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. 1. Introduction and main result

a. In this note we prove the existence of differentiable foliation structures of
invariant tori for nearly integrable symplectic mappings in the sense of Whitney
as J. Poschel did in the case of Hamiltonian systems([10]). The formulation of
the main theorem is almost a copy of that given in [10] and the proof also follows
from essentially the same arguments only some different technical details should
be pointed out particularly. The main aim of the note is to give two relevant
estimates: one is for perturbations under which a majority of invariant tori of
the integrable mapping persists and another is for invariant Liouville measure
of the set filled by the invariant tori of the perturbed mappings in phase space.
The estimates are both given explicitly in terms of three parameters: the first
one is v, which appears in the well-known diophantine condition satisfied by the

frequencies, say w = (wy, "+, wy), of invariant tori
lei(k,w)_llz Ik%, for0#k=1(ky, -, ko) €Z" (1.1)

with another fixed constant 7 > 0, where (k,w) = i kjw and |k| = i LA
i=1 i=1
for integers k € Z". The other two, say & and ©, are used to describe the

nondegeneracy of the frequency map w : I — Q, of the unperturbed integrable
mapping, and its inverse, for example, of the form

0[p1 ~ pa| < |w(pr) — w(p2)| < B |p1 — pal. (1.2)

Here I and €2 are the domains of action variables and the corresponding frequency
values respectively. We always assume that they are open in R™. In fact, in our
case we require w : I — § to be analytic so w is assumed to be defined and analytic
in some complex extension, say I + r, with radius » of real domain I C R" of
action variables (cf. [10]) and (1.2) is assumed to be true for p;, po € I + 7 with
|p1 — p2| < r. Note that this nondegeneracy condition implies that the frequency

map w is invertible in any ball with radius r and centered in [ and so it is stronger



than the standard Kolmogorov’s nondegeneracy assumption but equivalent to the
Péschel’s assumption ([10]).

It should be noted that there are already some optimal results on the estimates
in terms of . For example, H. Riissmann([11], n = 2) and N. V. Svanidze([14])
in mapping case with w(p) = p (and so § = © = 1) and J. Poschel([10]) and A.
I. Neishtadt([8]} in Hamiltonian system case proved that if a perturbation has a
norm, say &, in some relevant function space, proportional to 4% with coefficient,
say A, not dependent of v and small enough, then the perturbed mapping has in-
variant tori, deformed slightly from those of unperturbed one, whose complement
in the phase space has invariant Liouville measure proportional to y with coeffi-
cient, say C, not dependent of . Therefore, the invariant tori of the perturbed
mapping form a set with large measure in the phase space if v is sufficiently small
(in fact, ¥ may be chosen reasonably to be proportional to /¢ from the fact that
¢ is admitted to be proportional to 42 (cf. [10], [8])). In this note we also obtain
the same results.

We note that in most general cases, the bounds of both A and C in various
versions of KAM theorem depends on the “nondegenerate ” behavior, in some
sense, of the frequency map w : I — Q (cf. [1,2,6,7] and [3,12]). Here we work sim-
ply under the “ordinary” nondegeneracy assumption (1.2) (this is the strongest
nondegeneracy assumption) and investigate the dependence of the bounds of A
and C, say Ag and Cj respectively, on the nondegeneracy (or twist) parameters
6 and ©. We obtain the dependence to be Ay = §,0072 and Cy = ¢ (#07)~",
where & and ¢y are constants not dependent of 8, © or . If w only satisfies the
Kolmogorov’s nondegeneracy condition, say,

0|dp| < |dw(p)| < ®|dp|, forpel+r (1.2)

with constants 0 < 8 < ©, then we may get the estimate of the form Ay = §,6?0~3
for perturbation part. We remark that this estimate is better than that given in
[5], in the case of analytic perturbations, by directly estimating the convergence
of the Lindstedt series for individual KAM tori, which is essentially of the form
£ = §py*0*©~* - this estimate can not be applied to small twist problem.

We are interested in such estimates because they relate to some significant
problems such as the small twist problem and therefore also relate to the stability
of symplectic integrators in solving integrable and nearly integrable Hamiltonian



systems. In the small twist problem, a small parameter, say s, enters into the
frequency map and so the parameters 8, @ and even <y are all s-dependent, say,
they turn into sf, s© and sy respectively. For the case of n = 1, Moser obtained
the existence of invariant curves ([7]). But for n» > 1, I have not seen an available
reference. Our estimates naturally lead to a proper answer to the problem.

b. We consider an exact symplectic mapping S : (p,q) — (P, §) to be defined
in phase space I x T by its generating function H : I xT™ — R through relation

(1.3)

where [ is an open and usually bounded set of R™ in which the action variables
p vary and T" is the standard n-torus which is identified as R*/27Z" and the
angle variables ¢ vary on. When H(p,q) = Hy(p) does not depend on angle
variables, then (1.3) represents an integrable mapping S = Sy : (p,¢) = (5,4) =
(p, ¢ + w(p)), which is well defined on I x T", with frequency map

w(p) = %";‘l(p), pel. (1.4)

Under Sy, the phase space I x T" is completely foliated into invariant n-tori
{p} x T", p € I, on each of which the iterations of Sy are linear with frequen-
cies w = w(p). When a perturbation, say h(p,q), is added to Hy, i.e., when
H(p,q) = Hy(p) + h(p, q), then (1.3) does not define an integrable mapping gen-
erally. However, KAM theorem shows that the perturbed mapping S, defined by
the perturbed generating function H according to (1.3}, still exibits in a large
extent the integrable behavior even not in any open domain but at least in some
Cantor set of the phase space if the frequency map w is nondegenerate in some
sense (see [1,2,6,7] for strong (ordinary) nondegeneracy and [3,12] for weak nonde-
generacy) and if the perturbation i belongs to the class C*(I x T™) for a suitably
large number a > 0 with a sufficiently small associated norm (cf. [10]). We note
that for A small in C?(I x T™), (1.3) really defines an exact symplectic mapping
on I' x T™ with some open subset I/, of I, whose boundary is a little away from
the boundary of J with distance equal to the C?-norm of h.

As a Banach space, the class C*(I'x T"), with the corresponding norm denoted
as ||+ ||a,rxTn, is always understood according to [10]. In this note, we also get the
anisotropic differentiability of the foliations of invariant tori. So we also need the
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class C*13(I x T™) of anisotropic differentiable functions, whose exact definition
was also given in [10]. The norm of a function in C***2(I x T") is denoted by
| - Wy oasrxen. We also use another norm || - ||, vyirxn p for p > 0 defined by

||u||U1,V2;1XT",p = “U o Jpllul,ug;agl(le") (15)

for w € C*"*2(I x T"), where o, denotes the partial stretching (z,y) — (pz,y)
for (z,y) € I x T". Note that the following relation between these two norms is
valid for 0 < p < 1:

el vgip < Wtlly, oy S 277 2l 00 s (1.6)
where we dropped the domains to simplify the notations.

Write Q = w(]) and denote by Q, the set of those frequencies, in {2, which
satisfy the diophantine condition (1.1) for the given v and whose distance to the
boundary of Q is at least equal to 2. The difference 2\ U,. 2, is a zero set if
7 > n+ 1 and so €2, is large for small v.

Now we formulate our main result as follows.

Theorem 1.1. With given positive integer n and given 7 > n + 1, consider
mapping S to be defined in phase space I x T" by generating function H(p,q) =
Hy(p) + h(p,q) in the form of (1.3), where Hy(p) is analytic in p € I + 7 with
r > 0 and h(p, q) belongs to the class CoMA7(I x T™} with fized A > 7+ 1 and
a > 1 not in the discrete set

A={i/A+7:14,7 > Ointeger}.

Suppose that the frequency mep w : I — £, defined by (1.4) from H,, satisfies
the nondegeneracy condition (1.2) for py, py € I + r with |p) — pa| < 1 where the
constants 6 and © satisfy 0 < 0 < ©. Then there exists a positive constant b,
depending only on n, 7, A and «, such that for any 0 < v < min (1, %r@), if

||hV”az,H»A—l—ﬂ"J>(T“;']r9“l S 607296_21 (17)

then there exist a closed set I, C I, a surjective map wy : I, = 0y of C*T! class
and an injection ® : I, x T® =5 R™ x T of C*** class, in the Whitney’s sense,
such that

(1) So® = ®o R. Moreover, this equation may be differentiated as often as
® allows, where R 1s the integrable rotation on I, X T™ with frequency map w,.
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(2) If Q is a bounded open set of type D in the Arnold’s sense [1], then we
have measure estimate

méy > (1 - cy(607) " 7)me, (1.9)

where m denotes the wnvariant Liouville measure of the phase space £ =1 x T"
and £, = ®(I, x T™); cq is a positive constant depending on n, 7, a and the
geometry of the domain €.

(3) If h is of CPA*7 class with o < B not in A, then we have further that
wy € CPTI(L,) and & € CPPMI, x T™). Morcover,

-1 -1 -2
los-r0@ =D, 0000 7 oy = 0llga0-1 S €70 Ihllgrpagrie-

(1.10)
with constant cs depending on n, 7, A and 3, here we have droped the domains
in the notation of norms.

Theorem 1.2. In Theorem 1.1, if the frequency map w satisfies the nondegen-
eracy condition (1.2), then the required smallness condition for h is, instead of

(L7,
|'h'||n/\+/\+1',IXT";'79"1 S 6072626_3 (111)

with sufficiently small &y, depending only on n, 7, A and «, under which the

conclusions of Theorem 1.1 are also true with the same estimates.
Remark: We have following two further conclusions in the above theorems:

1. If h € C®(1 x T"), then w, € C*®(l,) and & € C*®(I, x T") with the
estimates (1.10) for any g > «.

2. If h € C¥(I x T"), then we have further & € C*¥(I,, T") under a further
smallness condition for ¢ which also depends on the radius of analyticity of A
with respect to angle variables.

2. Outline of the proof of Theorem 1.1

In this section, we outline the proof of Theorem 1.1. The detailed arguments will
be given in the latter sections.

a. First we transform the mapping S by the partial coordinates stretching
o, (z,y) = (p,q) = (pz,y) of phase space I x T" and obtain a new mapping



T=0,"0500,:(z,y) = (&7) to be defined in the new phase space I, x T" by
Ao 8F (A
T D"g(f’y) (2.1)
7=y+5-(%,9),
where
F(z,y) = Fo(z) + f(z,y) (2.2)
is well defined on I, x T" with
Fo(w) = p~ Ho(pz), f(m,9) = p " h(pz,y) (2.3)
and
I=p'"I={zeR"|pz e} (2.4)

For the time being, p is considered as a free parameter. Fp(z) is real analytic for
t € I,+1, withr, = p~'r and f belongs to the class C*(I,xT") with a = @A+
7. So the new mapping T satisfies the same assumptions of Theorem 1.1 in which
only I, r, H, Hy, h are replaced by I,, 7,, F', Fy, f respectively. Correspondingly,
the frequency map of integrable mapping associated to the generating function

F, turns into
0F,

oz

and the nondegenerate condition for the mapping turns out to be

o(z) = (z), ze€l,

pg |$1 — .'1:2' S |(IJ(5171) —(:J(IQ)l S ,09 |.’Bl - Iz', T, Ty € Ip -+ Tps |IE1 — .’Egl S Tp-
(2.5)
In addition, from (2.3), we have

1 Loz, xwn = 27" [Blla, e, -

From now on we fix p = y©~!. Then the assumption 0 < y < %T@ in Theorem
1.1 implies that 0 < p < %r and so r, > 2. Let I; be the set of points in I, with
distance at least one to its boundary and let

L., =& Q) N1, (2.6)
Then, from (2.5) and the definition of {2,, we have
Iy +)NR*CI; C(I;+1)NR*C I, (2.7)
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and

Y|y — xa| < |@(z1) — D(z2)| < ¥l|21 — T2|, TH, T2 € L, + 2, [T — 22| <2
(2.8)
with u = 6671

b. We approximate f by real analytic functions. Let
sp=s80477, ry=s), j=01,2 (2.9)
with fixed A > 7+ 1 and sy > 0 to be determined later on and let
U; =1, x T" + (455, 4s;).

Then by APPROXIMATION LEMMA of [10], p. 665, there exist real analytic
functions f; defined on Uy with fo = 0 such that, for f € CP(I x T™) with b > q,

we have

If] —fj—lluj S Sgcb“f”b;lp)(T" J = 112:”':

Ilf - fj”b’,[;xT" =0 (j—ooo) for0<b <), (2.10)
where ¢, is a positive constant only depending on b, n and s but not depending
on the domain /, and hence not depending on the parameter p. Moreover, we
may require f; to be 27-periodic in the last n variables. In (2.10), |- |y; denotes

the maximum norm of analytic functions on the complex domains I{;. Almost all

the notations in this note come from [10), which we will not specify particularly.

c. We give the KAM iteration process which is essentially the same as that
given by Poschel in Hamiltonian system case ([10]). Associating to each f;, we
will define a mapping 7 : (z,y) — (Z,9) by

¢

with F;(z,y) = Fo(z) + fi(z,y), which is well-defined and real analytic on U;

o3}

Fira
2= (5,

x

58
Il

(2.11)

if 4s; < 7, = p~'r which is always true for j = 0,1,--- if we choose 0 < s¢ <
4~'(noting that 0 < 7 < 1r8). We will show that each of 7; for j > 0 is
really well-defined on a complex domain, of the phase space I, x T", which is
appropriate for the I{AM iteration if /i is bounded by (1.7) with &, chosen to be
small enough, independently of v, 6 and ©. In fact, as j approaches infinity, 7T}
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will converge to the T in C* norm with 0 < ¢’ < a — 1 on some sub-domain
I x T" of the phase space I, x T™ with Ij being a sufficiently large open subset
of I,. The central problem is to find transformations ®; and integrable rotations
R; with frequency maps, say w9 such that, as j — oo,

Cj = R;'o®;' 0 Tjod; — identity, ®; = &, R; - R, 0¥ 5 &, (2.12)

in C* norm, with a suitable positive number @, on I,., x T" with some closed
set I, C I, such that &,(I,,,) = Q; here & and R are well-defined on I, x T"
and @.,, as the frequency map of the rotation fi, is well-defined on 7, piye S0 in the
limit we have

Tod=%0R onl,, xT" (2.13)

Reversing the mapping T to S by the partial coordinates stretching o, and, at the
same time, reversing @ to ® and R to R with the frequency map w,(p) = @, (p™'p),
then we have

Sod=0¢oR onl,xT"

with

Ly =ply, ={peRp'pe I},
a closed subset of I and such that w,(I,} = Q,. This is just the conclusion (1) of
Theorem 1.1.

The construction of ®; and R; uses the KAM iteration which we describe as
follows.

Assume
Ifj_fj-1|NEj, .7=1!21 (214)

with a decreasing sequence of positive numbers {€;}5° and suppose we have al-
ready found a transformation ®; and a rotation R; with frequency map w) such
that
Ci=R;i'o®;' oTjod; (2.15)
satisfies
C; — Il ~ €j41. (2.16)

We then construct a transformation ¥; and a new rotation R;.., with frequency

map w1 such that



and (2.186) is also true for the next index j+1 with C;, defined by (2.15) where j
is replaced by 7+ 1. As was remarked in [10], “for this procedure to be successful

it is essential to have precise control over the various domains of definition”.

We define the transformation ¥; : (§,7) — (z,y) implicitly with the help of
a generating function ; by

O, oY,
z=£+ By(f,yL y=n-—--v) (2.18)
To define the function 1);, we consider the mapping
Bj=R;'o®; o Tjy 0B (2.19)

which is also near identity and assumed to be given implicitly from its generating

function b; by

) 0b; . ob; .
& =z—-—(%,y), y=y+a—;(m,y). (2.20)

The function ; is then determined from b; by the following holomorphic equation

wj(mry+w(j}($)) —wj(:r:,y)-i-gj(z,y) = 0: (221)

where b;(z,y) = b;(z,y) — [b;](z) with [b;] being the mean value of b; over T".
Define

WOt (z) = Y (z) + 3{,£,bj] (z), (2.22)
T
then Rji. @ (z,y) — (£,9) is just given by
=z G=y+wU(z). (2.23)

With just defined ¥, and I2;,;, we easily show that, formally,
\I’j_l o Rj o BJ 0 \I’j = Rj+1 o Cj+1.

Similar formal calculation to that in [10] shows that (2.16) is valid if we replace
jbys+1.

We will not solve the equation {2.21) exactly indeed. Instead, we will solve an
equation with a replacement of Zj by a finite truncation of its fourier expansion
with respect to angle variables so that “only finitely many resonances remain,

and we obtain a real analytic solution ; defined on an open set” ([10], pp. 677).
The idea goes back to Arnol’d [1,2].



In the following sections, we will make the above arguments more precise by
carefully controlling the domains of definition of functions and mappings and
giving the relevant estimates. For the convenience of the later statements, we
follow [10] and abbreviate the differentiability orders by

o=cA+A+T<b=FA+ AT, (2.24)
and set, for f € C*(I, x T™),

111y, 1, xn = Y1260 (2.25)

In addition, we denote by m the translation (z,y) — (z,y + 2me;) of R®
for k =1, --,n, where ¢ is the vector of R" with the k-th entry equal to one
and others equal to zero. With this notation, a well-defined transformation on
I x T™ may be viewed as a transformation on I x R™ which commutes with m,
k=1,---,n.

3. Iterative lemma and proof of Theorem 1.1

Now we state a so-called iterative lemma which is a quantitative formulation of
the KAM iteration process outlined in the above section.

Lemma 3.1. Assume that Fy 1s real analytic on 1, + 2 with the gradient map
W= %;‘1 satisfying the condition (2.8) in which v > 0 and 0 < pp < 1 are given in
advance. For fited A > 7+ 1 anda > 1, let f € C*(I, x T") witha=aA+ A +7
and let f; be real analytic approzimants to the f as given in the preceeding section.
Assume 6, < 6. If & is small enough, then for each j > 0, there exist a closed
set Ig’), C I,, a real analytic function Féj) on V; = Ig-f), x T" + (rj,s;) which
1s independent of the angle variables, and a real analytic ezact symplectic map
®,; : V; = U; which commutes withmy, k =1, -+, n such that, for f € C*(I,xT")

with b = A+ A+ 7 > a, the following hold.
(i) Forj > 1, 19 +r; C TG 4+ 8r; C IGTY 41y,

. ) ‘
(i3) w) = %E— maps 1) onto U, end satisfies the following nondegeneracy

condition: for x1, x5 € IY) +7; with |z, — @3] < 7,
j ) ) J
1= s | yulz —zo| < |w(3)($1)—w(’)(m2)\ UL+ sk | vz — 2.
k=1 k=1
(3.1)
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(1i1) Og is the identity and for j > 1, ®; is well-defined and real analytic on
Vity = LD x T + (2r;, 25))
and commutes with my, k=1,---,n and

|(I)_1 - (I)j_1|ng—1 S Tf . Cllu6b. (32)

() C; = Rj_l o (I)j_1 o T; o &; is well-defined and real analytic on V; and
commutes with my, k=1,---,n and

|C; — I|v,- < s?lll - coyuly,  with cg > 16¢y, (3.3)

where R; is the rotation map (z,y) = (z,y + wY(z)).
(v) w® =& and for j > 1,

|w(j) — WUl < rf“ - C3Y(18p. (3.4)

f]

The proof of Lemma 3.1 is postponed to the next section. Now we prove
Theorem 1.1, taking this lemma for granted. We let

ﬂ +"’:r

By (i) of Lemma 3.1, T, by is a nonempty closed subset of I,. Moreover, I, C
IV + 744y and hence Ty + rj1 C I§) + 75 for each j. Therefore, w@, ®;
and C; are well defined on VJ_H = I,,,,lr X T™ + (rj41, Sj41). From the estimates
(3.2) — (3.4) and the INVERSE APPROXIMATION LEMMA OF [10], P. 665, the
sequences (wY) — &) and (®; — I) have real limits

G, — € CPM (T, @y - Dllgy7,, < CsVuby (3.5)
and
1€ CPPM Iy x T, |2 =1, 7 1 <o, (3.6)
respectively, such that
G _ g _
“w w””ﬂﬂ—n,ﬂn =0 HQ)J (I)Hﬁ—t,(ﬁ—b))\;ﬂ-:-rXT“ =0 (3.7)
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for any x > 0 and ¢ > 0, here ¢5 is a constant depending only on n, 7, A, 5. From
(3.3), it follows that

|Tjo®; — ;0 leV}H < b7 - coyuds (3.8)

since It; and ®; are uniformly bounded with their Jocobian if § is small as re-
quied — this fact follows from (2.8), (3.2) and (3.4) where we take b = a and
we will point it out again in next section. As argued in [10] and noting that
75 — T”b-l—x;];xT“ — 0 for any x > 0 with § small enough, we see that (3.8)
implies the following equation

Tod=30R (3.9)

on f;,;, x T", which may be differentiated as often as P allows, where ﬁ, with
Wy as its frequency map, is the limit of R;. Transforming T back to S by the
coordinates stretching o, with p = ¥©7!, and accordingly, transforming fp;'r
to I, ® to ®, R to R, @y to wy, we then get the conclusions (1) and (3) of
Theorem 1.1 and the estimates (1.10). From the fact that w®(I{)) = Q. for any
j we easily show that w, maps I, onto £2,. The measure estimate (1.9) follows,
by Arnold’s argument {cf. [1]), from the uniform boundedness of the Jacobian
determinant of w, from above and below by (20)" and (%H)n respectively, which

is easily observed from (3.1) and the fact that dw, = (79‘1)_1@1. The proof of
Theorem 1.1 is completed.

4. Proof of the iterative lemma

We set 1§ = &'(Q,). Then Lemma 3.1 is valid for j = 0. Assume the lemma

is proven for indices 0,---,j. Then C; = RJ,-'1 o <I)J-'1 o T; o ®; is well-defined and
real analytic on V; and commutes with 7¢, k =1,---,7n and
IC; — Iy, < vel = s - covndy (4.1)

by (iv). To prove Lemma 3.1 for j 4 1, we consider the map B; = R;' o ®;' o
Tj4+1 0 @4, as suggested in Section 2. First, we have

Lemma 4.1. If § is small enough, then B; is well-defined and real analytic on
V=19 % T" + (31541, 38541
and commutes with my, k= 1,---,n. Moreover, we have

|B; — 1|3 < 27e], (4.2)

12



To prove this lemma, we may write, formally, B; = C; o D;, where
D; = (I>j“1 oTj"1 o0 Tji1 0 ®y.

So far the mappings T}, and Tj”l arc defined only implicitly. First we need to
determine the domains of definition of them.

Lemma 4.2. If § is small, then T;4, ts well defined on
. n 13 13
J+1 = I x T (Z'Sj.;.l, ZS:H-I)
and maps this domain into
% ok 14
Uj = Ip x T" + (‘ZSj+1,73j+1)
on which T;! is well-defined, where
Itt _ It 1 Rﬂ
o=+ Z) NR".
Moreover, Tjy, and T;' commute with my, k=1,---,n and,

ITI_I °Tjp1 — I‘Uf“ < 331} - 8eyy b (43)
J

Proof of Lernma 4.2. Tt is observed that Lemma 4.2 of [10] does not apply to
the proof of this lemma. But the contraction argument in an appropriate Banach
space still works in our case. To express Tj4; in explicit form, let us first solve

in terms of z and y from

_ O,
oy (Z,9),

the first equation of (2.11) where j is replaced by j + 1. Let M., be the set of
all real analytic n-valued functions n(z,y), on U, ,, which are 27-periodic in the

I =

(4.4)

last n variables and satisfy

—

1
|77|UJ.'+1 < 1 | TIIU :1'5;+1- (4.5)

Then M4, is a Banach space. Now consider the map

Fn)z,y) = f’y“ (z +n(z,v),9) (4.6)
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which is well-defined for n € M;,; and maps the space into itself because f;44
is real analytic on U, and 27-periodic in the last n variables and, from (2.10)
and Cauchy’s estimates, for n € M;y, and (z,y) € Uj,,,

fj+1

el = |22 o)) < 3|2 e = 1)
9y k=0 l"xT"+( 8k+1,4sk+1)
zj_: ( Sk+1) B |ferr = filyy,, < (i:osili) - 2¢2Y 104
< 27le-Bgd=le 5 < % if 6 <6 =493 (4.7)
and
SE e < |22 o+ () ) = 22 R+ o), )|
< ‘%i( ) + Sn(a ) + 520 30)

1
< 470 e 8- 8544, < 750 if § <6y =4"%(nc,)™"'.  (4.8)

In the above, (Z,7) € I;* xT" + (14—48,-+1, 3413;,-_,_1) and, we have used the estimates,
for example,

Ofipr,.
By (z.9

(A

61 e (fesr — &)

13 'XT"+( Sk41s —5k+1)

|fk+1 - fkluk+! Z 3z+ Sca

IA
I 1

—1 2
(§Sk+l)

< 2795820 5 < 4=, (0 < 59 < L, (4.9)

with the notice that a = A+ A +7 > 37 +2 > 3n+2 > 5. By (4.9), we see
that, for 1, 7y € My, (z,9) € Uj,y,

agH (z

f3+1

|F(m)(z,y) — Fn2)(z,v)| = +m(z,y),y) — —F—(z + n(z,y),v)

7

<>

k=0

~(z}, ) (m(z,y) — (2, 9))

1
§|77 _772(;1_-“; lf6552
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In the above equation, for each k, z} is a point in I;* + lT4Sj+1, This shows that
the map F : M,y — M;, is contractive. Therefore, there exists a unique
y* € M, such that

Fy) =y, (4.10)

and Tj : (z,y) = (£, 9) is expressed explicitly in the form

{ z=z+y*(z,y)

X - ) . . (4.11)
g=y+a(z+y(zy) + Lz + ' (z,9),9),

which is clearly well-defined and real analytic for (z,y) € Uj,, and commutes
with my, £ = 1,---,n. It is easy to check that Tj,, maps U, into U;™ by
using the condition (2.8) for & and the similar arguments to the above. Also, the
contraction arguments may be applied to show that Tj“l is well-defined and real
analytic on Us* and commutes with m;, £ =1,---,n only but, instead of (4.6),
here we need to consider the following map

6(n)(z,) = 92 2,y ~ 5(a) +n(z ) (4.12)

which maps the Banach space, say M3, of real analytic n-valued functions n(z, y)
with 27-periodic in the last n variables y for (z,y) in U;* and with

—
ot

47

lye- < < =85, (4.13)

into itself contractively if § is small enough (say, § < &,). Therefore we have a
unique fixed point y** € M; of the map G and Tj" is explicitly given by

:“c::z:+%f!f(a:,y w(z) +y**(z,y))
{ §=y—a(z)+y*(z,y) 0

Simple calculations will show that Tj"l maps U}* into
U =107 xTh + (235, 3s;)

with I3** = (I* + 1) N R™. It remains to verify (4.3). Note that T, ' o Ty, :
(z,y) = (Z,7) can be written in the form

{»f;

- (452 @) - 3@ D)

v+ (2 (z,y) - Oz, ), (4.15)

o2
||
Rt

15



where (Z,7) = Tj41(z,y). Solve § in terms of z and y from the second equation
of (4.15), we get A
§=y+y" (&), (4.16)

where y***(Z,y) is the fixed point of the contractive map

~ of

HO)Ey) = —5=(5,9) — 5@y +1(3,9)), (4.17)
z Oz :
on the Banach space, say M;*, of real analytic n-valued functions 7(Z,y) with
2rn-periodic in variables y for (Z,y) € 5’}* =1*xT"+ (“ Si+1) g SJH) and with

1
|77|f}j-- < 25+ (4.18)

The well-definedness and the contractivity of the map H on M;* are easily proved
by the previous arguments with the notice of the inequality (2.10) for f;41 — f;.
With the well-defined y***(Z,y) and (Z,7) = Tj41(z,y), the map T; ' o Ty
(z,y) = (2,9) is given explicitly by (4.15) the second equation of which is in fact
equivalent to (4.16). Direct verification shows that, if § < d,,

a ) -~ 0k K
ly***lg.. = sup g’;l(f,y) ai’(fvyﬂ/ (Z, 'u))’
? (zy)eu;”
Ofjv1 af;
< sup ‘ (%, y) — =2(%,y)
Fy)el;* Oz Oz
v s (P Yigy gy
(w)eu;*

< Sg_l_% 40{,’)@1‘.5;, + - ly*”l

and therefore

ly*** b < sgﬂ - Beyy j1dy. (4.19)
In a similar way, we get
af; ~ af ~ ok k —
sup J(,;”l @ y) - 5@+ v (Ev)| < 5551 - evvuds. (4.20)
@Ewel; | %Y y

This verifies (4.3) and completes the proof of Lemma 4.2.
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Now we return to the proof of Lemma 4.1. By inequality (3.2) for indices
0,1,---,7 and Cauchy’s estimates, we easily prove that, if ¢ < é3 with

o0 -1 —1)A
gla=hr 1
05 = (SHCI,aZu“) = o
k=1 8ncy,q80
then .
= |2 = 22| < |P5(21) — @5(22)] < 221 — 2] (4.21)
2

for z1 € V; and |z — 25| < §rj, which implies that {D®;ly,, [D®; |y, < 2. This,
together with (3.2), implies that ®;(V;) C U}, ,. From (4.21), we also have
1
®;(V}) +37i C 8i(V5). (4.22)

By (4.3) and the fact that s8] - 8ceypud < gr; if 6 < &5 = 4*73¢;!, we see that
D; is well-defined on V;} and maps this domain into V;. Therefore, B; is well-
defined on V. On the other hand, from (4.3) and the fact that ID®; |y, < 2

and ¢y > 16¢y, we get

[D; = 1]y <2 157 o Tjpn 0@y — | <2|T o Ty — 1| < el
J 1

Ui

Therefore,
|Bj = Ilya < 1C; 0 Dj = Djlys + 1D; = Ilys < 1G5 = Iy, + D5 = Tlys < 298,
It is clear that B; commutes with mg, £k =1,--+,n. Lemma 4.1 is then proved.

Bj; is an exact symplectic map. So there exists a generating function, say
bj, such that B; : (z,y) = (£,7) is generated from b; by (2.20). By the exact
symplecticity of B; and the previous contraction arguments, we have

Lemma 4.3. If § < 05 = (8ncy,) ™", then b; is well-defined and real analytic on

~ , 5 5
I/;.* = I‘g‘g x T™ + (—TJ'+1, "Sj+1)

2 2
and is 2m-periodic in the last n variables. Moreover, we have
0b; ob; ;
N —_— < 2ve]. 4.23
a:c i;.‘) ay i',, > 278, ( )
J 7

Now we may define

oFy*Y

F () = FO@) + Bbilw), w0*0(x) = 1 —(@),

(4.24)
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where [b;](z) = (—2—;};'1‘[“ bi(z,y)d"y. Then Fy't" and wli+D are well-defined and

real analytic on 173-" and independent of the angle variables. Below we first show
that there exists a closed subset JZ+D of I, such that (i), (ii) anf (v) of Lemma
3.1 are true for index j + 1. For this, we state the following lemma cited from [9)
in which the proof can be found.

Lemma 4.4. Assume that F : D —» R* G : D — R" are two continuously
differentiable mappings where D is an open subset of R" . Let C be a bounded
open set such that C C D where C denotes the closure of C. Let y € R" satisfy

L = min{||F(z) - yll;} > 0.

If
sup(IF(a) - Gla)le} < 5
zel

then deg(F,C,y) = deg(G,C,y). Where deg(F,C,y) denotes the degree of the
mapping F associated to the point y and the region C, and || - ||2 denotes the
usual Fuclidean metric.

We continue our proof. To apply Lemma 4.4, we fix a point z* € If(,-’% and let
F=uw? G=wbit) D={s"}+1ir;, C={a"}+ irj, y =w" = wP(z"). Since
0 < 89 <1, we have from (3.1)

2 4
57,& |z, — 22| < |F(z1) — Fz2)| £ gﬂ:ﬂl — 19|, z1,72 € D. (4.25)
Therefore,
. . 1
— i _. ; (4 — D ht .
L= min{|IF(z) - yll,} > min{jw? () - wP(a)]} 2 cypr;
and
ab, L
sup{||F (p} — G(p)lly} < Vn o < —, iféd<6s
zel T |y 8

J
By Lemma 4.4, we have deg(wUt) C,w*) = deg(w",C,w*) = 1. From the
theorem of topology degree of a mapping, there exists a point z} € C such that
w0t (z1) = w*. Moreover, we have

2 N\ .
55 =o'l < () 09D - 00(e)

< (%7#)_1 9[b;]

1
2 (a1)

< er+l-

18



Let 79" be the set of points z} € J, such that w0+ (z}) = wW(2*) for z* € I§).
Then the conclusion (i) of Lemma 3.1 is obviously true for j + 1 and w*" maps
IG¥Y onto €. So wU*Y is well-defined on V;, and (3.4) is also valid for j + 1
with ¢3 = 2¢;. Seeing that, for z), z, € Ilgj,j'l) + 141 With |z — 29| < 71y

1

alb;] ab;] 1 Fb; .
e )~ By 0| (e | [ 0 0|
1|9
<n- Tip1” 5; . |z = $2| < Sjp1 0 YH 1331 — T3] (4-26)

if 6 < &5 with T € 777Z3, the straight line connecting z; and z; and completely
contained in I}Q + 37,41, the equation (3.1) is then verified for j + 1. In (4.26)
: s . . Ob; ,
we have applied the Cauchy’s estimate to analytic function e It remains to
T
verify (#1) and (iv) for j + 1. For this, we define ¥;.

Note that the Fourier series expansion

b] (:1:11 ) = [bJ](I) -+ Z bj;k({l})ei(k”y)
O£keZn

is defined on f/j*. Let 3_,- (z,y) = o;ekzezn bk (z)e!F¥) We take generating function
Y;(z,y), of the symplectic transformation ¥;, as the solution of the equation

(2, y + w9 () = ¥;(z,9) + Ty bi(z,9) = 0, (4.27)
with [1;](z) = 0, where

ijgj (:E) y) = Z bj;k(:c)ei(k”y)

0<|k|<m;
with m; given by
mit! = % (4.28)
We find bya(a) |
bi(zy) =~ ) éﬁﬁ%@r’»——iel(k"y)' (4.29)
0<|k|<m;

Lemma 4.5. v;(z,y) is well-defined and real analytic on ff; and is 27m-periodic
in each variables of y. Moreover, if f € C*(I, x T™), then we have the following
estimates for its gradient:

b Iy
’%(w,y) < 0157115 (4.30)

19
< o158, lai;(w,y)
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for (z,y) in
v = JU) 9 9
i — 4oy + ZTJ'+1: ZSj+1 y
where 01 1s a positive constant depending only on n and 7.

Proof: The well-definedness of v; is proved by simply verifying the nonvanish-
ing of ( ik (@) ) for z € I) + 3754y and 0 < |k| < m;. By the definitions of
I(j) and mJ with the notice that r;.; = 47*r; and that A > 2, we get for z* € If,{z,
|z — 2*] < 3741 and 0 < [k| < my,

RO _ 1| > [k g  |gilhee) _ gitbot )|
'Y 1 ] *
> 2 |k, 0 (@) = w9 (2%))|

ZW—Qmj‘Q’Y'gTj-HZi'#,

which does not vanish. The analyticity and the periodicity in the last n vari-
ables of this function are clear. The remainder of this lemma can be proved by
differentiating the equation (4.27) with respect to = and y, and then estimating
0| g |20 i |2
Bz Oy ax Y |7

by using the standard arguments. The details are referred to [10] and [13] for a
similar problem.

and
V‘

over V" in terms of the norms respectively,

Therefore, ¥; : (£,n) — (z,y) is well-defined from ; by (2.18). More pre-
cisely, we have the following result which is easily proved by the standard con-
traction argument.

Lemma 4.6. Ifé < §; = (87’1.01621“)_1, then ¥; and its inverse \I!j‘1 are well-
defined on V# and map V} into V}' with

(o, - Ilw = 3_7_4?{ el (4.31)

and lg;l o R;j o B;joW,; is well defined and real analytic on V1 and maps Vji
into V.

Let ®;4; = ®; 0 ¥;. Then, &;,, is well-defined and real analytic on V? and
commutes with 7, k =1,---,n and, from (4.21),

[Pj1 = Dilys = |@; 0 F; ~ Byl < 2[¥5 = Iy < i epby

20



with ¢ = 201¢,. (3.2) is then verified. Next we verify (3.3) for j + 1. Note that

Ciy1= Rj__}}lo\Il oRjoB;0W;, which is analytically defined on V., and commutes
with g, kK = 1,--+,n and, moreover, it may be written as (£,7) — (f,n) with
s Mj 2 i 3% ab
. O 5% ab GHD(E) o (4
1=+ SR E D) - FHEN) + F20) - + (D)

where (z,y) = ¥;(¢,n) € Tg) x T* + ($rj41,55511), (8,9) = Ry 0 Bi(=,y) €
1) x T" + (41Tj+11 2Sj+1), (6;7) = Ryj1 0 U7 (,9) € I x T™ + (27“3‘+1: %SJ‘M)
for (&,m) € V;41 if 6 < 8. So,

€ ¢l =

d
17— ) = ]3”’”(5,) e u)+

where

Ilz—‘

I =

13:

1,1:

J=|22

J2:

a;z)_., O, ab

Wated) - G+ Goto)

<L+L+1+ 14

ob;
o€ oz

<h+ o+ Js+Jy+ Js+ Jg + Jq,

=2 (&,y) — WU (E) + wl(2)

Di(6,9) - e u+u(O),

e+ ) - S 6 + T,

D) - e

) - 6 )‘

%) 88—’?(5,y+wm(£))|,

Ditew+ w0 - Biien) - 22 0% ey +u0@) + + Bige,y)
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L==5;@m)—5§@w)

Js = [9(@) - w(6) - 22 ()3 - s)‘,

Js = | e O, €y +uP(©) - ZHEW + FHE)

;] Olbj]

Jr = + [0 (E) - (€]

By Taylor formula and Cauchy’s estimates with the notice that all the concerned
variables are in the corresponding shrunken domains with shrunken width, say,
(37i+1, §5j+1), we obtain

1 \ow;| . e .
L <n. (ZT;HI) aiyj ~ ‘E - 5\ < s7NT - dnoyel -
v

2

£~¢

)

1 N\Tow| . | L
f2$”'(13j+1) a—yj 'ly—y—w(”('f)lisjf{l-azei")’ei

L

with o, = 8noy (o, + 3), here the following estimate has been used

W ()~ (E) + D (a,y)

i -y — w9(9)] =

%
az |~

VJ.‘

%
dy

< 2v|E - &+

b Ob;
< 73
2 Oz

j
—_— _|._
oy

+27|

‘/j‘

< 557y 2(o1 + 3) - e, (4.32)

. T
Vi Vi

I3 is bounded by (cf. [10], p. 684)

% _ o

L < i
P = oy 7 Oy

a—A—T1-1 j
. < 85 * V€D
IgyxTr+ (%"J’+1 r%5j+1)

if sy is small enough but depends only on n, 7, A, @. From (4.32), we get the

estimate | — &} < s3], - (01 +2) - &, which implies

1 —H| o,
Iiy<n- (—Tj+1) ob;

1 By & — & < ST 8nfor + 2)el - el

‘/j—
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Noting that &l = 3;’;11 “Coaptby < sgjr} .oy ' if 6 is small enough, say,
6§ < &7 = (02620) 7",
we get, by combining the above estimates,
e e < st vl (433

By estimating Jg, £ =1, --,7 in a similar way to the above with making use of
the previous estimates, we obtain

7 — 1l < s34 6, (4.34)

if 4 is smaller, say,
-1
0 < dg = (cr%czya)

and sg is chosen to be small as before. To summarize, if § < éy = lrgi(n8 &; with s

sufficiently small and depending on n, 7, A, o, then
[Cya1 = 1, <6557 e (4.35)

due to the fact that (¢ —1)A <a—-A—27—-1<a—A—7—1. As argued in [10],
p. 688, for b = a, (4.35) is bounded by ye*! with an appropriate choice of sy,
say, si”* < 4=(=1 /6. And for any finite b > a, we can also bound (4.35) by
fye-,’,""l in only finitely many iteration steps — the number of steps needed is, say,
Ngo = (f —1)/(a — 1) and, of course, the constant ¢, involved in €} has to be
adjusted to a larger one, say, 4#~®*Nsac, ;. and the other related constants ¢ ,
c3p also change accordingly, but all of these constants do not change for b = a,
which implies that the smallness of ¢ required by the induction does not change
and therefore, does not depend on 3. This shows that the iteration from j-th
step to (§ + 1)-th step may be carried out and therefore, Lemma 3.1 is proved.

5. Proof of Theorem 1.2

To prove Theorem 1.2, we only need to reexamine Lemma 3.1 and its proof.
Under the assumption (1.2)" for w, the corresponding nondegeneracy condition

for @ in Lemma 3.1 is

yieldz| < |d(z)| < ylde], =€ T,+2 (5.1)
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with 1 = 07! and p = v©~!. Accordingly, the equation (3.1) of Lemma 3.1
turns out to be

(1 - Zsk) i ldz| < |d@(z)| < (1 + Z sk) vldz|, =€ ]ﬁj,; +7;  (5.2)
k=1 k=1

and all other assumptions and conclusions in Lemma 3.1 remain unchanged. The

smallness condition for h, of the form (1.11), and therefore, the smallness condi-

tion 0 < §, < § with the corresponding notation

||f||ﬂA+A+T;[prn =0, b=PA+A+T>a=ar+A+T, (5.3)

instead of (2.25), and with f defined from & by (2.3), is needed only for proving
the existence of I{Z*!) such that w(j“)(fgf;fl)) = Q, from j-th step to (j -+ 1)-th
step in induction. But this is no problem because in this case, to apply Lemma
4.4, we need only to let C = {z*} + gy pur; without any other change. From (5.2)
and the induction assumption for the first j steps, we have

2 4
3¢ lds] < |dF(z)] < Zyldz|, = €D (5.4)

4
E < 37 By Taylor’s formula for F(z) — F(z3) up to
i
D
second order and Cauchy’s estimate with the notice that C' + 47 'r; ¢ D and
O*F
0z0z |,

which implies that

-1 4
< (4“1rj) (37 we easily show that, for z,, 2, € C,

|F(z1) = F(z2)| 2 %’)’# |z2 — 2. (5.5)

1, .
= mi - - . = (2% ¢
As a result, we get L :I:Iél})%{”F(.T) yll,} > San2 T with ¥y = w9 (2*) as

1

assumed tacitly. Therefore, sup{||F(z) — G(z){|2} < f‘ < 8 S 5 TS,

zel
if ¢ is small enough but only depending on n, 7, A and « becausc the assumption

(5.3) will certainly lead to such an estimate for b;, which guarantees the existence
of 1 },’;f ) as required. The proof of the remainder is standard.

6. Application to small twist problem

A direct application of the above theorems gives the existence of invariant tori
with a smooth foliation structure (differentiable, C*°-smooth or analytic accord-

ing to the corresponding smoothness of the considered mapping respectively) of
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a nearly integrable symplectic mapping with a small twist. The result may be
formulated as follows.

Theorem 6.1. Under the assumptions of Theorem 1.1, consider one parameter
family of mappings Sy : (p,q) = (p,§) with So = I and S; = S, to be defined in
phase space I x T" by

{p p =155, q) = p - 18(p,q)

N (6.1)
q =q+t%§(p q) = g+ tw(p) + 152 (5, 0)-

Under the smallness conditions for h of Theorems 1.1 and 1.2 (in the case when
only nondegeneracy condition (1.2} is satisfied by w), the corresponding conclu-
sions of them are still valid for Sy, 0 < t < 1, only with the following remarks:

1. 2, is replaced by

which means to depend on both v and t, where {2, denotes the set of points in ()

Qs {weﬂ ik, tw) 1| ~kl forkEZ"\{O}} (6.2)

with distance to its boundary at least equal to 2vy; and accordingly, I, is replaced by
I 4, a closed subset of I; w, replaced by wy : I, — §y, an onto map; ® replaced
by @, : I, x T* = R" x T"™ and R replaced by R, : (€,1) = (€, 1+ tw4(E)).

2. If Q is a bounded open set of type D in Arnold’s sense [1], then we have
the following Lebesgue measure estimate

m(Q\ Quy) < DymS2 (6.3)

for t € (0,1], with constant D only depending on n, T and the geometry of Q. So
in this case, (. is still a large Cantor set in Q0 if v is smnall enough.

We conclude the note by remarking that Theorem 6.1 implies the existence
of invariant torl with smooth foliation structure and therefore, also implies the
existence of n independent smooth invariant functions which are in involution
and well-defined on the set filled by the invariant tori in the Whitney’s sense, of
a symplectic numerical integrator applied to an integrable or a nearly integrable
Hamiltonian system if the system is nondegenerate and the time-step size of the
integrator is small enough. The invariant tori are just those level sets of the n
invariant functions. The nondegeneracy of a nearly integrable system means the

nondegeneracy of the integrable part of the system. Symplectic integrators or, in
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other words, symplectic algorithms with their computer performance are referred
to [4].
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