AN INVERSE FORM OF THE BRUNN-MINKOWSKI INEQUALITY WITH APPLICATIONS TO LOCAL THEORY OF NORMED SPACES

V.D. Milman

Tel Aviv University
Tel Aviv, Israel

Max-Planck-Institut
für Mathematik
Gottfried-Cláren-Str. 26
D-5300 Bonn 3

Abstract

For every convex symmetric compact body K_{X} in \mathbb{R}^{n} a linear map $u_{X}, \operatorname{det} u_{X}=1$, is constructed. Then, for every two such bodies K_{X} and K_{Y}, an inverse form of the classical Brunn-Minkowski inequality for volumes is true up to a numberical constant C for the bodies $u_{X} K_{X}$ and $u_{y} K_{y}$ and also for their polars. The result is applied to study normed linear spaces.

Let $X=\left(\mathbb{R}^{n},\|\cdot\|\right)$ be a normed space and $K(\|\cdot\|)$ (also $K(X)$ or just K) be its unit ball. We also equip X with a euclidean norm $\left(\mathbb{R}^{n}, 1 \cdot 1\right)$ and, as consequence, with the inner product (x, y) such that $(x, x)=|x|^{2}$. Let $D(\mid \cdot 1)$ be an ellipsoid in \mathbb{R}^{n} which is the unit ball of the norm 1.1. We denote $d_{x}=d\left(x, l_{2}^{n}\right)$ the Banach-Mazur distance between x and ℓ_{2}^{n} and

$$
d(K, D(|\cdot|))=\inf \left\{a b: a^{-1}|x| \leq\|x\| \leq b|x| \text { for } x \in \mathbb{R}^{n}\right\}
$$

The dual norm $\|\cdot\|^{*}$ is naturally defined by $\|x\|^{*}=\sup \{\|(x, y)\|$: $\|y\| \leq 1\}$. Then $K\left(\|\cdot\|^{*}\right)=K^{\circ}$ is the polar body of K with respect to the inner product defined by $1 \cdot 1$. Throughout the paper, we use the same letters c, C for different numerical constants.
A. The main results of this note are the following ones:

Theorem 1: a) There exists a numerical constant C such that for every convex compact symmetric bodies K_{X} and K_{y} in \mathbb{R}^{n} there exists a linear map $u: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, det $u=1$, such that for every $\varepsilon>0$

$$
\left[\operatorname{Vol}\left(u K_{X}+\varepsilon_{Y}\right)\right]^{1 / n} \leq c\left(\left[\operatorname{Vol} K_{X}\right]^{1 / n}+\varepsilon\left[\operatorname{Vol} K_{Y}\right]^{1 / n}\right)
$$

and the same inequality is also true for the polar bodies $\left(u K_{Y}\right)^{\circ}, K_{X}^{o}$ and K_{Y}^{o}.
b) In the case of $K_{y}=D$ (the euclidean ball) we have a slight improvement in the above inequality: for some numberical sequence $\alpha_{n} \rightarrow 1(n \rightarrow \infty)$

$$
\left[\operatorname{Vol}\left(u K_{X}+\varepsilon D\right)\right]^{1 / n} \leq c\left[\operatorname{Vol} K_{X}\right]^{1 / n}+\alpha_{n} \varepsilon[\operatorname{Vol} D]^{1 / n}
$$

and the same inequality is satisfied for the polar body $\left(u K_{X}\right)^{\circ}$.

Corollary 2. There exists a numberical constant $c>0$ such that every finite dimensional normed space $X=\left(\mathbf{R}^{n},\|\cdot\|\right)$ has an euclidean structure $\left(\mathbb{R}^{n},|\cdot|\right)$ such that

Vol Conv $(K(X) \cup D) \leq C^{n}$ Vol D
and

$$
\text { Vol Conv }\left(K\left(X^{*}\right) \cup D\right) \leq C^{n} \text { Vol } D \text {, }
$$

where $D=\left\{x \in \mathbb{R}^{n}:|x| \leq 1\right\}$.

Proof. Using Theorem 1 , we may assume that $[\operatorname{Vol}(K(X)+\varepsilon D)]^{1 / n_{S C}\left([\operatorname{Vol} K(X)]^{1 / n}+\varepsilon(\operatorname{Vol} D)^{1 / n}\right) \text { and } . ~}$ similarly for $K(X)^{\circ}=K\left(X^{*}\right)$. By a proportional normalization of D we may also assume that Vol $K(X)=V o l D$. Then, by Santalo inequality $\{S\}$, Vol $K(X *) \leq \operatorname{Vol} D$. Take now $\varepsilon=1$ and note that Conv $(K(X) \cup D) \subset K(X)+D$.

By [M_{1}], Theorem 4.1., Corollary 2 implies

Theorem 3. Let $X=\left(\mathbb{R}^{n},\|\cdot\|\right)$ be a normed space with a euclidean structrue from Corollary 2. Then for every $\lambda<1$ there exists a set A of [$A n]$-dimensional subspaces of \mathbb{R}^{n} of a normalized Haar measure (say, $\mu(A) \geq 1-4^{-n}$, and for every $E \in A$ there exists a subspace $F: E \subset F \subset \mathbb{R}^{n}$, such that the Banach -Mazur distance d_{E} of $\ell_{2}^{[\lambda n]}$ from E, equipped with the quotient norm $(F,\|\cdot\|)_{E^{\perp}}$, where $E^{\perp}=\{x \in F, x \perp E\}$, is at most

$$
d_{E} \leq f(1 /(1-\lambda))
$$

where $f(t)$ depends on $t>0$ only. and not on n.

Remark 1. The above theorem is a probabilistic version of the "quotient of a subspace" theorem proved before (see $\left.\left[M_{2}\right],\left[M_{3}\right]\right)$. However, we would like to emphasize that the construction of the euclidean norm in the Theorem 3 heavily uses the previous version (non-probabilistic) of this theorem.

Remark 2. Using Corollary 2 also all other statements of Theorem 4.1.from $\left[M_{1}\right]$ are now applicable for every finite dimensional normed space.

Remark 3. Direct use of Theorem 4.1 from [M_{1}] gives for a function $f(t)$ an exponential estimate $f(t) \leq c^{t}$. Using more delicate tools, it can be shown that f has only
polynomial growth, say $f(t) \leq c t^{2}$.
B. Construction of a special ellipsoid related to a given convex symmetric compact body $K \subset \mathbb{R}^{n}$. We need additional notations. Let $u:\left(\mathbb{R}^{n}, \| \cdot 1\right) \rightarrow\left(\mathbb{R}^{n},\|\cdot\|\right)$ be a linear map from a euclidean space. We use the ℓ-norm of u defined by $\ell(u)=\sqrt{n}\left(\int_{S}\|u x\|^{2} d \mu(x)\right)^{1 / 2}$ where S is the euclidean unit sphere and μ is the normalized rotation invariant measure on S. If u is invertable then the dual operator norm $\ell^{*}\left(u^{-1}\right)$ is defined (we consider, following Pietsch [Pi], the trace duality).

For a given euclidean structure $\left(\mathbb{R}^{n},|\cdot|\right)$ we introduce a transformation $q s$ of a convex symmetric body $K \subset \mathbb{R}^{n}$ defined by two subspaces $F \subset E \subset \mathbb{R}^{n}$. Then

$$
q s K=P_{F}(K \cap E) \subset F
$$

where P_{F} is the orthogonal projection on F. We say that qs operates from \mathbb{R}^{n} on F and $\operatorname{dim} q s=\operatorname{dim} F$. Similarly if $X=\left(\mathbb{R}^{n},\|\cdot\|,\|\cdot\|\right)$ is a normed space with a euclidean structure defined by a norm $1 \cdot 1$, then $q s X$ is the norm space with the unit ball $q s K(X)$ (i.e. $q s X$ is a quotient of a subspace of X). We use also the dual operation $q s$ which is a restriction on a subspace F of the orthogonal projection on a subspace $E, F \subset E$ (i.e. sqX is a subspace of a quotient space of X).

Construction. We start with ℓ-euclidean structure on $X=\left(\mathbb{R}^{n},\|\cdot\|\right)$, i.e. with such euclidean norm $1 \cdot 1$ that the identity map $u:\left(\mathbb{R}^{n},\|\cdot\|\right) \rightarrow\left(\mathbb{R}^{n},\|\cdot\|\right)$ satisfies $\ell(u) \ell^{*}\left(u^{-1}\right)=n$. (It was introduce in [F.T.] using [L]). Then $d(K(X), D(1 \cdot \mid)) \leq n$. It is known $\left(\left[M_{2}\right]\right.$ and $\left[M_{3}\right]$; see a short proof also in [B.M], Lemma 4.6) that there exists qs-operation on a subspace $E_{\tilde{n}_{1}} \subset \mathbb{R}^{n}$ $\left(\operatorname{dim} E_{n_{1}}=\tilde{n}_{\eta} \geqq n\left[1-c /\left(\log d_{X}\right)^{2}\right]\right)$ such that

$$
\begin{equation*}
d\left(\operatorname{qsk}(x), D\left(E_{\tilde{n}_{1}}, 1 \cdot 1\right)\right) \leq C\left(\log \left(a_{X}+1\right)\right)^{5} \leq c(\log (n+1))^{5} \tag{1}
\end{equation*}
$$

Let $q s K(X)$ be the unit ball of the space $X_{1}=\left(E_{\tilde{n}_{1}}^{\prime},\|\cdot\| \|_{1}\right)$. Take an ℓ-euclidean structure $1 \cdot 1$ in X_{1}, i.e. a map $u_{1}\left(E_{\tilde{n}_{1}}, \mid \cdot I_{1}\right) \rightarrow X_{1}$ satisfies $\ell\left(u_{1}\right) \ell *\left(u_{1}^{-1}\right)=\tilde{n}_{1}$, and restrict it on a subspace $E_{n_{1}} \subset X_{1}$, dim $E_{n_{1}}=n_{1} \geqq \lambda n$, where $d_{1}=d\left(K\left(X_{1}\right), D\left(E_{n_{1}}, \mid \cdot 1 \rho\right) \leq c(1-\lambda)^{-3 / 2} d_{X_{1}} \log d_{X_{1}} \quad\right.$ (combine Lemma 6.1. from [F.T.] with Proposition 2.5. from [M_{3}]; the same reasons are used in $\left[M_{4}\right]$, section 4). Choose $(1-\lambda)^{-1} \cong$ $\cong c\left(\log \left(d_{X}+1\right)\right)^{2}$ and use the estimate (1) on $d_{X_{1}}$. We obtain $d_{1} \leq c(\log (d x+1))^{9}$. Combining this estimate with (1) we see that on the subspace $E_{n_{1}} \subset \mathbb{R}^{n}$

$$
\begin{equation*}
d(D(1 \cdot 1), D(1 \cdot 1,)) \leq c\left(\log \left(a_{X}+1\right)\right)^{14} \tag{2}
\end{equation*}
$$

We correct at this point our euclidean norm $1 \cdot 1$ and substitute it on a euclidean norm $\| \mid$ • \|\| $\|_{1}$ such that

Clearly it may be done in the way that in \mathbb{R}^{n} we have

$$
d\left(D\left(|||\cdot|||_{1}\right), D(|\cdot|)\right) \leq c\left(\log \left(d_{x}+1\right)\right)^{14}
$$

as in (2). Therefore $d\left(K(x), D\left(\||\cdot|\| \|_{1}\right)\right) \leqq C n\left(\log \left(d_{X}+1\right)\right)^{14}$. Note now that $\ell(u)$ and $\ell^{*}\left(u^{-1}\right)$ are ideal operator norms and so $\ell\left(\left.u_{1}\right|_{E_{n_{1}}}\right) \ell *\left(\left.u_{1}^{-1}\right|_{u_{1} E_{n_{1}}}\right) \leqq \tilde{n}_{1} \leqslant n$. Therefore, we again may use $\left[M_{2}\right]$ and $\left[M_{3}\right]^{n_{1}}$ to find a qs-operation on a subspace $E_{\tilde{n}_{2}} \subset \mathbb{R}^{n}$, dim $E_{\tilde{n}_{2}}=\tilde{n}_{2} \geqq n_{1}\left(1-C /\left(\log d_{E_{n_{1}}}\right)^{2}\right) \geqq$ $n_{1}\left(1-c /\left(\log \log \left(d_{X}+1\right)\right)^{2}\right)$ and, as in (1),

$$
d\left(q s K\left(E_{n_{1}}\right), D\left(E \tilde{n}_{2}, I I I \cdot \| I\right)\right) \leq C\left(\log d_{1}\right)^{5} \leq c\left(\log \log \left(d_{X}+1\right)\right)^{5}
$$

We continue such procedure $t=t(n)$ times where t is the smallest number such that t-iterated logarithm $\underbrace{\log \ldots \log }_{t} n=\log ^{(t)} n \leq 2$. Let $\|I \cdot\| I=\|I\| \cdot\| \|_{t}$ be an euclidean norm constructed on the last step. Then $d(D(11|\cdot| 1 \mid), D(1 \cdot \mid)) \leqq$ $\leq C\left(\prod_{i=1}^{t} \log ^{(i)} n\right)^{14} \quad \operatorname{def} f(n)$, and $d(K(X), D(I \||\cdot| I \mid) \leq c n \cdot f(n) \leq$ sc n^{2}.

The main property of the constructed euclidean norm III. III in $X=\left(\mathbb{R}^{n},\|\cdot\|\right)$ is the following one:
in the space $X=\left(\mathbb{R}^{n},\|\cdot\|,\| \| \cdot\| \|\right) \quad$ tnere exist a partial flag of subspaces $R^{n}=E_{n_{0}} \supset E_{n_{1}} \supset \ldots \supset E_{n_{t}}$ and a sequence of of qs-operations $\varphi_{i}, i=1,2, \ldots, t$, from $E_{n_{i-1}}$ on $E_{n_{i}}$ such that
i) $d\left(K_{i}, D\left(E_{n_{i}}, I I I \cdot \| I\right)\right) \leq C\left(\log ^{(i)}{ }_{n}\right)^{9}$, for $i=1,2, \ldots, t$, where $K_{i}=\varphi_{i} K_{i-1} \subset E_{n_{i}}$ and $K_{0}=K(X)$ is the unit ball of X; C is a numerical constant;
ii) dimensions $n_{i}, i=1,2, \ldots, t(n)$, depend on n only and for numerical constants c_{1} and c_{2}

$$
n_{i-1}\left[1-\frac{c_{1}}{\left(\log ^{(i)} n\right)^{2}}\right] \geqq n_{i} \geqq n_{i-1}\left[1-\frac{c_{2}}{\left(\log ^{(i)} n\right)^{2}}\right],
$$

$i=1,2, \ldots, t(n)=t, n_{0}=n$ and $t(n)$ is the first integer such that the t-iterated logarithm $\log ^{(t)} n \leqq 2$.

Using technique from [B.M.] (see section 4.B) we may also state:
iii) there exist numerical constants c and C such that
$c\left(\frac{\operatorname{Vol} K}{\operatorname{Vol} D(I I I \cdot \| I)}\right)^{1 / n} \leqq\left(\frac{\operatorname{Vol} K_{i}}{\left.\operatorname{Vol~D(E_{n_{i}}}, I I I \cdot I I\right)}\right)^{1 / n_{i}} \leqq c\left(\frac{\operatorname{Vol} K}{\operatorname{Vol} D(I I \cdot \| I I}\right)^{1 / n}$
for all $i=1,2, \ldots, t$ and the same inequalities are satisfied for the dual bodies K^{a} and K_{i}^{0} with respect to the euclidean norm $||1 \cdot|| \mid$. Moreover, constants c and C can be taken as $1-\varepsilon(n)$ and $1+\varepsilon(n)$ where $\varepsilon(n) \rightarrow 0$ if $n \rightarrow \infty$.
C. Plan of the proof of Theorem 1. To prove Theorem 1 we choose u such that the constructed above ellipsoids for
uK_{X} and K_{Y} are proportional and their partial flags of subspaces (see the property i)) coincide (use the property ii)). We apply now qs-operations \overbrace{i} to pass from the convex bodies $u K_{X}+\varepsilon K_{Y}, u K_{X}$ and K_{Y} to the bodies $\left(u K_{X}\right)_{i}+\varepsilon\left(K_{Y}\right)_{i},\left(u K_{X}\right)_{i}$ and $\left(K_{Y}\right)_{i}$ where we denote $(A)_{i}=\varphi_{i}\left((A)_{i-1}\right)$ as in i). (Note that $\left(u K_{X}+\varepsilon K_{Y}\right)_{i}$ is different from $\left.\left(\mathrm{uK}_{\mathrm{X}}\right)_{i}+\varepsilon\left(\mathrm{K}_{\mathrm{Y}}\right)_{i}\right)$. The Property i) and a technique from [B.M.] (Section 4b) allow us to show that, on the $i-t h$ step, the n_{i}-th root of the ratio of volumes of these bodies to the volume of the n_{i}-dimensional unit ball $\mathrm{D}(11|\cdot| I \mid$) will not change much (as in the property iii)). Then, after t steps, we come to the bodies, c-isomorphic to euclidean balls (in $|||\cdot||$-norm) of some radii. In this case the inequality is trivial.

I thank N. Tomczak-Jaegermann for several discussions.

References

[B.M.] Bourgain J., Milman V.D., On Mahler's conjecture on the volume of a convex symmetric body and its polar, Preprint I.H.E.S., March 1985.
[F.T.] Figiel T., Tomczak-Jaegermann N., Projections onto Hilbertian Subspaces of Eanach Spaces, Israel J. math., 53, 1979, 155-171.
[L] Lewis D.R., Ellipsoids defined by Banach ideal norms, Mathematika, 26 (1979), 18-29.
[M1] Milman V.D., Geometrical inequalities and mixed Volumes in the local theory of Banach spaces, Colloque Laurent Schwartz. Astérisque (1985), Soc. Math. France.
$\left[M_{2}\right] \quad$ Milman V.D., Almost Euclidean quotient spaces of subspaces of finite dimensional normed space, Proceedings AMS, 1985.
[M_{3}] Milman V.D. Random subspaces of proportional dimension of finite dimensional normed spaces; approach through the isoperimetric inequality, Seminaire d'Analyse Fonctionelle 84/85, Université Paris VII, Paris.
[M4] Milman V.D., Volume approach and iteration procedures in local theory of normed spaces, Missouri Conf., (1984).
[P_{i}] Pietsch A., Operator ideals, Berlin 1978. NorthHolland.
[S] Santalo L.A., Un invariante afin pasa los cuerpos convexos des expacis de n dimensiones, portugal Math. 8, 1949, 155-161.

