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0. Introduction.

Here we continue investigations of our paper {16], where we were developing the diagram method for
non-singular algebraic 3-folds and 3-folds with simplest singularities. In this paper we transfer this results
on 3-folds with terminal singularities.

In the introduction we will formulate the results only for Fano 3-folds with Q-factorial terminal singu-
larities.

Let X be a Fano 3-fold with Q-factorial terminal singularities. Let R be an extremal ray of Mori
polyhedron of X. We say that R has the type (1) (respectively (II)) if curves of R fill an irreducible divisor
D(R) of X and the contraction of the ray R contracts the divisor D(R) in a point (respectively on a curve).
An extremal ray R is called smallif curves of this ray fill a curve on X.

A set £ of extremal rays is called extremal if it is contained in a face ¥ of Mori polyhedron. The £ has
Kodaira dimension §if the contraction of 7y gives a morphism on a 3-fold. The first result of the paper gives
a description for Fano 3-folds with Q-factorial terminal singularities of extremal sets £ of Kodaira dimension
3 which contain only extremal rays of the type (I) or (II).

A set L of extremal rays is called E-set if £ is not extremal but any proper subset of £ is extremal.
The second result of the paper gives for Fano 3-folds with Q-factorial terminal singularities a description
of E-sets L of extremal rays such that any proper subset of £ is extremal of Kodaira dimension 3 and £
contains extremal rays of the type (I) or (II) only.

From this description of extremal sets and E-sets we get the following basic result of the paper.

Theorem. Let X be Fano 3-fold with Q-faclorial terminal singularities. Then for X one of the following
stalemenis holds:

(1) dim N, (X) < 8.

(2) There exists a face of Mori polyhcdron NE(X) such that the contraction of this face gives a morphism
of X on a surface or a curve.

(3) There exists a small extremal ray R on X.

(4) There are 2t > 4 different lincar dependent extremal rays Ry, Ria, Ry, Raz, ..., Rix, e of the type
(11} such that the divisors D(R;)) = D(Riz) are coincided, 1 <i < t, but the divisors D(I%1) = D(Ri2) and
D(R;1) = D(R;2) don’t intersect one another for 1 <i< j<{t. (See figure 1, type By below.)

(5) There are three different erxtremal rays Sy, Ry, Ry of the type (II) suchk that the divisors D(S;) =
D(R3) are coincided, and Ry - D(R3) > 0, Ry - D(Ry) > 0, and Sy - D(R2) = 0. (See figure 2 below.)

We hope that later it will be possible to exclude the possibilities (5),(4),(2) and maybe (3) for some
greater than 8 constant in (1). We should say that now it is not known that dim N,(X) is bounded for Fano
3-folds X with Q-factorial terminal singularities.

I am grateful to Jaroslaw Wisniewski for useful discussions which helped me to find some mistakes in
the first Russian variant of this text. I am grateful to Miles Reid for important remarks.

This text was prepared in Max-Planck Institut fiir Matematik in Bonn, and I thank this Institute for
hospitality.



CHAPTER 1. DIAGRAM METHOD.

Here we will give a simplest variant of the diagram method for multi-dimensional algebraic varieties.
Precisely this method we shall use in the following chapter.

Let X be a projective algebraic variety with Q-factorial singularities over an algebraically closed field.
Let dimX > 2. Let N;(X) be the R-linear space generated by all algebraic curves on X by the numerical
equivalence, and let N'(X) be the R-linear space generated by all Cartier (or Weil) divisors on X by the
numerical equivalence. Linear spaces N;(X) and N'(X) are dual one another by the intersection pairing. -
Let NE(X) be a convex cone in Ny(X) generated by all effective curves on X. Let NE(X) be the closer
of the cone NE(X) in Ny(X). It is called Mori cone (or polyhedron) of X. A non-zero element z € N'(X)
is called nef if - NE(X) > 0. Let NEF(X) be the set of all nef elements of X and the zero. It is the
convex cone in N'(X) dual to Mori cone NE(X). A ray R C NE(X) with origin 0 is called eziremal if from
C) € NE(X), Ca € NE(X) and C + C; € R it follows that C;, € R and Cz € R.

We consider the following conditions (i), (ii) and (iii) for some set R of extremal rays on X.

()If R € R then all curves C € R fill out an irreducible divisor D(R) on X.

In this case we can correspond to R (and subsets of R) an oriented graph G(R) in the following way:
Two different rays R; and Rj are joined by an arrow Rj R with the beginning in R; and the end in Ry if
Ry - D{(R32) > 0. Here and in what follows, for an extremal ray R and a divisor D) we write R-D > 0 if
r-D>0forr€ R and r#0. (The same for the symbols <, > and <.)

A set £ of extremal rays is called extremal if it is contained in a face of NE(X). Equivalenty, there
exists a nef element H € N1(X) such that £ - H = 0. Evidently, a subset of an extremal subset is extremal
too.

We consider the following condition (ii) for extremal subsets of R.

(i)IfE = {Ry, ..., R} C R is extremal and my D(Ry)+maD(R2)+...+ my D(R,) is an effective divisor,
then there ezists a ray R; € € such that Rj - (mi D(R;) + maD(R2) + ...+ mp D(R,)) < 0. In particular, it
Jollows that the divisor myD(R,) + maD(Rg) + ... + mp D(R,) is not nef.

A set £ of extremal rays is called E-subset if the £ is not extremal but every proper subset of £ is
extremal.

We consider the following condition (iii) for E-subsets of R.

(iii) If £ = {Ry,..., Ra} C R is an E-subset, then there exists a non-zero effective nef divisor D(L) =
mi D(R;) + ng(Rg) + ..+ ma D(R,).

Lemma 1.1. Suppose that for a set R of extremal rays the conditions (i), (i) and (iti) above hold.

Then any E-subset L C R is connecled in the following sense: For any decomposition L = L[] L,
where £, and L4 are not emply, there ezisls an arrow Ry Rq such that By € £, and Ro € Lo, IfLCR and
M C R are lwo different E-subsels, then there erists an arrow LM where L € £ and M € M.

Proof. Let £ = {Ry,..., Ra}. By (iii), there exists a nef divisor D(L) = mi D(Ry) + maD(R2) + ... +
m, D(R,). If one of the coeflicients my, ..., m, is equal to zero, we get a contradiction with the conditions (ii)
and (iii). It follows that all the coeflicients my, ..., mp, are positive. Let £ = £, ][] £, where L, = {Ry, ..., R}
and Lg = {Rk+1, ...,Rn}. The divisors D] = mlD(Rl) + ..+ mkD(R;‘.) and Dg = mk+1D(Rk+1) + ...+
m, D(R,) are non-zero. By (ii), there exists a ray f;,1 < i < k, such that R; - D; < 0. On the other hand,
Ri - D(L) = Ry - (Dy + D2) 2 0. It follows, that there exists j, k+ 1 < j < n, such that R; - D(R;) > 0. It
means that R; R; is an arrow.

Let us prove the second statement. By the condition (iii), for every ray R € L, we have the inequality
R-D(M)>0.1If R- D{(M) =0 for any R € L, then the set £ is extremal, and we get the contradiction. It
follows that there exists a ray R € £ such that R- D(M) > 0. It follows the statement. b

The Theorem 1.2 below is an analog for algebraic varieties of arbitrary dimension of the Lemma 3.4
from [7] and the Lemma 1.4.1 from [10], which were devoted to surfaces.

Let NEF(X) = NE(X)* C N'(X) be the cone of nef elements of X and M(X) = NEF(X)/Rt its
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projectivization. Let R(X) be the set of all extremal rays of X. If v is a face of M(X), then
R(Y) = {RE€R(X)|3R*H €v: R H = 0}.

A convex polyhedron is called closed if it is the convex hull of a finite set of points. A closed polyhedron
is called simplicial if all its faces are simplexes. A closed polyhedron is called simple (equivalently, it has
simplicial angles) if it is dual to a simlicial one. In other words, a polyhedron is simple if its face of
codimension k is contained exactly in k its faces of the highest dimension. A polyhedron M is called simple
in a face v if every face v; C 7 (including ¥; = <) is contained exactly in codim ¥; (in.AM) highest dimension
faces of M. In other words, for y; C =, the dual face v{ is a simplex of the dual polyhedron AM*.

Let A, B be two vertices of an oriented graph G. The distence p(A, B) in G is a length (the number of
links) of the shortest oriented path of the graph G with the beginning in A and the end in B. The distance
is oo if this path does not exist. The diameler diam G of the oriented graph G is the maximum distance
between ordered pairs of its vertices. By the Lemma 1.1, the diameter of an E-subset is a finite number.

Theorem 1.2. Let X be a projective algebreic variety with Q-factorial singularities and dim X > 2.
Let y be a closed face of M(X) and M(X) is simple in the face v. Suppose that the set R(y) satisfies the
conditions (i), (ii) and (iii) above. Suppose that there are some constants d,C,, Cy such that the conditions
(a) and (b) below hold:

(a) diam L < d for every E-subset L C R(7);

(6) {(R1, Ra) € Ex £ |1 < p(Ry, Ra) < d} < CHE;

and

f{(Ri, Re) € Ex E|d+ 1< p(Ry, Ra) < 2d+ 1} < Cafl€ for every eztremal subset £ C R.

Then dim v < (16/3)C} + 4C; + 6.
Proof.
We use the following Lemma 1.3 which was proved in [6]. The Lemma was used in [6] to get a bound

(< 9) on the dimension of a hyperbolic (Lobachevsky) space admitting an action of an arithmetic reflection
group with a field of definition of the degree > N. Here N is some constant.

Lemma 1.3. Let M be a conver closed simple polyhedron of the dimension n, and AL¥ the average
number of i-dimensional faces of k-dimensional faces of M.
Then forn > 2k — 1

Ak < e R (R )
" 1 + (v

In particular, ifn >3

n—2

An if n is odd.

0.2 A=) ifn s even,
Ayt <

Proof. See [6]. >

From the estimate of A%? of the Lemma, it follows the following analog of Vinberg’s Lemma from [13].
Vinberg’s Lemma was used by him to obtain an estimate (dim < 30) for the dimension of a hyperbolic space
admitting an action of a discrete reflection group with bounded fundamental polyhedron.

Lemma 1.4. Lei M be a convex simple polyhedron of the dimension n. Let C be a posilive number
and D a number. Suppose that oriented angles (2-dimensional plane) of M are supplied with weights and
the following conditions (1) and (2} hold:

(1) The sum of weights of all oriented angles at any vertez of M is nol greater than Cn + D.

(2) The sum of weights of all oriented angles of any 2-dimensional face of M is at least 5 — k where k
is the number of vertices of the 2-dimensional face.

Then
(8d +8)/n if n is even,

(8d+7)/n ifnisodd S8CHIDTE

n<80+2+{
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Proof. We correspond to a non-oriented angle of A the weight which is equal to the sum of two
corresponding oriented angles. Evidently, the conditions of the Lemma hold for the weights of non-oriented
angles too if we forget about the word ”oriented”. Then we obtain Vinberg’s lemma from [13] which we
formulate a little bit more precisely here. Since the proof is very simle, we give the proof here.

Let ¥ be the sum of all (non-oriented) angles of the polyhedron M. Let ap be the number of vertices
of M and as the number of 2-dimensional faces of M. Since M is simple,

n(n—1)

0
9 = ﬂgAn'2.

(241]
From this inequality and the conditions of the Lemma, it follows

n(n—1) _

(Cn+D)ay>XT > Z oz k(5 — k) = Hag — ag = ap( 5 407 1),

where ag  is the number of 2-dimensional faces with k vertices of M. From this inequalities and the bound
for A2? of the Lemma 1.3, we get the Lemma 1.4. b

The proof of the Theorem 1.2. (Cf. [13].) Let A be an oriented angle of 7. Let R(A) C R(¥) be
the set of all extremal rays of M(X) which are orthogonal (with respect to the intersection pairing) to the
vertex of A. We can define the extremal rays R;(A) and Rz(A) by the conditions that R(A) — { R2(A)} and
R(A) — {R1(A)} are orthogonal to the first and second side of the oriented angle A respectively. Evidently,
the set R(A) and the ordered pair of rays (R, Rp) define the oriented angle A uniquely. We define the
weight o(A) by the formula:

2/3, 1< p(Re(A), Ra(A)) < d,
o(A) = { 1/2, ifd+1<p(Ri(A), R2(A)) <2d+ 1,
0, if 2d + 2 < p(R1(A), R2(A)).
Here we take the distance in the subgraph G(R{A)). Let us prove the conditions of the Lemma 1.4 with the
constants C = (2/3)Cy + Cy/2 and D = 0.

The condition (1) is obvious.

Let us prove the condition (2). Let 73 be a triangle of 5. The set R(v3) is the union of the set R(7y3)
of extemal rays, which are orthogonal to the plane of the triangle v3, and the rays Ry, fts, 3, which are
orthogonal to the sides of the triangle ¥3. The union of the set R(¥y3) with every two rays [rom Ry, Rp, R3 is
extremal, since it is orthogonal to a vertex of ¥a. On the other hand, the set R(y3) = R(y3) U { R, Rz, Ra}
is not extremal, since it 18 not orthogonal to a point of M(X). Indeed, the sets of points of AM(X), which
are orthogonal to the sets R(y3) U { Rz, Ra}, R(ya) U {Ri, Ra}, and R(ya) U{R1, Ry} are the vertices A;, A3
and Az respectively of the triangle 4a, and the intersection of the sets of vertices is empty. Thus, there exists
an E-subset £ C R(+3), which contains the rays R, Ry, R3. By the condition (a), the graph G(£) contains
an oriented path s of the length < d which connects the rays R;, Ra. If this path does not contain the ray
R2, then the oriented angle of v3 defined by the set R(ya) U { Ry, R3} and the pair (R,, 23) has the weight
2/3. If this path contains the ray R2, then the oriented angle of y3 defined by the set R(v3) U {1, Rz}
and the pair (R;, R2) has the weight 2/3. Thus, we proved that the side A2 A3 of the triangle y3 defines an
oriented angle of the triangle with the weight 2/3 and the first side A A3 of the oriented angle. The triangle
has three sides. It follows the condition (2) of the Lemma 1.4 for the triangle.

Let v4 be a quadrangle of 4. In this case,

R(74) = R(74) U{Ry, Ry, B3, R4}

where R(74) is the set of all extremal rays which are orthogonal to the plane of the quadrangle and the rays
Ry, Ra, Ra, Ry are orthogonal to the consecutive sides of the quadrangle. As above, one can see that the
sets R(74) U{Ry, B3}, R{y4) U {Ry, R4} are not extremal, but the sets R(y4) U {Ry, Ry}, R(7a) U{ Ry, R3},
R(ys) U {Ra, Rs}, and R(v4) U {R4, R1} are extremal. It follows that there are E-sets £, A such that
{Ry, R3} C £ C R(v4)U{R1, R3} and {Ra, R4} C N C R(74)U{R3, R4}. By the Lemma 1.1, there are rays
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R € £ and Q € N such that RQ is an arrow. By the condition (a) of the Theorem, one of the rays f;, R3 is
joined by an oriented path s; of the length < d with the ray R and this path does not contain another ray
from R;, Rz (here R is the end of the path s;). We can suppose that this ray is R; (otherwise, one should
replace the ray R; by the ray Ra). As above, we can suppose that the ray @ is connected by the oriented
path 83 of the length < d with the ray R3 and this path does not contain the ray Ry. The path s; RQs3 is
an oriented path of the length < 2d+1 in the oriented graph G(R(74)) U {Ry, R2}). It follows that the angle
of the quadrangle v4, such that the consecutive sides of this angle are orthogonal to the rays R; and R, has
the weight > 1/2. Thus, we proved that for a pair of opposite sides of 4 there exists an oriented angle with
weight > 1/2 such that the first side of this oriented angle is one of this oppaosite sides of the quadrangle. A
quadrangle has two pairs of opposite sides. It follows that the sum of weights of oriented angles of v4 is > 1.
It proves the condition (2) of the Lemma 1.4 and the Theorem. p.

Below, we will apply the Theorem 1.2 to threefolds with singularities,



CHAPTER 2. THREEFOLDS.

1. Contractible extremal rays.

We consider normal projective 3-folds X with Q-factorial singularities.

Let R be an extremal ray of Mori polyhedron ﬁ(}() of X. A morphism f : X — Y on a normal
projective variety Y is called the contraciion of the ray R if for an irreducible curve C of X the image f(C)
is a point iff C € R. The contraction f is defined by a linear system H on X (H gives the nef element of
N1(X), which we denote by H also). It follows that an irreducible curve C is contracted iff C - H = 0. We
assume that the contraction f has properties; f,Ox = Oy and the sequence

0—-RR—=Ni(X)—=N(Y)—0 (1.1)

is exact where the arrow Ni(X) — Ny(Y) is f,. An extremal ray R is called contractible if there exists its
contraction f with these properties.

The number x(R) = dimY is called Kodaira dimension of the contractible extremal ray R.

A face v of NE(X) is called contractible if there exists a morphism f : X — Y on a normal projective
variety Y such that f.y =0, f.Ox = Oy and f contracts curves lying in 7 only. The s(y) = dimY is called
Kodaira dimension of 7.

Let H be a general nef element orthogonal to a face ¥ of Mori polyhedron. Numerical Kodaira dimension
of v is defined by the formula

3, if H3>0;
Knum(Y) =< 2, f H®=0and H*#0;.
1, ifH*=0.

It is obvious that for a contractible face ¥ we have knum(y) > k(7). In particular, Knym(y) = &(y) for a
contractible face v of Kodaira dimension x(y) = 3.

2. Pairs of extremal rays of Kodaira dimension three
lying in contractible faces of N E(X) of Kodaira dimension three.

Further X is a projective normal threefold with Q-factorial singularities.

Lemma 2.2.1. Let R be a contractible extremal ray of Kodaira dimension 8 and f : X — Y iis
contraction.

Then there are three possibilities:

(I) All curves C € R fill an irreducible Weil divisor D(R), the contraction f contracts D(R) in a point
and R-D(R) < 0.

(1I) All curves C € R fill an irreducible Weil divisor D(R), the contraction f contracts D(R) on an
irreducible curve and R- D(R) < 0.

(11I) All curves C € R give a finile set of irreducible curves and the contraction f contracts these curves
in points.

Proof. Assume that some curves of R fill an irreducible divisor D. Then R - D < 0 (this incquality
follows from the Proposition 2.2.6 below). Suppose that C € R and D does not contain C. It follows that
R-D > 0. We get a contradiction. It follows the Lemma. o

According to the Lemma 2.2.1, we say that an extremal ray R has the type (I}, (II) or (III) if it is
contractible of Kodaira dimension 3 and the statements (I), (IT) or (IIT) respectively hold.

Lemma 2.2.2. Let Ry and Ry are two different extremal rays of the type (I). Then divisors D(R,) and
D(R2) do not intersect one another.

Proof. Otherwise D(R;) and D(R3) have a common curve and the rays R; and R; are not different. b
For a divisor D on X let

NE(X, D) = (image N,(D)) N NE(X).
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Lemma 2.2.3. Let R be an eztremal ray of the type (1), and [ its contraction.
Then NE(X,D(R)) = R*F + R*S, where F is a fiber of f and R f,S = RY(f(D)).

Proof. This follows at once from the exact sequence (1.1). >

Lemma 2.2.4. Let R, and Ry are {two different e:a:tpemal rays of the type (II) such that the divisors
D(R]) = D(Rz)
Then for D = D(R,) = D(R3) we have:

NE(X,D) = Ry + Ra.

In particular, do not ezist three different extremal rays of the type (II) such that their divisors are coincided.
Proof. This follows from the Lemma 2.2.3. o

Lemma 2.2.5. Let R be an exiremal ray of the type (II} and f ils contraction.

Then there does not exist more than one extremal ray Q of the type (I) such that D(R) N D(Q) is not
empty. If Q is this ray, then D{(R) N D(Q) is a curve and any irreducible component of this curve is not
conilained in fibers of f.

Proof. The lasi statement is obvious. Let us proof the first one. Suppose that @; and Q2 are two
different extremal rays of the type (1) such that D(Q;) N D(R) and D(@4) N D(R) are not empty. Then the
plane angle NE(X, D(R)) (see the Lemma 2.2.3) contains three different extremal rays: @;,Qz and R. It
is impossible. b

The following key Proposition is very important.

Proposition 2.2.6. Let X be a projective 3-fold with Q-factorial singularities, Dy, ..., Dy, irreducible
divisors on X and f : X — Y a surjective morphism such that dim X = dimY and dim f(D;) < dim D;.
Lety € f(D1)N...N f(Dm).

Then there are a; > 0, ..., ap, > 0 and an open U, y€ U C f(D1) U ...V f(Dr,), such that

C-(a1Dy+ ...+ amDy) <0

if a curve C C Dy U...U Dy, belongs to a non-trivial algebraic family of curves on f(Dy))U...U f(Dm) and
f(C) =pointe U.

Proof. It is the same as for the well-known case of surfaces (but, for surfaces, it is not necessary to
suppose that C belongs to a nontrivial algebraic family). Let H be an irreducible ample divisor on X and
H' = f,H. Since dim f(D;) < dim Dy, it follows that f(D;)U...U f(Dy) C H’. Let ¢ be a non-zero rational
function on Y which is regular in a neighborhood U of y on Y and is equal to zero on the divisor H’. In the
open set f~1(U) the divisor

m

(fe)=> aDi+ > b;Z;

i=1 i=1

where all a; > 0 and all b; > 0. Here every divisor 7; is different from any divisor D;. We have
m n
0=C-Y a;Di+C-Y_b;Z;.
i=1 j=1

Here C - (E?=1 b;Z;) > 0 since C belongs to a nontrivial algebraic family of curves on a surface f(D;)U...U
f(Dm) and one of the divisors Z; is the hyperplane section H. v

Lemma 2.2.7. Lel Ry, Ry are two eztremal rays of the type (I}, divisors D(R,), D(R3) are different
and D(R)) N D(Ry) £ 8. Assume that Ry, Ry belong o a contractible face of NE(X) of Kodaira dimension
3. LetO# Fy € Ry and 0 # F> € Ra.

Then

(F1 - D(R2))(F2 - D(R1)) < (F1 - D(R1))(Fz - D(Rz)).
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Proof. Let f be the contraction of a face of Kodaira dimension 3, which contains both rays R,, Rz. By
the proposition 2.2.6, there are a; > 0,a; > 0 such that

ar(F1 - D(Ry)) + aa(Fy - D(R3)) <0 and a1(Fz- D(Ry)) + az(F2 - D(R2)) < 0.

Or
—ay(Fy - D(Ry)) > aa(Fy - D(R2)) and — ag(Fy - D(R2)) > a1(F2 - D(Ry))

where Fy - D(R;) < 0, F2 - D(R2) < 0 and Fy - D(Ry) > 0, F; - D(Ry) > 0. Multiplying inequalities above,

we obtain the Lemma. o

3. A classification of sets of simple extremal rays of the type (I} and (II).

As above, we assume that X is a projective normal 3-fold with Q-factorial singularities.

Definition 2.3.1. An extremal ray R of the type (II} is called simple if
R-(DRYy+D)>0

for any irreducible divisor D such that B-D > 0.
The following statement gives a simple sufficient condition for an extremal ray to be simple.

Proposition 2.3.2. Let R be an extremal ray of the type (II) and f : X — Y the contraction of R.
Suppose that the curve f{D{R)) is not conlained in the set of singularities of Y.

Then

(1) the ray R is simple;

(2) if the characteristic of the ground field is 0 and X has only isolated singularities then a general
element C of the ray R (a general fiber of the morphism f | D(R)) is isomorphic to P! and the divisor D(R)
1s non-singular along C. If additionally R- Kx <0, then C-D(R)=C - Kx = —1.

In particular, both statements (1) and (2) arc true if X has terminal singularities and R - K < 0.

Proof. Let D be an irreducible divisor on X such that R-D > 0. Since R- D(R) < 0, the divisor D is
different from D(R) and the intersection DN D(R) is a curve which does not belong to R. Then D' = f,(D)
is an irreducible divisor on Y and I' = f(D(R}) is a curve on D'. Let y € T be a non-singular point of Y.
Then the divisor D' is defined by some local equation ¢ in a neighborhood U of y. Evidently, in the open
set f~1(U) the divisor

(f*¢) = D+ m(D(R))

where m > 1. Let a curve C € R and f(C) = y € UN f(D(R)). Then 0 = C - (D + m(D(R))) =
C-(D+ D(R))+ C - (m—1)(D(R)). Since m > 1 and C - D(R) < 0, it follows that C - (D + D(R)) > 0.
Let us prove (2). Let us consider a linear system |H| of hyperplane sections on ¥ and the corresponding
linear systems on the resolutions of singularities of ¥ and X. Let us apply Bertini’s theorem (see, for
example, [14, ch.IlI, Corollary 10.9 and the Exercise 11.3] ) to this linear systems. Singularities of X and ¥
are isolated. Then by Bertini theorem, for a general element H of |H| we obtain that: (a) H and f~!(H)
are irreducible and non-singular. (b) H intersects I transversely in non-singular points of I'. Let us consider
the corresponding birational morphism f' = f|H' : H' — H of the non-singular irreducible surfaces. It is a
composition of blowing ups in non-singular points. Thus, fibers of f over H NT are trees of non-singular
rational curves. The exceptional curve of the first of these blowing ups is identified with the fiber of the
projectivization of the normal bundle P(Np;y ). Thus, we obtain a rational map over the curve T

¢ : P(Np/y) — D(R)

of the irreducible surfaces. Evidently, it is the injection in the general point of P(N/y). It follows that ¢
is a birational isomorphism of the surface. Since ¢ is a birational map over the curve T', it follows that the
general fibers of this maps are birationally isomorphic. It follows that a general fiber of f’ is C ~ P!. Since
C is non-singular and is an intersection of the non-singular surface H’ with the surface D(R?), and since X
has only isolated singularities, it follows that D(R) is non-singular along the general curve C.
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The X and D{R) are non-singular along C =~ P! and the curve C is non-singular. Then the canonical
class K¢ = (Kx + D{R))|C where both divisors Ky and D(R) are Cartier divisors on X along C. It follows
that —2 = deg K¢ = Kx -C+ D(R) - C, where the both numbers Kx - C and D(R)- C are negative integers.
Then D(R)-C = Kx -C=-1.

If X has terminal singularities and R - Kx < 0, then Y has terminal gingularities too (see¢, for exam-
ple, [2]). Moreover, terminal singularities are isolated. From (1), (2), it follows the last statement of the
Proposition. o

Let Ry, R» are two extremal rays of the type (I) or (II). They are joined if D(R)) N D(Ra) # #. It
defines connected components of a set of extremal rays of the type (I) or (II).

We recall that a set £ of extremal rays is called eztremalif it is contained in a face of NE(X). We say
that £ is eztremal of Kodaira dimension 8 if it is contained in a face of numerical Kodaira dimension 3 of
NE(X).

We prove the following classification theorem.

Theorem 2.3.3. Let £ = {Ry, Ra, ..., Ra} be an extremal set of extremal rays of the type (1} or (II).
Suppose that every exiremal ray of £ of the type (II) is simple. Assume that £ is contained in a coniracilible
face with Kodaira dimension 3 of NE(X). (In particular, £ is extremal of Kodaira dimension 3.)

Then every connecled component of £ has the type Ry, By, T,y or D3 below (see figure 1).

(A1) One extremal ray of the type (I).

(B2) Two different extremal rays Sy, Sy of the type (II) such that their divisors D(S)) = D(S;) are
coincided.

(€m) m > 1 extremal rays Sy, Sz, ..., Sm of the type (I} such that the divisors D(S2), D(Ss), ..., D(Sm)
do not intersect one another, and Sy - D(S5;)=0,i=2,..,m, bul S; - D(51) > 0,i=2,...,m.

(D2) Two extremal rays 51, S, where Sy is of the type (I} and Sy of the type (I), Sy - D(S2) > 0 and
S2-D(S1) > 0. Ifby > 0,b2 > 0 and one of by, by is not equal 1o zero then either Sy - (by D(S1)+5b2D(S3)) < 0
or Sz - (b]D(S1) + sz(Sz)) < 0.

The following inverse statement is true: If £ = {Ry, Ra, ..., Ry} 1s a connecled set of extremal rays of the
type (I) or (II) and £ has the type A,,B,, €, or D, above, then £ generates a simplicial face Ry + ...+ R,
of the dimension n and numerical Kodaira dimension 3 of NE(X). In particular, the set £ is linearly
independent.

S S1 By Ay gs S 1 Sz.
Type 24 Type B, Type €3 Type D>

Figure [

Proof. Let us prove the first statement. We can assume that £ is connected. We have to prove that
then £ has the type %, B3, &, or Dy, [fn =1, it is obvious.

Let n = 2. From the Lemma 2.2.2, it follows that one of the rays R, Rz has the type (IT). Let R; has
the type (II) and Rj the type (I). Since D(R;)ND(R;) # @, then evidently Ry- D(Ry) > 0. If Ry- D(R,) = 0,
then evidently the curve D(R,) N D{R;) belongs to the ray R;. It follows, that the rays R; and Rz contain
the same curve. We get the contradiction. Thus, R; - D(R3) > 0. The rays Ry, Ry belong to a contractible
face of Kodaira dimension 3 of Mori polyhedron. Let f be a contraction of this face. By the Lemma 2.2.3,
f contracts the divisors D(R;), D(R2) in a same point. By the Proposition 2.2.6, there are positive a;,aqg
such that Ry - (a1 D(R,) + a2 D(R3)) < 0 and Ry - (a; D(R;) + az D(R2)) < 0. Now suppose that for some
b, > 0 and by > 0 the inequalities Ry - (by D(R1) + b3 D(Rg)) > 0 and Ry - (b D(Ry) + b2 D(R2)) > 0 hold.
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There exsits A > 0 such that Aby < a1, Aby < a2 and one of these inequalities is the equality. For example,
let Ab; = a;. Then

Ry - (a1D(Ry) + az D(Ry)) = Ry - Mby D(R;) + b2D(R3)) + Ra - (a2 — Ab2) D(Rz) 2> 0.

We get the contradiction. It proves that in this case £ has the type D,.

Assume that both rays Ry, R; have the type (II). Since the rays R;, R are simple, from the Lemma
2.2.7, it follows that either R, - D(R3) = 0 or the Ry - D(R)) = 0. If both these equalities hold, the rays
Ry, R2 have the common curve. We get the contradiction. Thus, in this case £ has the type €,.

Let n = 3. Every proper subset of £ has connected components &,, B, €, or D,. Using the Lemmas
2.2.2—2.2.5, one can see very easy that then either £ has the type €3 or we have the following case:

The rays R, Rs, R3 have the type (IT), every two element subset of £ has the type €2 and we can
change the numeration so that R, - D(R;) > 0, Ry - D(R3) > 0 and Rz - D(Ry) > 0. Let £ C v where v
is a contractible face of NE(X) of the Kodaira dimension 3. Let f be a contraction of the face y. By the
Lemma 2.2.3, f contracts the divisors D(R;), D(R2), D(R3) in a one point. By the Proposition 2.2.6, there
are positive a;, ag, ag such that

R; - (a1 D(Ry) + a2 D(R3) + a3 D(R3)) < 0,
1 =1,2,3. On the other hand, from the simplicity of the rays R, Rz, Ra, it follows that

Ri - (D(Ry) + D(R) + D(R3)) > 0.

Let a; = min{a;, ag, as}. From the last inequality, Ry - (a1 D(R1) + a2 D(R2) + aa D(R3)) = Ry - a1 (D{(Ry) +
D(R3)+ D(R3)) + Ry - ((az —a1)D(R2) + (a3 — a1 ) D(R3)) > 0. We get the contradiction with the inequality
above.

Let n > 3. We have proved that every two or three element subset of £ has connected components
Ay, B,, €, or Dy. It follows very easy that then £ has the type €,.

Let us prove the inverse statement.

For the type %, it is obvious.

Let £ has the type ™8,. Since the rays S;, 53 are extremal of Kodaira dimension 3, there are nef elements
Hy,Hysuchthat H - Sy = H3-S3=0,H> > 0,H> > 0. Let 0 # C, € 5; and 0 # Cz € S5. Let D be the
divisor of the rays S; and Sp. Let us consider the map

(Hy,Hy) = H = (=D -C3)(Hz - C)H1 + (=D - C1)(Hy - Co)Hy + (Hy - C1)(H, - Ca)D. - (3.1)

For the fixed Hy, we get the linear map Hy; — H of the set of nef elements Ho orthogonal to S» into
the set of nef elements H; orthogonal to S; and S;. This map has a one dimensional kernel, generated by
(=D - Co)H + (Hy - C3)D. 1t follows that Sy + S, is the two dimensional face of N E(X).

For the general nef element H = a; H, +a; H3+bD orthogonal to this face, where ay, az, b > 0, we have:
I:[B = (01H1 + dgHg + bD)S 2 (CI]HI + GgHg + bD)2(01H1 + GzHg) = (CIIHI + 02H2 + bD)(CIqul + ﬂsz -+
bD)(a1H1 + asz) > (allfl + 02H2)2(01H1 +ayHq + bD) z (G1H[ -+ 02H2)3 > 0, since ayHy + axHq + 8D
and ay Hy + agH, are nef. It follows that the face §; 4+ 52 has Kodaira dimension 3.

Let £ has the type €. Let H be a nef element orthogonal to the ray 51. Let 0 #£ C; € S;. Let us
consider the map

m
H— H'=H+3 (-(H-C)/(Ci- DSHDS).  (3.2)
i=2
It is the linear map of the set of nef elements H orthogonal to S) into the set of nef elements H'’ orthogonal
to the rays 51, Sa, ..., Sm. The kernel of the map has the dimension m—1. It follows that the rays 51, S, ..., Sm
belong to the face of NE(X) of the dimension < m. On the other hand, multiplying rays S, ..., S on the
divisors D(S1), ..., D(Sm), one can see very easy that the rays S,...,S,, are linearly independent. Thus,
they generate the m-dimensional face of N E(X). Let us show that this face is S + 52 + ... + Sm. To prove
it, we show that every m — 1 ray subset of £ is contained in a face of NE(X) of the dimension < m — 1.

10



If this subset contains the ray S, this subset has the type €,,_;. We have proved that this subset
belongs to the face of NE(X) of the dimension m — 1. Let us consider the subset {S;,Ss,..., Sm}. Let H
be an ample element on X. For the element H the map (3.2) gives the element H' which is orthogonal to
the rays 53,53, ..., Sm, but is not orthogonal to the ray §,. It follows that the set {S3,S3,...,5m} belongs
to the face of the Mori polyhedron of the dimension < m. Like above, one can see that for the general H
orthogonal to Sy the element H' has (H’)® > H3 > 0.

Let £ has the type Dj. Let H be a nef element orthogonal to the ray Sz. Let 0 # C; € S;. Let us
consider the map

(H - C1)((=D(S2) - C2)D(S1) + (D(81) - C2)D(S3))
(D(82) - C2)(D(S1) - C1) = (D(S1) - C2)(D(S2) - Cr)

H—H =H+ (3.3)

Evidently, Cy - ((—=D(52) - C2)D(51) + (D(S1) - C2)D(S2)) = 0. From this equality and the inequality from
the definition of the system Dy, it follows that Cy - ((—D(S2) - C2)D(S1) + (D(S1) - C2)D(S2)) < 0. Thus,
the denominator from the formula (3.3) is positive. Then (3.3) is the linear map of the set of nef element H
orthogonal to the ray S; into the set of nef elements H’ orthogonal to the rays 5),52. Evidently, the map
has the one dimensional kernel. Thus, the rays Sy and S; generate the two dimensional face S, + S, of Mori
polyhedron. As above, for the general element H orthogonal to S; we have (H’)* > (H)? > 0. v

Corollary 2.3.4. Let & = {R,, Ra,..., Rn} be an extremal set of extremal rays of the type (I} or (1I)
and every extremal ray of £ of the type (II) is simple. Assume that £ is contained in a coniractible face
with Kodaira dimension 3 of the NE(X). Let my > 0,my > 0,...,m, > 0 and at least one of my,...,my, is
positive,

Then there erists i, 1 <1 < n, such that

Ri - (miD(Ry) + ...+ my D(R,)) < 0.

Proof. It is sufficient to prove this statement for the connected £. For every type %, B4, €,,, and D, of
the Theorem 2.3.3, one can prove it very easy. v

Unfortunately, in general, the inverse statement of the Theorem 2.3.3 holds only for a connected extremal
set £. We will give two cases when it is true for a non-connected £.

Definition 2.3.5. A threefold X is called strongly projective (respectively very strongly projective) if
the following statement holds: a set {Qi,...,@n} of extremal rays of the type (II) is extremal of Kodaira
dimension 3 (respectively generates the simplicial face @y + ... + @ of NE(X) of the dimension n) if its
divisors D(Q1), ..., D(Qn) do not intersect one another.

Theorem 2.3.6. Let £ = {Ry, Ra, ..., Ra}be a set of extremal rays of the type (I) or (11} such that
every connected component of £ has the type Ay, B, €, or Do,

Then:

(1) € is extremal of Kodaira dimension § if and only if the same is true for any subset of £ containing
only extremal rays of the type (11} whose divisors do not intersect one another. In particular, it holds if X
18 strongly projective.

(2) £ generates the simplicial face Ry + ...+ R, with Kodaira dimension 8 of the Mori polyhedron if and
only if the same is irue for any subset of £ containing only eztremal rays of the type (II) whose divisors do
not inlersect one another. In particular, it is true if X is very strongly projective.

Proof. Let us prove (1). Only the inverse statement is non-trivial. We prove it using an induction by
n. For n = 1 the statement is obvious.

Assume that some connected component of £ has the type %;. Suppose that this conponent contains
the ray R;. By induction, there exists a nef element H such that H* > 0 and H - R; = 0if i > 1. Then there
exists k > 0, such that H' = H+kD(Ry) isnef and H'-£ = 0. As above, one can prove that (H')* > H3 > 0.

Assume that some connected component of £ has the type B,. Suppose that this component contains
the rays Ry, Ry and D(Ry) = D(R2) = D. Then, by induction, there are nef elements H, and H; such that
Hi®>>0,H;® >0and Hy - {Ry,Rs,...,Ra} = 0,Hqy- {Ra, Ra, ..., Ra} = 0. As for the proof of the inverse
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statement of the Theorem 2.3.3 in the case B, there are &y > 0,k2 > 0,k3 > 0 such that the element
H= lel +k2H2+k3D is nef, H‘£= 0 and H3> 0.

Assume that some connected component of £ has the type €,,m > 1. We use the notations of the
Theorem 2.3.3 for this connected component. Let it is {5y, S2, ..., Sm}. By the induction, there exists a nef
element H such that H is orthogonal to £—{Sa, ..., Sm} and H3 > 0. As for the proof of the inverse statement
of the Theorem 2.3.3 in the case €, there are k3 > 0, ..., km > 0 such that H' = H4koD(S2)+...4+ ke D(Sm)
isnef, H'-£=0and (H')® > H3 > 0.

Assume that some connected component of £ has the type D,. We use notations of the Theorem 2.3.3
for this connected component. Let it is {Si,S3}. By the induction, there exists nef element H such that
H3 > 0 and H is orthogonal to £ — {S)}. As for the theorem 2.3.3, there are k; > 0,k2 > 0 such that
H' = H + k1 D(S)) + k2D(S2) is nef, H' - £ =0 and (H')® > H3 > 0.

If every connected component of £ has the type €;, then the statement holds by the condition of the
Theorem.

Let us prove (2). Only the inverse statement is non-trivial. We prove it using an induction by n. For
n = 1 the statement is true. It is sufficient to prove that £ is contained in a face of a dimension < n of
Mori polyhedron because, by the induction, any its n — 1 element subset generates a simplicial face of the
dimension n — 1 of Mori polyhedron.

Assume that some connected component of £ has the type «;. Suppose that the ray R, belongs to this
component and 0 # C), € R;. Let us consider the map

H— H =H+((H-C)/(=D(Ry) - C1))D(Ry).

of the set of nef elements H orthogonal to the set {Ra, ..., R,} into the set of nef elements H’ orthogonal
to the £. It is the linear map with one dimensional kernel. Since, by the induction, the set {R,, ..., R} is
contained in a face of Mori polyhedron of the dimension n — 1, it follows that £ is contained in a face of the
dimension n.

If £ has a connected component of the type B3, €, m > 1, or Do, the proof is the same if one uses the
maps (3.1), (3.2) and (3.3) above.
If all connected components of £ have the type €, the statement holds by the condition.

Remark 2.3.7. Like the statement (1) of the Theorem 2.3.6, one can prove that a set £ of extremal
rays with connected components of the type A, B3, €, or D3 is extremal if and only if the same is true for
any subset of £ containing only extremal rays of the type (II) whose divisors do not intersect one another. b

The following statement is useful also.

Proposition 2.3.8. Assume that a set £ of eziremal rays has connected components of the type
911,‘32,% or 92.

Then the following conditions are equivalent:

(i) The set £ is linearly dependent.

(ii) The set £ contains > 2 connecled componenis of the type By such that their rays are linearly
dependent. Let these components are B!, ..., Bt > 2. Then we can choose the numeration so that B' =
{Ri1, Riz} and a linear dependence has a form

anfn +an Ry + .+ an Ry = a12Ry3 + agaflga + ... + ara Ry
where all a;; > 0.

Proof. Let £ = {R,,..., R} and a non-trivial linear dependence is a; Ry + ... + a, Ry = 0. 1f we
multiply this equality on divisors D(R1), ..., D(Rsy), we get that a; = 0 if the ray Ry belongs to a connected
component of the type A,, €, or V2. Thus, there are connected components of £

B! = {Ry1, Ri2}, B? = {Ray, Raa}, ..., B' = {Ry, Raa},
t > 1, of the type B, such that we have the linear dependence
ann Ry + ay2Riz + aa1 Ray + azoRaz + ...+ @ Ry + apRyz = 0,
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where either a;; #0ora;a Z0forany 1 <i<t.

Here t > 2 since the rays R;; and Rip are different. If we multiply this equality on the divisor
D; = D(R;1) = D(Riz), we get for some a; > 0,8 > 0 that ¢ja; + B;a;2 = 0. Thus, a;; and a;p have
opposite sings. It follows the Proposition. p

4. A classification of E-sets of extremal rays of the type (I) or (II).

As above, we suppose that X is a projective normal 3-fold with Q-factorial singularities.
We recall that a set £ of extremal rays is called E-set if it is not extremal but any proper subset of £
is extremal (it is contained in a face of N E(X)).

Theorem 2.4.1. Let £ be a E-set of extremal rays of the type (I) or (II). Suppose that every ray of the
type (I} of L is simple and every proper subset of L is contained in a contractible face of Kodaira dimension
8 of Mori polyhedron.

Then we have one of the following cases:

(a) £ is connected and L = {Ry, Ry, Ra}, where any R; has the type (I} and every of 2-element subsels
{Rl,Rz}, {Rz, R3}, {Ra,Rl} of L has the type €5, Here R, - D(Rz) >0,Ry- D(Ra) >0,R3- D(R}) > 0 but
Re < D(Ry) = R3 - D(Ry) = Ry - D(R3) = 0. The divisor D(L) = D(R,) + D(R;) + D(R3) is nef.

(b) L is connected and L = {R,, Ra}, where the rays Ry, Ry have the type (I} or (II). There are positive
my, mg such that R-(my D(R)) + maD(Ry)) > 0 for any ezxtremal ray R of the type (1) or simple extremal
ray of the type (II) on X.

(c) C is connected and L = {Ry, R2} where both Ry and Ry have the type (11} and there ezists the
simple extremal ray Sy of the type (II) such that the rays R,,S) define the extremal set of the type B, (it
means that S| # R, but the divisors D(S,) = D(R,))and the rays S\, Ry define the exiremal set of the type
€2, where Sy - D(R3) = 0 but Ry - D(Sy) > 0. Here there do not exist positive my, my such that the divisor
my D(R1) + ma D(R2) is nef, since evidently S) - (m; D(Ry) + maD(R3)) < 0. See figure 2 below.

(d) L ={Ry,...,Re} where k > 2, all rays Ry, ..., Ry have the type (II) and the divisors D(R,), ..., D(Rg)
do not inlersect one another. Any proper subset of L is conlained in a contractible face of Kodaira dimension
8 of Mori polyhedron but L is not contained in a face of Mori polyhedron.

Figure 2

Proof. Let £ = {Ry,...,R,} be a E-set of extremal rays satisfying to the conditions of the Theorem.
Let us consider two cases.

The cage 1. Let £ is not connected. Then every connected component of £ is extremal and, by the
theorem 2.3.3, it has the type %, B, & or 3. If some of these components has not the type €y, then, by
the statement (1) of the Theorem 2.3.6, £ is extremal and we get the contradiction. Thus, we obtain the
case (d) of the Theorem.

The case 2. Let £ = {Ry,..., R} is connected.

Let n > 4. By the Theorem 2.3.3, any proper subset of £ has connected components of the type
A1, By, €,y or Dy, Like for the proof of the Theorem 2.3.3, it follows that £ has the type €,. By the
Theorem 2.3.3, then £ is extremal. We get the contradiction.

Let n = 3. Then, like for the proof of the Theorem 2.3.3, we get that £ has the type (a).

Let n = 2 and £ = {R), Ra}. If both rays R;, R; have the type (I), then, by the Lemma 2.2.2, £ is not
connected and we get the contradiction. '

Let R; has the type (I) and Ry has the type (II). Since the system £ is not extremal, by the Theorem
2.3.3, there are positive m;, my such that R;-(m) D(R;)+m2D(R3)) > 0 and Ry-(my D(Ry)+my D(R2)) > 0.
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By the Lemma 2.2.3, it follows that C - (myD(R;) + maD(R3)) > 0 if the curve C is contained in the
D(R,)U D(R,). If C is not contained in D(R,)U D(R;), then obviously C - (m;D(R;) +mD(R,)) > 0. It
follows, that the divisor my D(Ry) + m2D(R3) is nef. Thus, we obtain the case (b).

Let both rays Ry, Ry have the type (II). If D(R;) = D(R2), then we get an extremal set {R;, R2}
by the Theorem 2.3.3. Thus, the divisors D(R;) and D(R;) are different. By the Lemma 2.2.1, the curve
D(R1) N D(R2) has not an irreducible component which belongs to both rays R; and Rj. Since rays I%;, Ry
are simple, it follows that R, - (D(R;) + D(Rz)) > 0 and R, - (D(R;) + D(R3)) > 0. Let R be an extremal
ray of the type (I) or simple extremal ray of the type (II). If the divisor D(R) does not coincide with the
divisor D(R,;) or D(R3), then obviously R-(D(R,)+ D(Rz)) > 0. Thus, if there does not exist an extremal
ray R which has the same divisor as the ray R, or Rz, we get the case (b).

Assume that D(R) = D(R,). Then, by the Lemma 2.2.5, the ray R has the type (II) too. If R- D(R3) =
0, we get the case (c) of the Theorem where S5, = R. If R- D(R3) > 0, then R (D(R;) + D(R2)) > 0 since
the ray R is simple. Then we get the case (b) of the Theorem. o

5. An application of the diagram method to the general threefolds.

Now we can apply the results of the Chapter 1 and of the Chapter 2 above to 3-folds.

Theorem 2.5.1. Let X be a normal projective 3-fold with Q-factorial singularities. Let v be a face of
the polyhedron M(X) = NEF(X)/R* such that v is closed and the following conditions («) and () hold:
(a} The set
R(y) = {eztremal ray R|IR*Hey : R-H =0}

contains extremal rays of the type (I) or simple extremal rays of the type (II) only; any face of Mori polyhedron
orthogonal to a point of v 1s contractible and haes Kodaira dimension 8.

(B) If Q is an extremal ray of the NE(X), which is not of the type (I} and is not simple of the type
(1), then Q - D(R) > 0 for any eztremal ray R € R(y).

Then we have one of the following cases (1)—(4):

(1) dimy < 7.

(2) There are extremal rays {Ry,..., Ry} C R(7) such that the rays R; have the type (I}, their divisors
D(Ry), ..., D(Ry) do not intersect one another, the set { Ry, ..., R} is contained in a face of Kodaira dimension
MW(X) which is orthogonal 1o a vertez of v, butl the simplicial cone Ry + ... + Ry is not the face of
NE(X).

(8) The set R(y) contains eztremal rays Ry, Ry which together with some simple extremal ray Sy of the
type (II} on X give the configuration (c) of the Theorem 2.4.1.

(4) There are extremal rays {R,, ..., R} C R(Y) such that the rays R; have the type (II), their divisors
D(Ry), ..., D(R,) do not intersect one another, but the set {Ry,..., R} is not eztremal (it is not contained
in a face of NE(X)).

Proof. Let us suppose that the cases (2), (3) and (4) do not hold. Then let us apply the Theorem 1.2
to the face ¥.

The conditions (i), (ii) and (iii) of the Theorem 1.2 follow from the Theorem 2.3.3, Corollary 2.3.4,
Theorems 2.3.6 and 2.4.1 (to prove the condition (iii), one should use the condition (8) of the Theorem
also). From the Theorems 2.3.3, 2.3.6 and 2.4.1 it follows that the conditions of the Theorem 1.2 hold with
the constants d = 2, C; =1 and C; = 0. From the Theorem 1.2 we get the inequality

dim~y < 11.

To obtain more strong inequality (1) of the Theorem, we should analyze carefully the proof of the
Theorem 1.2 in our concrete case.

Let an oriented angle A is defined by the triplet R(A), R1(A), Ra(A). We define the weight o(A) by
the rule: o(A) = 2/3 if simultaneously p(R1(A), R2(A)) = 1 and p(R2(A), Ri(A)) = 0. It means that
R1(A)R2(A) is an arrow but Rz(A)R,(A) is not one. And o(A) = 0 otherwise. Let us prove that the
conditions of the Lemma 1.4, which we used to prove the Theorem 1.2, hold with the constants C = 2/3
and D = —2/3.

From the Theorem 2.3.3, it follows the condition (1) of the Lemma 1.4.
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In the case of the triangle 73, the extremal rays {R;, R, 3} are contained in a E-subset £ of R(7). By
the Theorem 2.4.1, this subset has 3 elements, and we have the case (a) of the Theorem 2.4.1. In this case
the triangle 3 has three oriented angles of the weight 2/3 and their sum is 2. Thus, the condition (2) of the
Lemma 1.4 holds for a triangle 3.

Let us consider the case of quadrangle 4. By the proof of the Theorem 1.2, we can suppose that there
exists an oriented path from the extremal ray R; to the extremal ray Rj in the set R(y4) U {R1, Ra} of
extremal rays orthogonal to the vertex of ¥4. From the Theorem 2.3.3, it follows that the rays R;, Ry define
the system D4 or €4. Let us consider these cases.

Assume that Ry, Ry define the system D3 where the ray Ry has the type (II) and the ray R has the
type (I). The rays R; and R4 belong to an E-subset £ of R(vy). By the Theorem 2.4.1, this subset has two
elements Rg, R4 only, since the ray Rj has the type (I). By the Lemma 1.1, R34 and R4 R, are the arrows
and D(Rz) N D{R,) is a curve. From the Lemma 2.2.2, it follows that the ray R4 has the type (II}, since
the ray Ry has the type (I). The curve C = D(R;) N D(R3) belongs to the ray R» of the type (I). Then
C - D(R4) > 0. By the Theorem 2.3.3, then the rays R,, R4 define the system of the type €;. From the
Lemma 2.2.3, it follows that three different extremal rays R;, B2, R4 generate a 2-dimensional subspace in
N (X). We get the contradiction.

Thus, we proved that the rays R R, define the system of the type €;, where R, R; is the arrow (i.e.
Ry - D(R3) > 0), but Ry R, is not (i.e. Ry D(Ry) = 0). Thus, the weight of the oriented angle of 74 defined
by the ordered set (R, R3) of extremal rays is equal to 2/3.

From the proof of the Theorem 1.2, it follows that there exists at least one other oriented angle of 4
which has the same weight. Thus, the sum of weights of these angles is equal to 4/3 > 1. It finishes the
proof of the condition (2) of the Lemma 1.4,

6. An application of the diagram method to Fano threefolds.

We recall that a 3-fold X with Q-factorial singularities is called Fano 3-fold if the anticanonical class
—Kx is numerically ample, i.e. —=Kx - C > 0 for any effective curve C.
The following statement is interesting because it is true for 3-folds with just nef —Kx.

Theorem 2.6.1. Let X be a 3-fold with isolated Q-factorial singularities and —Kx is nef. Assume that
Mori polyhedron NE(X) is generated by o finite sel of extremal rays of the type (1) or (II} and any face of
NE(X) is contractible. Assume that for every extremal ray R of the type (I[) R-Kx < 0 and its contraction
f: X — X' gives a 8-fold X' wilh isolated singularities (e.g., the last statement is true if X has Q-factorial
terminal singularilies).

Then:

If a set £ of extremal rays on X (it may be empty) is contained in a face of NE(X) of Kodaira dimension
8, then every connected component of £ has the type A, By, €, or Dy, The following inverse statement is
lrue: If every connecled componenl of a set £ of extremal rays has a type A,By, €, or Dg, then € is
contained in a face of NE(X), and this face has Kodaira dimension 8 if (=Kx)® > 0. Moreover, for a set
& of extremal rays with connected components of the types Ay, Ba, €, or Dy one of the statements (1)—(4)
below holds:

(1) £ generates a linear subspace of N1(X) of the codimension < 8.

(2) € is contained in a face with Kodaira dimension I or 2 of NE(X).

(3) € is contained in a set £' of extremal rays such that £' is contained in a face of Kodaira dimension
8 of NE(X) and £ has t > 2 connected components B! = {R1,, Ri3},.., B' = {Ru, Rz} of the type B,
with a linear dependence

anRy+anRar+ ...+ an Ry = 61aRiz +azaRoa+ ...+ apRea

for some a;; > 0.
(4) There are eztremal rays Sy, Ry, Ry of the type (1I) which define the configuration (c) of the Theorem
2.4.1 and every set EU{R,},EU{R3} is contained in a face (its own) of Kodaira dimension § of NE(X).

Proof. The first direct statement follows from the Proposition 2.3.2 and the Theorem 2.3.3.
Let us prove the first inverse statement. Let £ has connected components of the type 9, B,, €, or
D3. Let Ry,..., Ay, n > 1, are extremal rays of the type (II) of £ and the divisors D(R,), ..., D(R,) do not
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intersect one another. By the Proposition 2.3.2, R; - Kx = R; - D(R;) for 1 < ¢ < n. Since all extremal
rays of X have the type (I) or (II), it follows that the divisor T' = —Kx + D(R;) + ... + D{R,,) is nef and
R;-T = 0. 1t follows that R, ..., R, belong to the face of N E(X) orthogonal to T. From the Theorem 2.3.6
and the Remark 2.3.7, it follows that the set £ is extremal.

Let (—Kx)®>0. Then T3> T?-(—Kx)> T - (-Kx)* > (-Kx)® > 0, since —Kx and T are nef.

Suppose that the statement (2) of the Theorem is not true. Then we can apply the Theorem 2.5.1 to
the face ¢ which is orthogonal to £. From the first statement which we have proved, it follows that the
statement (4) of the Theorem 2.5.1 does not hold.

The case (3) of the Theorem 2.5.1 gives the case (4) of the theorem 2.6.1.

Let us consider the case (2) of the theorem 2.5.1. Let v be a vertex of ¥ and Ry,..., R arc the corre-
sponding to this case extremal rays orthogonal to v. Thus, Ry + ... R, is not a face of the NE(X). Let £ be
the set of all extremal rays orthogonal to the vertex v. Evidently, £ C €' and {R,,..., Ra} C €. If all rays
of £ are linearly independent, then £ generates the simplicial face of the NE(X). Then Ry + ...+ Ry is a
simplicial face of NE(X) too, and we get the contradiction. Thus, the the set £’ of extremal rays is linearly
dependent. From the Proposition 2.3.8, it follows the case (3) of the theorem 2.6.1.

The case (1) of the Theorem 2.5.1 gives the case (2) of the Theorem 2.6.1. b

From the Theorem 2.6.1, it follows the following basic statement of the paper.

Theorem 2.6.2. Let X be a Fano 3-fold with isolated Q-factorial log-lerminal singularities. Assume
that all extremal rays of NE(X) have the type (I} or (II). Assume that for every extremal ray R of the type
(1) its contraction f : X — X' gives a 3-fold X' with isolated singularities (e.g., this statement is true if X
has Q-factorial terminal singularities).

Then a set £ (it may be empty) is contained in a face of NE(X) of Kodaira dimension 8 if and only if
every connected component of £ has the type A,,B3, €., or V. Moreover, for the set £ of extremal rays one
of the statements (1)—(4) below holds:

(1) &€ generates a linear subspace of Ny(X) of the codimension < 8.

(2) € is contained in a face with Kodaira dimension 1 or 2 of NE(X).

(3) £ is contained in a set &' of extremal rays such that £' is contained in a face of Kodaira dimension
8 of NE(X) and &' has t > 2 connecled components B! = {Ry), Ri2},.., B* = {Ri, Ri2} of the type By
with a linear dependence

ay gy +an Ry + .o+ an Ry = a1y + a2 fgn + ..+ o Rya

for some a;; > 0.

(4) There are eztremal rays 51, Ry, Ry of the 1ype (11) whick define the configuration (c) of the Theorem
2.4.1 and every set EU{R},EU{R,} is contained in a face of Kodaira dimension 8 of N E(X).

Proof. From the results of [2] and [12], it follows that any face of NE(X) is contractible and NE(X) is
generated by a finite set of extremal rays. Moreover, (—Kx)® > 0 since X is Fano 3-fold. From the Theorem
2.6.1 we get the statement. b

From this Theorem, we get

Corollary 2.6.3. Let X be a Fano 3-fold with isolated Q-factorial log-lterminal singularities. Assume
that all extremal rays of NE(X) have the type (I) or (II). Assume that for every eztremal ray R of the type
(1) its contraction f : X — X’ gives a 3-fold X' with isolated singularities (e.g., this stalement is true if X
has Q-factorial terminal singularities).

Then one of the statements (1)—(4} below holds:

(1) Mi(X) <8.

(2) There exists a face of NE(X) of the Kodaira dimension I or 2.

(8) There exists a set £ of exiremal rays with t > 2 connecled components B! = {Ry, Ri»},.., B! =
{R¢1, Rz} of the type By such thal

a1 Ry +anBo+ . 4 e Ry = aypRia 4 agfgn + ...+ ao Ry

for some a;; > 0.
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(4) There are extremal rays Sy, Ry, Ry of the type (II) which define the configuration (c) of the Theorem
2.4.1.

Proof. This follows from the Theorem 2.6.2 for £ = @. >

Now we want to apply the Theorem 2.5.1 to a suitable resolution of singularities of Fano 3-fold with
log-terminal singularities.

Definition 2.6.4. Let Y be a 3-dimensional variety with log-terminal singularities. A birational
morphism o : X — Y is called minimal terminal resolution of singularities of Y if the following conditions
hold: X has Q-factorial terminal singularities; the exceptional set of o is a union of irreducible divisors F;
and in the formula

Kx =0"Ky+za.'F,' (6.1)

the pair (X, ) (~a;)F;) has log-terminal singularities in the sense of [2]. In particular, -1 < o; < 0. b

We can apply the Theorem 2.5.1 to a case when all extremal rays on X have the type (1) or (II) and
any extremal ray of the type (II) is simple. Thus, in our case it is natural to suppose that the following
condition takes place:

Condition 2.6.5. The morphism o is the contraction of a simplicial face Ry + ...+ R, of NE(X) which
is generated by exiremal rays Ry, ..., By of the type (I) or (II) and every extremal ray R;, 1 <i < n, of the
type (II) is simple.

We want to note that by the Proposition 2.3.2, it is sufficient to suppose that the contraction of any R;
of the type (IT) gives a 3-fold with isolated singularities. Also, by the Theorem 2.3.3, the sel Ry,..., R, of
extremal rays has connected components of the type ,, B3, €, or Dy. The Theorem 2.3.6 gives the inverse
statement. Thus, the condition 2.6.5 is mostly the condition on the singularities of Y. b

We say that a 3-fold Y with log-terminal singularities has simplest singularities if there exists a minimal
terminal resolution of singularities of Y with the condition 2.6.5. We should mention that in [16] we considered
much more narrow class of simplest singularities.

Lemma 2.6.6. LetY be Fano 3-fold with simplest log-terminal singularities end 0 : X — Y a minimal
terminal resolution of singularilies of Y.

Then W(X) is generaled by a finile set of contractible eziremal rays and all its faces are coniractible.
Every extremal ray R of NE(X) belongs to one of the following cases below:

(i) R is one of the rays Ry, ..., R, which are contracted by the morphism o;

(i) R- D(R;) < 0 for one of divisors D(R;) of the eziremal rays Ry, ..., R, above. Thus, any curve of
R i3 contained in D(R;).

(iii) R- Kx < 0.

Proof. Compare with the proof of the Lemma 1.3.2 in [17] or the Lemma 2.1 in [7].

By the Theorem 2.3.3, there are rational ¢ > 0 such that for A = 3 ;D(R;) we have the inequality
R; - A < 0for any R; from (i). Since —Ky is ample on Y and the morphism & is the contraction of the face
Ry + ...+ R, it follows that for sufficiently small ¢ > 0 we have the inequality —(c* Ky + €A)-T > 0 for
any non-zero T' € NE(X). It follows that the element H = —(c* Ky + €¢A) is ample for sufficiently small
€ > 0. By the formula (6.1), we have

Kx ="Ky + Y _ a;D(R;), where —1<a; <0. (6.2)

It follows that H = —(Kx + }_(—a; + €¢)D(R;)), where for sufficiently small ¢ > 0 we have the
inequalities 0 < —a; + €¢; < 1, since 0 € —a; < 1. Since the pair (X, (—a:)D(R;)) is log-terminal (in
the sense {2]), for sufficiently small € > 0 the pair (X,Y (—~a; + €6;)D(R;)) is evidently log-terminal too.
Since the element —(K x + 5_(—a;)D([;)) is ample on X, from [2, Theorem 4.5], it follows that NE(X) is
generated by a finite set of extremal rays and every its face is contractible.

Let R be an extremal ray on X and R is different from the rays R;. Suppose that —~R - Ky > 0. Since
the ray R is contractile and —o* K'y is ample on Y, we have R-o* Ky < 0. From the formula (6.1), it follows
that R- D(R;) < 0 for some {. Since the ray R is contractible, any curve of R belongs to the divisor D(R;).
Otherwise, R- D(R;) > 0.p
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From the Lemma 2.6.6 and the Theorem 2.5.1, we get

Theorem 2.6.7. Let Y be Fano 3-fold with simplest log-lerminal singularities and 0 : X — Y a
minimal terminal resolution of singularities of Y. Suppose that any eziremal ray on X is an extremal ray of
the type (1) or simple extremal ray of the type (II).

Then we have one of the cases (1), (2) or (8) below:

(1) dimN,(X) < 8.

(2) One of the faces of NE(X) is contractible and has Kodaira dimension 1 or 2.

(8) There are extremal rays Sy, Sa,...,Si,t > 2, of the type (11} such that the divisors
D(Sy), D(Sy), ..., D(S:) do not intersect one another, but Sy + ...+ S, is not a face of NE(X) of the Kodaira
dimension 8.

(4) There are exiremal rays Sy, Ry, Ry of NE(X) which define the configuration (c) of the theorem 2.4.1.
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