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Abstract

This article is areinterpretation of the work of Kubota [4J and Hili [2J, in whieh
the reciproeity law for Kummer extensions of algebraic number fields are proved
using geometrie arguments. Here we show that the same methods ean be used to
deseribe higher metaplectie eoeycles. We also deseribe an analogy of the Hilbert
Reciprocity law for a skew field.

1 Introduction

1.1 Main Results

Let /-L be a finite graup and denate by J-lab the Abelianization of J-l, ie. J-lab = /-LI/-L' where
/-L' is the subgroup of J-l generated by the commutators. Let L = zn, V = Qn, Lp = Z;,
Vp = Q;, VA = An and X = Vool L. Suppose we have an action of fJ. on L satisfying:

• For all 1E L \ {O} and ( E /-L \ {I}, one has ( . I :j:. I.

• There is a singular n-chain P in Cn(X) whieh is a linear combination of parallelo­
topes, sueh that

L(P
<E~

is a cycle and generates the homology group Hn(X, Z). Furthermore, ther vertices
of P generate a finite subgroup of 4~'

The chain referred to abave can be thought of as a generalized fundamental domain. We
shall refer to is as a fundamental ehain.

Let Gz = Aut~(V) n End~(L) and GQ = Aut~(V). We think of this as an algebraie
group and use the standard notation. Let

nz .-

nQ .-

nA .-

{( ) C2 aß =ßa, and }
a,ß E TZ: aL+ßL=aL+#/-L.L=ßL+#/-L.L=L '

{(a,ß) E G~: aß = ßa}.

{(a, ß) E Gi : erß = ßa } .
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vVe shall eonstruet a map

with the following properties:

• Hilb is bimultiplieative: if (a, ß), (a', ß) E OA then

Hilb(aa',ß) = Hilb(a,ß)Hilb(a',ß).

• Hilb is eontinuous with respect to the adele topology.

• Hilb is skew-symmetrie:-

Hilb(0', ß)Hilb(ß, 0') = 1, Hilb(0',0') = 1.

• Hilb has the property:-
Hilb(o:,l - 0') = 1.

• Hilb splits over Q: if (0:, ß) E OQ then

Hilb(0:, ß) = 1.

• Hilb is a produet of loeal faetors:

Hilb(o:,ß) = II Hilbv(O:v, ßv),
v

where O'v, ßv E G(Qv) are the v-th eomponents of 0: and ß and Hilbv : G(Qv) x
G(Qv) -r pab is a continuous bieharaeter.

• Hilb eommutes with direet sums. Suppose L = LI ff) L2 as fl-modules and 0: VAl = VAl,
ß V 1 - VI aV2 - V 2 ßV2 - V 2 ThenA - A' A - A' A - A'

• If Po C J.l then one has
Hilb~o = Verl~o Hilb~,

where Ver! is the transfer homomorphism.

Having given several properties of Hilb it remains to say how it is defined. This is
aehieved is several stages. Let 5 be a finite set of places of Q, including all plaees v for
whieh 1#J.llv =1= 1. We shalluse the standard notation

Qs = EBQv ,71
s = {x E Q: tlv t/. 5, lxiv:::; I}.

vES
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We begin by constructing a bicharacter Hilbs on ~las which is trivial on Ozs. This will
he compatibe with the injections G(Qs) --t G(QSI) für SeS'. Thus taking the limit üver
S we obtain a bicharacter on flA .

We now give abrief description of Hilbs , which should be avoided on first reading but
.which may be useful für reference purposes. To define Hilbs we let .)(s be the abelian
grüup

X s = V(Qs)jV(71s ).

Let Ozs be the set of pairs (a, ß) E G(71 S ) x G(71S ) satisfying aß = ßa, a V(71 S ) +ßV(71 S ) =
V(ZS). Let f : .)(s --t Z be any function satisfying

L f((x) = #Stab~(x).
(E~

Then for (a, ß) E Ozs we define

Hilbs (a, ß) := TI (J(x)J(ox) TI (-J«x)J(ßx)

xEX·[ßJ,(E~ xEX·[ol,(E~

where
X"'[a] := {x E ){s : ax = 0, x =I- O}.

110st of the hard work in the paper goes into proving that Hilbs can be extended uniquely
to a continuous function on OQs' The properties of Hilb follow naturally from the con­
structiün. Gur techniques will be geometrie. NIost of the arguments ean be found in a

slightly different context in [2], which in turn is based on ideas from (4] and [1]. The main
objeet of study is the decident, which in same form at least dates back to Gauss.

1.2 Group Extensions

Let H jQ be an algebraie group and let p : HEB HEB J.l --t Aut V be a Q-rational representa­
tion. Then one may pull Hilb back to a eontinuous bicharaeter Hilbp : H(A) x H(A) --+ flab.

Any bicharacter i8 automatieally a 2-cocycle in the group theoretical sense, since Olle has

(ßHilbp)(a, ß,,) .- Hilbp(aß, 1 )Hilbp(a, ß)Hilbp ( 0', ß,)-1 Hilbp(ß" )-1

= Hilbp(a, l')Hilbp(ß, 1') Hilbp(a, ß)
Hilbp ( a, ß)-l Hilbp(a, ,)-1 Hilbp(ß, l')-1

= 11

Thus Hilbp represents a 2-cohomology dass with value8 in J.lab. Corresponding to this
there is a central group extension

1 ---+ J.lab ---+ "ii(i0 --+ H (A) --+ l.

Set theoretically ii(i0 consiste8 of all pairs (a, () with a E H(A), ( E J.la.b. The group law
i8 then given by

(a, () . (a', (') = (aa', (('Hilbp(a, 0")).

Sillce Hilbp is trivial on H(Q) x H{Q) it follows that the extension splits over H{Q).
3



1.3 Example 1 : The Hilbert Symbol

vVe now describe the connections between our construction and the real world. Suppose
that V is a number field and fl is its grotlp of roots of unity, acting on \I be scalar
multiplication. Then for any two ideles 0', ß of V we may define Hilb( 0', ß). It turns out
that this coincides with the global Hilbert symbol.

1.4 Example 2 : Metaplectic Extensions

Let !{ be a number field. Suppose that H is the subgroup of diagonal matrices in GLn / K.
Let lV be the [{-vector space of upper triangular matrices whose diagonal enties are all
zero. As with the previous example let It be a group of roots of unity in !(. We define a
representation p of H EB H EB Jl as follows:-

p(o:,ß,()n:= (anß-l,

where the multiplication by ( is scalar multiplication and the left and righ~ltiplication

by a and ß is matrix multiplication. Then the corresponding extension H(AK) of H(Ax)
is the restriction to H of the standard metaplectic extension of GLn(i~K) (see [3] §O). To
obtain the twisted metaplectic extensions Olle adds to IV copies of the vector space of
diagonal matrices, acted on by 0:, ß and ( in the obvious way.

vVe now mention another connection with metaplectic extensions. Let (7 be the cocycle
of the metaplectic extension, ie. a: SLn(Ax) x SLn(AK) -t Jl(!(). Let V = [(no This
is acted on by J.l and also by SLn / [(. The action of Jl on [(n satisfies our conditions.
Furthermore, elements of SLn / [( commute with the action of p.(!() on [(no vVe may
therefore think of Rest~(G Ln / [() as a subgroup of G/Q := Aut~ (V) / Q. With this notation
we have

Theorem. Let 0., ß E SLn(AK) such that aß = ßO'.. Suppose 0'. and ß are regular. Then

a(a,ß)a(ß,a)-l = Hilb(a,ß).

1.5 Another Example

"Ve now give another example which shows that the conditions of the theorem are not
only satisfied when J1 is a group of roots of unity of a number field acting on a vector space
over the number field (in which case Hilb is quite closely related to the Hilbert symbol).
Now let V be the skew field

v = {a + bi + cj + dk : a, b, c, d E lQ},

where
'ij = k, j k = i, ki = j, j i = - k, kj = - i, i k = - j.

Let J1 be the (non-abelian) group {±1, ±i, ±j,±k}. This acts on V by left scalar multi­
plication. The action has the required properties: clearly the action is free because V is
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a skew fieId, and the other property can he checked by constructing a fundamental chain
explicitly. The fundamental chain will be a sum of parallelotopes of the form

[0, ±1/2] x [0, ±i/2] x [0, ±j/2] x [0, ±k/2].

Note that J-lab is a Klein 4-group. For any two commuting elements Q, ß of \I{ , their right
actions on V commute with the left action of J-l. vVe may therefore define Hilb(Q, ß) in
terms of the right actions of Q and ß on V. This is a kind of analogy of the global Hilbert
symbol for the skew field V. It is surjective, taking values in the Klein 4-group flab, and
it is trivial on V X x V X

•

2 Combinatorial Methods

Some of the results of this section have been described in a different notation by Smirnov
[8]; the basic ideas are originally from [2], but there they were not described in the
generality which we require.

2.1 The Sheaf of Fundamental Functions

Let X be a set with a chosen element 0 EX. Let J-l be a finite group acting on X and
suppose that every element of fl fixes O. Denote by J-lab the Abelianization of J.l. A function
/ : X -t Z will be called fundamental at x E X iff it satisfies

I:f((x) = #Stab/l(x).
(E/l

The function will be called fundamental iff it is fundamental at all x E ...'\.
Let y~ c X be a finite {L-invariant subset and suppose that IL acts freely on Y. Let

F(Y) be the Z-span of the functions f : X -t Z which are fundamental on Y. There is a
map deg : F(Y) -t Z given by

deg(f) = L(E/l f( (x)
#Stab/l(x)

for any x E Y. We also introduce a skew product on F(Y) given by

< f, 9 >v:= rr (J(x)g(x) E /lab.
xEY,(E/l

The properties of this inner product can be summed up as follows:-

Proposition 1 11 /, g, h E F(Y) then one has

< 1 +g,h >l""=< f,h >y< 9,h >v,

< 1,9 >v< 9,1 >y= 1, < /,/ >y= l.
5



11 deg 1 = deg 9 = deg h then one has

< I,g >v< 9,h >y=< I,h >y .

11 Y is the disjoint union 01 YI and Y2 and if 'r"l and Y2 are p-invariant then

< 1,9 >y=< /,9 >1'1< !,g >Y2 .

Proof. The first two properties are easily seen from the definition. To prove that
< /, f >y= 1 we express / as a linear combination of functions 9 E F(Y) which take
only the values 0 and 1 on yr. It is easily seen that one has < 9, 9 >1"= 1 for such functions
and the general case follows from this. The final relation is also trivial. It remains to
show that < 1,9 >y< g, h >y=< I, h >v. We shall prove this in two steps.

(i) IVe first show that for all /,9 E F(Y) with deg / = deg 9 = 0 one has < I, 9 >y= 1.
Let f be such a function and define

O(x) := II (](x).

(E~

Note that for ~ E fl we have

8(~x) = II (J(e
x )

(E,u

rr ((~-1 )!((x)

(E,u

= rr (j((x) x ~- L(E~ J((x)

(E~

= 8(x)~-deg] = O(x).

Thus 0 is constant on J-L-orbits. \Ve shall write (x] for the J-L-orbit of a point x E Y. Then
we have

< I,g >y

=

=

=

II O(x )9(X)

xE1'
II II O( x )9(Y)

[x]C1" yE[x]

TI O(X)LYE[J;j 9(Y)

[x]cy
TI 8(X )degg = l.

[xJC}'"

(ii) Now let /,9, h E F(Y) satisfy deg f = cleg 9 = deg h. By the previous parts of the
proposition we have

<!,g>y<g,h>lr = <1,9>y<h,g>yl
= < 1 - h,9 >y

< 1- h,9 - h >v< f - h,h >1"
= </-h,g-h>y</,h>1"
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However, using the fact that deg(g - I) = deg( h - f)
f - h, 9 - h >v= 1. This proves the proposition.

2.2 Decidents

o we know by (i) that <

Let G be the set of fl-covariant self maps a : X --+ )( such that a(O) = 0 and a- I ({O}) is
finite and the action of J1 on a- I ({O}) \ {O} is free. For a E G we shall use the notation

.\'"[ü] := {x EX: a(x) = O},

X'"[a] := {x E ); : a(x) = 0, x # O}.

Let

{
aß =ßa, apermutes ){[ß] }n = (0:, ß) E (;2 : d ß X [ ] .an permutes 0

For (0, ß) E n we define the Decidenl

Dec(a,ß):= Dec(o,ß,X,J-l) :=< 1,1 0 0 >ß,

where f is any fundamental function and we are using the notation

< -, - >ß:=< -, - >X·[ß] .

Proposition 2 The decident is independent 01 the choice 01 fand satisfies

Dec( aa', ß) = Dec(Q, ß) . Dec(0', ß)·

(HeTe it is not necessary that Q' 0 a' = 0' 0 a.)

Proof. Suppose that 1 and 9 are fundamental. Then by the previolls proposition one
has

This implies

< /,/ 0 0 >ß< 9,9 00 >,BI=< 10 a,g 0a >,BI< 1,9 >ß .

However since apermutes X'"[ß] we have

< 1 0 0,9 0 a >ß= TI (f((ax)g(ax) = TI (f(x)g(x) =< I, 9 >ß .
x,( x,(

Therefore < f, f 0 0 >ß=< g, go a >ß and so the decident is independent of f·
Now let 9 = /0 a for some fundamental function I. lt follows that 9 is fundamental

on X'"[ß]. We therefore have

Dec(o 0 O/,ß) = < /,/0000' >ß

< f, 1 0 a >ß< 1 0 a, 1 0 a 0 0' >ß

= < I, f 0 a >ß< g, 9 0 0 ' >ß

= Dec( a, ß) . Dec( 0:', ß).
7



From now on, in addition to our other assumptions we shall suppose that X is an
Abelian group and that 0 is the identity element of X and that J1 and ü and ß act on __",(
by surjective group homomorphisms. "Ve shall write the group law of )( additively. This
gives rise to a group law on End/-l()()' which we shall also write additively. \Ve then have

Proposition 3 The decident is multiplicative in the second faetoT) ie.

Dec(a, ß 0 ß') = Dec( (Y, ß)Dec( ü, ß').

(Here it is not necessary that ß 0 ß' = ß' 0 ß.)

Proof. "Ve define a special fundamental function gwhich will simplify the situation.
Let f be any fundamental function, and define 9 by

9(X) = {f(ßx) x tt X*[ß],
f(x) x E X*[ß].

Then it follows that 9 is fundamental on X*[ß 0 ß']. We have

Dec(a,ß 0 ß') =< 9,9 0 ü >ßoß'=< 9,9 0 ü >X[ßW1\X(ßJ< 9,9 0 a >ß .

The second term on the right is Dec( ü, ß). \Ve shall examine the first term.

< 9,9 0 ü >x.[ßß'J\x.[ßl= TI (J(ßx)J(ßax).
ßß'x=O,ßx,#O,(E/-I

We shall write N(ß) for the number of elements of X(ß]. Since ß is a surjective group
homomorphism, this is the number of preimages of any element of X. We therefore have
(substituting y = ßx)

< 9,90 ü >x.[ßß'l\x.[ßl= TI (!(y)!(ay)N(ß) = Dec(ü, ß')N(ß).
ß' y=O,y,#O,( EJ-l

However since J..L acts freely on X*[ß] we have IV(ß) _ 1 mod #It and therefore

< 9,9 0 0' >x·[ßß'l\x·[ß]= Dec(ü, ß').

This proves the proposition.

Lemma 1 // Q =I IliOd ß in End/-l(X) then Dec(Q, ß) = 1.

Proof. The action of a on ~\'[ß] is trivial.

The following result is the first step in proving a kind of reciprocity law for decidents.
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Proposition 4 Let a and ß be as above and let / be fundamental. Then

(N(ol -l)(N(ßI-1)

Dec(a, ß)Dec(ß, a)-1 =< /, /00' >aß\o< /, / 0 ß >~~\ß x TI ( #~2
(EIL

Here we are using the notation

Praa/. Note that lY(aß) = lY(a)lY(ß). Also note that since apermutes X[ß], we have
X[a] n ..X[ß] = {O}. From this follows #(X[O'] + X[ß]) = N(O'ß). On the other hand,
since a and ß commute we clearly have X[a] + X[ß] C ..\'"[O'ß]. \Ve therefore have

X(aß] = X(O'] ffi X(ß].

This implies the following expression for X* (aß] as a disjoint union:

X*[O'ßJ = X*(O']ÜX*(ß]UY

where Y = {x E XIO'ßx = 0 but O'X =f. 0, ßx i= O}. This leads to an identity of the
products over these sets:

< f, /0 a >aß\a< /, /0 ß >~~\ß = < /, /00' >ß< /, /0 C't >y

< /,/oß >~1< /,/oß >VI
Dec(C't, ß)Dec(ß, a)-1 < /, /0 0' >y< / 0 ß, f >y

= Dec(0', ß)Dec(ß, 0')-1 < f 0,8, f 0 a >y .

It rernains to calculate the inner product < f 0 ß, f 0 a >y. Ta do this we also use the
direct surn decornposition of ..\'"(O'ß]. This gives us

This implies

< /0 ß, f 00' >y . TI TI TI (!(ß(X I+x2))!(a(x l +x2))

(EIL Xl EX-[a} x2EX-[ß}

= TI rr TI (!(ßX d !(ax2)

<EIL Xl EX-(a} x2EX-[ßl

= rr ((LxI eX'lal J(ßX Jl ) (Lx,ex'IßI !(ax,))

(EIL

(Nlol -l)(N(,8) -I)TI ( *~2

(EIL
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2.3 The Plan

Let L = Zn, and suppose we have an action of a finite group J1 Oll L. We shall also use
the following notation

for a prime p, Lp := L 0 zp; V:= L0Q;

for a prime P, Vp := L 0z Qp;

The tensor products are all over z. Define

GQ := Aut tl V,

GlI := Aut tl \/00' GA, := Aut tl VA,.

Also write ~ for the connected component of I in Ga. Furthermore define

Dz := {(a, ß) E Gz : 0: 0 ß = ß 0 a and Ci L +ßL = L},

OQ := {(Ci, ß) E G~ : a 0 ß = ß 0 a},

DA := {(a, ß) E G~ : a 0 ß = ß 0 a},

G~ := {ß E Gz : (a,ß) E Dz}. G~ := {ß E Gm : (a,ß) E Oll}'

G~:= {ß E GA,: (o:,ß) E DA}'

Let X := V00 / L. Then J1 acts on X, as does any element of Gz. For any pair (a, ß) E Dz
we define Dec(a, ß) in terms of the actions of 0:, ß, J-l on X. In this article we shall prove

Theorem 1 There is an open subgroup V eGAl such that if (cy , ß) E Dz n V f x V f, and
if er E ag and if ß E G~o then one has

Dec(0:, ß) = Dec(ß, er).

Here pi are the finite ade/es.

This implies the following

Theorem 2 The're is an open subgroup V' eGAl such that if (CY, ß) E !1z and a E V'
and if (0:, ß) is in the connected component 0/ 1 in !1Rthen one has

Dec(er,ß) = Dec(ß,a).

The arguments used to show that Theorem 1 implies Theorem 2 are contained in the
introduction to [2]. Theorem 2 in turn will imply the following
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Theorem 3 There is a unique continuous map Hilb: nA --+ J-lab which is lrivial on nQ
and such that Hilb is bimultiplicative and i1 (0:, ß) E nz lhen one has

Here O:f and ßf are ade/es which are equal ta 0' and ß al finite places and are otherwise
the identity.

The ideas used in proving Theorem 3 from Theorem 2 are contained in the discussion
of symbols in (7]. In fact, Hilb will be independent of L, and will only depend on V:

Proposition 5 Let L' C L be another IL.invariant lattice. 11 (0:, ß) E ,0 n ,0' satisfies

(detß, (L: L'D = 1 then
Dec(0:, ß) = Dec'( ü , ß).

Thus one has
Hilb = Hilb'.

3 Geometrie Methods

Again the ideas here can be fouod in [2] but in insufficient generality. Many of the ideas
are also contained in either [4] or [1] (see [2] for a description of where each idea comes
from). Some technical improvments and simplifications have been made here.

Let L = zn, and suppose we have an action of a finite group J-l on L.
\Ve shall think of Voo as areal vector space. Our next aim is to define the singular

homology groups of a topological space. For our purposes, the definitions given in [6] are
most convenient. Later in this section we shall construct using the homology groups a
dass of fundamental functions. At the end of the section we shall find a formula for the
skew product < /1, /2 >, where /1 and 12 are from the dass of fundamental functions
which we shall construct.

The connection with the homology groups is the following: we define /l(x) to be the
degree of a map pI : In --+ X at the point x EX, where In is a hypercube.

3.1 Singular Homology

1. Let I be the dosed interval [0,1] in IR. We shall write Ir for the cartesian product
of r copies of I. IO will be a topological space with exactly one point.

2. Let )( be a topological space. A continuous map T : Ir -+ .~ will be called a
singular r-cube in ..\.. \Ve shall write Qr(X) for the Z-module generated by the set
of singular i-cube in X, and with relations

T + T 0 (i j) = 0 1 ~ i < j ~ I ,

11



where

(i j)(XI, ... ,Xr):= (Xl, ... ,Xi-I,Xj,Xi+l,'" ,Xj-l,Xi,Xj+I,'" ,Xr).

Therefore one always has in Qr(X) the identity T 0 <I> = sign(<I».T: where <I> is an
element of the symmetry group Sr, acting on Ir by permutation of the coordinates.

3. A singular r-cube T is called degenerate, if the function T(XI, ... , xr) is independent
of at least one of the coordinates Xi. We shall write Dr(X) for the submodule of
Qr(X) generated by the degenerate r-cubes. The quotient Cr(X) := Qr(X)j Dr(X)
will be called the group of r-chains in X.

4. Let T be a singular r-cube. vVe now define the i th front [ace oE T,

AiT: Ir- 1 -r X

(Xl, ... , xr-d f-----T T(xl, ... , Xi-I, 0, Xi, ... , xr-d

and the i th back face of T,

(Xl, ... , xr-d f-----T T(XI, ... , Xi-I, 1, Xi, ... , Xr-l).

The faces of an r-cubes are (r - 1)-cubes.

5. The boundary of an r-cube T is defined to be the element of Qr-l (X) given by the
following formula

r

8r T := I) _1)i (AiT - BiT).
i=l

This definition can be extended by Z-linearity to Qr(X),

This induces a homomorphism of the chain modules

We define the r-cyc1es to be the kernel of the boundary map

and the r-boundaries to be its image

One can check that every boundary is a cycle

vVe can thus define the r th singular homology group of )( to be the quotient of the
cycles by the boundaries:

Hr(X) := Zr(X)j Br(X).
12



6. Now let Y be a subspace of X. Clearly there is an inclusion

This induces an inclusion of chain lTIodules

and we define the relative chain modules of X with respect to Y to be the quotient:

The boundary map induces a homoll10rphism of relative chain modules

and we define as before the relative cyles to be the kernei; the relative boundaries
to be the image; and the relative homology groups to be the quotient of the relative
cycles by the relative boundaries.

Br(X, Y) := [m 8r +1 c Cr(X, Y),

Hr(X, Y) := Zr(X, Y)/ Br(X, Y).

7. The base set 171 of a singular r-cube T is defined to be the image of 7, if 7 is
non-degenerate, and the empty set, if T is degenerate. The base set of an element
of Cr(X) is defined to be the union of all base-sets of singular r-cubes in its support.

8. Let X be an Abelian topological group (whose group law we shall write additively)
and let 7 be a singular 1'-cube and U a singular s-cube in)(, vVe can define a
praduct (r + s )-cube:

T x U : r+& --t )(

(Xl, ... , ,'rr, YI, ... , y&) r-----+ 7(XI, ... , X r ) + U(YI' ... , y&).

This product operation can be extended by bilinearity

and this induces a product operation on the chain modules:

13



9. Let ..J( be a manifold. If x E )[ then

(This is a non-canonical isomorphism. ) The manifold ...\ is called orientable~ if one
can associate to each point x E )[ an isomorphism

with the property that for every x E )( there is a neighbourhood U of x, such that
for every y E U the diagram commutes

Hn(X,)( \ U)

/~
Hn()';,)( \ {x}) Hn(X,X \ {y})

~~
;r;

Such a set of isomorphisms is called an orientation. An n-dimensional, differentiable
manifold, which posesses aglobai, non-vanishing differential n-form, is orientable.

Assurne that X is orientable, and fix an orientation Iso. Let 7 E Cn(X). Then 87
is a singular n - 1 chain. Suppose that x E X does not lie in the base set 1871 of
8T. Then T represents a homology dass in Hn(X, X \ {x}). We define the degree
of T at the point x to be

Unx) := Isox (7).

From our condition on Iso, we have a locally constant function

Ur : X \ 1871 ----+ fZ.

10. The space X := Voo / L is orientable (it is a torus).

11. Ir S is a discrete subset of an n-dimensional orientable manifold X, and if 7 is an
n-chain in X with Sn 1871 = 0, then we define

{{SIT}} := L ur(x).
xES

Since 171 is compact, the sum has finite support. If a : X --+ X is a homeomor­
phism then

{{aSIaT}} = sign(a){ {SI7}},

where signa = ±1 depending on whether a is orientation preserving 01' orientation
reversing. Ir ..X is areal vector space 01' a torus and a : X --+ X is a cornposition of a
(real-)linear bijection and a translation, then sign(a) is the sign of the determinant
of the linear bijection.

14



12. The singular O-cubes in a topological space X·correspond to the points x of )(, We
shall write [xl for the singular O-cube corresponding to x. The singular 1-cubes in
)( are paths between points x and y in 4'\.. Let){ be an Abelian topological group
and let T be a singular r-cube in .>;. Then

[x] x T

is a translation of T by x, and one has (because 0 is an even number)

[x] x T = 7 x [x].

This equality is at the level of singular r-cubes. \Ve shall llse the notation

Transl(x)T := [x] x 7.

3.2 Remarks

1. Let 7 : In ---+ )[ be a singular n-cube in X, and let Y be a subspace of the space
."':( with

1871 c Y.

Then 7 represents a homology dass in Hn(X, V). We cut 7 into two pieces:

Tt : In ---+ )(

(x" ... , xn ) >----t 'T (~1 ,X2,'" ,xn )

and

If in addition
18Ttl c Y and 18721 c Y,

then we have in Hn(X, Y) the equation

Ti + 72 = 7.

2. Let 7 be a singular n-cube in an oriented manifold X. Then we may define as in
§3.1.9 a function ITy. Let x E )( lie outside the base set of 7. Then we always have

ITy(z) = o.

\Ve shall now use the homology groups to construct fundamental functions. We shall
define the function f : X ~ !Z to be Hp, where P is a surn cf singular n-cubes.

15



3.3 The Fundamental Chain

As befare, let J1. be a finite group and V a vector space over Ql on which J1. acts. We have
a J-l-invariant lattice L in V. Let X = Voo / L. 'vVe assume that It acts freely on V \ {O}.

An edge e : I -+ Voo is a l-chain of the form

e(z) = z . a,

where a f. O. A parallelotope in Voo is an n-cube in Voo of the form

Transl(v) (D ei ) ,

where each ei is an edge and the vectors ei(l) are linearly independent over IR. A paral­
lelotope in X is a projection of a parallelotope in Voo . The vertices of a parallelotope are
the points {v +LiES ei( 1) : 5 C {I, ... , n} }. The following is essentially due to Kubota
[4].

Theorem 4 Suppose that J-l is cydic: and suppose J1 ads on V/Q and its action is Iree
on V \ {O}. Then there is a chain P in X such that

L det() . (P
'E~

is a cyde in X, whose homology dass generates Hn(X). The chain P is a finite linear
combination ouer;l 01 para//elotopes. Furtherrnore, P is a finite linear combination ouer
Z 01 parallelotopes whose uertices generate a finite subgroup 01 X.

In fact Kubota proved this in the case that J-l is the group of roots of unity of a number
field and V is the number field. The general case can be reduced to this as folIows. Since
J..L acts ffeely on V \ {O}, if 1 f. H is a subgroup of J1 then L,(EH (v = 0 for all v E V. This
implies that V is a vector space over the cyclotomic field whose roots of unity are J-l. The
chain P can be constructed from chains for the action of p on the cyclotomic field.

We shall call a chain P with the properties guaranteed by the above theorem a funda­
mental chain. "Ve shall call a representation of J1 'Kubotan' if it has a fundamental chain
(this depends on the Q-structure but is independent of the lattice L). From now on, we
shall assurne that we have a Kubotan representation on p. and we shall fix a fundamental
chain P. We shall lay down same notation for later use. There is an expression for P as
a linear combination of parallelotopes Pi:

Each parallelotope can be written as a product of edges:

n

Pi = Transl(xd II ei,j·
j=1

16
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We shall use the notation F < Pi to say that Fis a face of Pi. Then we have an expression
for the boundary of Pi:

8Pi = L wt(F, i) . F.
:F<'Pi

For any face F we have an expression

n-l

F = Transl(V:F) TI e:F,j'
j=1

Since a(L(E~ det( () . (p) = 0, we have for any face F,

L L det(() . wt(i) . wt((F, i) = O.
i (Eil

(3)

(4)

\Ve shall write JEN for an annihilator of the subgroup of X generated by ther vertices
of the fundamental chain. We shall sometimes use the notation

3.4 Modifications

Let E be the set of edges of P. We introduce an equivalence relation on E as follows:
two edges are said to be equivalent if oue is ( times the other for some (unique) element
( E p. Let [.0 be a set of representatives of eqivalence classes of edges of P.

Suppose m assigns to each element e of [.0 a path m(e) in Voo with the same start and
end points as e. \Ve call such an m a "modification".

Let m be a modification and e any edge of P. Then there is a unique expression
e = (eo for eo E [.0' We define

m(e) := (m(e o ).

We have an expression for P of the form

n

p = 2: Transl(vd TI ei,j'
i j=1

We define the modified chain

n

m(P):= LTransl(vi) TI m(ei,j)'
i j=1

\Ve also define a function

17



3.5 Homotopies Between Modifications

Let mO and 111 1 be two modifications. ,\;Ve shall now introduce the idea of a homotopy
from mO to m 1. Let Eo be as above, and let

o

where each I e is a copy of I. Then a modification m can be thought of as a map

such that m(Oe) and m(le) are the start and end points of e.
If mO and m

1 are two modifications then a homotopy from mO to 711 1 is a continuous
map

h:iVlxI-+X

such that h(-,O) = mO, h(-,l) = m
1 and such that for any tE I, h(-,t) is a modifica­

tion.
If e is any edge of P then one has e = (e o for some eo E Eo • We then define for Y, t EI,

Suppose 'Pi is a parallelotope in P. Then we have

n

Pi = TI ei,j·
j=1

Define
n

hi (Yl, ... ,Yn,t):= Lh(ei,j)(Yj,t).
j=1

The following is essentially due to Kubota.

Theorem 5 Let P be a fundamental chain and let m be a modification. Then

L det( () . (m(P)
CE/.l

is a cyc/e in X, whose h01nology class generates Hn ( )().

Corollary 1 Let P satisfy Theorem 4 and let m be a modification. Then fOT every x E X
whose IL-orbit lioes not intersect 8m(P), fm is funda'mental at )(.

Proo/. Choose homotopies from e to m(e) for each e E Eo • Use these to construct a
homotopy from LC det(() ·(P to its modification. Thus LCEI-l det(() ·(m,(P) is homologous
to LCE/.l det( () . (P.

18



3.6 A Fürmula für the Skew Product

\Vhat follows is based on a technique used in Habicht's paper [1]. \Ve investigate the
difference JO - 11 of two of the functions, which we constructed in §3.8. The basic idea
is to express mO(p) -m I (P) as a surn of pieces, each piece being associated to a face F
of a parallelotope of P. Actually these pieces will be homotopies from mO(F) to m 1 (F).
This method will lead to a formula for the skew product < J1 ,J2>.
Notation Let h be a homotopy from mO to m 1

• Then for any parallelotope Pi =
Transl(vd ITj;;;;1 ei,j we define

Tl

hi(Xl" .. , Xn, t) := Vi +L h(ei,j)(Xj, t).
j;;;;1

Similarly for any face F = Transl(V:F) Oj:1 eF,j we define

n-l

hF(Xl" .. , Xn-h t) := VF +L h(eY,j)(xj, t).
j;;;;l

Then hi is a homotopy from rnO(pi ) to m 1(Pi) and hF is a homotopy from mO(F) to
m1(F), and one has in Cn(X):-

n+1

8hi L( -l)j (Aj(h i ) - Bj(hd)
j;;;;l

= (-lt+ 1
• (mO(pi ) - 'm1(Pd) + L wt(F, i) . hF ,

F<P,

Letting h = L hi in Cn+1(~xr) one then has

mO(p) - m1(p) = (_l)n L wt(F) hF
F<P

Ir x is a point of X which is not contained in 18hF I for any F then one has in Hn(X, X \ x)

mO(p) - m1(p) = (_l)n L wt(F) hF ,

F<P

and therefore (in the notation of §3.8)

JO (x) - J1
( X) = (-1) n 2: wt (F) IIhY ( x) .

F<P

"Ve now consider the equivalence classes of faces of P under the action of J1.. "Ve shall
refer to the dass of F as [F]. "Ve split the above surn over F < P into sums over the
classes:-

(5)



Note that since P is a fundamental chain, we have

L det( ()wt((F) = O.
(E/1

(6)

Let Y c ){ be a finite set on which J--L acts freely, so for ~ E Il and T E Hn (){, X \ Y),
oue has

L rr-r{z) = L det(~)rr~T(Z).
xEV xEV

We therefore have by Proposition 1,

< Ja, /1 >v = < Ja, J >y< J, Jl >y
= < Ja, J >Y < Jl ,/ >Y1

< Ja - /1 ,f >y,
and by definition of < -, - >,

= II II ((P((X)_!l((x))!(x).

(E/1 xEY

Formula (5) now gives

= II II II II (#~~~J:Fwt(~.r)det(~)J;;F(~-lx)!(x).

(Eil [:F] ~EIl xEY

We now reparametrize the product:

Formula (6) now gives

Reparametrizing again we get

= II II II II ~ #k~~J:Fwt(e.r)det(e)lhF(x)!(-lx).

(EtJ. [:F] ~E/1xEY

Since f is fundamental we have
( l(II II II ~ *:.~& ~Fwt(e:F)det(e)IhF(x)

[.r1 eEIlXE}r

= II II ~ *l~~(Fwt(e:F)det(el{{hFIY}}.

[:F] eEIl

We have therefore proved:

Theorem 6 (Formula für the Skew Prüduct) Let 1no and 1n
1 be twomodifications

from 0 to 1 in Voo , and let h be a homotopy fro'rn mO to m 1. For a face

n-l

F = Transl(V:F) rr e:F,j

j=1
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we define an n-cube

n-l

hF(Xl' ... ' Xn-l, t) = 'UF + L h(eF,j)(Xj, t), Xj, t E I.
j=l

1/ for eveTy face :F < P we have Y n jahFI = 0 then

< fl , /2 >v = TI ([~hFIY}} ,

[:F]

where the constants ([:F] E /-lab depend only on the fundamental chain P.

4 Admissible Paths and Admissible Homotopies

Let T : In -+ X be a singular n-cube. Ir x E 1aTI t hen Irnx) is not defined. Thus if we
write formulae involving Irr(x), we must be certain that x ~ 18TI. This is the purpose of
this section. The praofs here are quite technical. vVe first state a technicallemma, which
we shall need for the other proofs in the section.

Lemma 2 Let <I> be a HausdoriJ, real, topologieal vector space and Voo an n-dimensional,
real vector space. Let Z be a compact polyhedron 0/ dimension less than n. Let B :
<I> x Z -+ V be a map with the following properties:

• B is eontinuous and piecewise diiJerentiable.

• Vz E Z, B( -, z) : <I> -+ \!~ is an affine map.

• Vz E Z where B(-,z): <I> -+ Voo is not surjeetive, one has 0 f/. B(<I>,z). We shall
call such points z 'degenerate ".

We define a subsel

\l1:= {4> E <I> 1 Vz E Zone has B(cjJ,z) f. O}.

Then \l1 is a dense, open subset 0/ <I>.

Proo/. See [2].

4.1 Admissible Paths

vVe are interested in the values of our various fundamental functions on the subset X*[aßJ
of ~""K. This will be refered to as the critical set. It is important that our functions are
fundamental on this set. The functions which we constructed in §3 are fundamental
outside the boundaries of the modified parallelotopes used in their construction. We shall
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therefore try to modify our parallelotopes in such a way that their boundaries avoid the
critical set.

We call a modification m admissible, iff

This means that the function fm is fundamental on the critical set X· [aßJ.

Lemma 3 (Existence of Admissible Paths) For every neighbo7.trhood U 0/ zero in
V00 there is a differentiable, admissible modijication m 1 with

d~ (m'(e)(z) - erz)) E U and m'(e)(z) - erz) E U.

And ij we dejine

mCl(e)(z) := { a-
1
m

1
(e)(2z) z < t

a- 1e(1) + (1- a- l )m1(e)(2z -1) z 2 2"

z<!
- 4

1< z < 1
4 - - 2
z>!

- 2

z< !
- <1

! < z < !
4 - - 2
,.. >!
'" - 2

then the modifications mO, m ß1mo,ß, mß,o 1m$ are also all admissible.

Proof. (i) Let <I> be the real vector space of functions 4> : 1\1 -r \100 satisfying the
condi tions for all e E EO

d<jJ(e)
4>(e)(ü) = ~(O) = 0,

#f-L
ab2 1 (1 )V 0 < z < - one has <jJ(e) z +-- = <jJ(e)(z).

- -. #f-Lab2 #f-Lab2

<l> becomes a topological vector space with the following norm:

{
, d4>(e)}

114>11 := sup sup I<t>(e)(z)j, [-d- (z)[ .
zEI eEt"O '"

With this topology <I> is Hausdorff.
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To each face F < P we define Z;: to be the disjoint union of six copies of In-I. vVe
call these copies Z}, Z!f, Z~, Z;,ß, Z~·o and Z}. Let X be the disjoint union over all
F < P of the sets Z;:. Then ."'-( is a compact, (n - 1)-dimensional polyhedron.

To each x E _"'-(-{aß] we shall define a map Bx : .'\. x <I> --+ Voo to which we shall apply
the technicallemma §4.1.

(ii) Let 4> E <I>. vVe define modifications.

m1,tP(e)(z) := e(z) +4>(z),

{
0:-lml,tP(e)(2z) Z :::; t

mo,tP(e)(z) := o:-le(l) +(1 - 0:- 1 )m1,tP(e)(2z - 1) z 2: ~

ß,tP .... _ { ß- 1m1,tP(e)(2z) z < 1
m (e)(~).- ß-1e(1) + (1 - ß-l)m1,q)(e)(2z -1) Z 2: ~

{

0: - I ß-1 m I ,tP (e)(4z) z ::; i
mo.ß,tP(e)(z):= a- 1ß-I e(1) + (0:- 1 - 0:-Iß-l)m 1,tP(e)(4z -1) ~:::; z:::; !

a- 1e(1) + (1 - 0:- 1 )m1,tP(e)(2z - 1) Z 2:: !

{

0:-Iß-lml,tP(e)(4z) z:::; ~

mß.o,tP(e)(z):= o:-lß-l e(l) + (ß-l - 0:-Iß-I)m1,tP(e)(4z - 1) ~::; z::; ~

ß-1e(1) + (1 - ß-l)m1,q)(e)(2z - 1) Z 2: ~

$tP { a- 1ß-1m 1,tP(e)(2z) z < 1
m ' (e)(z):= a-1ß-1e(1) + (1 _ a- 1ß-I)m1,tP(e)(2z - 1) Z ~ ~

(iii) Let J.. = (ZI,"" zn-d E Z}, where F = Transl(v;:) ITj;11 e;:,j. vVe define for

x E X*{aß],

n-l

Bx(f., 4» := m 1,rf(F) (J..) - x = v;: + I: m 1,tP(e;:,j)(Zj) - x,
j=1

The point ~ is degenerate (in the sense of §4.1) precisely when for all j = 1, .. " n - 1,
Zj E {O, #~~b2 , ... , 1}. If that is the case, then v;: + Ej;11 m 1,4>( e;:,j)(=j) is a o#p,ab2_

division point of L, and is therefore not in X-[aß]. Therefore, if f. E Z} is degenerate,

then BX(~l 4» :f- O.

(iv) Let?= (ZI1 ••. ,zn-d E Z;. "Ve define

n-1
Bx (f.,4» := mCr,tP(F)(~) - x = v;: + L mef,tP(e;:.j)(zj) - x.

j=l

The point ? is degenerate precisely when for all j = 1, ... , n - 1, Z j E {O, 2#~J.b2 1 ••• ,I}.
"Ve want to show that in that case, Bx(~, 4» :f- O. Let ~ be degenerate. We shall

23



compute a(VF + "L.j;t1 mo,t;6(eF,j)(Zj)) modulo L, "Ve shall often use the fact that a ==
I mod O#J-1.ab2

, One has

a (VF +~ ma,~( eF,j )(Zj)) == VF +~ ama,~(eF,j)(Zj) mod L

Suppose Zj > t. Then

amo,t;6eF,j(Zj) = eF,j(l) + (a - 1)eF,j(2zj - 1)
- eF,j(l) mod L

= ama,~( eF,j) G) .
We can thus assurne Zj ~ t. We then have

This is a O#J-1.3b2-division point of Land can only be in L if for all j, Zj = O. Thus
VF + "L.j;l mo,t;6( eF,j)( Zj) can only be an aß-division point, if for all j, Zj = O. [f that

is the case, then VF +"L.j;f mo,t;6(eF,j)(Zj) = VF tf. X*[aß]. It follows that for degenerate

~ E ZJ, EX(~1 4» # o.
(v) vVe define further for ~ E Z~, x E X'" [aß]:

and so on. As in (iv), we show that if &. is degenerate, then for all cP E <I> , Bx(~, cf» #- 0,
'vVe can now apply Lemma 2.

(vi) We define for x E X'"[aß],

Wx := {<p E cI> !Vz E Zone has Ex (Z 1 cP) i- O}.

From §4.1, Wx is a dense, open subset of <1>. [f <P E WXl then by definition of Ex,

(vii) Let s~~nite be the set of all elements of X*(aß], in a large compact subset of Voo .

This is a finite set, but if x E .X*[aß] \ s!.~nite, then Wx contains a neighbourhood U' of

oin ~, which is independent of x. Let W := nXEX.[aßl WX' Then Wn U' = nXEs~~nite Wx '

This is also dense and open in U'. vVe can therefore choose a <p E Warbitrarily elose to
O. Let m1(e)(z) := e(z) + cf;(z). Then 1n1 satisfies the conditions of the lemma.
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4.2 Admissible Homotopies

In Theorem 6 we obtained a formula for the skew product < f\ fl >aß where mO and
m 1 are two admissible modifications. Our formula depends on the choice of a homotopy
h from mO to m 1

, where h satisfies the following condition:

X'[aß] n( U lahrl) = 0,
F<P

with hF as is §3.10. vVe shall call a homotopy which satisfies this condition admissible.
To be able to apply Theorem 6 we must show that admissible homotopies exist. The
following statements are easily proved (so we won't prove them) .

• If mO, m 1 and m 2 are three admissible modifications, and h' and h" are admissible
homotopies from mO to m l and from m 1 to m 2 , then the composition (in the category
of modifications),

, ,,(e) { h,(e)(x,2t)
h 0 h x t '-

( ) (,).- h"(')(x, 2t - 1)

t < 1.
- 2

t > 1.
- 2

is an admissible homotopy [rom mO to m 2 .

• If h is an admissible homotopy from mO to m l and of h' is pointwise elose to hand
also a homotopy from mO to m 1

, then h' is also admissible.

We now show that elose to any homotopy, there is always an admissible homotopy.

Lemma 4 (Existence of Admissible Homotopies) Let mO and m l be two admissible
modijications, and let ho be any homotopy from m O to m l

• Then for any neighbourhood
0/ zero 0 E U C Voo , there is an admissible homotopy h : 12 --+ Voo from mO to m l , with
the property that for all (x, t) E [2, e E &0, one has

I/ the functions m O
) m 1 and ho are differentiable, then tue may also requtre that h lS

differentiable, and in addition that

Proo/. (i) We first prove the lemma in the case that mO, m 1 and ho are differentiable.
For each :F < P let ZF be the set BIn, and let Z be the disjoint union of all the ZF.

Then Z is a compact, (n - 1)-dimensional polyhedron. We shall write points of Z:F as
(~l t), where if = (ZI'.'" zn-d E In-l and tEl.

(ii) Let ~ be the real vector space of differentiable functions

1> : !vI x [ ---+ Voo
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8(1'1 x J) ~ 0,

whose restrietions to 8iV! x [ are zero. \Ve give ~ the topology induced by the following
norm:

11q,11 := sup sup {14J(e l(z,t)l, 1
8aq,(e) (z, t)l, 18aq,(e) (Z,t)I}·

eEt'O (z,t)EMxI Z t

For every x E X*[aß] we define a function Bx : Z x ~ --+ Voo . If (.~, t) E Z:F then we define

n-l

Bx((~, t), q,) := V:F + L: (h~eFJ)(zj, t) + q,(eF,j)(Zj, t)) - X.

j=1

Since ho and q, are differentiable, Bx is also differentiable.

(iii) A point (~, t) E ZF is degenerate precisely when either t E {O, I}, Of ~ is a vertex
of In-l.

• If t = 0 then Bx((~, t), 4J) = 1nO(F)(~) - x. Since m O is admissible, Bx{(~, t), 1» =I O.

• If t = 1 then since m 1 is admissible, Bx((~, t), </J) =I O.

• If .& is a vertex of In-I, then Bx((l., t), </J) + x is a vertex of a parallelotope 'Pi.
Therefore Bx ( (~l t), 4» -1= 0.

The function Bx therefore satisfies the conditions of Lemma 2.

(iv) Let \l1x:= {4> E cI> I 'Vz E Zonehas Bx(z,4» =I O}. By Lemma 2, Wx is dense
and open in cI> •. Let W := nXEX.[aßl Wz. As in the proof of the previous lemma, \l1 is also
a. dense, open subset of cI>. \Ve choose 4> E 'lt elose to O. Since 4> E W, one has for all
x E X*[aß] and all :F < 'P,

x ~ lak}l,
where h,p(e)(x, t) := h~e)(x, t) + 4>(e)(x, t). The homotüpy hcP is therefore admissible. Since
4> elose to 0, hcP is elose to ho. The prüof in the differentiable case is finished.

The non-differentiable case

Now consider continuous functions .

with the conditions
mO(e)(O) = ml(e)(O) = h~e)(O, t) = 0,

mO ( e) (1) = m
1

( e)(1) = h~e) (1, t) = e(1),

h~e)(z,O) = mO(e)(z),

h~e) (z, 1) = m 1(e)( z),

and with mO and rn 1 admissible. There are differentiable functions

md1(e) : I ~ Voo ,

26
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which are pointwise elose to mO(e), m1(e) and h~e), and which satisfy the same conditions.
Since mO and m 1 are admissible, and mdO and m d1 are elose to them, mdO and md1 are
also admissible. From what we have already proved, there is an admissible hOp1otopy hd

elose to hdO . We define

h,(e)(z, t) = (1 - t)mO(e)(z) + tmdO(e)(z)

and h"(e)(z, t) = (1 - t)m1(e)(z) + tmd1(e)(z)

The two homotopies h' and h" are admissible. Now let

h,(e)(z,;) t~f

h(e)(z,t) = h~~ (z, 1~2((t - f)) f ~ t ~ 1- f

h,,(e) ( z, 1~ t ) t 2:: 1 - f.

The function h is an admissible homotopy from mO to m 1, and for small f, h is elose to
ho.

5 Proof of Theorem 1

In this section we prove the following:

Let (Ci, ß) E !1z with the fo/lowing conditions:

• a =ß == J mod 20#f-lab2
;

• Ci and ß are in the connected component of I in Ga.

Then
Dec(a,ß) = Dec(ß,a).

5.1 Proportional Equivalence Classes

We can embed the multiplicative group IR>o in GR by the map l' f------t l' . J. We write
the quotient group Ga/JR >0 as Ga:. 'tVe call the cosets of IR >0 (the elements of Ga:)
proportional equivalence c1asses. We write a: for the proportional equivalence elass of a.
If Ci: = ß: then we say, that a and ß are proportionally equivalent.

We shall assume that a: and ß: are both in a small neighbourhood of I: in GIl :. This
implies in particular that Ci and ß are in the connected component of I in GR • It also
implies that the modifications ma, mß, ma,ß and mß,a consist of nearly straight paths,
and that the maps ma(Pd, mß(Pd, ma,ß(Pd and mß,a(pd : In -fo ..X are injective.
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5.2 Remark

Let, E Gz, v E ){ and e E E. If Transl(v),m1(e) x T is an element of Zn (X, X \ X[aß])
such that 1==0 mod a-1ß-1o#/lab, then one has:

{ {X[o:ß] Transl(vhm1(e) X T}}=0 mod #pab

We will often use this fact.
The next lemmas are similar to lemmas due to Habicht in the case where /l is the

group of cuhe roots of 1 acting on the number field which they generate.

Lemma 5 If (0', ß) E !1z with 0' =1 mod O#/lab then

Proof. We have mo!(p) = L(mO!(Pi ) for some set of parallelotopes Pi. Similarly we
have fO = Li llma(Pd. For each parallelotope there is an expression

n

mO!(Pi) = Transl(vi) II mQ(ei,j),
j;1

where verti ces of Pi are in X [0]. By defini tion (§4. 3) of mO! (ei,j ), this is t he equivalent to

n

Transl(vi) rr (a- 1m1(ei,j) + Transl (a-1ei,j(1)) (1 - 0:-
1

) m1(ei.j)).
j:;;l

Expanding the brackets we obtain:

n

Transl(vd II 0'-1 m 1(ei,j)
j:;;1

+ parallelotopes, at least one of whose edges is a vector in a-1#/lab L.

The first term is equal to Transl((l - 0- 1 )Vi)O-l m l(Pi ). Summing over the set of paral­
lelotopes Pi we obtain

mO!(Pd = Transl( (1 - 0-1)vi)a-1m1(P)

+ parallelotopes, at least one of whose edges is a vector in 0'-1 #J-lab L.

The function x H fl((-l ax) is periodic with respect to X[a]. The set X[aß) \ X[a] is
also invariant under translations by elements of X[a]. Therefore the surn of fl((-l ax )
Qver points of X [aß] \ X[a] in a parallelotope with at least one edge in a- 1#J-lab L vanishes
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modulo #pab. We therefore have:

< Ja Jl > TI TI /"lmO(P){x).J(-l ox)
, 0 a oß\o = ~

(E~ xEX[oßJ\X[al

TI TI rr (ImO(Pil (x).J((-lox)

i (E~ xEX[aßl\X[o]

= TI TI TI (ITran.l((I-a-1 )vi)o-I m l (Pj) (x).J(-l ox )

i (E~ XEX[oßJ\X[aJ

= rr rr TI (ITrantl((l-o-l )vj)o-l m l (Pi) (x).J((-1 ox)

i (E~ xEX[oßl\X[o]

= TI TI (Bign(a).Hm l(pj}(ax-(a-l)Vi ).J(-lox)

(E~ iE.k[oßJ\X[oJ

I1 TI (Bign(aPml(p) (i).J(-l x)

(E~ xEX[ß]\L

< f 1 , J1 >~gn(0) = 1.

Here sign(o:) is the sign of the determinant of 0:. Note that the (0: -l)vi has disappeared
because it is in L.

Lemma 6 There is a neighbourhood Nbd of I: in Ga: with the following property. If
(0', ß) E Oz with a == ß =1 mod O#ILab2 and a:, ß:E U, then

Ja Jl > Jß,o Jß<, a=< , >aß·

Proof. (i) The proof is quite long but the idea is simple. In the one dimensional case
this is all trivial because the fundamental functions are independent of the modifications.
The lemma can be easily understood for fields of degree 2. In higher dimensions same new
phenomena arise and the two-dimensional picture becomes inaccurate. A full impression
of the proof can be gained by considering three-dimensional cases, in which everything
goes wrong that can go wrong.

Our calculations will be mainly in the homology group Hn (~\'", ~X' \ )C"'[aß]). The
lemma follows because the difference between 1nß,a and m ß is essentially ß-1 of the dif­
ference between m O and m 1 (this can be seen by drawing a picture). On the other hand
the product on the right is over aß-division points, whereas that on the Ieft is only over
a-division points. The proof will use the skew product formula (Theorem 6).

(ii) To apply Theorem 6, we neecl admissible homotopies from m O to m 1 and [rom
mß,a to m ß. 'vVe now construct these homotopies. Let U be a neighbourhood of 0 in Voo •

We define for an edge e,

Then ho is a homotopy from m 1 to m O
• \Ve choose using Lemma 4 an admissible homotopy

h1 from m 1 to m O
, which is uniformly elose to ho (it is not so important which admissible
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homotopy we choose). We compress this by ß- l , and obtain a homotopy from ß-lm l to
ß-lmCl , which we shall denote h2:

h~e)(x,t) := ß-1hie)(x,t),

Finally we extend h2 by a constant homotopy from ß-l e(l) + (1 - ß-l)ml(e) to itself,
thus obtaining a hon10topy h3 [rom m ß to mß,Cl:

if x ::; ~,

if x 2: 3.
The admissibili~of h3Jollows from that of hl • We construct as described in §3.5 the
homotopies hl, h2 and h3 .

(iii) From Theorem 6 we have

Cl 1 { {x-[all~F}}
< f ,f >a = TI ([F] ,

[.F]

ßCl ß {{x-(aß11h;F}}
< 1 II >aß= II ([.11 ,

[.F]

To show that < JO, 11 >0=< IßCl, Iß >Clß, it is clearly sufficient to prove for each face
:F< P that

We shall prove this.

(iv) Let :F be a general face of a parallelotope of P. The there is an expression of the
form

n-l

:F = Transl(V:F) TI e:F,i,
i:;;;1

where V:F, e:F,i(l) E X[o]. We cut the n-cube h3:F into 2n
-

l pieces. This cutting process
corresponds to cutting :F into 2n

-
l pieces, each half as big as:F. We thus have in

Hn(X,){ \ X*[aß]):
-T

h3:F = L h3:F'
TC{1,2, ...,n-l}

where

-T _ '"' (eF,j) (Xj ) '"' (eF,j) (Xj + 1 )
h3:F(Xl,X2, ... ,Xn-l,t)-V:F+. LJ h3 2,t +~h3 2,t .

JE{1.2, ... ,n-l}\T JET

Note that the boundary of h3~ has no intersection with X·[aß]. This follows because the
boundary can be covered by translations of the boundary of h3 :F by aß-division points,
and h3 is admissible. 'vVe therefore have

{ {X· [aß] Ih3:F}} = L {{X"'[aß] Ih3~} },
TC{1,2, ...•n-l}
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We now compute the terms in this sumo

(v) First suppose T is empty. vVe then have

h--0
( t) v +~ h(eF,j) (Xj t)3F Xl, X2, ... , Xn-l, = F ~ 3 2 '

}=l

n-l

= +~ h(eF,j)( t)VF ~ 2 Xj,
j=l

n-l

= 'VF + ß-1 L h~eF,j)(Xj, t)
j=l

ß- i (UF +~ h\eF,j) (Xj, t)) + (I - ß- l )VF.

Thus

-T I l( Ih3,F = (1 - ß-)m eF,t} x 9 .
31

and therefore

{ {X*(aß] I h3~}} = {{a- 1ß- 1L \ L I Transl((l - ß-1
)VF )ß-l h1F, } }

= {{a-1ß- 1 L \ {O} I Transl((l - ß- 1 )VF)ß-Ih1Fl }}

= {{ ~L \ {O} I Transl((ß - I)VF)h iF }},

We now distinguish two cases. First suppose VF = O. vVe then have immediately

{{X'[aß] I h3~}} = {{~L \ {O} I hlF }} = {{X'[a] I hiF }},

In the other case VF =1= O. Then there is a neighbourhood of 17"1, which is disjoint from
L. We therefore have for a: and ß: sufficiently elose to I: and rn I (e) sufficiently elose

to e and h1 sufficiently elose to hOl L n IhiFI = 0. Therefore (since (ß - 1)VF E L)
ITransl((ß - l)VF )h 1F I n L = 0. We thus have as in the first case

(vi) Now suppose T is non-empty. vVithout lass of generality, assume 1 E T. Then

--T (eF il (Xl + 1 )
h3F(xt,X2, ... ,Xn-l,i)=h3' 2,t +g(X2"",Xn-l,i)

with a suitable function g. However h~eF,d (~, l) = ß- 1eF,1 (1) + (1 - ß-l)m1(e,F,d( xt}.
We therefore have



Since T is non-empty and a: is elose to J:, it follows that Ih3~1 contains no point of L.
Therefore

{{X·[aß]lh3~}} = {{X[aßJlh3~}}'
so by remark §5.2, we have

(vii) We have shown in (iv), (v) and (vi) that for every face :F < P,

Therefore by Theorem 6,
< fa, fl >0=< fß,Q, f ß >oß .

Lemma 7 There is a neighbourhood Nbd' of J: in Ga: with the fo/lwoing property. If
(0., ß) E !lz satisfies a =ß == J mod 2o#p.ab2 and a:, ß: E Nbd', then

< fo,ß, f$ >oß= l.

Proof. (i) We first consider the case that #J--lab is odd. The minar changes required
for the case that #J.Lab is even will be described at the end of the proof.

(ii) We recall that the functions f$ and fo,ß are defined using the modifications m$

and mo,ß where,

!
0.-Iß-lml(e)(2x)

mo,ß(e)(x) = a- lß-1e(1) + (a- I - a-1ß-1)m 1(e)(4x - 2) t ~ x ~ ~,

a-1e(1) + (1 - a- 1 )m1(e)(4x - 3) x ~ ~.

From this we see that the difference between m$(e) and mQ,ß(e) is essentially a triangle
whose vertices ( a- 1ß- 1e(1), a-1e(1) and e(l) ) are congruent ITIodulo a- 1ß-1#J.La.b2 L.
We shall exploit this congruence to show that < fa,ß, f$ >oß= l.

(iii) We shall construct a special admissible homotopy h von [0,1]$ to [0, l]O,ß. Then
by the skew product formula (Theorem 6),

{{x·[oßllh.r}}
< f o,ß f$ > = TI (, Qß- "'[.:F] .

[.:F] ;

For every face :F < P we shall show that

{{~){·[aß]lhF}} == 0 mod #p.ab.
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From this it foUows that < !o:.ß, f$ >o:ß= O. The difficult thing is to find the right
homotopy h.

(iv) \Ve now begin to construct the homotopy h. The two paths mS(e) and mß,O:(e)
are the same from 0 to a- 1ß- 1e(1). vVe caU this part of the paths the singular part. In
the singular part, whose preimage in I is [0, t], we define h(e)(x, t) to be independent of

t. Thus for x ::; t we have

The rest of h depends on t, since m$(e) and mß,O:(e) are not the same between a-1ß-1e(1)
and e(l). We caU this part of h the non-singular part. If the face F is given by the
product

n-l

Transl(V,1") TI e,1",i,
i::;:l

then we have

hF(Xl"'" Xn-I, t) = VF + L a-Iß-lml(e,1",i)(2xi) + L h(ey,d(Xi, t).
x;E[O.~l xi~(O,~l

To make this more readable, we define for every subset T C {I, 2, ... ,n - I} a function

( t) ~ -lß-l l( )() ~ h(eF ') (Xj +1 t)gT Xl,"" Xn-l, = VF + L.-J a m eF,j Xj + L.-J ,) .),'.
JET j~T'"

The function gT is a singular n-cube in X. \Ve have an equivalence in Hn ();: X \ X· [aß]):

h,1" ::: L gT·
TC{1,2, ...,n-l}

We shall construct the non-singular part of h such that for every Tone has

If T is empty then gT is degenerate and the equation follows immediately. Thus the totally
singular part of hF vanishes. Now suppose T is non-empty. Since a: and ß: are elose to
I:, we can (and shall) choose h is such a way that for non-empty T the sets IgTI and L
are disjoint. It is then sufficient to show that

(v) v\Te would now like to construct the non-singular part of h. For this purpose we
define
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() h(e) (X + 1 )x,t f---+ 2 ,t .

This function is a homotopy bebveen the non-singular parts of maß and m$. We can now
express 9T more easily:

9T (Xl,"" Xn-l, t) = V:F + L er-I ß-1m1(e:F,j)(Xj) + L hns(e:F,j)(xj, t).
JET JET

(vi) \Ve now construct a sequence of paths between o:-lß-I e(l) anel e(l) :

Wr(e) T.V(e) W(e) T.V(e)
o , VI' 2 ,. .• , y #

J1o
a.b2

where ~VJe) is the non-singular part of ma,ß(e) and W~e~ab2 is the non-singular part

of m$(e). Between WJe) and ~V~e~&b2 there is a modified triangle, whose vertices are

a-1ß-1e(l), a- I e( 1) and e( 1). These vertices are congruent modulo 0:-1ß- I #pab2 L. We
cut this triangle irrto #pab2 smaller, similar triangles. The vertices of the smaller triangles
are congruent modulo 0:- 1ß-I#flabL.

o:-le(l)

e(l)

We number the triangles as shown in the diagram. Thus the path WJe) runs above
all triangles in the diagram. We now construct the path W1(e) to run below of the first
triangle but above every other triangle.

Similarly wJe) runs below the first two triangles, and so on.
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~v:(e)
2

We choose the paths Wi~; and W?) SO that they are equal outside the subinterval

[Ci, di ] of I, which is mapped to the baundary of the i th triangle. Thus l'Vi~)1 (x) = W/ e
) (x)

for x rt (Ci, di ). We shall choose homatopies h7,,(e) (x, t) from Wi~)1 to IIV/e
) in such a way

that they are independent of t for x rt (Ci, di). Thus for x rt (Ci, dj ),

h,:u(e) (x t) = lrV.(e) (x) = l'V.(e) (x)
I' I 1-1'

We now chaose by Lemma 4 h~,,(e) and h~,,(e) for x in (Cl, dd and (C2' d2 ) such that h l and
h2 are admissible. If i > 2 then the i th tri angle is a translation either of the first or of the
second tri angle by an element de

) of o:-Iß-I#j.LRb L. vVe can now construct h7,,(e)(x, t) far
x E (Ci, di ) as follows:

hie) (Cl + (dl - cdx, l)
h~e) (C2 + (d2 - C2) X, t)

We define the non-singular part, hn
" of h:

i-I i
for b < t < b .#Ila 2 - - #p,R 2

We also define

i ( t) .- +"""' -Iß-l 1( -)(.) + """' hns(eF,j)( . t)9T Xt, ... ,Xn-}, .-V:;: La m e:;:,] x] L i x],.
jeT jgT

There is an equivalence in Hn("~,){ \ 4X"[o:ß]):

#J.'lI.b2

9T ~ L g~.
i=l

(vii) \Ve now consider the functions hi" and g~ in more detail. We have

g~(Xl"'" Xn-l, t) = VF +L a-1ß-1m1(e:;:,j)(xj) + L l'V?F,j) (Xj)

jeT jgT, Xjg(cj,dj)

+ L h~eF,j)(Xj, t).
jgT, XjE(Ci,di)
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If Tl and T 2 are two subsets of {I, 2, ... , n - I}, such that T, Tl and T2 are pairwise
disjoint, then we define

V:F +L a -1ß- I m l ( e:F,j )( x j) + L vv} eF ,j ) ( Ci x j )

JET JET!

+ L IlV?F,j)((l - d.)xj +di )

JET2

+ L hieF,j)(Ci + (di - Ci)Xj, t).
jiTuT1uT2

We then have an equivalence in Hn(X, X \ X(aß]):

g~ ~ L l~I,T2
Tl,T2c{1,2, ... ,n-l}\T, T 1 nT2=0

We shall cornpute the terms of this sumo

(viii) If TI is non-empty, then l~I,T2 is a product of W}eF,j)l[o,Ci] with other things. We

know however that W}eF,j) I[o,c,] is a surn of modified line segments; whose lengths are in
0:- 1ß-I#p.abL. Therefore by remark §5.2,

{{X(o:ßlIThese terms}} == 0 modulo #p.ab.

The terms in which T2 is non-empty vanish in the same way. We are therefore only
interested in the term, for which TI and T 2 are empty. First suppose the i th triangle is a
translation by t~e) of the first triangle . vVe then have

l~,0(XI, ... ,Xn-I, t) = V:F +L a-
1ß- 1m l

(e:F,j)(Xj) +L h~eF,j)(Ci + (di - Ci)Xj, t)
JET jiT

= V:F + L a -1ß-1 m l
( e:F,j )( x j )

JET

+L (t~eF,j) + h?",(eF,j) (Cl + (d l - Ct}Xj, t))
jiT

~ t(eF,j) II ( )= L i + 0,0 XI,"" Xn-l, t .
jiT

Since deF,j) E 0:- 1ß-l#p.abL, we must have EjiT t~eF,j) E 0:-1ß-l#p,abL. In particular
this translation is in 0:-

1ß- l L. Therefore

Analogously, if the i th tri angle is a translation of the second triangle,
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The number the triangles which are translations of the first tri angle is #1l<l.b(~llab+l). The

number the triangles which are translations of the second triangle is #e~b(~e<l.b_I). ,\;Ve

therefore have

{{X [aßJl9T }} =#f-t,b(#;,b + 1) {{X[aßJIl~,0}} + #f-t,b(#;,b - 1) {{X[aß]II~,0}}'

Since both these numbers are divisible by #J-lab
, the lemma is proved in the case that

#J-lab is odd.

(ix) We now consider the case that #J-lab is even. The whole proof would he the

same but at the end one doesn't have the result that #iJ.&b(#ll
ab

+ l
) and #lJ.

ab
(#ll

ab
_i) are

, 2 2

divisible by #f-lab
. Instead we require at the beginning that Ci, ß == 1 fiod 2J#J-lab2 . We

cut the large triangle into 4#J-lab2 instead of #J-lab2 pieces. At the end we have for the

b 2#lab(2#"<l.b+l) d 2#,,·b(2#,,&b 1) h h I btwo num ers'" 2 e an e 2 e -, w ic are divisib e by #J-la
•

Lemma 8 There is a neighbourhood Nbd 2 0/ I: in Ga: with the following property. Let
(0:, ß) E nz satisfy 0' == ß - 1 mod 20#J-lab2 and 0::, ß:E Nbd2 • Then

Dec(0', ß) = Dec(ß, 0:).

Proof. This will follow from the previous three lemmas together with the combinatorial
properties of decidents and skew products. Let Nbd2 be the intersection of the two
neighbourhoods constructed in the previous 2 lemmas. By Proposition 4 we have

Dec(0', ß)Dec(ß, 0')-1 =< fl, jl 0 0' >oß\a< flOß, fl >oß\ß .

By Lemma 5 we have

Dec(O',ß)Dec(ß, 0')-1 = < fl,fl 00' >aß\a< /1 00',/° >aß\a

< f ß,Jl 0 ß >aß\ß< floß, Jl >aß\ß .

By Proposition 1 we have

Dec(O', ß)Dec(ß, 0)-1 = < JI, JO >aß\o< Jß, jl >aß\ß
< JI,fo >oß< Jl,Ja >~l< Jß,Jl >oß< Jß,Jl >;al.

Now Lemma 6 implies

Dec(a,ß)Dec(ß,a)-1 =< fl,Ja >oß< Jß,Jß,o >:J< Jß,Jl >aß< Ja,ß,/o >:J.

By Proposition 1 we have

Dec(0', ß)Dec(ß, 0)-1 = < Jl, Ja >aß< fß,a, f ß >aß< Jß, JI >oß< JO, Jo,ß >oß
< Jß,o, Jß >öß< f ß,fl >aß< 11, Ja >aß< Ja, Jo,ß >aß

= < Jß,a, Ja.ß >aß
< Jß,a, JS >aß< J$, faß >oß .

Lemma 7 now implies Dec(Q, ß) = Dec(ß, 0').

,\;Ve now prove the result stated at the beginning of the chapter:
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Dec(0', ß'#~"'b ß) = Dec(ß,#~&bß, a).

By Proposition 3 we have Dec(0', ß,#~"'b ß) = Dee(0', ß). Similarly by Proposition 2,
Dec(ß'#1L·

b
ß, 0') = Dec(a, ß). Therefore

Corollary 2 (Theorem 1) Let (0', ß) E Oz satisfy 0' == ß == 1 fiod 2J#J-lab2 and a E~
and ß E C~o. Then

Dec(O',ß) = Dec(ß,a).

Proof. First let a:E Nbd 2, and let a, ß == 1 fiod 2o#pab2 and ß E C~o. The set
{b- 1ß' I bEN and ß' E Crz, ß' =1 fiod 20#J-lab2 } is dense in G~. Since ß E G~o, we
can find a ß' such that (ß,#~a.bß): E Nbd2 and ß' =I fiod 2o#llab2 . We have from the
previous lemma

Dec(a,ß) = Dec(ß, a).

With the same trick we can remove the condition that O':E Nbd2 •
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