre. This means that if we diagonalize

Co(Fv) then‘

# 0
h : F_ =+ co(rv) +> (° *)
we will
dlagon(t) = (£9 or aiagen(t) = (19
g o1 g ot *

Hence we have that for t € I:*

"ﬂ_r| -
ng(att)) = & T ¥

‘ﬂ‘-r- '
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nv(h.(t)) = t .t .
But 5.4.2 combined with the constraint condition m., +m, = w(y)
implies
- = , A1) +d(T)
m, + o, v(1) + vi1) + 2

and if we restrict to t € ni'; we get (Ia). The next formula follows easily

(o]
form 2.3.2

£
¢ S 8 u(t)
a (b(t)) = ¢ a =
vv vy u(t)

a(t)-da(t)-2 ¢ t 2)3 . (Ib)

u(t)

V(M- -A(D+H | a(t)

The third factor is again very easy to compute

t
u(t)2

v
<ua'T,ad k(t)Y°> - (xc)

(comp. |Ha3|, 1.4.1).

The computation of the last term is a little bit more amusing. We have

to write wv = w,l_ ® w? and we have to look at

< yoP (k(E)w> =

e_a(r) ? %ar

v . v
<@_g () PRE(ENIW> o <oy oy pplk(E)IVW>

We exploit the Cartan involution a second time and write

0 1

k() = b(t) hit) = by ¢ n(e)” .
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We get for our factor
3] v -1 v
<ot(b(t) )e_d(.r).pt(h(t) Jw > o @?(b(t))edﬁ),p‘?(h(t))w?> .

Now all vectors are eigenvectors with respect to the transformation which

we apply tothem. We have
Pty Hw, = t 'y
T T

where 7T' 4is one of the two places above T and then

oV (h(t))w= = t-mf' w
T T T -

Maltiplying all terms together we find for the above product (without the
scalar product factors)

m., ) AT )
a2 e @ @ R L

A(D)+v (1) - v('r)«n B
u(t)-d(‘t)-d(‘r) T’ (14)

If we multiply (Ia-~d) together we get

d(1)+a(x)
t———z_—— +2+ v('r)-v(t)ﬂn Bz, -2d(t)-4 t .8

(——)

u(t)
u(t)2

But we have still the relation 5.4.2 and 5.4.3, namely

., +tm, = d(t) + 2v(1)

m_, + @y, M%‘J'—U- + V(1) + V(1)

Hence

I -S-L-U- + V(D) =-v(D)
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and the exponent of t simplifies to

a(T)+m_,-m_,+2
" ™ 7 - t2u(1‘)+2

Hence the contribution at v is

a(T)+14+s, s 6;1 o
<e_d(T) ,wT> . <ed(?) ,w_l_..> * 2 ¢vu'v o . X

-a(t)-2-s 2+u(T)+s dt

[ t+td = .

o)

Substituting again 1+t2 = 1/w we get as our local term

a(t)+1+s s 6;1 0
Cam ¥ " Cam v 2 ¢,y o 1 g

T(a(T)+1-p(t) + -;-) o T(1+u(T) + -2’-)

ra(t)+2+s)

We have to evaluate at s = O , then

6-1
v © (t)-1 -A(T)-v(T)
¢ V1) -1 | T 8-
v o 1 = 4(5) 1,5) )

Now we recall that w_ = Dv(g;i)mt(unl) and hence
v, -1 -1 -1 -1
<e_g(q) Pri9y B (M 1)> o <eqip iPplg, Ima(n )> =

-v(T) w a(t)+v(Tt) .

Lv(Gv)

So the local contribution at the place v is eventually
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a(t)+1 1

-1 -1 -
<‘-d('t)"'t(u 1> o <ed(?) ,mf(u }> ¢ 2 . iv(Cv)

P{a(r)+1-p(t)) * T1+u(T))
T(d(t)+2)

Multiplying all terms together we get the assertion of the theorem 3 in

case B.

5.7. Theorem 3 has implications for special values of L-functions

which are attached to algebraic Hecke characters.
The systems of one dimensional vector -spaces

e N . h'4 -1 .
Egemonmln ey - W Hawen,

have a naturally defined @Q-structure. Hence they admit Q~rational systems

of generators
e,y v GLHON M ., wuh emwh .
Using these generators we defined the intertwining operators (see 5.3.6.3)

v, -1
I(é,mie, (A,y),m (u Yedg) s v¢ > wn .

We introduce the sets

¢ = {(¢,A,y) |y €cCoh(N),typeld) = v} -

E = {(,Am |u weight in M), type(n) =u}- ,

The Galois group acts upon ¢ and H and we have obvious {~-structures on
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AT e

and the above intertwining operator is a @-rational system of maps. Since

the system of local operators
e : v, + w

¢ n

is also defined over @ we get

Corollary 5.7.1: If (¢,A,y) €E® and (n,A,u) €EH and if in addition

¢|z(a) = nlza)

then
L.E(n * ¢1 o N,0)
61,0

L(¢m) = cm(el(k.v).mv(u-l)ia,no) €Q

and for 0 € Gal(@/@) we have

L’ n® = wem? .

This is an obvious consequence of theorem 3 and our above considera-
tions. But it is not yet the final result we are aiming at. We want to have
a more direct result about the ratio of thé L-values and clarify the factor
c, . Of course if we want a result of the above type for the ratio of the

L-functions we may ignore rational factors in c_ .

We recall the construction of a rational system of generators
el(X.Y) = el(u) (see 2.4.1). We select an order < on the set {Tlt: P*’E}

and for U = ()\,y) we defined @(u) such that
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Gal(@/@(u)) = stab(u) .

Then we defined a class a(u) € ﬁ(u)?ﬂ (ll)”)2 and we selected a root

8(u) € i* , i.e. G(p)z = d(y) . Then we saw that
°1(A"Y) = e(A,Y,<) * 8w

is defined over @(u) and its transforms under the action of Gal(@/@)

form a rational system of generators, i.e. we put
e, ) = e %N = 7 .
Then we define
sy = e (10 /e0°,0)

this means that we selected for all u° in the orbit a root § (uo) of

d(u”) = ‘:l(lﬂl)(7 . This system e, (A,Y) will be used from now on.

The above rule of selecting a square root 6()10) out of d(ua) = d(u)(I
can also be described in a slightly different way. We choose an order <

on the set {t]tr : P > g} and a root
sw? = am

for one U . The order induces an order on the set I(y) introduced in

o

2.4.1. Por o’EGal(i/Q) we may compare the order < and < on I(Yy)

and we put
s = s

provided these two orders have the same sign. In our case the set I(Yy)
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is also the CM-type defined by Y , so we do not need to refer to the

cohamological interpretation if we want to define the system {§ (ua)} .
We now separate the cases again

Case A: In this case we have of course that the Galois group acts
trivially on the types and hence we have @(u) = @ and it is clear that
d(y) = dF the discriminant of our field. Hence we do not have any problem

of "consistent extraction of square roots" and put
/dF = §(u) >0 .

The element A has to be totally positiv, at each real place v we may

2
choose Gv = A v also with év > 0 then

| -1 -1/2
6 == > O .
, Els v (NF /8 (A))
Hence we obtain from our corollary
-1
{s,}.<) -1 ~172 Ln cdge Ny 0
————— e <E(Y)m (p )> - V/a, + N, (A) . € Q
% FoOF/R e ,0)

provided the character n-° ¢, N is even and this number behaves in the

E/F
correct way under the Galois group action. But

ﬂ({6vl.<)

= #1
QO

and this number does not depend on n , ¢ , so we may drop it.

It is quite clear that <E(y) ,mv(u-1)> behaves the right way under
the action of the Galois group and we shall see later that it is £ O .

Hence we may also drop it. Hence we get that under our assumptions on ¢ ,
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N , under the assumption that n * ¢, o is even and n|Z(A) = ¢|z(A) :

Ly

Cor. 5.7.2. A

L(n-l hd ‘1 -] NE/F'O) €
]

()12

Lin,¢) = Ja_ + N
' * A et

tin,¢% = (@, .

This is of course well known and a special case of much more general results
(|sie]). But nevertheless it may be helpful if we translate
it a little bit further into classical language. We have seen in 5.4. that
M = ® _ M(a,v)
T:P+Q
where d = Omod 2 . This allows us to choose V = d/2 then the central

character of the representation becomes trivial and we do not loose anything.

In this case we have

T

type(¢1) = (L., -1,..f)

typewz) - (...,§+ 1,...)

(1)) = (c-.,‘d"'Z'--.)

type (¢
If Jal : P.\Ir > IR:O is the Tate character then we find

S+1
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where X, , X, are Dirichlet-characters whose parity at the infinite places
of F |is %+1+pa.rityof ¢1 (= parity of (bz).

The character n : E*\;E > C* is a Dirichlet character on E‘\IB . Our

assumptions can be stated in terms of x1 . x2 N and 4 as follows

(1) olz(w = nlz@) <=> xx, = nlz@) = njz, .
(ii) The parity of n ¢1 L /7 is even <==>
. d
parity of n ° X1 NE /P = parity of 7 +1 .

If these two conditions for n , Xy r Xy v d are fulfilled then

-1 a
LE(n ¢ ¢1° NE/F'-Z- +1)

Lo (Xy/Xora+2)

RV 1/2

F NF‘/ ®

" € Q
and this number transforms the right way under the action of the Galois

group. This is now really a classical result.

Case B: We begin by discussing the expression

m{sv}.<)

T -1
o8 . 1 18

VES
We may look at it in the following way. The CM-type defined by our character
Y defines a "half-norm"” of A
Now o= | rmoedt .
T T€ Tly)
Choosing the Gv means that we extract a square root out of each T(4)
hence the product of the Gv is a square root out of N'C(A) . If we fix

< and Qo then we may normalize this root in such a way that the sign
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becomes +1 , i.e. we define

172 . sqren gy = |1 1 ech

N O - S

provided we have chosen the 6v such that

a0
go

We shall show later that <E(y),mv(u-1)> # O and since we know that
M@ = &t >

we can conclude that under our above conventions:

Cor. 507-2. B:

-1

- - (n "¢,oeN_, ,0)

T = 5w - n @ 12 | t“ E/P
Lp(é' ,0)

)
and for o € Gnl(i?ﬂ) we have
L%n% = Ee.m .
We want to illustrate the implications of this result for the behavior
of special L-values under quadratic extensions of the ground field.
80 we start from the general situation:

E/P is a quadratic extansion of a totally imaginary field F .

(/' B*\FB +c" is an algebraic Hecke character on E for which

O 1is critical .
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The assumption that 0O is critical for { can be reformlated as follows:

If we write

type(y) = Con(T)ed) i psp

then we can arrange each pair of conjugate embedding {t°' ,7'} in such a

way that
At <0 < n(E) .

This defines also a CM-type [.'(y) on E namely
Tw = {{ :E+g|ntt) <o}~ .

Let us assume that this CM-type is induced by a CM-type L on F , by this

we mean that

T'Ww = {r:e+q|IFeT} .

This conditionis of course equivalent to the condition that for each pair
T',T" of embeddings of E which lie over one embedding T we have that

both 1',T" € T'(y) or none of them is in T'(J) .

We claim that, under the assumption that T '(y) 4is induced by a

CM-type on F , we may write

-1
with the conventions of corollary 5.7.2 on 4)1 and n .

This is simply a question of types. We have to construct a coefficient

system
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M = @_ M(d(t),v(T))

T : P+
s.t. we can find a ¢ € Coh(M) and a character n : H(Q)\H(A) +¢* such
that ¢ = n-l . ¢1 o NB/P and the assumptions of theorem 3 are satisfied.
Let us denote the central character of the representation

p:G QQ'*GI-(M) by § , so

type(Z) = (...z(1)...) . P+

and z(t) = d(1) + 2v(T) . To construct M we can also prescribe d(T) ,

z{1) if we observe the parity condition d(t) = z(T) mod 2 .

We concentrate on a pair T,T of conjugate embedding of F into Q@ .

We have for ¢ € Coh(M) , ¢ = ($,,%,)

type(¢,) = DA
= al=
type“’l)f - Eﬂ_)_z__(l). )

(Of course we want that [ = T (typel($)) in the sense of 5.6..)

We have also n to our disposal, let us write
type(n) = (...e,l_,,e,t...e?.,e,l.,_,,,...)

where T'IF = T"1P = T €T . We have by 5.4.2. that
e, te, = z(7)

Oy, + 0y, = z(T) .

80 we may write, if we take 5.4.3 into account
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= 2z(1™) = 2(10) _
e z T¢ ! = 2 @
. z(D z(T)
e=, > a ‘ ez = S +Q

with o € % Z . We have to satisfy
l2a] < minta(t),d4(?))

(see 5.4.) but beyond that there is no further restriction. Then for

P = n-1 . ¢1 o NE/F we find on the level of types

da(t)

n(t') = -—=—-a-1
n(t") = - ‘—1-(51 +a -1
n(?') = d(z—) + Q
n(t™) = d(z—) -a

n(t")-n(1')
2

Then the necessary parity conditions are satisfied and our assumption

So we put @ = , A(T) = - n(T*)-n(t") and A(T) = n(T")¢(T") .

n(t'),n(t") < 0 and n(T'),n(T") > 0 also imply that
|2a] < minta(v),a(m)) .

We still have to choose the central character [ of our coefficient system

M (which is a rather irrelevant datum). As in 4.3 we choose
z(1) = -A(v)-2 , z(¥) = a(m .

Then we have that
C = v = (...,2(1),...)

is the type of an algebraic Hecke character, where now <Y € Coh(M) . After
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making this choice we define the type of n by means of the € i€ uces
this is the type of an algebraic Hecke character because type(y) is the
type of an algebraic Hecke character. Now we choose (bl arbitrary with

the above specification of the type, then we define n by

2RI ICEREY

and we adjust ¢2 such that ¢1¢2|IP = n|I_ . This proves that for the

F
given Y we can construct a coefficient system M and find an n s.t.
i'.g(w,,m occurs as the numerator of f.(n,¢)  hence the special value can

be computed in terms of a value of a L-function over F .
We have to show that under our assumptions we have
Ea'@h> & o .
Tosee this we have to show that for each T : P +* 6 we have
< (Mol h> £ o .
T T

The point is that the two components in this product are weight vectors with

respect to the two tori

X X
To !',‘t‘ ’ HO P'T Q

The torus T, X @ sits in two Borel subgroups B: and B; and since

F,
H o/l!' comes from a field extension we have

= %
H Xr'tﬂﬂﬁo = ZOXF'TQ

o

On the other hand we know that E. (y) 4is indeed a weight vector for one of

the two groups B: or B; . But then it becomes clear that
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-1
QT (Y) 'mT M ")> = 0

would imply that

1

-1 - -1
<bET(Y),h m,r(u > o= GT(y),b hmt(u > = 0

where b has to be taken in B;(E) or B_(@ and h € H (R) . But under

our present assumptions we have that
BE@ - H (@ <G (@
o 2 o @ ] 2
is Zariski dense hence we get
<E_(Y),gu_(0)> = o
T "t

for all g € Go (p) which is a contradiction.
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