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Abstract

For every convex symmetric compact body Kx in ®R" a

linear map Uy det uy, = 1, is constructed. Then, for

every two such bodies KX and K

the classical Brunn-Minkowski inequality for volumes is

, an inverse form of

true up to a numberical constant C for the bodies uxKx

and uyKy and also for their polars. The resulft is applied

to study normed linear spaces.

Let X = (R",|I!) be a normed space and K(ll-}l) (also
K{X) or just K) be its unit ball. We also equip ¥ with
a euclidean norm (Bfl,l-l) and, as consequence, with the
inner product (x,y) such that (x,x) = Ix12 . Let DI(I-1)
be an ellipsoid in R® which is the unit ball of the norm

|+-]. We denote dx = d(x,ﬁg) the Banach-~Mazur distance be-

tween X and £2 and

d(K,D(l-1)) = inf {ab: a“‘ilxlsllxns blxl for x€ R"}.

The dual norm Il-l* is naturally defined by lixIP =sup{l{xy)|:
Hylls 1} . Then X(ll-11*) = K° 1is the polar body of K with
respect to the inner product defined by |+1. Throughout the
paper, we use the same letters c,C for different numerical

constants.

A. The main results of this note are the following ones:

Theorem 1: a) There exists a numerical constant € such

that for every convex compact symmetric bodies Ky and Ky
. n n -
in ®"™ there exists a linear map w:R -—> R, det u 1.

such that for every ¢ > 0

1/n 1/n)

[Vol (uK, + sxyn”“scuv»ol k17" + elvol K]



and the same inequality is also true for the polar bodies

uk ) ° K2 and K° .
(uK)® » Ky and Ky

b) In the case of Ky = D (the euclidean ball) we have
a slight improvement in the above inequality: for some

numberical sequence a > 1({n » o)

1/n 1/n

[Vol (qu + eD)]1/n:EC{Vol KX} + une[Vol D]

and the same inequality is satisfied for the polar body (quf'.

Corollary 2. There exists a numberical constant C> 0

such that every finite dimensional normed space X = (R ,li-1l)

has an euclidean structure (Rn,i'i) such that

Vol Conv (K(X) UD)sc™ vol D
and

Vol Conv (K(X*)UD) <c® vol D,

where D = {x€ R" :Ixls1}.

Proof. Using Theorem 1 , we may assume that
[Vol(k(x) + )1 Psc(ivol k(x) 1™ + e(vo1 D)/} ana

similarly for X(X)° = K(X*).By a proportional normalization
of D we may also assume that Vol K(X) = Vol D. Then, by
Santalo inequality [8}, Vol K(X*) £ Vol D, Take now £ = 1

and note that Conv {K{X) UuD)cX(X) + D.



By [M1}, Theorem 4.1. Corollary 2 implies

Theorem 3. Let X = (IRGIl+l) be a normed space
with a euclidean structrue from Corollary 2. Then for every
A < 1 there exists a set A of [Ain]l-dimensional
subspaces of r" of a normalized Haar measure (say,
u(A) 25 - 4—n) and for every EE€A there exists a subspace
F:EcPFcR? . such that the Banach -Mazur distance dE of
zgln] from E, equipped with the quotient norm (F,!!om/El,

where E’L = {x €F,x LE}, is at most

ap £ £(1/(1 =),

where f(t) depends on t>0 only.and not on n.

Remark 1. The above theorem is a probabilistic version
of the "quotient of a subspace" theorem proved before (see
[MZ],[MBI). However, we would like to emphasize that the
construction of the euclidean norm in the Theorem 3 heavily

uses the pievious version {(non-probabilistic)of this theorem.

Remark 2. Using Corollary 2 also all other statements
of Theorem 4.1.from [MTJ are now applicable for every finite

dimensional normed space.

Remark 3. Direct use of Theorem 4, from [M1] gives
for a function £(t) an exponential estimate f(t):sct.

Using more delicate tools, it can be shown that £ has only



polynomial growth, say f(t) scC tz.

B. Construction of a special ellipscid related to a given

convex symmetric compact body Kc R" . We need

additional notations. Let us (R™,1+1) — (R®,11- 1) be

a linear map from a euclidean space. We use the %-norm of

1/2 where S is

u defined by £(a) = vA(fg luxl| %dg(x))
the euclidean unit sphere and p is the normalized rotation
invariant measure on S. If u 1is invertable then the dual

1

operator norm &*(u ') is defined (we consider, following

Pietsch [Pi], the trace duality).

For a given euclidean structure (IRn,l'l) we intro-
duce a transformation ¢S of a convex symmetric body K cR"

defined by two subspaces FcEcR". Then

gsk = PF(K NE) <P

where PF is the orthogonal projection on F. We say that
gs operates from R? on F and dim gs = dim F, Similarly
if X = (ﬂfl,ll-ll,l-l} is a normed space with a euclidean
structuré defined by a norm |+l , then gsX is the norm
space with the unit ball gsK(X) (i.e. gsX is a quotient
of a subspace of X). We use also the dual operation gs
which is a restriction on a subspace F of the orthogonal
projection on a subspace E, FcE (i.e. sgX is a subspace

of a quotient space of X).



€anstruction. We start with 2-euclidean structure on

X = (IRn,Il-ll) ; i.e. with such euclidean norm |+] that

the identity map u: (IK,l-1) — (R",Ill -1l ) satisfies

1

g{u)e*(u ') = n. (It was introduce in [F.T.] using [L].

Then d(XK(X),D(l+1})} £ n. It is known ([Mz] and [MB] ; see
a short proof aiso in [B.M], Lemma 4.6) that there exists

. n
gs-operation on a subspace Eg< R

[dim E; = QT:rq1'— c/(log dX) 1} such that
1

(1) a(gsK (X),D(Ex ,1+1)) sC(log(dy + 1))°s Cllogn+1))° .
1
Let gsK(X) be the unit ball of the space X1 = (Eﬁ R H1).
1
Take an fL-euclidean structure |-} in X1 ; i.e. a map

\ , -1 ~ .
o~ » * - -
u1(E 1,! 11) —> x1 satisfies x(u1)2 {u 1) nl, and restrict

iton a subspace En <:X1, dim En = n1 2 Ah, where
1
- . _ -3/2 .
d, = d(K(XT),D(En},! i?) sC(1 X) dx1log dx1 (combine
Lemma 6.,1. from [F.T.] with Proposition 2.5, from [M3};
the same reasons are used in [M4], section 4). Choose (1-—A)—1z
2 c(log(dg + 1))2 and use the estimate (1) on dy . We obtain

1
d, 5 C(log(dx * 1))°. Combining this estimate with (1) we see

that on the subspace En c R
1

1
(2) a(d(1+1),D(11,)) s Cllog(a, + 1)'* .
We correct at this point our euclidean norm |-+ and
substitute it on a euclidean norm ||| - 1111 such that
lll-llluEL = "I‘El and |1} -

Pl = || .
n 1 11 Eﬂ ﬂ En

n1 1



Clearly it may be done in the way that in R"  we have
A1 - 1114),D(1-1) s cllog(a + 1))"*

as in (2). Therefore A(K(X),D(I11-111,)) s C a(log(dy + 1)) "%

Note now that 2{u} and 2*(u—1) are ideal operator norms

and so 2(u1{En1) z*(u'}§u1En ) s 315 n. Therefore, we

again may use [M2] and (M3] Tto find a gs—-operation on a

n ~

i '~ = — 2
subspace E'ﬁ'z c R , dim En2 n, 2 n, (1 C/(log dEn1) )2
n, (1 - C/(log log (dy * 11)2) and, as in (1),

a(as X(5, ), D(Ey /Il lIl)) & Clog d))° s C(log log(d, + 1))°.

2
We continue such procedure t = t{(n) times where t |is

the smallest number such that t-iterated logarithm
(t)

log...lo? n=1log "n=s2. Let -l =1U-I, be an euclidean
——
t
norm constructed on the last step. Then d(D(Ul-}1),D{l-}})) =
t .
S C( T 109ty 14 def ¢ . and  &(XK(X),D(lll-}i1))scn-£(n) ¢
i=1 ' '
sc n? .
The main property of the constructed euclidean norxrm il -1l
in =(R™, -1} is the following one:
in the space X = (1fl,H <, HE-di) there exist a partial

flag of subspaces R’ = E > E > ...2E  and a sequence of
0 1 t
of gs-operations ¢, , i = 1,2,...,t, from E on E
+ Bieq By

such that



1) d(k,DE_ M-I £ clog™n)?, for i=1,2,...,¢,
i
wiKi_1CIEni and K, = K(X) is the unit ball of

X; ¢ 1is a numerical constant;

"

where K,
i

ii)}) dimensions n, . i=1,2,...,t(n), depend on n only

and for numerical constants <, and Cy
c c
1 2 1
ny [0 =] eng 2 ngy |15 2],
i-1 (109(1)n)2 i i-1 (log(l)n)zj

i=1,2,...,t(n) = t, ny = n and t(n) is the first integer

(t)n £

such that the t-iterated logarithm = log 2.

Using technique from [B.M.] (see section 4.8) we may

also state:

iii) there exist numerical constants ¢ and C such that

. (Vol K ' ”n<(vO1 Ki )1/“i<c( Vol K \ 1/m
Vol D(HI-H!)) T \Vol D(En‘,HI-H!) = Vol D{1} -1l

1

for all i = 1,2,...,t and the same inequalities are satis-—

fied for the dual bodies K° and K{ with respect to the

ceuclidean norm Jii-lll. Moreover, constants ¢ and C can

be taken as 1 - g€{n) and 1 + £{n) where e{n) — 0 if

n —» o,

C. Plan of the proof of Theorem 1. To prove Theorem 1 we

choose u such that the constructed above ellipsoids for



uKX and Ky are proportional and their partial flags of
subspaces (see the property i)) coincide (use the property
ii)). We apply now gs-operations ®; to pass from the

convex bodies uKX + eKy, uKX and Ky to the bodies

(uKX)i + ;(Ky)i, (uKX)i and (Ky)i where we denote

(A)i = mi((A)i_1) as in i). (Note that (uKX + EKy)i is
different from (uKX)i + E(Ky)i). The Property i) and a
technique from [B.M.] (Section 4b) allow us to show that,

on the i~th step, the ni-th root of the ratio of volumes

of these bodies to the volume of the ni—dimensional

unit ball D(Hi{-l§l} will not change much (as in the property
iii)). Then, after t steps, we come to the bodies, C~isomor-

phic to euclidean balls {(in li-lll-norm) of some radii. In this

case the inequality 1is trivial.

I thank N. Tomczak-Jaegermann for several discussions.
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