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Abstract

This article is a reinterpretation of the work of Kubota [4] and Hill {2], in which
the reciprocity law for Kummer extensions of algebraic number fields are proved
using geometric arguments. Here we show that the same methods can be used to
describe higher metaplectic cocycles. We also describe an analogy of the Hilbert
Reciprocity law for a skew field.

1 Introduction

1.1 Main Results

Let i be a finite group and denote by u2® the Abelianization of u, ie. u® = u/u’ where
#' is the subgroup of y generated by the commutators. Let L = z", V = Q", L, = Z},
V, =Qj, Va = A" and X = V,,/L. Suppose we have an action of u on L satisfying:

e Foralll e L\ {0} and.CE,u\{l},onehas(;-l#l.

o There is a singular n-chain P in C,,(X) which is a linear combination of parallelo-

topes, such that
2.CP

(Eu

is a cycle and generates the homology group H,(X,Z). Furthermore, ther vertices
of P generate a finite subgroup of X.

The chain referred to above can be thought of as a generalized fundamental domain. We
shall refer to is as a fundamental chain.

Let Gz = Aut, (V)N End,(L) and Gg = Aut,(V). We think of this as an algebraic
group and use the standard notation. Let

. ) aff = Pa, and
g = {(a’ﬁ)eGi' aL+ﬁL=aL+#u~L=ﬂL+#u-L=L}’
Qo = {(a,8) € G}:af =pa}.

QU = {(a,8) € G:: aff = pal.
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We shall construct a map
Hilb: Q) — u®®

with the following properties:

e Hilb is bimultiplicative: if (e, 8), (¢/, ) € Q4 then

Hilb(axe, 8) = Hilb(a, 8)Hilb(</, 8).

Hilb is continuous with respect to the adele topology.
e Hilb is skew-symmetric:-

Hilb(a, B)Hilb(8, @) = 1, Hilb(a, a) = 1.

Hilb has the property:-
Hilb(a,1 —a) = 1.

Hilb splits over Q: if (o, 3) € Q¢ then
Hilb(a, ) = 1.

Hilb is a product of local factors:

Hilb(e, 8) = H Hilb, (@, Bv),
where a,,8, € G(Q,) are the v-th components of a and § and Hilb, : G(Q,) %

G(Q,) = p*® is a continuous bicharacter.

¢ Hilb commutes with direct sums. Suppose L = L'@® L? as y-modules and aV)! = V]!,
BV} = V1, aV? = V2, BV? = V2. Then

Hilb(e, 8) = Hilb(a|g1, B|11) - Hilb(a|13, B] 12 ).
o If po C p then one has

Hilb,, = Verl}; Hilb,,
where Verl is the transfer homomorphism.
Having given several properties of Hilb it remains to say how it is defined. This is

achieved is several stages. Let S be a finite set of places of Q, including all places v for
which {#u], # 1. We shall use the standard notation

Qs=PQ. ,2°={zcQ:Yo¢g§5, |z, <1}

veS



We begin by constructing a bicharacter Hilbg on Qg  which is trivial on Qzs. This will
be compatibe with the injections G(Qs) — G(Qs) for S C §’. Thus taking the limit over
S we obtain a bicharacter on Q,.

We now give a brief description of Hilbg, which should be avoided on first reading but
.which may be useful for reference purposes. To define Hilbs we let Xs be the abelian
group

Xs = V(Qs)/V(2%).
Let Qs be the set of pairs (e, 8) € G(Z%) x G(2°) satisfying o = Ba, oV (2%)+8V(2%) =
V(z%). Let f: Xs — Z be any function satisfying

Z f(Cz) = #Stab,(z).
(Eu
Then for (a, 3) € Qs we define

Hilbs(e,8):= [] (/W= T (/i)
z€X*[0)CEn z€EX*[a],(En

where

X'la] :={z € Xs:az =0, z #0}.
Most of the hard work in the paper goes into proving that Hilbg can be extended uniquely
to a continuous function on flg.. The properties of Hilb follow naturally from the con-
struction. Our techniques will be geometric. Most of the arguments can be found in a
slightly different context in [2], which in turn is based on ideas from [4] and [1]. The main
object of study is the decident, which in some form at least dates back to Gauss.

1.2 Group Extensions

Let H/Q be an algebraic group and let p: H® HHpu — Aut V be a Q-rational representa-
tion. Then one may pull Hilb back to a continuous bicharacter Hilb, : H(A)x H(A) — u®®.
Any bicharacter is automatically a 2-cocycle in the group theoretical sense, since one has

(0Hilb,)(e, B,7) := Hilb,(ef,7)Hilb,(a, 8)Hilb,(a, Bv) ™' Hilb,(3, 7)™’
= Hilb,(a, v)Hilb,(8, v)Hilb,(a, 8)
Hilb, (e, 8) " Hilb, (o, v) " Hilb, (3, v)™"
= 1.

Thus Hilb, represents a 2-cohomology class with values in z*®. Corresponding to this
there is a central group extension

1 — p®™® — H(A) — H(a) = L.

Set theoretically H(A) consistes of all pairs (e, () with a € H(A),( € p*®. The group law
is then given by
(a,¢) - (&, ¢") = (acd', (¢'Hilb,(a, &)).
Since Hilb, is trivial on H(Q) x H(Q) it follows that the extension splits over H(Q).
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1.3 Example 1 : The Hilbert Symbol

We now describe the connections between our construction and the real world. Suppose
that V' is a number field and p is its group of roots of unity, acting on V' be scalar
multiplication. Then for any two ideles a, f of V' we may define Hilb(a, 3). It turns out
that this coincides with the global Hilbert symbol.

1.4 Example 2 : Metaplectic Extensions

Let A be a number field. Suppose that H is the subgroup of diagonal matrices in GL, /K.
Let NV be the K-vector space of upper triangular matrices whose diagonal enties are all
zero. As with the previous example let i be a group of roots of unity in K. We define a
representation p of H @ H & p as follows:-

p(e, B,()n := Canp™!,

where the multiplication by  is scalar multiplication and the left and right multiplication
by « and g is matrix multiplication. Then the corresponding extension H(Ax ) of H{Ak)
18 the restriction to H of the standard metaplectic extension of GL,(Ax) (see [3] §0). To
obtain the twisted metaplectic extensions one adds to N copies of the vector space of
diagonal matrices, acted on by «, 8 and ¢ in the obvious way.

We now mention another connection with metaplectic extensions. Let o be the cocycle
of the metaplectic extension, ie. ¢ : SL,(Ax) x SLa(Ax) = p(K). Let V = K™. This
is acted on by u and also by SL,/K. The action of p on K™ satisfies our conditions.
Furthermore, elements of SL,/K commute with the action of p(K) on K™. We may
therefore think of Restg(GLn/f\’) as a subgroup of G/Q := Aut,(V)/o. With this notation
we have

Theorem. Let o, € SL,(Ax) such that af3 = fa. Suppose o and 3 are reqular. Then

o(a,B)o(B,a)™" = Hilb(e, 8).

1.5 Another Example

We now give another example which shows that the conditions of the theorem are not
only satisfied when p is a group of roots of unity of a number field acting on a vector space
over the number field (in which case Hilb is quite closely related to the Hilbert symbol).
Now let V' be the skew field

V={a+bi+cj+dk:a,b,cdeQ},
where
ij=k, jk=i, ki=j, gji=-—k, kj=—i, ik=—j.
Let u be the (non-abelian) group {+1,+2,+j,£k}. This acts on V by left scalar multi-

plication. The action has the required properties: clearly the action is free because V' is
4



a skew field, and the other property can be checked by constructing a fundamental chain
explicitly. The fundamental chain will be a sum of parallelotopes of the form

(0,£1/2] x [0,£:/2] x [0,£7/2] x [0, +k/2].

Note that u?® is a Klein 4-group. For any two commuting elements a, 3 of V¥, their right
actions on V' commute with the left action of . We may therefore define Hilb(a, ) in
terms of the right actions of & and 8 on V. This is a kind of analogy of the global Hilbert
symbol for the skew field V. It is surjective, taking values in the Klein 4-group u®®, and
it is trivial on V* x V*.

2 Combinatorial Methods

Some of the results of this section have been described in a different notation by Smirnov
[8]; the basic ideas are originally from [2], but there they were not described in the
generality which we require.

2.1 The Sheaf of Fundamental Functions

Let X be a set with a chosen element 0 € X. Let x4 be a finite group acting on X and
suppose that every element of 4 fixes 0. Denote by u®" the Abelianization of . A function
f: X — Z will be called fundamental at z € X iff it satisfies

> f(Cz) = #Stab,(z).

(En

The function will be called fundamental iff it is fundamental at all z € X.

Let ¥ C X be a finite p-invariant subset and suppose that p acts freely on Y. Let
F(Y) be the Z-span of the functions f: X — Z which are fundamental on Y. There is a
map deg : F(Y) — Z given by

o) = G800

for any = € Y. We also introduce a skew product on F(Y') given by

< f’g Syi= H Cf((r)g(r) (= “n’b.
reY (Eu )

The properties of this inner product can be summed up as follows:-
Proposition 1 If f,g,h € F(Y') then one has
<fHgh>y=<fih>y<gh>y,

<fag>Y<gaf>Y= 11 <f7f>Y= I.
b}



If deg f = deg g = degh then one has
< f,g>v< g,h>y=< fih >y .
IfY is the disjoint union of Y1 and Y2 and if Y'1 and Y2 are p-invariant then

< f)g >y=< fag>}'1<f7g >ye .

Proof. The first two properties are easily seen from the definition. To prove that
< f,f >y= 1 we express f as a linear combination of functions g € F(Y) which take
only the values 0 and 1 on Y. It is easily seen that one has < ¢,¢ >y =1 for such functions
and the general case follows from this. The final relation is also trivial. It remains to
show that < f,g >y < g,h >y=< f,h >y. We shall prove this in two steps.

(i) We first show that for all f,g € F(Y') withdeg f = degg =0 one has< f,g >y=1.
Let f be such a function and define

o(z) := JJ ¢/
(Eu
Note that for £ € p we have

9(¢z)

il

H CI(CEJ:)

(Eu

=TIy

(Eu
— HCI(CJ:) « é_zceu“(r)
47

= O(z)¢ %8 = 9(x).

Thus 8 is constant on p-orbits. We shall write [z] for the g-orbit of a point z € Y. Then
we have

<fg> = []0(zp"

zeY

— H Hg(m)g(y)

[z)cY yelz]
= I H(m)zyelrlg(y)

[z]lcY

= [J 0(z)*® = 1.

[z]cY

(ii) Now let f,g,h € F(Y) satisfy deg f = deg g = degh. By the previous parts of the
proposition we have
<fg>y<gh> = <fg>y<hg>y
< f—h,g>y
<f—-hg—h>y< f—hh>y

= <f—h,g—h>y<f,h>y.
6
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However, using the fact that deg(g — f) = deg(h — f) = 0 we know by (i) that <
f—=h,g — h >y=1. This proves the proposition.
2.2 Decidents

Let G be the set of u-covariant self maps @ : X — X such that o(0) = 0 and a~1({0}) is
finite and the action of x on a™'({0})\ {0} is free. For & € ¢ we shall use the notation

X[a]:={z € X : a(z) = 0},
X*[o]:={z € X :a(z) =0, = # 0}.
Let
Q= {(a,ﬁ) €G*:
For (a, B) € Q we define the Decident
Dec(a, B) := Dec(a, B, X, 1) :=< f, f o & >,

af = Ba, a permutes X[f]
and (8 permutes X (o] '

where f is any fundamental function and we are using the notation
< = = >pi=< =, = >y -
Proposition 2 The decident is independent of the choice of f and satisfies
Dec(ac’, 8) = Dec(a, B) - Dec(c, B).
(Here it is not necessary that aoad’ =ad' o a.)

Proof. Suppose that f and g are fundamental. Then by the previous proposition one
has
< f,foa>a< foa,goa>g< goa,g>p< g, f >p=1.

This implies
< f,foa>p<g,go >El=< foa,goa >§l< fra>p.
However since a permutes X ™[] we have
< foa,goa >z= HCJ(CGI)Q(M‘) = H CI(CI)Q(ﬂF) =< f,g>5.
z. ENe

Therefore < f, f o a >p=< g,g 0 a >z and so the decident is independent of f.
Now let g = f o « for some fundamental function f. It follows that g is fundamental
on X*[B]. We therefore have

Dec(aod/,8) = < f,foaoa >4
<f,foa>s< foa,foaoa >p
< f,foa>p< g,goa >g

= Dec(a, ) - Dec(d/, 3).
7
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From now on, in addition to our other assumptions we shall suppose that X is an
Abelian group and that 0 is the identity element of X and that p and « and 3 act on X
by surjective group homomorphisms. We shall write the group law of X additively. This
gives rise to a group law on End,(X), which we shall also write additively. We then have

Proposition 3 The decident ts multiplicative in the second factor, ie.

Dec(a, B0 B') = Dec(a, B)Dec(a, ).
(Here it is not necessary that fo ' =f'0(.)

Proof. We define a special fundamental function g which will simplify the situation.
Let f be any fundamental function, and define g by

| f(Bz) =g X8,
g(":)‘{ fz) =eXx 8]

Then it follows that g is fundamental on X*[8 0 3']. We have

Dec(e, B0 ') =< g,g0 a >pop=< g,g 0 @ >x[pp\x(5]< 9,90 & >p .
The second term on the right is Dec(«, ). We shall examine the first term.

<g,goa >X°[,3ﬁ']\z\"[,3]= H Cf((ﬁx)f(ﬁax)

B84'z=0,fz#0,(En

We shall write N(8) for the number of elements of X[8]. Since g is a surjective group
homomorphism, this is the number of preimages of any element of X. We therefore have
(substituting y = fz)

<ggoa>xppnx= ] (VO < Deca, )N,
ﬁ'!l=0vy?‘-'0vC€#

However since u acts freely on X*[3] we have N(#) =1 mod #p and therefore
< g.g0a >xpppxee= Decla, B).

This proves the proposition.

Lemma 1 /fa =1 mod 8 in End,(X) then Dec(e,3) = 1.

Proof. The action of e on X[3] is trivial.

The following result is the first step in proving a kind of reciprocity law for decidents.



Proposition 4 Let o and 3 be as above and let f be fundamental. Then
N{a)=1)(N({B8)=1
Dec(a, B)Dec(f, 0) ™! =< f, f o @ Sapa< f,f 0 >Ths x [[ ¢ 0
{€u

Here we are using the notation

<™ Paf\et=< = T 2 X af\NX o] -

Proof. Note that N(af) = N(a)N(B). Also note that since o permutes X[§], we have
X[a] N X[B] = {0}. From this follows #(X[a] + X[8]) = N(afB). On the other hand,
since @ and 8 commute we clearly have X[a] + X[8] C X[af]. We therefore have

X[ofB)] = X[a] & X[B].
This implies the following expression for X*[af] as a disjoint union:
X*[aB] = X*[a«JUuX*[BJUY

where Y = {z € X|afz = 0 but az # 0, Bz # 0}. This leads to an identity of the
products over these sets:

<f,foa>ag\a<f,foﬁ>;$\ﬁ = < f,foa>s< f,foa>y
<fifoB> < f,foB >y
= Dec(a,f)Dec(f,a)” ' < f,foa>y< fof, f >y
= Dec(a,)Dec(8,a)”' < f 08, foa>y.

It remains to calculate the inner product < fof, foa >y. To do this we also use the
direct sum decomposition of X[af]. This gives us

V= {zi+ 200 € X7[o], 35 € X7([]}.
This implies
<foB,foa>y. = [[ [ [ ¢/Che+sailatta)

(Erz €X [l r26X*(B)

=0 I I ¢/«onitea

CEuzi X *[o)z€X (8]

— H C(Eq €X*[a) ”Cﬁ”l)) (ngex*[p] f(azz))

qm
L"!.E);l]_(,)fﬂﬁ);‘l
= H C #u
CEn



2.3 The Plan

Let L = Z™, and suppose we have an action of a finite group p on L. We shall also use
the following notation

for a prime p, L, := L @ Zy; Vi=L®Q
for a prime p, V, := L @z Qp; Voo == LOR; Vi:=L®A.
The tensor products are all over Z. Define
Gq := Aut,V, Gy := End,L N Aut,V,
G := Aut, Vs, Ga = Aut, V4.
Also write G for the connected component of I in Gg. Furthermore define

Qz:={(a,f) € Gz :a0fB=Pocaand oL + 8L = L},

Qo :={(a,8) € Gg:ao0f=Poa},
U ={(e,B)€GY:a0f=poal,
Gy ={f€Gy:(,8)eQy}. Gg:={8€GCGr:(e,0)€ M}
Gy :={f € Gr:(,0) € W}.

Let X := V, /L. Then p acts on X, as does any element of Gz. For any pair (a,8) € {1
we define Dec(a, ) in terms of the actions of , 3, 4 on X. In this article we shall prove

Theorem 1 There is an open subgroup U C G, such that if (o, B) € QeNU x UY, and
if o € Gy and if B € Gg° then one has

Dec(e, B) = Dec(8, @).
Here &) are the finite adeles.
This implies the following

Theorem 2 There is an open subgroup U' C G, such that if (a,3) € g and a € U’
and if (a, ) is in the connected component of 1 in (g then one has

Dec(a, B) = Dec(f, «).

The arguments used to show that Theorem 1 implies Theorem 2 are contained in the
introduction to [2]. Theorem 2 in turn will imply the following

10



Theorem 3 There is a unique continuous map Hilb : Q4 — p®® which is trivial on Qq
and such that Hilb is bimultiplicative and if (a, 3) € Qy then one has

Hilb(ay, 8f) = Dec(a, 8)Dec(8, a)~".

Here ay and (; are adeles which are equal to o and [ at finite places and are otherwise
the identity.

The ideas used in proving Theorem 3 from Theorem 2 are contained in the discussion
of symbols in [7]. In fact, Hilb will be independent of L, and will only depend on V:

Proposition 5 Let L' C L be another p-invariant lattice. If (a,) € QN QY satisfies
(det B,{L : L'}) = 1 then
Dec(a, §) = Dec'(e, 3).

Thus one has
Hilb = Hilb'.

3 Geometric Methods

Again the ideas here can be found in [2] but in insufficient generality. Many of the ideas
are also contained in either [4] or [1] (see [2] for a description of where each idea comes
from). Some technical improvments and simplifications have been made here.

Let L = Z", and suppose we have an action of a finite group y on L.

We shall think of V, as a real vector space. Our next aim is to define the singular
homology groups of a topological space. For our purposes, the definitions given in [6] are
most convenient. Later in this section we shall construct using the homology groups a
class of fundamental functions. At the end of the section we shall find a formula for the
skew product < f!, f2 >, where f! and f* are from the class of fundamental functions
which we shall construct.

The connection with the homology groups is the following: we define f!'(z) to be the
degree of a map P! : I™ — X at the point z € X, where /™ is a hypercube.

3.1 Singular Homology

1. Let I be the closed interval [0,1] in R. We shall write I” for the cartesian product
of r copies of I. I° will be a topological space with exactly one point.

2. Let X be a topological space. A continuous map 7 : [" — X will be called a
singular 7-cube in X. We shall write Q.(X) for the Z-module generated by the set
of singular r-cube in X, and with relations

T+To(ij)=0 1<i<j<m,

11



where

(1 j)(mla s amr) = (:131, ey Tim 1 T il T Tiy Tl o s 33,.).
Therefore one always has in @,(X) the identity 7 o ® = sign(®).7, where ® is an

element of the symmetry group S,, acting on [” by permutation of the coordinates.

. A singular r-cube T is called degenerate, if the function 7(z,,...,z,) is independent
of at least one of the coordinates z;. We shall write D,(X) for the submodule of
@-(X) generated by the degenerate r-cubes. The quotient C,(X) := Q.(X)}/D.(X)
will be called the group of r-chains in X.

. Let T be a singular r-cube. We now define the *! front face of T,
AT: I — X
(Z1y ey Tpmt) — T (21, oy Ticg, 0, T4y ooy Trt)

and the i*" back face of T,
B;T : r—!—Xx

(T1yeeey Tpm) —> T(T1, ey ity L, Tiy ooy Tpit )
The faces of an r-cubes are (r — 1)-cubes.

. The boundary of an r-cube T is defined to be the element of @, (X) given by the

following formula

AT = T(-1) (AT = BT).

This definition can be extended by Z-linearity to @,(X).
Or t Qr(X) — Qrua(X).
This induces a homomorphism of the chain modules
O 1 C(X) — Cri(X).
We define the r-cycles to be the kernel of the boundary map
Zy(X) := Ker (0,) C C(X),
and the r-boundaries to be its image
B.(X):=1Im (0r31) C C.(X).
One can check that every boundary is a cycle
B.(X) cC Z.(X).

We can thus define the r'* singular homology group of X to be the quotient of the
cycles by the boundaries:

H(X) = Z,(X)/B.(X).
12
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6. Now let Y be a subspace of X. Clearly there is an inclusion

Q(Y) C @ (X).
This induces an inclusion of chain modules
C.(Y) C C.(X),
and we define the relative chain modules of X with respect to ¥ to be the quotient:
Co(X,Y) = Co(X)/Co(Y).
The boundary map induces a homomorphism of relative chain modules
0 : Cr(X)Y) — Croi(X)Y),

and we define as before the relative cyles to be the kernel; the relative boundaries
to be the image; and the relative homology groups to be the quotient of the relative
cycles by the relative boundaries.

Z.(X,Y):=Ker 0, C C.(X,Y),
B.(X,Y):=Im 0,4y C C.(X,Y),
H.(X,Y):=Z.(X,Y)/B.(X,Y).

7. The base set |T| of a singular r-cube T is defined to be the image of 7, if T is
non-degenerate, and the empty set, if 7 is degenerate. The base set of an element
of C,(X) is defined to be the union of all base-sets of singular r-cubes in its support.

8. Let X be an Abelian topological group (whose group law we shall write additively)
and let 7 be a singular r-cube and U a singular s-cube in X. We can define a
product (r + s)-cube:

TxU: M — X

(Thy ooy Ty Y1y oo Ys) —> T(T1y ooy @) + UYL, ooy Ys)-

This product operation can be extended by bilinearity

Qr(X) X QS(X) — Qr-}-s(‘\’)a

and this induces a product operation on the chain modules:

Co(X) X Cy(X) — Crag(X).

13



9.

10.
11.

Let X be a manifold. If z € X then
Ha(X, X\ {a}) 2 2.

(This is a non-canonical isomorphism.) The manifold X is called orientable, if one
can associate to each point * € X an isomorphism

Isop : Ho(X, X \ {2}) — z

with the property that for every £ € X there is a neighbourhood U of z, such that
for every y € U the diagram commutes

Hn(Xv-‘\’ \ U)
Ha (X, X\ {z}) Ha(X, X\ {y})
SN
Z

Such a set of isomorphisms 1s called an orientation. An n-dimensional, differentiable
manifold, which posesses a global, non-vanishing differential n-form, is orientable.

Assume that X is orientable, and fix an orientation Iso. Let 7 € C,(X). Then 9T
is a singular n — 1 chain. Suppose that z € X does not lie in the base set |97 | of

OT. Then T represents a homology class in H,(X, X \ {z}). We define the degree
of T at the point z to be
Ir(z) := Iso(T).

From our condition on Iso, we have a locally constant function
Ir + X\|[0T| — z.
The space X := V., /L is orientable (it is a torus).

If S is a discrete subset of an n-dimensional orientable manifold X, and if 7 is an
n-chain in X with SN |97| =0, then we define

{8171} = 3_1r(=).

Since |T| is compact, the sum has finite support. If ¢ : X — X is a homeomor-

phism then
{{eS510T}} = sign(o){{SIT}},

where signo = +1 depending on whether ¢ is orientation preserving or orientation
reversing. If X is a real vector space or a torus and ¢ : X — X is a composition of a
(real-)linear bijection and a translation, then sign(o) is the sign of the determinant

of the linear bijection.
14



12. The singular 0-cubes in a topological space X correspond to the points z of X. We
shall write [z] for the singular 0-cube corresponding to z. The singular 1-cubes in
X are paths between points z and y in X. Let X be an Abelian topological group
and let 7 be a singular r-cube in X. Then

[z] x T
is a translation of 7 by z, and one has (because 0 is an even number)
[z] x T =T x [z].
This equality is at the level of singular r-cubes. We shall use the notation

Transl(z)7T := [z] x T.

3.2 Remarks

1. Let 7 : I — X be a singular n-cube in X, and let Y be a subspace of the space
X with
|oT|CY.

Then T represents a homology class in H,(X,Y). We cut 7 into two pieces:

Ti: " — X
(mla"'al:n) HT(%amh"')xn)
and
To: " — X
1
(mly--'zmn)HT(ﬂ:l:- 1:["'27"'9:511)-

If in addition
0T C Y and |0T:| C Y,

then we have in H,(X,Y’) the equation

Ti+T=T.

2. Let T be a singular n-cube in an oriented manifold X. Then we may define as in
§3.1.9 a function Iy. Let € X lie outside the base set of 7. Then we always have

Ir{z) = 0.

We shall now use the homology groups to construct fundamental functions. We shall
define the function f: X — Z to be Ip, where P is a sum of singular n-cubes.
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3.3 The Fundamental Chain

As before, let 4 be a finite group and V' a vector space over Q on which p acts. We have
a p-invariant lattice L in V. Let X = V /L. We assume that x acts freely on V' \ {0}.
An edge e: [ = V, is a 1-chain of the form

e(z) =z -a,

where ¢ # 0. A parallelotope in V,, is an n-cube in V,, of the form

Transl(v) (H ) ,

where each ¢; is an edge and the vectors e;(1) are linearly independent over R. A paral-
lelotope in X is a projection of a parallelotope in V,,. The vertices of a parallelotope are
the points {v + ¥ jesei(1) : S C{l,...,n}}. The following is essentially due to Kubota

[4].

Theorem 4 Suppose that p is cyclic, and suppose y acts on V/Q and its action is free
on V\ {0}. Then there is a chain P in X such that

Z det(¢) - ¢P

(Eu

is a cycle in X, whose homology class generates H,(X). The chain P is a finite linear
combination over Z of parallelotopes. Furthermore, P is a finite linear combination over
Z of parallelotopes whose vertices generate a finite subgroup of X .

In fact Kubota proved this in the case that p is the group of roots of unity of a number
field and V is the number field. The general case can be reduced to this as follows. Since
p acts freely on V'\ {0}, if 1 # H is a subgroup of x then ¥y (v = 0 for all v € V. This
implies that V' is a vector space over the cyclotomic field whose roots of unity are u. The
chain P can be constructed from chains for the action of 1 on the cyclotomic field.

We shall call a chain P with the properties guaranteed by the above theorem a funda-
mental chain. We shall call a representation of x ‘Kubotan’ if it has a fundamental chain
(this depends on the Q-structure but is independent of the lattice L). From now on, we
shall assume that we have a Kubotan representation on p and we shall fix a fundamental
chain P. We shall lay down some notation for later use. There is an expression for P as
a linear combination of parallelotopes P;:

P =3 wt(z) P (1)
Each parallelotope can be written as a product of edges:

P; = Transl(z;) H €ij- (2)
i=1
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We shall use the notation F < P; to say that F is a face of P;. Then we have an expression
for the boundary of P;:
OPi= > wi(F,i) F. (3)

FPs

For any face F we have an expression

n—1
F = Transl(vg) [] ex;.

i=1
Since § (ZCE“ det(¢) - Q’P) = 0, we have for any face F,
3 " det(C) - wi(z) - w(¢F, i) = 0. (4)
v (En
We shall write § € N for an annihilator of the subgroup of X generated by ther vertices

of the fundamental chain. We shall sometimes use the notation

X[a) = {v € Vi : pr(v) € X*[]}.

3.4 Modifications

Let & be the set of edges of P. We introduce an equivalence relation on £ as follows:
two edges are said to be equivalent if one is { times the other for some (unique) element
¢ € u. Let &, be a set of representatives of eqivalence classes of edges of P.

Suppose m assigns to each element e of £, a path m(e) in V,, with the same start and
end points as e. We call such an m a “modification”.

Let m be a modification and e any edge of P. Then there is a unique expression
e = (e, for e, € £,. We define

m{e) := (m(e,).

We have an expression for P of the form

P = ZTransl(vi) H1 €i;-
i 1=

We define the modified chain

m(P) = Z Transl(v;) f[ m(e; ;)

i=1

We also define a function

17



3.5 Homotopies Between Modifications

Let m® and m! be two modifications. We shall now introduce the idea of a homotopy
from m® to m!. Let &, be as above, and let

M = U I,

e€é,

where each [, is a copy of /. Then a modification m can be thought of as a map
m: M=V,

such that m(0,) and m(1,) are the start and end points of e.
If m® and m! are two modifications then a homotopy from m® to m! is a continuous
map
h:-MxI—=X
such that A(—,0) = m® h(—,1) = m' and such that for any t € I, h(—,¢) is a modifica-
tion.
If e is any edge of P then one has e = (e, for some e, € £,. We then define for y,t € I,

R (y, 1) := (AL (y,1).

Suppose P; is a parallelotope in P. Then we have
'P‘- = H €ij-
1=1

Define

n

hi(yla ey yn’t) = Z h(cu)(y“t)

=1

The following is essentially due to Kubota.

Theorem 5 Let P be a fundamental chain and let m be a modification. Then

> det(¢) - (m(P)

CEu

is a cycle in X, whose homology class generates H,(X).

Corollary 1 Let P satisfy Theorem 4 and let m be a modification. Then for everyz € X
whose i-orbit does not intersect Im(P), f™ is fundamental at X.

Proof. Choose homotopies from e to m(e) for each € € &£,. Use these to construct a
homotopy from 3_, det(¢)-¢(P to its modification. Thus 3., det(¢) -¢m(P) is homologous
to Tee, det(¢) - CP.

18



3.6 A Formula for the Skew Product

What follows is based on a technique used in Habicht’s paper [1]. We investigate the
difference f° — f! of two of the functions, which we constructed in §3.8. The basic idea
is to express m%(P) — m!(P) as a sum of pieces, each piece being associated to a face F
of a parallelotope of P. Actually these pieces will be homotopies from m®(F) to m!(F).
This method will lead to a formula for the skew product < f!, f* >

Notation Let A be a homotopy from m® to m!. Then for any parallelotope P; =
Transl(v;) [T}, e:; we define

b
hi(zyy.. .y Tnyt) i= v + Z h(e""')(ﬂij,i)-

7=1
Similarly for any face F = Transl(vr) [T}=] ex,; we define

n-1
h}'(mla . ~3-Tn-—lat) =vF+ Z h(ﬂf‘j)(ﬂ’,‘j,t).

Jj=1

Then h; is a homotopy from m%(P;) to m!(P;) and A is a homotopy from m°(F) to
m'(F), and one has in C,(X):-

n+l

Ohi = (=17 (Ai(h) - By(h)
= (=)™ (mU(P) = mi(P)) + Y wi(F,i) - Az,

F<P:
Letting & = Y A; in Coy1(X) one then has
mo(P) = m}(P) = (=1)" 3 wt(F) hx — (~1)"0h.

F<P
If  is a point of X which is not contained in |k for any F then one has in Hn(X, X \z)
m(P) —m!(P) = (=1)* 3_ wi(F) hz,
F<P
and therefore (in the notation of §3.8)
P(2) = flo) = (=) T wi(F)lg (2).
F<P

We now consider the equivalence classes of faces of P under the action of . We shall
refer to the class of F as [F]. We split the above sum over F < P into sums over the
classes:-

PUe) =0 = Zemle TS wHER) 1y ()

{F] §€u
(=) _
= wt(EF) - det(€) - I (éf T). (5)
FSia, F o 2
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Note that since P is a fundamental chain, we have
Zdet Qwt(¢F) =0. (6)
(€p

Let Y C X be a finite set on which u acts freely, so for £ € g and 7 € H, (X, X\ Y),

one has
Z Z det ]IE'T

€Y €Y
We therefore have by Proposition 1,

< NP>y = <[ f>v< >y
= < f° f>v< fLf o7
= < fO=ff >y,
and by definition of < —, — >,
= T [T ¢V e@=1'canse
{epzel

Formula (5) now gives

- OO C;%ﬁ,%wt(ﬁf)det(f)*;}_((f"r)f(r).

CEu [Fl éenzeY
We now reparametrize the product:

= IIIIIIII (CE)FoRBT R ATy (01 (2)

(Eu [F) E€uzeY
Formula (6) now gives
- TIIII I é‘;{%‘dp'wt(ﬁf)det(f)l;;},(cm)!(m)‘

CEx [F] é€nzeY
Reparametrizing again we get

- [T 6;%:—}3,%“(6?)dct(ﬁ)lgr(x)f(C“z).

(En [Fl éepzeY
Since f is fundamental we have

_ 01 frg%gzj.wt(ff)det(f)l;;(z}
(F] éEnzeY

- T gig;__lg%,m(gr) det(@{{RAY )}
(7] ¢en

We have therefore proved:

Theorem 6 (Formula for the Skew Product) Let m® and m! be two modifications
from 0 to 1 in V., and let h be a homotopy from m® to m'. For a face

n—1
F = Transl(vr) [] ex;
i=1
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we define an n-cube

n=-1
hr(z1y.. . Tno1,t) =vE+ Z hleri) (e, t), zj,t € 1.

i=1

If for every face F < P we have Y N |871;| ={ then
<Py = T,
(7]
where the constants (r] € p*° depend only on the fundamental chain P.

4 Admissible Paths and Admissible Homotopies

Let 7 : I™ — X be a singular n-cube. If z € |07 then I7{z) is not defined. Thus if we
write formulae involving I7{(z), we must be certain that « ¢ |07 |. This is the purpose of
this section. The proofs here are quite technical. We first state a technical lemma, which
we shall need for the other proofs in the section.

Lemma 2 Let ® be a Hausdorff, real, topological vector space and V, an n-dimensional,
real vector space. Let Z be a compact polyhedron of dimension less than n. Let B :
® x Z = V be a map with the following properties:

e B is continuous and piecewise differentiable.
o Vze Z, B(—,z): ® = V is an affine map.

o Vz € 7 where B(—,z) : & = V, is not surjective, one has 0 € B(®,z). We shall
call such points = ‘degenerate’.

We define a subset
V.= {pcd|Vz€ Z one has B(¢,z) # 0}.
Then WU is a dense, open subset of ®.

Proof. See [2].

4.1 Admissible Paths

We are interested in the values of our various fundamental functions on the subset X*[ag]
of X. This will be refered to as the critical set. It is important that our functions are
fundamental on this set. The functions which we constructed in §3 are fundamental
outside the boundaries of the modified parallelotopes used in their construction. We shall
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therefore try to modify our parallelotopes in such a way that their boundaries avoid the
critical set.
We call a modification m admissible, iff

|0m(P)l N X[af] =
This means that the function f™ is fundamental on the critical set X*[af].

Lemma 3 (Existence of Admissible Paths) For every neighbourhood U of zero in
Voo there is a differentiable, admissible modification m' with

dci ( He)(z) —elz )) €U and m'(e)(z) —e(z) € U.
And if we define
a _ ] e7imi(e)(22) z<
m (3)(2) —{ o 16(1)+(1 )ml(e)(gz_l) > %
— Btm!(e)(22) z< )
mﬁ(e) Z { ﬁ—-l (1) ( _l)ml(e)(Qz— 1) 2> %
"‘ﬁ m‘( )(4z) 2< g
ma'ﬁ(e)(z) = e(1) + (a~! — a7 187 YYm!(e) (42 — 1) % <z< %
+ (1= 0 )mi(e)(2z - 1) >l
_1ﬁ—1 l(e (4 ) 2 Si
ee)(z) = —‘ﬁ le(1) + (8" — a~1f~Ymli(e)(dz —1) 1<z< )
e(l) + (1 - ﬁ‘)m()(z—l) z>1
a”' B~ 'ml(e)(2z) <t
ms(e)( ) = _lﬁ e(l) (l Cr_lﬁ—l)ml(e)(Qz- 1) 2> %

then the modifications m ,m"3,m""a,mﬁ"’,m$ are also all admissible.

Proof. (i) Let ® be the real vector space of functions ¢ : M — V,, satisfying the
conditions for all e € £0
dole) 0

(0

$t(0) = =0,

ab2
#P’ -1 1 ) — qb(e)(-?:)
##ab‘l #MabE
® becomes a topological vector space with the following norm:

||¢||-supsup{|¢=) e -\}.

z€l e€£0

vo<z< one has ¢(*) (z +

With this topology ® is Hausdorff.
22



To each face F < P we deﬁne Z;- to be the dlSJOlIlt union of six copies of /™!, We
call these copies Z}, Z%, Z}-, Z;- Z and Z%. Let X be the disjoint union over all
F < P of the sets Zz. Then X is a compact, (n — 1)-dimensional polyhedron.

To each z € X~[af3] we shall define a map B, : X x & — V,, to which we shall apply
the technical lemma §4.1.

(ii) Let ¢ € ®. We define modifications.

_ | o7im¥(e)(22) :<t
) = { ate(l) +(1—a)m"(e)(2z —1) z2> 3
mP9(e)(z) = { Btm' (e )(”2) 2<1

T B7e(1) + (1= B)ml%(e)(2: — 1) 223

a” !B Imb?(e)(42) <l

m? e o”fle(1) + (07! —a”l T miAe)dz — 1) F<z<y
a~te(1) + (1 — a~)mb*(e)(2z — 1) :2>1
a”! B~ m!?(e)(4z) z<t

mPe(e)(2) ;== a7Ifle(1l) + (87 —aT BT )mMb(e)(dz — 1) <2<y
ﬂ“e(1)+ (1 —8""ym!%(e)(2z - 1) z> 1
m-e»ez.:{ a™! Bt 4(e)(22) <1
Tl e B () + (L - a7 B )m A (e) (22 - 1) 225

(iii) Let z = (21,..-,2n-1) € Zk, where F = Transl(vz)[T}Z) ex;. We define for
z € X*[of),

Bu(z,9) i= m"(F)(2) ~ 2 = vr + 3 mH(er;)(5) — z.

j=1

The point z is degenerate (in the sense of §4.1) precisely when for all 7 =1,...,n - 1,
2j € {0, g%z, .-, 1} [If that is the case, then vr + 37250 m'®(ex;)(z;) is a S#ub2-
division point of L, and is therefore not in X'[aﬁ]. Therefore, if z € Z% is degenerate,
then B:(z,¢) # 0. '

(iv) Let z = (21,...,2a1) € Z3. We define

n-1
B.(z,¢) :=m"¥(F)(2) —x = vr + 3_m™%(er,;)(2) — @
Jj=1
The point z is degenerate precisely when for all 7 =1,...,n =1, z; € {0, Wl.‘w, o1k

We want to show that in that case, B:(z,¢) # 0. Let be degenerate. We shall
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compute a{vr + 172) m™®(er;)(z;)) modulo L. We shall often use the fact that o =
{ mod 6#u**2. One has

n-1 n-1

o ('U}' + Z ma'¢(ey:_j)(2j)) =vF + Z am"’"’s(egr‘j)(zj) mod L
=1 j=t

Suppose z; > 3. Then

am™er(z;) = er;(1)+(a—1)er;(22; — 1)
= er;(1) modL

= am™®(er;) (—;—) .

We can thus assume z; < 1. We then have

n—l n—1
o (”f +2 m“‘d’(ef.j)(zj)) =vr+ »_ er;(2z;) mod L.

i=1 1=1

This is a §#u**?-division point of L and can only be in L if for all j, z; = 0. Thus
vr + L72{ m*®(ex;)(z;) can only be an af-division point, if for all j, z; = 0. If that
is the case, then vr + £02) m*®(ex;)(z;) = vr & X*[af)]. It follows that for degenerate
z € 7%, B.(z,¢) #0.

(v) We define further for z € Z2, z € X*[af]:

Bi(z,¢) == mP?(F)(z) — =,

and so on. As in (iv), we show that if z is degenerate, then for all ¢ € ®, B,(z, ) # 0.
We can now apply Lemma 2.

(vi) We define for z € X*[af],
U, :={¢p€®|Vz€ Z one has B;(z,¢) # 0}.
From §4.1, ¥, is a dense, open subset of ®. If ¢ € ¥, then by definition of B,

z & [OPY| U |9P| U ... U |aP%e.

(vii) Let Si};’“e be the set of all elements of X*[af], in a large compact subset of V.

This is a finite set, but if z € X*[af] \ .S’C{E'“e, then ¥, contains a neighbourhood U’ of
0 in ®, which is independent of z. Let ¥ := N exe[ag ¥z Then ¥ NU' = ﬂzesygm-m ..

This is also dense and open in U’. We can therefore choose a ¢ € W arbitrarily close to
0. Let m'(e)(z) := e(z) + ¢(2). Then m! satisfies the conditions of the lemma.
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4.2 Admissible Homotopies

In Theorem 6 we obtained a formula for the skew product < f?, f! >,5 where m® and
m! are two admissible modifications. Our formula depends on the choice of a homotopy
h from m° to m!, where h satisfies the following condition:

X*[aB} 0 ( U ]aﬁfD =0,

FP

with hr as is §3.10. We shall call a homotopy which satisfies this condition admissible.
To be able to apply Theorem 6 we must show that admissible homotopies exist. The
following statements are easily proved (so we won’t prove them).

o If m® m! and m? are three admissible modifications, and A’ and A” are admissible
homotopies from m® to m! and from m! to m?, then the composition (in the category
of modifications),

RNz, 2t) t <
R (g, 2t - 1) t>

(hfo h")(e)(m,t) = {

[ o S

is an admissible homotopy from m° to m?.

e If h is an admissible homotopy from m® to m' and of A’ is pointwise close to h and
also a homotopy from m® to m!, then A’ is also admissible.

We now show that close to any homotopy, there is always an admissible homotopy.

Lemma 4 (Existence of Admissible Homotopies) Let m® and m! be two admissible
modifications, and let hg be any homotopy from m® to m'. Then for any neighbourhood
of zero 0 € U C Vi, there ts an admissible homotopy h : I* — Vo from m® to m!, with
the property that for all (z,t) € I?, e € £0, one has

Wz, 1) = K (z,t) € U.

If the functions m®, m! and ho are differentiable, then we may also require that h is
differentiable, and in addition that

a—i(h“)(z,t) ~h$(z,0)) €U and g—t(h(")(x,t) ~ h§(z,1)) € U.

Proof. (i) We first prove the lemma in the case that m®, m! and hy are differentiable.

For each F < P let Zx be the set /™, and let Z be the disjoint union of all the Zr.
Then Z is a compact, (n — 1)-dimensional polyhedron. We shall write points of Zr as
(z,t), where z = (z1,...,2,) € " T and t € [.

(ii) Let ® be the real vector space of differentiable functions

b MxT — V.,
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M x I) — 0,

whose restrictions to M x [ are zero. We give ® the topology induced by the following

Nnormn. ( ) (e)
d)(e) | Iad) | Ia‘{b (z,t)‘}.

ot
For every z € X’*[aﬁ] we define a function B, : Zx ® — V.. If (2,¢) € Zx then we define

]l :==sup sup {

eef0 (z,t)eMx !

Bz((2,1) —v;r+Z( Ry T (25,t) + $179)(25,1)) —

Since hg and ¢ are differentiable, B; is also differentiable.
(iii) A point (z,t) € Zx is degenerate precisely when either t € {0,1}, or z is a vertex
of "L,
o If ¢t = 0 then B,((z,t),¢) = m°(F)(z) — z. Since m® is admissible, B,((z,1), $) # 0.
o If ¢t =1 then since m' is admissible, B;((z,t), ) # 0.

o If z is a vertex of ™!, then B.((z,t),¢) + z is a vertex of a parallelotope P;.
Therefore B;((z,t),¢) # 0.

The function B, therefore satisfies the conditions of Lemma 2.

(iv) Let ¥, := {¢ € ® | Vz € Z one has B;(z,¢) # 0}. By Lemma 2, ¥, is dense
and open in ®. Let ¥ := (V,cx+(ap Y:- As in the proof of the previous lemma, ¥ is also
a dense, open subset of ®. We choose ¢ € ¥ close to 0. Since ¢ € ¥, one has for all
T € X*[af] and all F < P,

v & |0h%,

where h*()(z, 1) := h,gc)(:r:,t) + ¢!*)(z,t). The homotopy h? is therefore admissible. Since
¢ close to 0, h? is close to hg. The proof in the differentiable case is finished.

The non-differentiable case

Now consider continuous functions
ml(e): [ — Voo, mOe):l — Vo, AP 17—V,

with the conditions
m®(e)(0) = m'(e)(0) = h§(0,¢) =
m®(e)(1) = m'(e)(1) = h§?(1,1) = (1),
h$(2,0) = m%(e)(2),
h)(z,1) = m'(e)(2),

and with m® and m! admissible. There are differentiable functions

m®e): [ — Vo, m¥(e): ] — Vi, KD 1P — Vi,
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which are pointwise close to m%(e), m!(e) and hge), and which satisfy the same conditions.
Since m® and m! are admissible, and m% and m? are close to them, m? and m? are
also admissible. From what we have already proved, there is an admissible homotopy hy
close to hgyo. We define

R'®(z,1) = (1= )m®(e)(z) + tm®(e)(2)

and A"C)(z,t) = (1 — t)m'(e)(z) + tm*(e)(2)

The two homotopies A’ and A" are admissible. Now let

h’(c)(z, f) t<e
hO(z, 1) =< ALY (z, (- e)) e<t<l—ce
R"e) (z, %) t>1-—ce

The function h is an admissible homotopy from m® to m!, and for small ¢, A is close to
ho.

5 Proof of Theorem 1

In this section we prove the following:

Let (o, B) € Qg with the following conditions:
o o= =1 mod 26#u*"?;
o « and 3 are in the connected component of [ in Gx.

Then
Dec(a, 8) = Dec(8, a).

5.1 Proportional Equivalence Classes

We can embed the multiplicative group B> in Gg by the map r — r- I. We write
the quotient group Gg/R>° as Gg:. We call the cosets of R>? (the elements of Gg:)
proportional equivalence classes. We write a: for the proportional equivalence class of a.
If a: = f3: then we say, that a and 3 are proportionally equivalent.

We shall assume that o: and f: are both in a small neighbourhood of I: in Gg:. This
implies in particular that & and § are in the connected component of [ in Gg. It also
implies that the modifications m®, m?, m®# and m®® consist of nearly straight paths,
and that the maps me(P;), m?(P;), m*#(P;) and mP(P;) : I = X are injective.
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5.2 Remark

Let v € Gz, v € X and e € €. If Transl(v)ym!(e) x T is an element of Z,, (X, X \ X[aB])
such that v = 0 mod o~ '3 '6#u*", then one has:

{{xte8

We will often use this fact.
The next lemmas are similar to lemmas due to Habicht in the case where p is the
group of cube roots of 1 acting on the number field which they generate.

Transl(v)ym'(e) x T}} =0 mod #u*.

Lemma 5 If (a,3) € Qp with o =1 mod §#u>" then
< fa,fl 0a >ap\a= 1.

Proof. We have m®(P) = ¥_; m®(P;) for some set of parallelotopes P;. Similarly we
have f* = 3, Ima(p;). For each parallelotope there is an expression

m®(P;) = Transl(v;) ]i[ m®(e;;),

where vertices of P; are in X [4]. By definition (§4.3) of m®(e;;), this is the equivalent to
Transl(v; H (a m!(e; ;) + Transl (a e,_,(l)) (1 - a‘l) ml(ei,j)) :

Expanding the brackets we obtain:

Transl(v;) [[ o 'm*(ei;)
=1
+ parallelotopes, at least one of whose edges is a vector in RLE Tt

The first term is equal to Transl((1 — a~")v;)a~'m!(P;). Summing over the set of paral-
lelotopes P; we obtain

m®*(P;) = Transl((1 — a ;) 'm!(P)

+ parallelotopes, at least one of whose edges i1s a vector in LY g

The function = — f!({"'az) is periodic with respect to X[a]. The set X[af]}\ X[e] is
also invariant under translations by elements of X|[a]. Therefore the sum of f!({~'axz)
over points of X[af]\ X[e] in a parallelotope with at least one edge in o~ '#u®° L vanishes
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modulo #p*®. We therefore have:

<fufloadape = [ [ (mem@Tes)
(€n zeX[aB]\Xfo]

= [III I (ematerican)

i (epzeXlaf\X][a]

= H H H C]T‘;anll((l—a—l)u{]g—lmllp;)(;).f(c—la:c}

i (EpzeX[of)\X[a]

= H H H CITraml((l-—a‘l}u.-)a"lml(‘Pi)(i)'f(c—lai)
i (€pnzeX[aB\X[a)
— ]:[ H Cﬂign(a)-Eml(pi)(ai—(a—l)v;)-f((‘lai)
(€u e X[aB\X[a]

— H H Cﬁign(a)'lml(p)(f)'f(c—li)

(EpzeX[BN\L
= <=1

Here sign{a) is the sign of the determinant of e. Note that the (a — 1)v; has disappeared
because it is in L.

Lemma 6 There is a neighbourhood Nbd of I: in Gg: with the following property. If
(a,3) € Qp with a = 8 =1 mod §#u*? and o, B:€ U, then

<faafl >£x=< fﬁ'aafﬁ >a{3-

Proof. (i) The proof is quite long but the idea is simple. In the one dimensional case
this is all trivial because the fundamental functions are independent of the modifications.
The lemma can be easily understood for fields of degree 2. In higher dimensions some new
phenomena arise and the two-dimensional picture becomes inaccurate. A full impression
of the proof can be gained by considering three-dimensional cases, in which everything
goes wrong that can go wrong.

Our calculations will be mainly in the homology group H, (X, X \ X*[af]). The
lemma follows because the difference between m?< and m? is essentially 5! of the dif-
ference between m® and m! (this can be seen by drawing a picture). On the other hand
the product on the right is over af-division points, whereas that on the left is only over
a-division points. The proof will use the skew product formula (Theorem 6).

(ii) To apply Theorem 6, we need admissible homotopies from m® to m' and from

m? to m?. We now construct these homotopies. Let U be a neighbourhood of 0 in V.
We define for an edge e,

R (@, 1) =t - mi(e)(z) + (1 — t) - m®(e)(z).

Then hg is a homotopy from m! to m®. We choose using Lemma 4 an admissible homotopy
hy from m! to m®, which is uniformly close to kg (it is not so important which admissible
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homotopy we choose). We compress this by 87!, and obtain a homotopy from #~'m! to
B~ 'm?*, which we shall denote h,:

WS (z,1) = B R (2, 1),

Finally we extend h, by a constant homotopy from S~'e(1) + (1 — 8~ )m!(e) to itself,
thus obtaining a homotopy A3 from m? to m#%:

he(z,t) = { e ifz <5
Ble(l) + (1 — B Yymi(e)(2z = 1) ifz > L.

The admissibility of hs follows from that of h,. We construct as described in §3.5 the
homotopies hy, he and hs.
(iii) From Theorem 6 we have

- f",f' - HC{{X-[C'”’;F}},
(

(¥
< I e Hc{{ el

To show that < fo, f! >, =< fP, f# >05, it is clearly sufficient to prove for each face

F < P that N _
{{X'[a]lhm}} = {{‘X‘[aﬁ”hB}'}} mod #u*°.
We shall prove this.

(iv) Let F be a general face of a parallelotope of P. The there is an expression of the

form
n-1

F = Transl(vs) [] ez,
t=1
where vr,exr;(1) € X[§]. We cut the n-cube E; into 2*~! pieces. This cutting process
corresponds to cutting JF into 2"~! pieces, each half as big as F. We thus have in

Ha(X, X \ X*[aB)):

~ ~T
hg}-.——“ Z h3.’}-‘1
Tc{1,2,...n-1}
where
ha . 1
hgg(asl,:cg,...,zn_l,t)=v}-+ Z h(c}'J)( i t) +Zh ;J)(:Ej-i- t).

je{1.2..n=1\T jeT ~

Note that the boundary of f—z;; has no intersection with X'[aﬁL This follows because the
boundary can be covered by translations of the boundary of hsr by af-division points,
and A3 is admissible. We therefore have
— — N ~T
{Xletlfport) = 3 {{XleBlfhos}}
Tc{1,2,..,n—1}
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We now compute the terms in this sum.
(v) First suppose T is empty. We then have

n—1
e er; I

j=1

n-1
= vr+ 3 AT (z51)

=1

n=-1
vr + 87 Y W (a5,1)

i=1

n—1
= p! (vf+ > hg”")(wj,t)) +(1 -8 s

i=1

Il

Thus — .
har = Transl((1 — 87 vz)B  hir,

and therefore

{xes) | Rez}}

{{a‘lﬂ‘lL \ L | Transi((1 ~ ﬁ"‘)vgr)ﬂ“lf;_r, }}
= {{a7'p7' L\ {0} | Transi((1 — 5~ )or)B "Rz, }}

= {2\ {0} | Transi((8 — er)hir}}.

We now distinguish two cases. First suppose vy = 0. We then have immediately

{xem| Fasl) = {{ZoV 10} [ Rs) = {0 | i}

In the other case vy # 0. Then there is a neighbourhood of |F|, which is disjoint from
L. We therefore have for a: and §: sufficiently close to /: and m'(e) sufficiently close
to e and h; sufficiently close to hg, L N |hiz| = 0. Therefore (since (8 — 1)vr € L)
‘Tra.nsl((ﬁ - l)v}—)fz;| N L = (. We thus have as in the first case

{x°10Bl | Rar}} = {{X"[e) | Bir}}.

(vi) Now suppose T is non-empty. Without loss of generality, assume 1 € T. Then

—T - z1+1
’13}'(37113:23‘ . '1In—13t) = h1(3 7 (IT!t) +g($27' : .,$n_1,t)

with a suitable function g. However hg”r") (EL;—‘, t) =B ler (1) +(1=B"m (er1)(z1).
We therefore have

~T
Fag = (1= 7)m(ex,4) % g.
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. . . . T . .
Since T is non-empty and a: is close to [:, it follows that |h3z| contains no point of L.

Therefore 7 T
(X leplRE}} = {{Xloalfm)),

so by remark §5.2, we have

{{X”[aﬁ]lf;;}} =0 mod #u*®.

-

(vil) We have shown in (iv), (v) and (vi) that for every face F < P,

{X"laBllhar }} = {{X"[ed[hir} } mod #pe*.

Therefore by Theorem 6,
< SO >a=< [P [P >ap

Lemma 7 There is a neighbourhood Nbd' of I: in Gg: with the follwoing property. If
(a,B) € Qg satisfies « = B = [ mod 26#u*®? and a:, B:€ Nbd', then
< [P ¥ >ap= 1.

Proof. (i) We first consider the case that #42P is odd. The minor changes required
for the case that #.2° is even will be described at the end of the proof.

(ii) We recall that the functions f® and f*# are defined using the modifications m
and m®? where

$

m(e)(z) = { o) ©<a
a”'f7le(1) + (1 —a™'f7)mi(e)(2z 1) =z 2 3,
o™t Biml(e)(22) ¢ < 3

m*P(e)(z) = a~'f7le(l) + (@' —a ' F 7 )mi(e)(4z - 2) L<a <8,
a~'e(l) + (1 —a™')m!(e)(4z - 3) 23

From this we see that the difference between m®(e) and m®#(e) is essentially a triangle
whose vertices ( a™'87'e(1), o 'e(1) and e(1) ) are congruent modulo ™! #u*?L.
We shall exploit this congruence to show that < f*f f¥ > _5=1.

(iii) We shall construct a special admissible homotopy £ von [0, 1}* to [0, 1]*#. Then
by the skew product formula (Theorem 6),
(o)

< fa'ﬁafs >ap= HC[;;:)
1

For every face F < P we shall show that

{{X"[aﬁ”f"z,r}} =0 mod #u®®.
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From this it follows that < f*#, f% >, 3= 0. The difficult thing is to find the right
homotopy .

(iv) We now begin to construct the homotopy . The two paths m®(e) and rﬁﬁ'°(e)
are the same from 0 to a™!$7'e(1). We call this part of the paths the singular part. In

the singular part, whose preimage in [ is [O, %], we define h(*)(z, ) to be independent of
t. Thus for z < 7 we have

h(z,t) = o~ 'B~'m!(e)(2z).

The rest of & depends on ¢, since m%(e) and m#2(e) are not the same between o~'8e(1)
and e(1). We call this part of h the non-singular part. If the face F is given by the
product

n—1

Transl(ve) [] ex,

=1

then we have

hr(zi,. . Tnoyt) = ve + Y. @B (er )2z + YL AR (24 t).
z:€[0,4] i €(0,3]

To make this more readable, we define for every subset 7' C {1,2,...,n — 1} a function
(@10 s t) = v + 3 07 B m e (as) + T HCn) (2
Ir - s Tnmpp ) =VFT ) @ €F i I\T; _ 5 )
JET igT =
The function gr is a singular n-cube in X'. We have an equivalence in H,(X, X\ X*[af]):

77.;;: s Z ar.
Tc{12,.,n—1}

We shall construct the non-singular part of A such that for every T one has

{{X'[aﬁ”gr}} = 0 mod #u°°.

If T is empty then gr is degenerate and the equation follows immediately. Thus the totally
singular part of hx vanishes. Now suppose T is non-empty. Since a: and [3: are close to
I:, we can (and shall) choose h is such a way that for non-empty T the sets |g7| and L
are disjoint. It is then sufficient to show that

{{X[aﬁ]‘gT}} = 0 mod #u°".

(v) We would now like to construct the non-singular part of h. For this purpose we
define
) P — Y,
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(:c,t)»——>hf=)($;’1,t).

o

This function is a homotopy between the non-singular parts of m®? and m®. We can now
express gr more easily:

91 (Tts o T, ) = v+ Y a7 B m (e ) ;) + YRR (g5 1),
JET ieT

(vi) We now construct a sequence of paths between a™!37'e(1) and e(1) :

W, owE o owl L, wl

where W{* is the non-singular part of m®#(¢) and W;ﬂab, is the non-singular part

of m¥(e). Between W(c) and Wﬁ.b, there is a modified triangle, whose vertices are

a~'37'e(1), e 'e(l) and e(1). These vertices are congruent modulo o' 87 '#u**?L. We

cut this triangle into #42°2 smaller, similar triangles. The vertices of the smaller triangles
are congruent modulo a™! 3~ l#u“bL

ARG
A/\
el TN NS N e(1)

/13 10 7 a1 715012 16

We number the triangles as shown in the diagram. Thus the path Wéc) runs above

all triangles in the diagram. We now construct the path Wl(e) to run below of the first
triangle but above every other triangle.

AR
SN ON e
NG NE N
N NN 2N

Similarly Wée) runs below the first two triangles, and so on.




/1\
‘) .
3N /4
13N a1 1%

We choose the paths VV,(f)l and W,-(c) so that they are equal outside the subinterval
[ci,d;] of I, which is mapped to the boundary of the *" triangle. Thus Wi (z) = Wi(x)
for z & (¢;,d;). We shall choose homotopies h?'(e)(:c, t) from W,(_e), to W,-(e) in such a way
that they are independent of ¢ for z & (¢, d;}). Thus for z € (¢;, d;),

h’_“(e)(x,t) — I‘V‘(e)(l‘) = I’V‘(f)l(:g)

We now choose by Lemma 4 h';’(e) and h;’(c) for z in (¢, dy) and (¢p, d2) such that ~, and
hq are admissible. If i > 2 then the ¢*! triangle is a translation either of the first or of the
second triangle by an element ¢\ of a=!3~#u** L. We can now construct 7*')(z,t) for
T € (¢, d;) as follows:

R (e + (dy — ¢1)z, )

h,(e)c,-+ d; — ¢z, t) = tE" + { . .
(e +( )z,1) K (c; + (d2 — )z, 1)

We define the non-singular part, 2™ of A:

-1 <t< :
##ab2 -7 = #pabQ'

B (2,0) o= A (2, Pt =i 4 1), for
We also define

(@1, Ty ) 1= vp + 30 @7 B MY (ep ) (7)) + T AP (25,0).
JET JET
There is an equivalence in H,(X, X \ X[ag]):

#“ab2

gr = Z g{r-
t=1

(vii) We now consider the functions A?* and g% in more detail. We have

Go(@rye e Zaest) = vp 4 @ BT MmN er )z + Y W (e))
Jj€T 1¢T, z;&(ci di)

+ Y AN,
J€T, zj€(ei,di)
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If T! and T? are two subsets of {1,2,...,n — 1}, such that 7, T and T? are pairwise
disjoint, then we define

l;"‘,T’(xle'"axn—lat) = vr+ Z a_ltg_lml(e}'.j)(mj) + Z I"'/i(e}-h”(C'i:rj)

JET JET!
+ 3 W1 = d; + d)
JET?
+ Y AT+ (d - ) 0).
JETUTIVUT?

We then have an equivalence in H,(X, X \ X[aB]):

Q{P = Z lirl.a‘?
TLT72¢C{1,2,..n—1}\T, TINT?=0
We shall compute the terms of this sum.
viii) If T! is non-empty, then [i, . is a product of wiesal | with other things. We
T\ T i [0,ci] g

know however that Wi(ef J )|[0'c‘] is a sum of modified line segments, whose lengths are in
a” 1B #u* . Therefore by remark §5.2,

{{X[eB]|These terms}} =0 modulo #4*®.

The terms in which T2 is non-empty vanish in the same way. We are therefore only
interested in the term, for which 7! and T? are empty. First suppose the i*} triangle is a
translation by ¢ of the first triangle . We then have

o(Tis s Tacyt) = ve+ Y. a8 m(er;)(z) + 3 AT (e + (di — ei)zs,t)

=t €T
= vr+ ) o 'f7imi(er;)(g;)
JET
+ 3 (67 AT e+ (d = e1)as )
i€T
= 3 47 lglen, o mann, ).
JET

Since tE""" € a~'B7'#u*® L, we must have Lier tﬁ"”’ € o137 '#u L. In particular
this translation is in a~'8~! L. Therefore

{{x(eBllti}} = {{X(eBllli,}}-

Analogously, if the ¢*" triangle is a translation of the second triangle,

{X[eBllls}} = {{X[eBlli34}} -
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The number the triangles which are translations of the first triangle is MﬁL})"’Q The

number the triangles which are translations of the second triangle is M%&a:_—ll. We
therefore have

ab
(XoBlioryy = LT D oy )} + BT (o))

Since both these numbers are divisible by #.2®, the lemma is proved in the case that
#1422 is odd.

(ix) We now consider the case that #u®® is even. The whole proof would be the
same, but at the end one doesn’t have the result that #""b(#”nb“ and #““b(#“lb'”
divisible by #u®". Instead we require at the beginning that a B = 1 mod 9(5#;1‘*’2. We
cut the large triangle into 4#u®*? instead of #u*®? pieces. At the end we have for the
Lttt () opg (GO0 which are divisible by #p*®

and

two numbers

Lemma 8 There is a neighbourhood Nbd, of I: in Gy: with the following property. Let
(o, B) € Qg satisfy o = B =1 mod 26#u°°? and a:, 3:€ Nbd,. Then

Dec(a, 8) = Dec(f, ).

Proof. This will follow from the previous three lemmas together with the combinatorial
properties of decidents and skew products. Let Nbd, be the intersection of the two
neighbourhoods constructed in the previous 2 lemmas. By Proposition 4 we have

Dec(a,B)Dec(f,a)™! =< f', floa >apa< fL 0B, [ >ap\s -
By Lemma 5 we have
Dec(a, B)Dec(B,a)™" = < f',floa>apne< fl o, f* >upia
<P St o >ama< flof f >apa -
By Proposition 1 we have
Dec(a, B)Dec(B, )™ = < f', f* Sapra< 2. f' Sapr
<P < SISO san< SO F S5
Now Lemma 6 implies
Dec(e, B)Dec(8, @)™ =< [1, f* >ap< f2, [P0 S24< f2, ' ap< [P, [ >25
By Proposition 1 we have
Dec(a, A)Dec(B, )™ = < 1,7 Sag< P, 7 Sag< 2,1 >ap< £, £ >ap
<SP >ap< O >ap< [N ST Sap< fO fTT Sap
= < fﬁ.a’fa,ﬁ > a8
< P fP s < 2P >0

Lemma 7 now implies Dec(a, 8) = Dec(53, a).

We now prove the result stated at the beginning of the chapter:
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Corollary 2 (Theorem 1) Let (e, 8) € Qg satisfy o = 8 =1 mod 28#u**? and o € G}
and B € G3°. Then
Dec(a, 3) = Dec(8, a).

Proof. First let o:€ Nbd,, and let a, 8 = | mod 26#u**? and 8 € G3°. The set
{6713 | b € Nand 8 € Gg,8 = 1 mod 26#u°°?} is dense in G§. Since B € GE°, we
can find a (' such that (ﬁ'#“abﬁ):e Nbd; and /' = I mod 2§#p2*%. We have from the

previous lemma

Dec(a, 34 §) = Dec(**, ).

By Proposition 3 we have Dec(a, 3##°3) = Dec(a,8). Similarly by Proposition 2,
Dec(8'##*" 8, a) = Dec(a, 8). Therefore

Dec(a, 8) = Dec(B, a).

With the same trick we can remove the condition that a:€ Nbds.
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