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ALGEBRAIC 3·FOLDS AND DIAGRAM METHOD.n

Viacheslav V.Nikulin

Steklov Mathematical Institute,
ul. Vavilova 42, Moscow 117966, aSp-i.

O. Introduction.

Here we continue investigations of our paper [16], where we were developing the diagram method for
non-singular algebraic 3-folds and 3-folds with simplest singularities. In this paper we transfer this results
on 3-folds with terminal singularities.

In the introduction we will formulate the results only for Fano 3-folds with Q-factorial terminal singu
larities.

Let X be a Fano 3-fold with Q-factorial terminal singularities. Let R be an extremal ray of Mori
polyhedron of X. We say that R haB the type (I) (respectively (Il)) if curves of R fill an irreducible divisor
D(R) of X and the contraction of the ray R contracts the divisor D(R) in a point (respectively on a curve).
An extremal ray R is called small if curves of this ray fill a curve on X.

A set t: of extremal rays is called extremal if it is contained in a face r of Mori polyhedron. The t: has
Kodaira dimension 3 if the contraction of / gives a morphism on a 3-fold. The first result of the paper gives
a description for Fano 3-folds with Q-factorial terminal singularities of extremal sets t: of Kodaira dimension
3 which contain only extremal rays of the type (I) or (11).

A set t:. of extremal rays is called E-set if t:. is not extremal but any proper subset of L is extremal.
The second result of the paper gives for Fano 3-folds with Q-factorial terminal singularities a description
of E-sets L of extremal rays such that any proper subBet of L is extremal of Kodaira dimension 3 and L
contains extremal rays of the type (I) or (11) only.

From this description of extremal sets and E-sets we get the following basic result of the paper.

Theorem. Let X be Fano S-fold with Q-factorial terminal singularities. Then for X one of the following
statement.s holds:

(1) dimNt(X) :s 8.
(E) There exists a face of Mori polyhedron N E(X) such that the contraction ofthis face gives a morphism

oJ X on a surJace or a curve.
'.~< (3) There exists a small extremal ray R on X.

(./J There an 2t ~ 4 different linear dependent extremal rays Ru, R t2 , R21 , R 22 , ... , Rtt, R t2 of the type
(II) such that the diviso rs D(~d =D(Ri'l) art coincided, 1 :s i :s t, but the diviso rs D(R;d =D(Ri2) and
D(Rjt) = D(Rj2) don't intersect one another for 1 :s i < j :s t. (See figure 1, type 23 2 below.)

(5) There a~ three different extremal rays SIt R t , R 2 0/ the type (11) such that the divisors D(Sd =
D(R2) are coincided, and R t . D(R2 ) > 0, R2 • D(Rd > 0, and SI . D(R2 ) = 0. (See figure 2 bclow.)

We hope that later it will be possible to excl ud€: the possi bili ties (5) ,(4), (2) and maybe (3) for some
greater than 8 constant in (1). We should say that now it is not known that dimNt(X) is bounded for Fano
3-folds X with Q-factorial terminal singularities.

I am grateful to Jaroslaw Wisniewski for useful discussions which helped me to find same mistakes in
the first Russian variant of this text. I am grateful to Miles Reid for important remarks.

This text was prepared in Max-Planck Institut für Matematik in Bonn, and I thank this Institute for
hospitality.
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CHAPTER 1. DIAGRAM METHOD.

Here we will give a simplest variant of the diagram method for multi-dimensional algebraic varieties.
Precisely this method we shall use in the following chapter.

Let X be a projective algebraic variety with Q-factörial singularities Qver an algebraically closed field.
Let dimX ~ 2. Let Nt(X) be the R-linear space generated by all algebraic curves on X by the numerical
equivalence, and let Nt(X) be the R-linear space generated by all Cartier (or Weil) divisors on X by the
numerical equivalence. Linear spaces NI (X) and Nt (X) are dual one another by the intersection pairing..
Let N E(X) be a convex cone in NI (X) generated by all effective curves on X. Let N E(X) be the closer
of the cone N E(X) in NI (X). It ia called Mon cone (or po/yhedron) of X. A non-zero element x E N 1(X)
is called neJ if x . N E(X) ~ O. Let N EF(X) be the set of all oef elements of X and the zero. It is the
convex cone in N1(X~ual to Mori cone N E(X). A ray ReNE(X) with origin 0 is called extrema/ if from
Cl E N E(X), C2 E N E(X) aod Cl + C2 E R it follows that Cl E Rand C2 E R.

We consider the following conditions (i), (ii) and (iii) for some set n of extremal rays on X.

(i)IJ REn then alt curves CER fill out an irreducib/e divisor D(R) on X.

In this case we can correspond to n (and subsets of n) an oriented graph G(n) in the following way:~
Two different rays R 1 and R2 are joined by an arrow R 1R2 with the beginning in R 1 and the end in R2 if \
R1 . D(R2) > O. Here and in what follows , for an extremal ray Rand a divisor D we write R· D > 0 if
r . D > 0 for r E Rand r :f; O. (The same for the symbols ::5, ~ and <.)

A set t: of extremal rays is called extrema/ if it is contained in a face of N E(X). EquivalentYl there
exists a nef element H E NI(X) such that E· H =O. Evidently, a aubset of an extremal subset is extremal
too.

We consider the following condition (ii) for extremal subsets of n.
(ii)IfE = {RII ... , Rn} c n is extrema/ and mID(Rt}+m2D(R2)+ +71lnD(Rn) is an efJective divisor,

then there exists a ray Rj E & such that R j . (m1D(Rt) + m2D(R2) + + mnD(Rn)) < O. In partieu/ar, it
follows that the divisor mID(Rt} + m2D(R2) + ... + mnD(Rn) is not nef.

A set L; of extremal rays is called E-subset if the L; is not extremal but every proper subset of C. is
extremal.

We consider the following condition (iii) for E-subsetB of n.
(iii) If L; = {R}, ... , Rn} c n is an E-subset, then there exists a non·zero effective nef divisor D(C.) =

mID(Rt} + m2 D(R2 ) + ... + 71lnD(Rn).

Lemma 1.1. Suppose that for a set n 0/ extrema/ rays the conditions (i), (ii) and (iii) above hold.
Then any E-subset .c C n is connected in the Joltowing sense: FOT any decomposition C. =[,111 [,2,

where [,1 and [,2 are not empty, there exisLs an arrow R 1R 2 such that R1 E [,1 and R 2 E [,2. 1/ [, c n and
M C 'R. aT'f two dilJeT'fnt E.subsets, then there exists an arrow LM where L E [, and M E M.

Proof. Let C. ={R1, ... , Rn}. By (iii), there exists a nef divisor D([') =m1D(Rt} + m2D(R2) ~ ... +
mnD(Rn). If one of the coemcients m1, ... , m n is equal to zero, we get a contradiction with the conditions (ii)
and (iii). It follows that aB the coefficients m I, ... , mn are posi tive. Let [, = [,1 11 [,2 Where LI = {Rb"" R..i:}
and L2 = {R.t+l, ... , Rn}· Thc divisors D1 = m1D(Rt} + ... + m.tD(R.t) and D",l = mi:+ID(R.t+d + ... +
mnD(Rn) are non-zero. By (ii), there exists a ray Rt, 1 ::5 i ::5 k, such that -Rt . D1 < O. On the other hand,
Ili . D([') =R1 . (D I + D2) ~ O. It folIows, that there exists j, k + 1 ::5 j ::5 n, Buch that F4 . D(Rj ) > O. It
means that' F4Rj is an arrow.

Let UB prove the second statement. By the condition (iii), for every ray RE [,. we have the inequality
R· D(M) ~ O. Ir R· D(M) =0 for any RE L., then the set L. is extremal, and we get the contradiction. It
follows that there exists a ray R E [, such that R· D(M) > O. It follows the statement. t>

The Theorem 1.2 below is an analog for algebraic varieties of arbitrary dimension of the Lemma 3.4
from [7] and the Lemma 1.4.1 from [lOL which were devoted to surfaces.

Let N EF(X) =N E(X)· C NI(X) be the cone of nef elements of X and M(X) = N EF(X)/R+ its
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projectivization. Let ?l(X) be the set of aH extremal rays of X. If 1 is a face of M(X), then

?l(,) ={R E ?leX) 13R+Il E,: R· H =O}.

A convex polyhedron ia called closed if it is the convex hull of a finite set of points. A closed polyhedron
is called simplicial if all its faces are simplexes. A closed polyhedron is called simple (equivalently, it has
simplicial angles) if it is dual to a simlicial one. In other words, a polyhedron ie simple if its face of
codimension k is contained exactly in k its faces of the highest dimension. A polyhedron M is called simple
in a face 1 if every face 11 C 1 (including 11 = 1) is contained exactly in codim 11 (in.M) highest dimension
faces of M. In other words, for 11 C" the dual face li is a si mplex of the dual polyhedron M'" .

Let A, B be two vertices of an oriented graph G. The distance p(A, B) in G is a length (the unmber of
links) of the shortest oriented path of the graph G with the beginning in A and the end in B. The distancc
is +00 if this path does not exist. The diameter diam G of the oriented graph G is the maximum distance
between ordered pairs of its vertices. By the Lemma 1.1, the diameter of an E-subset is a finite number.

Theorem 1.2. Let X bt a projective algebraic variety with Q-factorial singularities and dirn X ~ 2.
Let 1 be a closed face 0/ M(X) and M(X) is simple in the face ,. Suppose that the set n(,) satisfies the
conditions (i), (ii) and (iii) above. Suppose that there are some constants d, Cl, C2 such that the conditions
(a) and (b) bdow hold:

(a) diam L, $ d /or eve ry E-subset C C ?l(1) j

(b) ~{(R}, R 2 ) E & x & 11 $ p(R l , R 2 ) $ d} $ C1ij&;
and
U{(R}, R2) E & x & I d + 1 $ peR}, R 2 ) $ 2d + I} $ C2 U& /or every extremal subset E C n.
Then dirn 1 < (16/3)C1 + 4C2 + 6.

Proof.
We use the following Lemma 1.3 which was proved in [6]. Thc Lemma was used in [6] to get abound

($ 9) on the dimension of a hyperbolic (Lobachevsky) space admitting an action of an arithmetic reflection
group with a field of definition of the degree > N. Here N is some constant.

Lemma 1.3. Let M be a convex closed simple polyhedron 0/ the dimension n, and A~k the average
number 0/ i-dimtnsional faees 0/ k-dimensional /aces 0/ M.

Then /or n ~ 2k - 1

In partieular, i/ n :2: 3

{
~

A O,2< n-2
n 4n

n-l

ij n is even,

i/ n is odd.

Proof. See [6]. t>

From the estimate of A~,2 of the Lemma, it follows the following analog of Vinberg's Lemma from [13].
Vinberg's Lemma was used by hirn to obtain an estimate (dirn< 30) for the dimension of a hyperbolic space
admitting an action of a discrete refleetion group with bounded fundamental polyhedron.

Lemma 1.4. Let M be a convex simple polyhedron 0/ the dimension n. Let C be a positive number
and Danumber. Suppose that oriented angles (2-dimensional plane) 0/ M are supplied with weights and
the /ollowing eonditions (J) and (f) hold:

(1) The sum 0/ weights 0/ all oriented angles at any vertex 0/ M is not greater than Cn + D.
(11) The sum 0/ weighis of all orienied angles 0/ any 2-dimensional face 0/ M is at least 5 - k where k

is the number 0/ vertices of the 2-dimensional/ace.
Then

{
(Bd +B)/n

n < BC + 2 + (Bd + 7)/n
i/ n is even,
ij n is odd

3
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Proof. We correspond to a non-oriented angle of M the weight which is equal to the surn of two
corresponding oriented angles. Evidently, the conditions of the Lemma hold for the weights of non-oriented
angles too if we forget about the word "oriented". Then we obtain Vinberg's lemma from [13] which we
formulate a little bit more precisely here. Since the proof is very simle, we give the proof here.

Let E be the sum of aB (non-oriented) angles of the polyhedron M. Let 0'0 be the number of vertices
of M and 0'2 the number of 2-dimensional faces of M. Since M is simple,

n(n - 1) AO 2
0'0 2 =0'1 n' .

From this inequality and the conditions of the Lemma, it follows

~ n(n -1)
(Cn + D)a:o ~ E ~ Li cx1,.l:(5 - k) = 50'2 - 0'0 = O'o( 2A~,2 - 1),

where 0'2,.l: is the number of 2-dimensional faces wi th k vertices of M. From this inequali tics and the bound
for A~,1 of the Lemma 1.3, we get the Lemma 1.4. t>

The proof of the Theorem 1.2. (Cf. [13].) Let ß be an oriented angle of,. Let 'R.(ß) C 'R(,) be
the set of aB extremal rays of M(X) which are orthogonal (with respect to the intersection pairing) to the
ver tex of ß. We can define the extrernal rays RI (ß) a'nd R 2(ß) by the conditions that 'R(ß) - { R2(ß)} aod
n(Ll) - {RI(ß)} are orthogonal to the first aod second side of the oriented angle ß respcctively. Evidcntly,
the set n(ß) and the ordered pair of rays (RI, R2) define the oriented angle ß uniqucly. \Vc define the
weight 0'(Ll) by tbe formula:

{

2/3, if 1 ~ p(RI(ß), R2(L\)) :5 d,
u(ß) = 1/2, if d + 1 ~ p(RI(ß), R2 (ß)) ~ 2d + 1,

0, if 2d + 2 :5 p(RI(ß), R2(ß)).

Here we take the distance in the subgraph G(n(.6.)). Let us prove the conditions of the Lemma 1.4 with the
constants C =(2/3)CI + C 2/2 and D =0. '

The condition (1) is obvious.
Let us prove the condition (2). Let,3 be a triangle of,. The set n(,a) is the union of the set n(,a)

of external rays, which are orthogonal to the plane of the triangle ,a, and the rays R I , R2 , R3 , which are
orthogonal to the sidcs of the triangle 'a. The union of the set 'R(,a) with every two rays [rom R I , R 2 , Ra is
extremal, since it is orthogonal to a vertex of 'a. On the other hand, the set 'R.(,a) = n(,3) U {Rl, R2, Ra}
is not extremal, since it is not orthogonal to~nt of M(X). Indeed, the sets of points of M(X), which
are orthogonal to thc sets 'R,(,a) U {R2 , Ra}, 'R,(,a) U {R i , Ra}, aod n(,a) U {Rb R2 } are thc vertices Al, A 2

and Aa respectively of the triangle ,a, and the intcrsection of the sets of vertices is empty. Thus, there cxists
an E-aubset [, C n(,a), which contains the rays R i , R 2, Ra. By the condition (a), the graph GeC) contains
an oriented path 8 of the length :5 d which connecta the raya Rb Ra. Ir this path does not contain the ray
R2 , then the oriented angle of ,a defined by the set 'R.(,a) U {Rb R3} and the pair (Rb Ra) has the weight
2/3. Ir this path contains tbe ray R1 , then the oriented angle of ,a defined hy the set n(,a) U {R I , R1 }

and the pair (RI , R2) has the weight 2/3. Thus, we proved that the side A2Aa of thc triangle '3 defines an
oriented angle of the triangle with the weight 2/3 and the first side A 2Aa of the oriented angle. The triangle
has three sides. It follows the condition (2) of the Lemma 1.4 for the triangle.

Let ,4 be a quadrangle of,. In this case,

where 1l(,4) is the set of aB extremal rays which are orthogonal to the plane of the quadrangle and the raya
Rb R2 ! Ra, 14. are orthogonal to the consecutive sides of the quadran~a above, one can see that the
sets 'R,("Y4) U {R I, Ra},n~ {R2,Rot} are not extremal, hut the sets 'R.('4) U {Rb R2}, n(,4) U {R2, Ra},
n(,4) U {R3 ,14~d 'R.('4) U {Rot, Rt} are extremal~followathat there are E-sets L,N such that
{Rb Ra} C L C 'R,(,4)U {R I , Ra} and {R 2 ,14.} C N C n(,4) U {R2, 14}. Hy the Lemma 1.1, there are raya

4



R E r. and Q E }/ such that RQ is an arrow. By the condition (a) of the Theorem, one of the rays R l J R3 is
joined by an oriented path SI of the length :5 d with the ray Rand this path does not contain another ray
from Rb R3 (here R is the end of the path sI). We can suppose that this ray is R l (otherwisc, one should
replace the ray R1 by the ray R3 ). As above J we can suppose that the ray Q is connected by the oriented
path 82 of the length ~ d with the ray R2 and this path does not contain the ray F4. The path sI RQS2 is
an oriented path ofthe length:5 2d+ 1 in the oriented graph G('R.(r4))U{R l , R 2 }). It follows that thc angle
of the quadrangle 1'4, such that the consecutive sides of this angle are orthogonal to the rays R l and R21 haB
the weight ~ 1/2. Thus, we proved that for a pair of opposite sides of 1'4 there exists an oriented angle with
weight ~ 1/2 Buch that the first side of this oriented angle is one of this opposite sides of the quadrangle. A
quadrangle has two pairs of opposite sides. It follows that the sum of weights of oriented angles of 14 is 2: 1.
It proves the condition (2) of the Lemma 1.4 and the Theorem. tJ-.

Below, we will apply the Theorem 1.2 to threefolds with singularities.

5



CHAPTER 2. THREEFOLDS.

1. Contractible extrelnal rays.

We consider normal projective 3-folds X with Q-factorial singularities.
Let R be an extremal ray of Mori polyhedron N E(X) of X. A morphism 1 : X --. Y on anormal

projective variety Y is called the contraction of the ray R if for an irreducible curve C of X the image f( C)
is a point iff CER. The contraction 1 is defined by a linear system H on X (H gives the nef element of
N I (X), wbich we denote by H also). It follows that an irredudble curve C is contracted iff C . H =o. We
assurne that tbe contraction f has properties: f.Ox = Oy and the sequence

is exact where the arrow N1(X) --. N1 (Y) is I •. An extremal ray R is called contractib/e if there exists its
contraction 1 with these properties.

The number K(R) = dirn Y is called Kodaira dimension of the contractible extremal ray R.
A face, of N E(X) is called contrnetible if there exists a morphism f : X --. Y on anormal projective

variety Y such that I.r = 0, I.()x = Oy and 1 contracts curves lying in, only. The ~(,) = dirn Y is called
Kodaira dimension 01,.

Let H be a general nef element orthogonal to a face, of Mori polyhedron. Numerical Kodaim dimension
01, is defined by the formula

{

3, if II 3 > 0;
Knurn(r) = 2, ~f H: :: 0 and H'l ~ 0; .

I, If H = O.

It is obvious that for a contractible face r we have Knurn(,) ~ K(')' In particular, Knurn(-r) = K(...,.) for a
contractible face...,. of Kodaira dimension II:(-r) =3.

2. Pairs of extremal rays of Kodaira dhnellsion three
lying in contractible faces of N E(X) of Kodaira dimension thrce.

Further X is a projective normal threefold with Q-factorial singularities.

Lemma 2.2.1. Let R be a contractible extremal ray 0/ Kodaim dimension 9 and f X --. Y its
contra ctio n.

Then there are three possibilities:
(I) All curves CER fill an irreducible Weil divisor D(R), the contraetion f contracts D(R) in a point

and R·D(R) < O.
(lI) All curves CER fill an irreducible Weil divisor D(R), the contraction f contracts D(R) on an

irreducible curve and R· D(R) < O.
(111) All curves CER give a finite set 01 irreducible curves and the contraction f contrncts these curves

in points.

Proor. Assume that same curves of R fill an irrcducible divisor D. Then R . D < 0 (this incquality
follows from the Proposition 2.2.6 below). Suppose that CER and D does not contain C. It follows that
R· D ~ O. We get a contradiction. It follows the Lemma. t>

According to the Lemma 2.2.1, we say timt an extremal ray R has the type (I), (lI) or (III) if it is
contraetible of Kodaira dimension 3 and the statements (I), (II) or (BI) respectively hold.

Lemma 2.2.2. Let R 1 and R'l are two different extremal rays 0/ the type (I). Then divisors D( R1) and
D(R2 ) do not interseet one another.

Proof. Otherwise D(RI) aod D(R2 ) have a common curve and the raya R 1 and R 2 are not different. t>

For a divisor D on X let

N E(X, D) = (image NI{D)) n N E(X).
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Lemma 2.2.3. Let R be an extremal ray 0/ the type (11), and / its contraction.
Then N E(X, D(R» =R+ F + R+ S, where Fis a fiber 0/ fand R+ f.S =R+(/(D».

Proof. This follows at onee from the exaet sequenee (1.1). t>

Lemma 2.2.4. Let R 1 and R 2 are two different extremal rays 0/ the type (11) such thai the divisors
D(Rt} = D(R2)' '

Then for D = D(R1 ) = D(R2) we have:

In particular, do not exist three different extremal rays 0/ the type (II) such that their divisors are coincided.

Proof. This follows from the Lemma 2.2,3. t>

Lemma 2.2.5. Let R be an extremal ray 0/ the type (II) and f its contradion.
Then there does not erist more than one extremal ray Q of the type (I) such that D(R) n D(Q) is not

empty. If Q is this ray, then D(R) n D(Q) i8 a curve and any irreducible component of this curve is not
contained in fibers of f.

Proof. The last statement is obvious. Let us proof the first one. Suppose that Ql and Q2 are two
different extremal rays of the type (I) such t hat D(Q1) nD(R) and D(Q2) nD(R) are not em pty. Then the
plane angle N E(X, D(R» (see the Lemma 2.2.3) contains three different extremal rays: Ql, Q2 and R. It
is impossible. t>

The following key Proposition is very important.

Proposition 2.2.6. Let X be a projective 3-fold with Q-factorial singularities, D I , "') Dm irreducible
divisors on X and f : X -+ Y a surjective morphism such that dimX = dimY and dimf(Di) < dimDi .

Let y E !(Dt) n ... n f(Dm ).

Then there are 01 > 0, "'1 Um > 0 and an open U, y E U c f(Dd u ... U f(Dm ), such that

if a curve C C D I U ... U Dm belongs to a non-trivial algebraic family of curves on f(DI) U ... U f(Dm) and
f(C) =pointE U.

Proof. It is the same as for the well-known case of surfaces (but, for surfaces , it is not necessary to
suppose that C belongs to a nontrivial algebraic farnily). Let H be an irredueible arnpIe divisor on X and
H' = I.H. Since dimf(D;) < dirn Di, it follows that f(D 1 ) u ... U f(Dm ) C Hf. Let eP be a non-zero rational
fundion on Y which is regular in a neighborhood U of y on Y and is equal to zero on the divisor H'. In the
open set j-I(U) tbe divisor

m n

(f·eP) = E aiDi +E bjZj
i=l j=1

where all 0i > 0 and all bj > O. Here every divisor Zj is different from any divisor Di . \-\Te have

m n

0= C· 'E0iDi + C· 'LbjZj.
i=l j=1

Here C . (Lj=1 bj Zj) > 0 since C belongs to a nontrivial algebraic family of curves on a su rface f( D1 ) U ... U
f(Dm ) and one of the divisors Zj is the hyperplane section H. t>

Lemma 2.2.7. Let R 1,R2 are two extremal rays ofthe type (II), divisors D(Rt},D(R2) are different
and D(Rt} n D(R2) "I 0. Assurne that R 1I R2 belong to a contractible face of N E(X) of J(odaira dimension
3. Let 0"1 F1 E R1 and 0 "I F2 E R",l.

Then
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Proof. Let I be the contraction of a face of Kodaira dimension 3, which contains both rays Rl , R2 • By
the proposition 2.2.6, there are al > 0, a2 > 0 such that

Or
-al(Fl . D(Rd) > a2(Fl . D(R2)) and - a2(F2 . D(R2)) > al(F:z. D(Rd)

where F l . D(Rt} < 0, F:z . D(R:z) < 0 and F l . D(R2 ) > 0, F2 . D(R l ) > O. Multiplying inequalitics above,
we obtain the Lemma. 1>

3. A classification of sets of simple extremal rays of the type (I) aIld (I1).

Aa above, we assume that X ia a projective normal 3-fold with Q-factorial singularities.

Definition 2.3.1. An extremal ray R of the type (Il) is called simple if

R·(D(R)+D)~O

for any irreducible divisor D such that R· D > O.

The following statement gives a simple Bufficient condition for an extremal ray to be simple.

Proposition 2.3.2. Let R be an extremal ray 01 the type (JI) and I : X -+ Y the contraetion of R.
Suppos~ that the curtle f(D(R)) is not contained in the set of singularities ofY.

Then
(1) the ray R is simple;
(2) if the eharacteristie 0/ the ground field is 0 and X has only isolated singulan"ties then a general

element C of the ray R (a general fiber 0/ the morphism I I D(R)) is isomorphie 10 pI and the divisor D(R)
is non-singular along C. /f additionally R· K x < 0, then C· D(R) =C· Kx =-1.

In particular, both statements (1) and (2) are true if X has terminal singularities and R· /(x < O.

Proof. Let D be an irreducible divisor on X such that R· D > O. Since R· D(R) < 0, the divisor D is
different from D(R) and the intersection D n D(R) is a curve which does not belong to R. Then D' = f", (D)
is an irreducible divisar on Y and r = f( D(R)) is a curve on D' . Let y Erbe a non-singul ar point of Y.
Then the divisor rY is defined by some local equation ljJ in a neighborhood U of y. Evidently, in the open
set f-l(U) the divisor

(f'" 1jJ) =D + m(D(R))

where m 2:: 1. Let a curve CER and I(G) = y E U n f(D(R)). Then 0 = C· (D + m(D(R))) =
G· (D + D(R)) + G· (m - l)(D(R)). Since m ~ 1 and C· D(R) < 0, it follows that C· (D + D(R)) ~ 0.

Let us prove (2). Let us consider a linear system 11I1 ofhyperplane sections on Y and the corresponding
linear systems on the resolutions of singularities of Y and X. Let us apply Bertini 's theorem (see, for
example, [14, ch.1I I, Corollary 10.9 and the Exercise 11.3] ) to this linear systems. Singu lari ties of X and Y
are isolated. Then by Bertini theorem, for a general element H of IHI we obtain that: (a) Hand I-I (H)
are irreducible and non-singular. (b) H intersects r transversely in non-singular points of r. Let U8 consider
the corresponding birational morphism r = flH' : H' -+ H of the non-singular irreducible surfaces. It ia a
eomp05ition of blowing ups in non-singular points. Thus, fibers of r over H n rare trees of non-singular
rational curves. The exceptional curve of the first of these blowing ups is identified with the fiber of the
projectivization of the normal bundle P(Nrly ). Thus, we obtain a rational map over the curve r

ljJ : P(Nrly ) -+ D(R)

of the irreducible surfaces. Evidently, it is the injection in the general point of P(Nrly ). It follows that f/J

ia abirational isomorphism of the surface. Since ljJ is abirational map over the curve r, it follows that the
general fibers of this maps are birationally isomorphie. It follows that a general fiber of I' is C ~ pI. Since
C is non-singular and is an intersection of the non-singular surface H ' with the surface D(R), and since X
has only isolated singularities, it follows that D(R) is non-singular along the general curve C.
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Tbe X and D(R) are non-singular along C ~ pi and the curve C is non-singular. Then the canonical
dass Kc =(Kx + D(R))IC where both divisors Kx aod D(R) are Cartier divisors on X along C. It follows
that -2 =deg Kc =Kx . C + D(R) .C, where the both numbers Kx . C and D(R). C are negative integera.
Then D(R)· C = Kx . C = -1.

Ir X has terminal singularities and R . I(x < 0, then Y has terminal singularities too (sec, for exam
pIe, [2]). Moreover, terminal singularities are isolated. From (1), (2), it follows the last statement of the
Proposition. t>

Let Rh R2 are two extremal rays of the type (I) or (11). They are joined if D(RI) n D(R'l) 1= 0. It
defines connected components of a set of extremal rays of the type (I) or (Il).

We recall that a set f. of extremal rays ia called extremal if it is contained in a face of N E(X). \Ve aay
that f. ia extremal of K odaira dimension 9 if it is contained in a face of numerical Kodaira dimension 3 of
NE(X).

We prove the following dassification theorem.

Theorem 2.3.3. Let E: = {R I, R2 , ••• , Rn} be an extremal set of extremal rays of the type (1) or (II).
Suppose that every extremal ray of E: of the type (1I) is simple. Assume that E: is contained in a contrnctible
face with Kodaira dimension 9 of N E(X). (In parlicular, E: is extrema/ of Kodaira dimension 9.)

The n every connected compo ne nt 0 f E: has the type QlI, $2, <tm or Xl 2 belo w (see fi gu re 1).
(~t} One extremal ray of the type (I).
($'l) Two different extremal rays SI, S2 of the type (II) such that their divisors D(St} = D(S2) are

coincided.
«(m) m ;::: 1 extremal rays SI, S'l, ... , Sm of the type (II) such that the divisors D(S2), D(S3), .", D(Sm)

do not intersect one another, and SI . D(Sd = 0, i = 2, "., m, hut Si . D(8t} > 0, i = 2, "., m.
(1)2) Two extremal rays SI, S'l, where SI is 0/ the type (II) and S'l of the type (I), SI . D(S2) > °and

S2' D(St} > 0. /1 bl ;::: 0, b2 ;::: °and one of bl , b'l is not equal to zero then eiiher SI' (bi D(St} +b2D(82 )) < °
or S'l . (bID(St} + b'lD(S2)) < O.

The fo//owing inverse statement i8 true: If E: = {R1 , R 2, ... , Rn} is a connec1ed set of extremal rays 01 the
type (1) or (II) and E: has the type 21 1 , ~'l, ~ or!)2 above, then E gene rates a simplicial face R l + ". + Rn
01 the dimension n and numerical Kodaira dimension 3 01 NE(X). In particular, the set E is /inear/y
independent.

. . .
I .

I .,. ,

i...~ •.

Figure 1
Proof. Let us prove the first statement. We can assurne that E is connected. We have ta prove that

then E has the type 2ll, ~2, ~ or 1)2. Ir n = 1, it is obvious.
Let n = 2. From the Lemma 2.2.2, it follows that one of the rays R I , R'l has the type (Il). Let R 1 has

the type (I1) and R2 the type (I). Since D(Rt}nD(R2) 1= 0, then evidently R'l·D(Rt} > O. Ir R I · D(R2) = 0,
then evidently the curve D(RI) n D(R'l) belongs to the ray R I . It folIows, that the rays R.1 and R'J contain
the same curve. We get the contradiction. Thus, R1 • D(R'l) > 0. The rays R 1, R2 belong to a contractible
face of Kodaira dimension 3 of Mori polyhedron. Let f be a contraction of this face. By the Lemma 2.2.3,
f contracts the divisors D(Rd, D(R2 ) in a same point. By the Proposition 2.2.6, there are positive al, a2
such that R 1 • (aID(Rt} + o'lD(R'l)) < 0 and R'J . (oID(RI) + a'lD(R2)) < 0. Now suppose that for some
b1 > °and b2 > 0 the inequalities R 1 . (bID(Rt} + b2D(R2)) ;::: °and R 2 • (bID(Rd + b2D(R2)) ;::: 0 hold.
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There exaits >. > 0 such that '\b t :5 ab '\b2 :5 a2 and one of these inequalities is the equality. For example,
let "\b t = al. Then

We get the contradiction. It proves that in this case t: has the type 3:'2.
Assume that both rays R l , R'J have the type (II). Since the rays R l , R2 are simple, from the Lemma

2.2.7, it follows that either R l . D(R2 ) =0 or the R2 . D(Rt) = O. If both these equalities hold, the rays
Rb R'J have the common curve. We get the contradiction. Thus, in .this case t: has the type \!2.

Let n = 3. Every proper subset of t: has connected components !Xl, 2h, l!m or 3:'2' Using the Lemmas
2.2.2-2.2.5, one can see very easy that. then either t: has the type \!a or we have the following case:

The rays R l , R2, Ra have the type (II), every two element subset of t: has the type [2 and we can
change the numeration 80 that R l . D(R2 ) > 0, R2 . D(Ra) > 0 and Ra . D(Rt} > O. Let E C -y where ,
is a contractible face of N E(X) of the Kodaira dimension 3. Let f be a contraction of the face -y. By the
Lemma 2.2.3, f contracts the divisors D(Rt}, D(R2 ), D(Ra) in a one point. By the Proposition 2.2.6, there
are positive al, a2, aa such that

i = 1, 2, 3. On the other hand, from the simplicity of the rays R l , R2 , Ra, it follows that

14· (D(R l ) + D(R2 ) + D(Ra)) ~ O.

Let al = min{ab a2, aal. From the last inequality, Rl . (alD(Rt) + a2D(R2) + aaD(Ra)) = Rl . al(D(Rd +
D(R2)+ D(Ra)) +R l . «a2 - al)D(R2)+ (a3 - adD(Ra)) ~ O. We get the contradiction with the inequality
above.

Let n > 3. We have proved that every two or three element subset of t: has connected components
!X1, '.lh, l!m or 1) 2. It follows very easy that then E has the type <!:n.

Let us prove the inverse statement.
For the type 2 1 it is obvious.
Let E has the type m2 . Since the rays SI, S2 are extremal of Kodaira dimension 3, there are nef elements

Hl, H2 such that H l . SI = H2 . S2 = 0, Hla > 0, H2a > O. Let 0 1= Cl E SI and 01= C2 E S2. Let D be the
divisor of the rays SI and S2' Let us consider the map

For the fixed H1, we get the linear map H2 - H of the set of nef elements H2 orthogonal to S2 into
the set of nef elements H 2 orthogonal to 81 and S2. This map has a one dimensional kerneI, generated by
(- D . C2)H1 + (H1 . C2) D. It follows that SI +S2 is the two dimensional face of N E(X).

For the general nef element H = al H1+a2H2 +bD orthogonal to this face, where ab a2·, b > 0, we have:
H 3 =(alBl + a2 H2+ bD)3 ~ (alBI +a2H2 + bD)2(a IHI +a2H2) =(alHl + a2H2 + bD)(alHl + a2 H2+
bD)(al Ht + a2B2) ~ (a1IJl + a2 H2)2(al H l + a2H2 +bD) ~ (alHI + a2H2)3 > 0, since alHI +a2II'J +bD
and alHl + a2H2 are nef. It follows that the face SI + S2 has Kodaira dimension 3.

Let E has the type l!m. Let H be a nef element orthogonal to the ray SI. Let 0 f; Ci E Si. Let UB

consider the map
m

H - H' = H +E(-(H . Ci)/(Ci . D(Sd))D(Sd. (3.2)
i=2

It ia the linear map ofthe set of nef elements H orthogonal to SI into the set ofnef elements H' orthogonal
10 the rays SI, S2, ... , Sm. The kernel of the map has the dimension m -1. It follows that the rays SI, S2, ... , Sm
belong to the face of N E(X) of the dimension :5 m. On the other hand, multiplying rays SI, ... , Sm on the
divisors D(Sd, "'1 D(Sm), one can see very easy that the rays SI, ... , Sm are Jinearly independent. Thus,
they generate the rn-dimensional face of N E(X). Let UB show that this face ia SI + S2 + ... + Sm. To prove
it, we show that every m - 1 ray subset of t: is contained in a face of N E(X) of the dimension :5 m - 1.
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Ir this subset contains the ray SI, this subset has the type l!m-l' We have proved that this subset
belongs to the face of N E(X) of the dimension rn-I. Let us consider the subset {52, 53, ... , Sm}. Let H
be an ample element on X. For the element H the map (3.2) gives the element H' which is orthogonal to
the rays 82 , 53, ... , Sm, but is not orthogonal to the ray SI. It follows that the set {52, 53, ... , Sm} belongs
to the face of tbe Mori polyhedron of the dimension< m. Like above, one can see that for thc general H
orthogonal to SI the element H ' has (H')3 ~ H 3 > 0.

Let & has the type 1)2. Let H be a ner element orthogonal to the ray S2. Let °"# Ci E Si. Let us
consider the map

Evidently, C2 • « -D(S2) . C2)D(Sl) + (D(Sl) . C2)D(S2» =O. From this equality and the inequality from
the definition of the system ~2, it follows tbat Cl . «-D(S2) . C2 )D(SI} + (D(SI) . C2 )D(S2)) < O. Thus,
the denominator from the formula (3.3) is positive. Then (3.3) is the linear map of the set of ner element H
orthogonal to tbe ray 8 2 into the set of nef elements H' orthogonal to the rays 8 1 I 8 2 • Evidently, the map
has tbe one dimensional kernel. Thus, the rays SI and 8 2 generate the two dimensional face SI + 52 of Mori
polyhedron. As above, for the general element H orthogonal to 52 we havc (H' )3 ~ (H)3 > O. t>

Corollary 2.3.4. Let & = {RI, R2 , '''1 Rn} be an extremal set 0/ extremal rays 0/ the type (I) or (lI)
and every extremal ray 0/ & 0/ the type (II) is simple. Assume that & is contained in a contractible face
with Kodaira dimtnsion 9 0/ the N E(X). Let m1 2: 0,7112 2:: 0, ... , 711n 2: 0 and at least one 0/7111, ... , m n is
positivt.

The n there exists i I 1 ::; i :5 n, such tha t

Ri . (m1 D(RI) + ... + mnD(Rn» < O.

Proof. It is sufficient to prove this statement for the connected &. For every type 21 1 , Q32, I!.m and 1)2 of
the Theorem 2.3.3, one can prove it very easy. t>

Unfortunately, in general, the inverse statement ofthe Theorem 2.3.3 holds only for a connected extremal
set &. We will give two cases when it is true for a non-connected &.

Definition 2.3.5. A threefold X is called strongly projective (respectively very strongly projective) if
the following statement holds: a set {QI, ... , Qn} of extremal rays of the type (11) is extremal of Kodaira
dimension 3 (respectively generates the simplicial face Ql + ... + Qn of N E(X) of the dimension n) if its
divisors D(Qt}, ... , D(Qn) da not interseet one another.

Theorem 2.3.6. Let E = {RI, R2, ... ,Rn} be a set 0/ extremal rays 0/ the type (I) or (JI) such that
every connected component 0/ [ has the type ~b Q31, l!m or 1'2.

Then:
(1) [ is extremal 0/ Kodaira dimtnsion 3 if and only i/ the same is true tor any subset 0/ [ containing

only extrema/ rays 0/ the type (II) whose divisors do not intersect one another. In particular, it holds i/ X
is strongly projective.

(f) & generatts tht simplicial/act R I + ... + Rn with Kodaira dimension 9 0/ the ].{on polyhedron i/ and
only i/ the same is true /or any subsei 0/ & containing only extrema/ rays 0/ the type. (II) whose divisors do
not intersect one another. In particn/ar, it is true if X is very strongly projective.

Proof. Let us prove (1). Only the inverse statement ia non-trivial. We prove it using an induction by
n. For n = 1 the statement is obvious.

Assurne that some connected component of & has the type ~I' Suppose that this conponcnt contains
the ray R I . By induction, there exists a nef element H Buch that H 3 > 0 and H .~ = 0 if i > 1. Then there
exists k ;::: 0, such that H J =H +kD(RI) is nef and H'·[ = O. As above, one can prove that (H J )3 ;::: H3 > O.

Assurne that BOrne connected component of & has the type Q32' Suppose that this component contains
the rays R II R2 and D(Rt) =D(R2) =D. Then, by induction, there are ner elements H I and H2 such that
H 13 > 0, H 2

3 > 0 and H I . {R I , R3 , ... , Rn} = 0, H2 . {R2,R3, ... , Rn} = O. As for the praof of the inverse
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statement of the Theorem 2.3.3 in the case ~2, there are 1.: 1 ~ 0, k'J ~ 0, k3 ~ 0 Buch that the element
H = klHl + k2H'J + k3 D ia nef, H· E = 0 and H3 > 0.

A88ume that BOrne connected component of E haB the type ltm, m > 1. We use the notations of the
Theorem 2.3.3 for this connected component. Let it is {SI, S2, ... , Sm}. By the induction, there existB a oef
element H such that H ia orthogonal to E- {S'J, ... , Sm} and H3 > O. As for the proof of the inverse statement
ofthe Theorem 2.3.3 in the case ltm, there are k2 ~ 0, ... , km ~ 0 such that H' = H +k2D(S2)+ ...+kmD(Sm)
is nef, H'·E = 0 and (H' )3 ~ H3 > O.

Assurne that sorne connected component of E has the type !>2' We UBe notations of the Theorem 2.3.3
for this connected cornponent. Let it is {S1 , S'J} . By the induction, there exists nef element H such that
H 3 > 0 and H ia orthogonal to E - {Sd. As for the theorem 2.3.3, there are 1.:1 ~ 0, k2 ~ °such that
H' = H + k1 D(SI) + k2D(S2) is oef, H'· E = 0 and (H')3 ~ H3 > O.

Ir every connected component of E has the type <!I, then the statement holda by the condition of the
Theorem.

Let us prove (2). Only the inverse statement is non-trivial. We prove it using an induction by n. For
n = 1 tbe statement ia true. It ia sufficient to prove that E is contained in a face of a dimension ~ n of
Mori polyhedron because, by the induction, any its n - 1 element subset generates a simplicial face of the
dimension n - 1 of Mori polyhedron.

Assurne that sorne connected component of E has the type ~1' Suppose that the ray R1 belangs to this
component and 0 1= CI E R1· Let us consider the map

H -+ H' = H + ((H . Cd/(-D(Rd . Cd)D(Rd.

of the set of nef elements H orthogonal to the set {R2 , ... , Rn} into the set of nef elements H' orthogonal
to the E. 1t is the linear map with one dimensional kerne!. Since, by the induction, the set {R21 ... , Rn} is
contained in a face of Mori polyhedron of the dimension n - 1, it follows that E ia contained in a face of the
dimension n.

Ir E has a connected component of the type Qh, ~,m > 1, or 1)2, the proof ia the same if ODe uses the
maps (3.1), (3.2) and (3.3) above.

Ir all connected components of E have the type l!11 the statement holds by the condition. tJo

Remark 2.3.7. Like the statement (1) of the Theorem 2.3.6, oDe can prove that a set E of extremal
rays with connected componenta of the type ~1, ~2, ltm or 3)2 is extremal if and only if the same is true for
any subset of E containing only extremal raya of the type (11) whose divisors do not intersect one another. tJo

The following statement is useful also.

Proposition 2.3.8. Assume that a set E of extremal rays has connected components of the type
21 1, '13"2, e:m or 3)2.

Then the following conditions art equivalent:
(i) The set E is linearly dependent.
(ii) The set E contains ~ 2 connected components of the type ~2 such that their rays art linearly

dependent. Let these components art ~l, ... , ~t, t ~ 2. Then we can choose the numerotion so that ~i =
{Ril, .Ri2} and a linear dependence has a form

where all aij > O.

Proof. Let E = {R1 , ••. , Rm} and a non-trivial linear dependence is al R l + ... + am Rm = O. Ir we
multiply this equality on divisors D(R l ), ... , D(Rm), we get that a.t = °if the ray Rk belongs to a connected
component of the type ~ 1, l!m or 3) 2. Thus, there are connected componcnta of E

t ~ 1t of the type '13"2 such that we have the linear dependence
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where either ail :f. 0 or ai2 i= 0 for any 1 .$ i .$ t.
Here t ~ 2 since the rays Ru and R12 are different. Ir we multiply this equality on the divisor

Di = D(Ril) = D(~2), we get for seme (Xi > 0, ßi > 0 that (tiail + ßiai2 = O. Thus, ail and ai2 have
opposite sings. It follows the Proposition. t>

4. A classification of E~sets of cxtrcmal rays of tbc type (I) or (I1).

As above, we suppose that X is a projective normal 3-fold with Q-factorial singularities.
We recall that a set r. of extremal rays is called E·set if it is not extremal but any proper subset of r.

is extremal (it is contained in a face of N E(X».

Theorem 2.4.1. Let r. he a E-set of extremal rays of the type (I) or (II). Suppose that every ray of the
type (lI) of r. is simple and every proper suhsei of r. is contained in a contractible face 0/ Kodaim dimension
9 0/ Mori polyhedron.

Then we have one 0/ the following cases:
(a)! is conneeted and L ={Rlt R2, R3}, where any ~ has the type (II) and every 0/ 2-element subsets

{R l , R 2}, {R2, R 3}, {R3 , Rtl of r. has the type (2. lIere Rl . D(R2) > 0, R 2 • D(R3 ) > 0, R3 · D(Rt} > 0 but
R2 . D(Rt} =R3 . D(R2) =R1 . D(R3) =O. The divisor D(r.) = D(Rt} + D(R2 ) + D(R3) is nef.

(b) L, is connected and r. = {Rl , R 2}, where the rays R l , R2 have the type (I) or (lI). Thcre are positive
mt, m2 such thai R· (m1 D(Rt} + m2D(R2» ~ 0 for any extremal rny R of the type (I) or simple extremal
ray 0/ the type (lI) on X.

(c) r. is co nnected and r. = {Rb R 2} where bo th R l and R'J have the type (II) and the re exists the
simple extremal ray 51 0/ the type (lI) such that the rays R I , SI define the extremal set of the type i1J 2 (it
means thai SI i= R I but the divisors D(St} = D(Rt})and the rays S1, R 2 define the extrcmal set of the type
(!2, where 81 . D(R2) = 0 hut R2 . D(Sd > O. Here there do not exist positive ml, m2 such that the divisor
m1 D(Rt) + m2D(R2) is nef, since evident/y SI . (mi D(Rt} + m2D(R2» < O. See figure 2 be/ow.

(d) r. = {Rl , ... , R.e} where k ~ 2, all rays R II ... , RJ; have the type (II) and the divisors D(Rt}, ... , D(Rk)
do not intersect one another. Any proper subset of.c is contained in a contractible face of Kodaira dimension
9 0/ Mori polyhedron but L ia not contained in a face of Mori polyhedron.

Figure 2
Proof. Let L = {R I , •.. , Rn} be a E-set of extremal rays satisfying to the condi tions of the Theorem.

Let UB consider two cases.
The case 1. Let J:, is not connected. Then every connected component of L is extremal and, by the

theorem 2.3.3, it has the type 2 11 i1J 2 , <!:m or 1'>2. If same of these components has not the type (!l, then, by
the statement (1) of the Theorem 2.3.6, J:, is extremal and we get the contradiction. Thus, we obtain the
case (d) of the Theorem.

The case 2. Let r. = {RII ... , Rn} is connected.
Let n ~ 4. By the Theorem 2.3.3, any proper subset of L has connected components of the type

21 11 Q3211!m or 1'>2' Like for the proof of the Theorem 2.3.3, it follows that L has the type l.!n. Ey the
Theorem 2.3.3, then ! is extremal. We get the contradiction.

Let n =3. Then, like for the proof of the Theorem 2.3.3, we get that .c has the type (a).
Let n =2 and J:, = {RI, R 2}. Ir both rays RI, R 2 ~ave the type (1), then, by the Lemma 2.2.2, [, is not

connected and we get the contradiction. .
Let RI has the type (I) and R'J has the type (II). Since the system r. is not extremal, by the Theorem

2.3.3, there are positive ml, m2 such that RI·(mID(Rl)+m2D(R2» ~ 0 and R2·(mID(Rd+m2D(R2» ~ O.
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By the Lemma 2.2.3 , it follows that C . (m1D(RI) + m'lD(R2» 2::: 0 if the curve C is contained in the
D(Rd U D(R2). Ir C is not contained in D(R1) U D(R2), then obviously C· (m1D(Rt> + m2D(R2» 2::: O. It
folIows, that the divisor m1D(R1) + m2D(R'l) is nef. Thus, we obtain the case (b).

Let both raya Rb R2 have the type (I1). Ir D(R1) = D(R2 ), then we get an extremal set {R11 R2 }

by the Theorem 2.3.3. Thus, the divisors D(Rt} and D(R2) are different. By the Lemma 2.2.1, the curve
D(Rt} n D(Rz) has not an irreducible component which belongs to both rays R1 and R'l. Sinee rays R 1, R'l
are simple , it follows that R1 . (D(R1) + D(R2» 2::: 0 and R2 . (D(R1) + D(R2» 2::: O. Let R be an extremal
ray of the type (I) or simple extremal ray of the type (I1). Ir the divisor D(R) does not eoincide with the
divisor D(Rt} or D(R'l), then obviously R· (D(Rt} + D(R'l» 2::: O. Thus, if there does not exist an extremal
ray R which has the same divisor a.s the ray RI or R21 we get the case (h).

Assurne that D(R) =D(R1 ). Then, by the Lemma 2.2.5, the ray R has the type (I I) too. If R· D(R'l) =
0, we get the case (e) of the Theorem where SI = R. If R· D(R2) > 0, then R· (D(R1) + D(R2» 2::: 0 since
the ray R is simple. Then we get the ease (b) of the Theorem. t>

5. An applicatioll of the diagrmll nlethod to the general threefolds.

Now we ean apply the results of the Chapter 1 and of the Chapter 2 above to 3-folds.

Theorem 2.5.1. Let X be a nonnal projective 3·fold with Q·factorial singulanties. Let, be a face of
the polyhedron M(X) = N EF(X)/R+ such that , is closed and the fo/lowing conditions (Ci) and (ß) hold:

(Ci) The set
'R.(,) ={extremal ray R 1 3R+ HE, : R· H =O}

contains extremal mys of the type (I) or simple extremal mys of the type (II) only; any face of Mon polyhedron
orthogonal to a point of, is contmctible and has Kodaira dimension 3.

(ß) If Q is an extremal ray of the N E(X), which is not of the type (I) and is not simple of the type
(II), then Q. D(R) 2::: 0 for any extremal my RE 'R.(,).

Then we have one 0/ the jo/lowing cases (1)-{4):
(1) dim,:5 7.
(E) There are extremal mys {R1,""~}C "R(,) such that the mys l1.i have the type (Il), their divisors

D(Rd, ... , D(Ht) do not intersect one another, the set {R11 "'1 Ra is contained in a face 0/ Kodaim dimension
[) 0/ N E(X) which is orthogonal to avertex of" but the simplicial cone R 1 + ... + Rt is not the face of
NE(X).

(3) The set ?l(,) contains extremal mys R 11 R 2 which together with sorne simple extr'emal ray S1 of the
type (lI) on X give the configuration (c) of the Theorem !L/.1.

(4) There are extremal rays {Rb"" R t } C "R(,) such that the rays Rt have the type (JI), their divisors
D(Rd, ... , D(Rt ) do not intersect one another, but the set {Rtf ... , R t } is not extrernal (it is not contained
in a face of N E(X»).

Proof. Let us suppose that the cases (2), (3) and (4) do not hold. Then let us apply the Theorem 1.2
1..0 the face 'Y.

The eonditions (i), (H) aod (iii) of the Theorem 1.2 follow from the Theorem 2.3.3, Corollary 2.3.4 ,
Theorems 2.3.6 and 2.4.1 (1..0 prove the condition (iii), one should use the condition (ß) of the Theorem
also). From the Theorems 2.3.3,2.3.6 and 2.4.1 it follows thaI.. the conditions of the Theorem 1.2 hold with
the constants d = 2, Cl = 1 and C2 = O. From the Theorem 1.2 we get the inequality

dirn, :5 11.

To obtain more strong inequality (1) of the Theorem l we should analyze carefully the proof of the
Theorem 1.2 in our eoncrete case.

Let an oriented angle Ll is defined by the triplet "R.(ß), R1(ß), R2(ß). We define the weight a(ß) by
the rule: a(Ll) = 2/3 if simultaneously p(R1(ß), Rz(ß» = 1 and p(R2 (ß), R 1(ß» = O. It means that
R1(ß)R'l(Ll) is an arrow but R2 (ß)R1(ß) is not one. And a(ß) = 0 otherwise. Let us prove thaI.. the
eonditions of the Lemma 1.4 , whieh we used 1..0 prove the Theorem 1.2 , hold with the constants C = 2/3
aod D =-2/3.

From the Theorem 2.3.3, it follows the condition (1) of the Lemma 1.4.
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In the case of the triangle la, the extremal rays {R1 , R2 , Ra} are contained in a E-subset r of n(I)' By
the Theorem 2.4.1, this subset has 3 elements, and we have the case (a) of the Theorem 2.4.1. In this case
the triangle 13 has three oriented angles of the weight 2/3 and their sum is 2. Thus, the condition (2) of the
Lemma 1.4 holds for a triangle 13.

Let us consider the case of quadrangle 14. By the proof of the Theorem 1.2, we ca~ose that there
existB an oriented path from the extremal ray R 1 to the extremal ray R'J in the set 'R.(14) U {R1 , R2 } of
extremal rays orthogonal to the vertex of 14. From the Theorem 2.3.3, it followB that the rays R 1, R2 define
the system 1'>2 or (2. Let us consider these cases.

Asaume that R 1 , R'J define the system 1'>2 whcre the ray R 1 has the type (II) and the ray Rz has the
type (I). The rays R2 and R.t belong to an E-subset L of 'R(1)' By the Theorem 2.4.1, this subset has two
elements R2 , R.t only, since the ray R'J has the type (I). By the Lemma 1.1, R2I4 and I4R2 are the arrows
aod D(R2) n D(J4) is a curve. From the Lemma 2.2.2, it follows that the ray ~ has the type (11), since
the ray R2 has the type (I). The curve C = D(Rt} n D(R2 ) belongs to the ray R2 of the type (I). Then
C . D(R.t) > o. Hy the Theorem 2.3.3, then the rays R I ,~ define the system of the type (z. From the
Lemma 2.2.3, it follows that three different extremal rays R I , Rz, R.t generate a 2-dimensional subspace in
NI (X). We get the contradiction.

Thus, we proved that the raya R I R2 define the system of the type (2, where R I R2 ia thc arrow (i.e.
R I . D(R2 ) > 0), but R2 R I is not (i.e. R2 • D(Rt} = 0). Thus, the weight of the oriented angle of 14 defined
by the ordered set (R I , R'J) of extremal rays is equal ta 2/3.

From the proof of the Theorem 1.2, it follows that there exists at least one other oriented angle of 14
which has the same weight. Thus, the sum of weights of these angles is equal to 4/3 > 1. It finishes the
proof of the eondition (2) of the Lemma 1.4. t>

6. An application of the diagram method to Fano threefolds.

We reeall that a 3-fold X with Q-factorial Bingularities is ealled Fano $-fold if the anticanonieal dass
-Kx ia numerically ample, i.e. -Kx . C > 0 for any effective curve C.

The following statement is interesting because it is true for 3-folds with just nef -J{x.

Theorem 2.6.1. Let X be a 9-fold with isolated Q-factorial singularities and -Kx is nef. Assume that
Mori polyhedron N E(X) is generated by a finite set 0/ extremal rays of the type (I) or (II) and any face 0/
N E(X) is contractible. Assume that for every extremal ray R o/lhe type (II) R· Kx < 0 and its contmction
f : X --* X' gives a 3·fold X' wilh isolated singularities (e.g., the last statement is true if X has Q·factorial
tenninal singularities).

Then:
1f a set E 0/ extremal rays on X (it may be empty) is contained in a face of N E(X) of Kodaira dimension

3, then every connected component 0/ f has the type ~b i)3'J,~ or 3)2. The following inverse statement is
true: 1f eve ry connected compone nt 0 fase t f 0 fextrema I rays has a type ~ I, i)3 2,~ or 1'> 2, the n f is
contained in a face 0/ N E(X), and this face has Kodaira dimension 9 if (-Kx)a > O. Moreover, tor a set
E 0/ extremal rays with connected components of the types ~1, i)32,~ or 1'2 one of the statements (1)-(4)
below holds:

(1) f generates a linear subspace of NI (X) 0/ the codimension :5 8.
(2) f is contained in a face with Kodaira dimension 1 or 2 of N E(X).
(9) & is contained in a set [' of extremal rays such that [' is contained in a face of Kodaira dimension

9 of N E(X) and &' has t ~ 2 conneeted components ml = {Ru, Rn}, '"' ~t = {Rn, Rn} of the type m2

with a linear dependence

for some aij > o.
(4) There are extremal rays SI, Rb R2 of the type (II) which define the configuration (c) 0/ the Theorem

2../.1 and every set Eu {Rd, E U {R2} is contained in a face (its own) 0/ Kodaira dimension :1 0/ N E(X).

Proof. The first direct statement follows from the Proposition 2.3.2 and the Theorem 2.3.3.
Let' UB prove the first inverse statement. Let & has connected componenta of the type ~1, m2 ,~ or

3):l' Let Rb ... , Rn, n > 1, are extremal rayB of the type (II) of &and the divisors D(RI), ... , D(Rn) do not
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intersect one another. By the Proposition 2.3.2, Ili . I(x = Jli . D (Jli) for 1 ::; i ~ n. Since all extremal
rays of X have the type (I) or (II), it follows that the divisor T =-Kx + D(Rd + ... + D(Rn ) ia nef and
F4. T = O. It follows that Rb ... , Rn belong to the face of N E(X) orthogonal to T. From the Theorem 2.3.6
and the Remark 2.3.7, it followB that the set [ ia extremal.

Let (-KX )3 > O. Then T 3 ~ T 2 . (-Kx) ~ T· (-KX)2 ;;::: (-KX)3 > 0, since -Kx and T are nef.
Suppose that the statement (2) of the Theorem is not true. Then we can apply the Theorem 2.5.1 to

the face "'I which is orthogonal to [. From the first statement which we have proved, it follows that the
statement (4) of the Theorem 2.5.1 does not hold.

The case (3) of the Theorem 2.5.1 gives the case (4) of the theorem 2.6.1.
Let us consider the case (2) of the theorem 2.5.1. Let v be a vertex of rand R1 , ... , Rt are the corre

sponding to this case extremal rays orthogonal to v. Thus, R 1 + ... R1 is not a face of the N E(X). Let [' be
the set of a1l extremal raya orthogonal to the vertex v. Evidently, [ C [' and {R1 , ... , R..n} c [. Ir all rays
of [' are linearly independent, then [' generates the simplicial face of the N E(X). Then R l + ... + R1 is a
simplicial face of N E(X) too, and we get the contradiction. Thus, the the set [' of extremal rays is linearly
dependent. From the Proposition 2.3.8, it follows the case (3) of the theorem 2.6.1.

The case (1) ofthe Theorem 2.5.1 gives the case (2) ofthe Theorem 2.6.1. t>

From the Theorem 2.6.1, it follows the followi ng basic statement of the paper.

Theorem 2.6.2. Let X be a Fano 3·fold with isolated Q-factorial log-terminal singularities. Assume
that all extremal rays of N E(X) have the type (I) or (II). Assume that for every extremal ray R of lhe type
(11) its contmction f : X ---+- X' gives a 3-fold X' with isolat~d singularities (e.g., this statement is true if X
has Q-factorial terminal singularities).

Then a set [ (it may be ~mpty) is contained in a face of N E(X) of Kodaim dimension 3 il and only if
ev~ry connected compon~nt of [ has the type ~l, 23 2 ,~ or 1)2. Moreover, for the set [ of extremal rays one
of the statements (1)-(,./) below holds:

(1) [ generntes a lin~ar subspace of N 1(X) of the codimension ~ 8.
(2) [ is coniained in a face with Kodaira dimension 1 or 2 01 N E(X).
(3) [ is contained in a set [' 01 extremal rays such thai [' is contained in a face of Kodairn dimension

3 of N E(X) and [' has t ;;::: 2 connected compon~nts 23 1 = {Ru, R 12 }, •• , 23 t = {Rn, Rn} ollhe type 23 2

with a linear dependence

for some aij > o.
(4) There are extremal rays SI, R 11 R20/ the type (II) which define the conjiguration &0/ the Theorem

2.4.1 and every set [U {Rd, [U {R2} is contained in a face 01 Kodaira dimension 3 01 N E(X).

Proof. From the results of [2) aod [12], it follows that any face of N E(X) is contractible and N E(X) is
generated by a finite set of extremal rays. Moreover, (-KX)3 > 0 since X is Fano 3-fold. From the Theorem
2.6.1 we get the statement. t>

From this Theorem, we get

Corollary 2.6.3. Let X be a Fano 3-lold with isolated Q-factoriallog-terminal singularities. Assume
that all extremal rays of N E(X) have the type (I) or (II). Assume that lor every extremal ray R 01 the type
(II) its controction f : X ---+- X' gives a 3-lold X' wilh isolated singularities (e.g., this statement is true ilX
has Q-factorial terminal singularities).

Then one of the statements (1)-(4) below holds:
(1) N l (X) ::; 8.
(2) Th~re exists a face 0/ N E(X) 0/ the Kodaira dimension 1 or 2.
(9) There exist.s a set t: 0/ extremal rays with t ;;::: 2 conneeted components 23 1 = {Ru, Rl2 }, .. , 23 1 =

{Rn, Rn} 0/ th~ type 23 2 such that

for some aij > O.
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(4) There are extremal rays S1, R11 R2 0/ the type (II) which define the configuration (c) 0/ the Theorem
2·4·1.

Proof. This follows from the Theorem 2.6.2 for & = 0. t>

Now we want to apply the Theorem 2.5.1 to a suitable resolution of singularities of Fano 3-fold with
log- terminal singularities.

Definition 2.6.4. Let Y be a 3-dimensional variety with log-terminal singularities. Abirational
morphism u : X - Y ia called minimal tenninal resolution of singularities of Y if the following conditions
hold: X has Q-factorial terminal singularities; the excep.tional set of u is a union of irreducible divisors Fi
and in the formula

K x = u- K y + EaiFi (6.1)

tbe pair (X, L:( -Cl'i)Fj ) haB log-terminal singularities in the sense of [2]. In particular, -1 < O'i :::; O. t>

We can apply the Theorem 2.5.1 to a case when all extremal rays on X have the type (1) or (II) and
any extremal ray of the type (11) is simple. Thus, in our case it is natural to Buppose that the following
condition takes place:

Condition 2.6.5. The morphism u is the contraction of a simplicial face R 1+ ... + Rn of N E(X) which
is generated by extremal rays Rb "'1 Rn of the type (I) or (11) and every extrcmal ray.Ri, 1 :::; i :::; 7l, of the
type (11) is simple.

We want to note that by the Proposition 2.3.2, it is sufficient to suppose that the contraction or any ~
of the type (II) gives a 3-fold with isolated singularities. Also, by the Theorem 2.3.3, the set R 1 , ... , Rn of
extremal rays has connected componenta of the type 2 1 , 23 2 ,ltm or 11 2 . The Theorem 2.3.6 gives the inverse
statement. Thus, the condition 2.6.5 is mostly the condition on the singularities of Y. t>

We say that a 3-fold Y with log-terminal aingularities haB simples! singularities if there exists a minimal
terminal reselution of singulari ties of Y wi th the condition 2.6.5. We should mention that in [16] we considered
much more narrow dass of simplest singularities.

Lemma 2.6.6. Let Y be Fano 9~/0Id with simplest log-terminal singularities and u : X - Y a minimal
terminal resolution 0/ singularities 0/ Y.

Then N E(X) is generated by a finite set of contractible extremal mys and aU its faces are contractible.
Every extremal ray R 0/ N E(X) belongs to one 0/ the /ollowing cases be/ow:

(i) R is one 0/ the mys R 11 ... , Rn which are contracted by the morphism u;
(ii) R· D(14) < 0 for one of divisors D(14) 0/ the extremal mys R1 , ... , Rn above. Thus, any curoe of

R is contained in D(lli).
(iii) R· Kx < O.

Proof. Compare with the proof of the Lemma 1.3.2 in [17] or the Lemma 2.1 in [7].
By tbe Theorem 2.3.3, there are rational €j > 0 such that for ß =L: €jD(14) we have the inequality

lli .ß < 0 for any 14 from (i). Since -Ky is ample on Y and the morphism u is the contraction of the face
R 1 + ... + Rn, it follows that for sufficiently amaH € > 0 we have the inequali ty - (u- K y + €ß) . T > 0 for
any non-zero T E N E(X). It follows that the element H = -(u- K y + €ß) is ample for sufficiently small
€ > O. By the formula (6.1), we have

I<x = u- I<y +L Oi D(J4), where - 1 < 0i :s O. (6.2)

1t foHows that H = -(Kx + L:(-Oi + Hi)D(~)), where for aufficiently small € > 0 we have the
inequalities 0 :5 -Oi + Hi < I, since 0 :s -Oi < 1. Since the pair (X, 2:(-al' )D(R;)) is log-terminal (in
the sense [2]), for sufficiently small ( > 0 the pair (X, L:( -Q'i + Hi)D(.Ri)) ia evidently log-terminal too.
Since the element -(I<x + L:( -oi)D(R;)) is ample on X, from [2, Theorem 4.5], it follows that N E(X) iB
generated by a finite set of extremal rays and every its face ia contractible.

Let R be an extremal rayon X and R ia different from the rays 14. Suppose that -R· I<x :2: O. Since
the ray R is contractile and -u- I<y is ample on Y I we have R .u- K y < O. From the formula (6.1) l it follows
that R· D(Rt) < 0 for some i. Since the ray R is contractible, any curve of R belongs to the divisor D(R;).
Otherwise, R· D(lli) 2: O. l>
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From the Lemma 2.6.6 and the Theorem 2.5.1, we get

Theorem 2.6.7. Let Y be Fano 9·fold with simples! log-terminal singularities and a : X ~ Y a
minimal terminal resolution of singularities of Y. Suppose that any extremal rayon X is an extremal ray of
the type (I) or simple extremal ray of the type (lI).

Then we have one of the cases (1), (2) or (9) below:
(1) dimN l (X) :5 8.
(2) One of the faces of N E(X) is contractible and has Kodaira dimension 1 or 2.
(3) There are extremal rays 51,52, ... , St, t ~ 2, of the type (II) such that the divisors

D(SI), D(52 ), ... , D(St) do not intersect one another, but SI + ... +St is not a face of N E(X) 01 the Kodaira
dimension 9.

r./} There are extremal rays SI, R 1, R 2 01 N E(X) which define the configuration (c) 01 the theorem 2.4.1.
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