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. 1. Introduction and main result

a. In this note we prove the existence of differentiable foliation structures of

invariant tori for nearly intcgrable symplectic mappings in the sense of Whitney

as J. Pöschel did in thc case of Hamiltonian systcms([10]). The formulation of

the main theorem is almost a copy of that given in [la] and the pro6f also follows

from essentially the same arguments only some different technical details should

be pointed out particularly. The Inain ahn of the note is to give two relevant

estimates: one is for perturbations under which a majority of invariant tori of

thc integrable mapping persists and anothcr is for invariant Liouville measure

of the set filled by thc invariant tori of thc perturbcd mappings in phase space.

The estimates are both given explicitly in terms of three parmneters: thc first

one is l', which appcars in the well-known diophantinc condition satisfied by the

frequencies, say W = (Wl, ... ,wn ), of invariant tori

(1.1)

n n
with another fixed constant 'T > 0, whcre (k, w) = E kjw(j) and Ikl = E Ikj I

j=l j=l

for integers k E zn. The other two, say Band 8, are used to describe the

nondegeneracy of the frequency map w : I -+ 0, of thc unpcrtllrbed integrable

rnapping, and its inverse, for cxample, of the form

(1.2)

Here land 0 are the domains of action variables and thc corresponding frequency

values respectively. We always assurne that they are open in Rn. In fact, in our

case we require w : I -+ nto bc analytic so w is assurned to be defined and analytic

in some cOInplex extension, say I + T, with radius r of real dOlnain I c Rn of

action variables (cf. [10]) and (1.2) is assumed to be true for PI, P2 E I + r with

lpl - p21 ::; r. Note that this nondegeneracy condition iInplies that the frcquency

map w is invertible in any ball with radius rand centercd in I and so it is stronger
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than the standard Kolmogorov's nondegeneracy assuInption but equivalent to the

Pöschel's assumption ([10]).

It should be noted that there are already some optimal results on the estirrlates

in terms of,. For example, H. Riissmann([llL n = 2) and N. V. Svanidze([14])

in mapping case with w(p) = p (and so B = 8 = 1) and J. Pöschcl([lO]) and A.

I. Neishtadt([8]) in HaIniitonian systeIn case proveel that if aperturbation has a

norm, say c, in some relevant function spacc, proportional to ,2 with coefficient,

say ß, not dependent of, and sInall enough, then the perturbed Inapping has in

variant tori, deformed slightly from those of unperturbed one, whose complernent

in the phase space has invariant Liouville Ineasure proportional to , with coeffi

cient, say C, not dependent of ,. Therefore, the invariant tori of the perturbed

mapping form a set with large measure in thc phase space if! is sufficiently small

(in fact, 'Y may be chosen reasonably to be proportional to .j€ froIn the fact that

c is achnitteel to be proportional to ,2 (cf. [10L [8])). In this note we also obtain

the saIue results.

We note that in most general cases, the bounds of both 6. alld C in various

versions of KAM theoreIn depcnds on the "nondegenerate lJ behavior, in SOIne

sense, ofthe frequency map w : I -+ n (cf. [1,2,6,7] anel [3,12]). Hcre wc work sim

ply uncler the "ordinary" nonclegeneracy assuInption (1.2) (this is the strongest

nonclegeneracy assumption) anel investigate the depenelence of the bounels of 6.

anel C, say 6.0 anel Co respectively, on the nonelegeneracy (01' twist) parameters

B anel e. We obtain the dependence to be 6.0 = ooB8-2 and Co = CO(BS-l )-n,

where 00 and CO are constants not dependent of B, e or!. Ir w only satisfies the

Kolmogorov's nonelegeneracy conditioIl, say,

Bldpl :S Idw(p) I ::; 81dpI, for p E I + r (1.2)'

with COllstants°< B ::; 8, then we may get the estimate of the form 6,0 = 60 B2e-3

for perturbation part. We remark that this estimate is bettel' than that given in

[5], in the case of analytic perturbations, by directly estinlating the convergcnce

of the Lindstedt series for individual KAM tori, which is essentially of the form

€ = 60,4828-4 - this estimate can not be applieel to small twist problcIn.

We are interested in such estimatcs because they rclate to some significant

problems such as the small twist problem anel therefore also relate to the stability

of symplectic integrators in solving integrablc anel ncarly integrable Hatniltonian
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systems. In the small twist problem, a small parameter, say s, enters into the

frequency map and so the pararneters {}, e and even 1 are all s-dependent, say,

they turn into sB, s8 and 5, respectively. For thc case of n = 1, Mosel' obtained

the existence of invariant curves ([7]). Hut for n > 1, I have not seen an available

reference. Our estimates naturally lead to Cl proper answer to the problem.

b. We consider an exact syrnplectie mapping S : (p, q) ---7 (1\ ij) to be defined

in phase space I x TU by its generating function H : I x Tn ---7 R throllgh relation

{
p= 1) - ~~ (p, q)
" all "q = q + 8P (p, q),

(1.3)

where I is an open and usually bounded set of Rn in which the action variables

p vary and T n is the standard n-torus which is ieIentified as Rn/21rZn and tbe

angle variables q vary on. When H(p, q) = Ho(p) does not depend on angle

variables, then (1.3) represents an integrable mapping S = So : (p, q) ---7 (p, (l) =

(p, q + w(p)), which is weIl defined on I x T n
, with frequency rnap

aHa
w(p) = ap (p), p E I. (1.4)

Under So, the phase space I x TU is completely foliated into invariant n-tori

{p} x T n , p E I, on each of which the iterations of So are linear with freqllen

cies w = w(p). When aperturbation, say h(p, q), is aclded to Ho, i.e., when

H(p, q) = Ho(p) + h(p, q), then (1.3) eIoes not define an integrable mapping gen

erally. However, KAM theorem shows that the perturbed mapping S, defined by

the perturbed generating function H according to (1.3), still exibits in a large

extent the integrable behavior even not in any open dmnain but at least in some

Cantor set of the phase space if the frequency map w is nondegenerate in sorne

sense (see [1,2,6,7] for strong (ordinary) nondegeneracy and [3,12] for weak nonde

generacy) and if the perturbation h belongs to the dass Ca(I x Tn) for a suitably

large number a > 0 with a sufficiently small associated norm (cf. [10]). Vve note

that for h srnall in C2(I x Tn), (1.3) really defines an exact syruplectic mapping

on l' x Tn with sorne open subset 1', of I, whose boundary is a little away from

the boundary of I with distance equal to the C2-nonn of h.

As a Banach space, the dass Ca(rxTn), with the corresponding nonn denoted

as 11·lla,IxTn, is always understood according to [10]. In this note, we also get the

anisotropie differentiability of the foliations of invariant tori. So we also need the
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dass CVl ,V'J (I x T") of anisotropie differentiable functions, whose exact defini tion

was also given in [10]. The norm of a function in CV
l 1V2(I x TU) is denoted by

11 . IIvl,v'JilxTn. We also use another norm 1I . Ilvl,v'JiIXTn,p for p > 0 defined by

(1.5)

for u E CV1,V'J(I x Tn), where op denütes the partial stretching (x, y) -7 (px, y)

for (x, y) E I x T n . Note that the following relation between these two nonns is

valid für 0 < p ::; 1:

(1.6)

where we dropped the domains to simplify the notations.

Write [2 = w(I) anel denote by 0, the set of those frequencies , in 0, which

satisfy the diophantine condition (1.1) für the given fand whosc distance to the

boundary üf n is at least equal to 2,. The difference n \ U')'>o 0')' is a zero set if

T > n + 1 and so 0')' is large for small 'Y.

Now we formulate our lnain result as folIows.

Theorem 1.1. With given positive integer n and given T > n + 1, consider

mapping S to be defined in phase space I x T n by geneTating function H (p, q) =
Ho(p) + h(p, q) in the form of (1.3), where Ho(p) is analytic in p E I + r with

r > 0 and h(p, q) belongs to the dass Ca>.+>.+'r(! X T n
) with fixed A > T + 1 and

0:' > 1 not in the discrete set

A = {i/A + j : i,j ~ 0 integer}.

Suppose that the frequency map w : I -7 0, defined by (1.4) fTom Ho, satisfies

the nondegeneracy condition (1. 2) fo1' PI, P2 E ! + r with Ip1 - p21 ::; T wheTe th e

constants 0 and e satisfy 0 < 0 ::; e. Then there exists a positive constant 00,

depending only on n, T, A and a, such that for any 0 < , ::; min (1, !r8), if

(1. 7)

then there exist a dosed set Ly C I, a surjective map w')' : I')' -7 0, of C a +1 dass

and an injection <I> : Ly x Tn -7 Rn x Tn of ca,a>. dass, in the Whitney's sense,

such that

(1) So <I> = <I> 0 R. Moreover, this equation may be diffeTentiated as often as

<I> allows, whe1'e R is the integrable rotation on I, x T n with jrequency map w"
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(2) If n is a bounded open set of type D in the AmoldJs sense [l}, then we

have measure estimate

(1.9)

where m denotes the invariant Liouville rneasure of the phase space E = I x T n

and E"( = <P (1"( x T n
),. C4 is a positive constant depending on 11, T, a and the

geometry of the dornain n.
(3) If h is of Cß>'+>'+T dass with 0: ::; ß not in A, then we have further that

w"( E Cß+1 (I"() and<P E Cß,ß>'(I"( x T n ). MoreoverJ

Ila~~-l 0 (<P - I) IIß,ß>.;"(e-1' ')'-1 IIw"( - W II ß+l i1S-1 ::; cs,-2e IlhIIß>'+>'+Ti"(e-1
(1.10)

with constant es depending on 11J T, ,,\ and ß, here we have droped the domains

in the notation of nomLS.

Theorem 1.2. In Theorem 1.1, if the frequency map w satisfies the nondegen

eracy condition (1.2)', then the required smallness condition for his, instead 01
(1. 7) J

(1.11)

with sufficiently small 00J depending only on n J T, ,,\ and (XJ under which the

conclusions 01 Theorem 1.1 are also tme with the same estimates.

Remark: VVe have following two further conc1usions in the above thcorClns:

1. If h E C oo (1 x T n ), then w, E Coo (1"() and <I> E Coo (1"( x T n ) with the

estimates (1.10) for any ß 2: a.

2. If h E CW(I x TU), then wc have further <I> E C oo,W(1"(1 T n
) under a further

smallness condition for 6 which also dcpends on thc radius of analyticity of h

with respect to angle variables.

2. Outline of the proof of Theorem 1.1

In this section, we outline the proof of Theorem 1.1. The detailed arguments will

be given in the latter sections.

a. First we transform the mapping S by thc partial coordinates stretching

ap : (x, y) --+ (p, q) = (px, y) of phase space I x T n and obtain a new mapping
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(2.1)

T = a;l 0 So ap : (X, y) -+ (X, f)) to be defined in the ncw phase space Ip x T n by

{
X = x - ~~ (x, y)
'" DF ('" )y = y + Bx x, Y ,

where

F(x ,y) = Fo(x) + f(x, y)

is weH defined on I p x T n with

and

(2.2)

(2.3)

(2.4)

For the time being, p is considered as a free paranlCter. Fo(x) is real analytic for

x E Ip+Tpwith T p = p-lr anel f belongs to the dass Ca(IpxTn) with a = aA+A+

T. SO the new mapping T satisfies the saIne assuInptions of Theorem 1.1 in which

only I, T, H, Ho, h are replaced by Ip , T p , F, Fo, f respectively. Correspondingly,

thc frequency map of integrable mapping associated to thc generating function

Fa turns into
_ aFo
w(x) = Bx (x), x E Ip

and the nondegenerate condition for the Inapping turns out to be

pB lXI -X21:s Iw(xd -W(X2)j:S p81xl-X21, Xl, X2 E Ip +l'p, IXl-X21:s Ip.

(2.5)

In addition, from (2.3), we have

Prom now on we fix p = ,8-1. Then thc assulllption 0 < f :s ~r8 in Theorem

1.1 implies that 0 < p ~ !T and so Tp 2: 2. Let I; be the set of points in I p with

distance at least one to its boundary and let

(2.6)

Then, from (2.5) and thc definition of 0" we have

(2.7)
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and

r/-L lXI - x21 ~ Iw(Xd - W(X2)1 ~ 11XI - X21, Xl, X2 E I p + 2, lXI - x21 ~ 2
(2.8)

with /-L = 08-1
•

b. We approximate f by real analytic functions. Let

Sj=s04-j
, Tj=S;, j=O,l,2, ···

with fixed A > T + 1 anel So > 0 to be determined later on anel let

(2.9)

Then by ApPROXIMATION LEMMA of [10], p. 665 , there exist real analytic

functions fj deflned on Uo with 10 = 0 such that, for I E Cb(I x T n
) with b ~ a,

we have

I/j - !j-Iluj ~ S~Cb 11/11b;IpXTn j = 1,2" . "

III - Ijllll I.xTn -+ 0 (j -+ 00) for 0 < b' < b,
, p

(2.10)

where Cb is a positive constant only depending on b, TI, and So but not depending

on the domain I p and hence not depending on the paraIneter p. Moreover, we

may require Ij to be 27f-periodic in the last n variables. In (2.10), I . IUj denotes

thc Inaximum norm of analytie functions on thc complcx domains Uj . Almost all

the notations in this note COIne from [10], ,vhieh we will not speeify particularly.

c. We give the KANI iteration process whieh is essentially the SaIne as that

given by Pöschel in HaIniltonian system case ([IOD. Associating to each Ij, we

will define a mapping Tj : (x, y) -+ (x, i)) by

{

" 8F;(,,)x=x- a x,Y
" at( (" )Y=Y+a:: X,V

(2.11)

with Fj(x, y) = Fo(x) + Ij(x, y), which is well-dcfined and real analytic on Uj

if 4sj ~ Tp = p-1 T which is always true for j = 0,1 , ... if we choose 0 < So ~

4-1 (noting that 0 < r < !r8). We will show that each of Tj for j ~ 0 is

really well-defined on a cornplex dornain, of thc phase space Ip x Tn, which is

appropriate for the KAM iteration if h is bounded by (1. 7) with 60 chosen to be

small enough, independently of Tl 0 and 6. In fact, as j approaches infinity, Tj
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will converge to the T in ca' norm with 0 < a' < a - 1 on sonle sub-domain

I ßx T n of the phase space I p x T n with Ißbeing a sufficiently large open subset

of I p . The central problem is to find transfonnations <I>j and integrable rotations

Rj with frequency maps, say w(j), such that, as j --+ 00,

C - R- 1 if.,-l T A'>. 'd t't A'>. ;r" R R- (j) -j - 'j 0 '.1:'j 0 j 0 '±'j --+ 1 en 1 y, '.1:'j ---1- '±', j --+ ,W ---1- w" (2.12)

in Ca nonn, with a suitable positive nllll1ber Cl, on Ipi, X T n with sOlne closed

set lpi, C I p such that w,(lp;,) = 0,; here <j; and Rare well-defined on lp;, x TU
- -

and w" as the frequency map of the rotation R, is well-defined on Ip ;,. So in thc

limit ,ve have
- -- - -

T 0 <P = <P 0 R on IPi, X Tn. (2.13)

Reversing the mapping T to S by the partial coordinates stretching ap and, at the

SaIne time, reversing cI> to <P and R to R with the frequency Inap w,(p) = W,(p-l p),

then we have

So <I> = <I> 0 R on I, x T n

with

I, = pIpi')' = {p E Rnl p-lp E Ipi,},

a closed subset of I and such that w,(I,) = 0')'. This is just thc conclusion (1) of

Theorelll 1.1.

The constructian of <I>j anel Rj uses the KArvI iteration which we clescribe as

folIows.

AssuIne

(2,14)

with a decreasing sequence of positive nUInbers {cj}f and suppose we have al

ready faund a transfonnation <Pj and a rotation Rj with frequency lnap w(j) such

that

(2.15)

satisfies

(2.16)

We then construct a transformation \]Ij and a new rotation Rj + l with frequcncy

map W(j+l) such that

<1>j+l = <Pj 0 \]I j

8

(2.17)



and (2.16) is also true for the next index j + 1 with Cj +1 defined by (2.15) where j

is replaced by j + 1. As was remarked in [la], "for this procedure to be sllccessful

it is essential to have precise control over the various domains of definition" .

We define the trallsforrnation 'IJ j : (~,TJ) --+ (x,y) iInplicitlywith the help of

a generating function 'ljJj by

_ a'IjJj
x - ~ + a (~, y),

y

alf; .
y = TJ - 8: (~, y). (2.18)

To clefine the function 'ljJj, we consider the Inapping

(2.19)

which is also near identity and assumcd to be givcn implicitly from its gcnerating

function bj by

" abj ( " )" abj ( " ) (2 20)x = x - 8y x, y, y = y + ax X, Y . .

The function 'ljJj is then detcrmined froIn bj by thc following holomorphic cquation

(2.21)

(2.22)W(j+l)(X) = w0)(x) + 8[uj] (x),
8x

then Rj +1 : (x, y) --+ (x, f)) is just given by

where bj(x,y) = bj(x,y) - [bj](x) with [bj] being the Illean value of bj over Tn.

Define

i: = x, f) = Y +W(j+l)(X). (2.23)

With just definecl 'l1 j anel Rj +1 , we easily show that, forrnall y,

Similar formal calculation to that in [la] shows that (2.16) is valid if we replace

j by j + 1.

We will not solve the equation (2.21) exactly indeed. Instead, we will solve an

equation with areplacement of bj by a finite truncation of its fourier expansion

with respect to angle variables so that "only finitely 1l1any resonances remain,

anel we obtain areal analytic solution 'ljJj defined on an open set" ([la], pp. 677).

The ielea goes back to Arnol'd [1,2].
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In the following sections, we will Inake thc above argulnents more precise by

carefully controlling thc domains of definition of functions aud lnappings anel

giving the relevant estiInates. For the convenience of thc latcr statelnents, we

follow [10] anel abbreviate the differentiability orders by

a = CtA + A+ T ~ b = ßA + A+ T, (2.24)

(2.25)

In addition, we denote by 1rk thc translation (x, y) --+ (x, Y + 27rek) of Rn

for k = 1, ... , n, where Ck is thc vector of Rn with thc k-th cutry cqual to onc

and others equal to zero. With this notation, a well-cIefined transformation Oll

I x Tn Inay be viewed as a transformation on I x Rn which commutes with 7rk,

k = 1," ',no

3. Iterative lemma and proof of Theorem 1.1

Now we state a so-called iterative lemma which is a quantitative fonnulation of

the KAM iteration process outlined in the above section.

Lemma 3.1. Assume that Fo is real analytic on I p + 2 with the gradient map

W =~ satisfying tILe condition (2.8) in which f > 0 und 0 < IL :::; 1 are given in

advance, For fixed A > T +1 and Ct > 1, let f E Ca(Ip x T n) with a = CtA + A+ T

and let fj be real analytic approximants to the f as given in the preceeding section,

Assume 6"a ::; 6". If 6" is small enough, then for each j ~ 0, there exist a closed

set I~:~ C Ip, areal analytic function FJj) on Vi = Ig~ x TU + (Tj, Sj) which

is independent of tlte angle variables, and a 7'eal analytic exaet symplectic map

<Pj : V; --+ Uj which com7nutes with 1Tk, k = I, .. , ,n such that, JOT f E Cb(Ip x Tn)

with b = ßA + A + T ~ a, the following hold,

(i) For j ~ 1, I~:~ + Tj C I~:7-I) + ~rj C IM;I) + Tj-I.

( ") 8F.(j) ( ")(ii) w J =~ 7naps 1/
7

onto S17 and satisfies tlte following nondegeneracy

condition: fOT Xl, X2 E IM~ + Tj witk lXI - x21 ::; 1'j,

(1 - ~ Sk) 'Y/lIXI - x21 ::; Iw(j)(xd - W(j)(X2)I::; (1+~ Sk) 'Ylx! - x21·
(3.1)

10



(iii) <Po is the identity and fOT j 2: I, <I>j is well-defined and real analytic on

V 2 - lU-I) T n + (2' 2 )j-1- pj, X 1j, Sj

and commutes with 1fkJ k = 1, .. " n and

(3.2)

(iv) Cj = R j l 0 <I> j 1 0 Tj 0 Wj is well-defined and real analytic on Vj and

commutes with 1fk, k = 1, .. " n and

where Rj is the rotation map (x, y) -t (x, Y + wej)(x)).

(v) weO) = wand for j 2: 1J

IwU) - wU- 1)lv. ::; T~+1 . C3fPOb.
J

(3.3)

(3.4)

Thc proof of Lemlua 3.1 is postponed to the next section. No,,, we prove

Theorem 1.1, taking this leIuma far granteel. Vve let

_ 00 -e.,....,..:--)-

I p;, = n I p{, + Tj.
j=O

By (i) of Lemma 3.1, lp;, is a nonempty closed subset of I p. :Nloreover, Ip;, C

IM;1) + Tj+l and hence Ir;, + Tj+l C I~{~ + Tj for each j. Therefore, wej), ~j

anel Cj are weH defined on VJ+l = lpi' X TU + (rj+1, sj+d. Frolu the estimates

(3.2) - (3.4) and the INVERSE ApPROXIMATION LEMMA OF [10], P. 665, the

sequences (w(j) - w) and (<pj - I) have real limits

- ~ Cß+l(I-)w, - w E pj, ,

and

respectively, such that

Il
wU) - w 11 -t 0

, ß+I-K,4,;'l' '

11
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for any K, > °and l, > 0, here es is a constant depcnding only on n, T, A, ß. Fronl

(3.3), it follows that

(3.8)

since R j and <Pj are unifoflllly bounded with their .Joeobian if 0 is small as re

quied - this fact follows from (2.8), (3.2) and (3.4) where we take b = CL and

we will point it out again in next seetion. As argucd in [10J and noting that

IITj - Tllb-l-lt.j.xTn --t 0 for any K, > 0 with 0 small enough, we see that (3.8)
, p

implies the following equation

(3.9)

on lp;, x T n , whieh may be diffcrentiated as often as 1> allows, where R, with

W, as its frequeney lnap, is the limit of Rj . Transfonning T back to S by the

coordinates stretching (lp with p = ,8- 1
, anel aceordingly, transfonning IPi,,[

to L", <I> to <P, R to R , W, to w" we then get the concIusions (1) and (3) of

Theorcill 1.1 anel the estiInates (1.10). From the fact that w(j)(I~{~) = nr for any

j we easily show that wr maps Ir onto nr . The lneasure estilnate (1.9) follows,

by Arllold's argument (cf. [1]), from tbe unifonn boundcdness of thc Jacobian

determinant of wr from above and below by (28)n and (&0) n rcspectively, which

is easily observed froln (3.1) and the fact that cUu,,! = (,e- 1
) -1 dW')'. The proof of

Theorem 1.1 is eompletecl.

4. Proof of the iterative lemma

We set I~~~ = w- l (nr ). Thell Letnma 3.1 is valid for j = 0. Assuille the IClnma

is proven for indices 0, ... ,j. Then Cj = Rjl 0 <pjl 0 Tj o1>j is well-definecl and

real analytie on Vj and comlnutes with 7ft, k = 1,' . " n and

(4.1)

by (iv). Ta prove Lemlna 3.1 for j + 1, we consider thc Inap Bj = R j l 0 1>j l 0

Tj +1 0 <Pj, as suggested in Seetion 2. First, we have

Lemma 4.1. If 0 is small enough, then B j is well-defined and real analytic on

\~3 = Ig~ x TU + (3rj+l, 3s j +d

and C01nmutes witk 1fk, k = I, ... 1 n. MoreoverJ we have

(4.2)

12



To prove this lemlna, we may write, fonnall y, B j = Cj 0 Dj1 where

So far the mappings Tj +1 anel Tj-
1 are defined only implicitly. First we need to

determine the domains of definition of them.

Lemma 4.2. 1f eS is srnallJ then Tj +1 is welt defined on

U• 1* T n ( 13 13 )
j+l = P X + "'4 8j+1' 4"Sj+l

and maps this domain into

U** 1** n (14 )j = p x T + 4"8j+l17sj+l

on which Tj~1 is well-defined, where

Moreover, Tj +1 and Tj-
1 commute with 7rkJ k = 1, ... 1 n andJ

(4.3)

(4.4)

Proof of Lernrna 4.2. It is observcd that Lemma 4.2 of [10] eloes not apply to

the proof of this lemma. Bllt the contraction argument in an appropriate Bauach

space still works in our case. Ta express Tj +1 in explicit fann, let us first solve x
in terms of x anel y froIll

~ 8fj+l (~ )
x = x - -a- x,y ,

y

the first equatian of (2.11) where j is replaced by j + 1. Let Mj+l be the set of

all real analytic n-valued functians 1J(x ,y), on UJ+l' which are 27r-periodic in the

last n variables anel satisfy

(4.5)

Then Mj+l is a Banach space. Now consider thc nUlp

afj+l
:F(1J)(x ,y) = -a:;;(x + 1J(x ,y), Y)

13
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which is well-defined for 1] E Mj+l and maps thc space into itself bccause 1j+l

is real analytic on Uj +1 and 21T-periodic in thc last n variables anel, frorn (2.10)

and Cauchy's estimates, for 1] E Mj+l anel (x, y) E U;+l'

and

j 1 -1 j

~ L (2 8k+1) lfk+l - fklUk+l ~ (L 8%+~) ·2ca'YllOa
k=O k=O

< 2-(a-2)8a-I c 0 < ~ if b < b = 4a- 3 C- 1
- 0 a - 4' - 1 a

(4.7)

In the abüvc, (x, fi) E 1;* X TU + (1
4
48j+l, 1

4
4 8j+l) and, we have uscd thc estimates,

für example,

(4.9)

with the notice that a = a,\ + ,\ + 7 > 37 + 2 > 3n + 2 ~ 5. By (4.9), we see

that, für 1]1,1]2 E Mj+ll (x, y) E UJ+l'

IF('ll)(X, y) - F(7)2)(X, y) I= Ia~;[ (x + 7)[ (x, y), y) - a~;1 (x + '/2(X, y), y) I

::; t a;1;+1 (xk' y) ('71 (x, y) - 7)2 (x, y))
k=O Y x

1
~ 211]1 - 1J2lu

j
\l 1 if 0 ::; 62.

14



In the abovc equation, for each k, xk is a point in 1;* + ~4 5j+1' This shows that

thc map :F : Mj+l -+ Mj+1 is contractive. Thcreforc, therc exists a unique

y* E Mj+1 such that

:F(y*) = y*,

anel Tj +1 : (x, y) -+ (x, y) is cxpressed explicitly in the form

{
X = x + y*(x, y)

Y = y + w(x + y* (x, V)) + 82:1 (x + y*(x ,V), y),

(4.10)

(4.11)

which is clearly well-defined and real analytic for (x, y) E U;+l and COIlllllutes

with 1rk, k = 1,"', n. It is easy to check that Tj+1 maps U;+l into U;* by

using the condition (2.8) for wand the similar argtuuents to the above. Also, the

contraction arguments lnay be applied to show that Tj-
1 is well-defined and real

analytic on Uj** and COllunutes with 1rk, k = 1,"',n only but, instead of (4.6),

here we need to consider the following map

Bj·
Q(7])(X, y) = --8J (x, y - w(x) + 7](x, V))

x
(4.12)

which maps the Banach space, say M;, of real analytic n-valued functiolls 7](:[;, y)

with 21r-periodic in the last n variables y for (x, y) in UJ* and with

(4.13)

into itself contractively if () is slnall enough (say, 0 ::; 02)' Therefore we have a

unique fixed point y** E M; of the nlap 9 and Tj-
1 is explicitly given by

{
X = x + ~(x, y - w(x) + y·*(x, V))
y = y - w(x) + y·*(x ,V).

Simple calculations will show that Tj-
1 111apS U;* into

(4.14)

with 1;** = (1; + ~) n Rn. It remains to verify (4.3). Note that Tj-
1

0 Tj +1

(x, y) -r (x, y) can be written in the form

{
'" - _ (!!lJ.±J..(~ ) _ ~(~ "'))x - x 8y x, y 8y x, y

iJ = y + (
8
~; 1 (x, y) - 1:(x, iJ) ) ,

15
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where (x, y) = Tj+1(x , V). Salve fJ in tenns of x alld y [rOln thc second equation

of (4.15), we get

iJ = y + y···(x, V),

where y••• (53, y) is the fixed point of the contractive luap

'1J ( ) (~ ) 8/j +1 (~ ) fJ fj (- (~))
TL 1] X, Y = a;;- X, Y - 8x X, Y + 1] x, y ,

(4.16)

(4.17)

on the Banach space, say Mr, of real analytic n-valued functions 1](53, y) with

27r-periodic in variables y for (x, y) E Ü;· = J;. x Tn + (144 8j+ll 143 8j+l) and with

(4.18)

Tbe well-defineelness anel the contractivity of the Inap 1i on Mr are easily proved

by tbe previous arguments witb tbe notice of tbe inequality (2.10) for /j+l - /j.

With the well-defined y···(5\ y) anel (x, fj) = Tj +1(x, y), the lnap Tj-
1

0 Tj +1 :

(x, y) -+ (x, iJ) is given explicitly by (4.15) tbc second equation of which is in fact

equivalent to (4.16). Direct verification shows that, if 0 ::; 02,

I ···1 1
81j+1

(- ) 81j (- ••• (- ))1y u~· = _su~ -a- X,V - -8 x,y+y X,V
J (x,y)EU~. X X

)

1

8lj+l (~ ) 81j (~ )1::; ~su~ -a- x,y - -a :C,V
(x,Y)EU~. X X

J

l
afj(~ ) 81j (_ ••• (- ))1+ _su~ -a x,y - -a, x,y+y x,V

(x,Y)EU
j
•• x X

< b-l 4 r + 1 ! ••• 1
- 8 j +1 ' cb,lwb "2 Y u

j
•• 1

anel therefore

1···1 < b-l 8 ry u~. - 8j+l' Cb,ttUb·
J

In a similar way, we get

1
8/ j +1 (- ) 81j (_ ••• (- ))1< b-l 8 .I:'_ SUI:' -8- x, y - a X, Y + y X, Y _ 8 j +1 ' Cb'I.lUb·

(x,Y)EUr Y Y

This verifies (4.3) and cOlnpletes tbe proof of Lenllua 4.2.

16
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Now we return to the proof of Lernma 4.1. By inequality (3.2) for indices

0,1, ... ,j and Cauchy's estimates, we casily prove that, if 6 ::; 63 with

(

00 ) -1 4{n-l)>. _ 1
63 = SnCI,a L T~-l = (0-1)>"

k=1 SnCl,aSo

then
12 IZ I - Z21 ::; I<I>j ( Z I) - <I>j ( Z2) I ::; 2 IZ I - Z21 (4.21 )

for ZI E Vj and IZI - z21 ::; iTj, which irnplics that ID<I>j IVi' ID<I>j l h'j ::; 2. This,

together with (3.2), irnplies that q>j(Vj) C UI+1' FrOIn (4.21), we also have

(4.22)

By (4.3) and the fact that sJ+t .SCa/MfJ ::; kTj if fJ ::; fJ4 = 4>.-3C;I, we see that

D j is well-defined on \~3 and Inaps this dornain into \!j. Thereforc, B j is well

defined on \~3. On thc other hand, [rorn (4.3) and the fact that IDcllj1lvj ::; 2

and C2 ~ 16cb, we get

IDj - 11vl ::; 2lTj-l 0 Tj +1 0 q>j - <Pj k'l ::; 2\Tj-
1

0 Tj +1 - 1Iu;+1 ::; ,c1'
Therefore,

It is deal' that B j COllllllutes with 7rk, k = 1,' . " n. Lemilla 4.1 is then proved.

B j is an exact synlplectic Inap. So there exists a generating functioll, say

bj , such that B j : (x, y) ~ (x, f)) is generated frolll bj by (2.20). By thc exact

symplecticity of Bj and the previous contractioll argunlCnts, we havc

Lemma 4.3. 1/6 ::; 65 = (8nC2,a)-I, then bj is well-defined and 7'cal analytic on

V~ * - l(j) T n (~. ~. )
j - Pi, X + 2TJ+112sJ+1

and is 27r-periodic in the last n variables. Moreover, we have

I
abj I Iabj I 2..i- 1 - ::; /cb'
8x v.- ay v.-

J J

(4.23)

Now we may define

a (j+1)
W(j+l}(X) = F~x (x), (4.24)
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('+1) .
where [bj](x) = (2;)n J bj(x, y)dny. Then Fo] and W(]+I) are well-defincd and

Tn

real analytic on Vj* and independent of the angle variables. Below we first show

that there cxists a closed subset 1~{::-1) of 1p such that (i), (ii) anf (v) of LeInma

3.1 are true for index j + 1. For this, we state the following leInrna cited froIn [9]

in which the proof can be found.

Lemma 4.4. Assume that F : D -t Rn, G : D --t Rn are two continuously

differentiable mappings where D is an open subset of Rn . Let C be a bounded

open set sueh that Ö c D where Ödenotes the closure of C. Let y E Rn satisfy

L = Inin {IIF(x) - Y1l2} > O.
xE8C

1f
L

sup{IlF(x) - G(x)112} ::; -,
xEC 8

then deg(F, C, y) = deg(G, C, V). Where deg(F, C, y) denotes the degree 01 the

mapping F associated to the point y and the region C, and 11 . 112 denotes the

usual Euclidean meine.

V'le continue our praof. To apply Lemma 4.4, we fix a point x* E I~{~ anel let

F = w(j), G = W(j+l), D = {x*} + ~rj, C = {x*} + irj, y = w* = w(j)(x*). Since

o< So ::; 1, we have froIn (3.1)

2 43,M lXI - x21 ::; IF(xd - F(X2)1 ::; 3' lXI - X21, Xl, X2 E D. (4.25)

Therefore,

and

l
ab'l Lsup{IIF(p) - G(p)112} ::; vn -a] ::; -,

:z:EC X \I." 8
]

By Lemma 4.4, we have eleg(w(j+l), C, w*) = dcg(w(j), C, w*) = 1. Frorrl the

theareIn of topology degree of a Inapping, there exists a point xi E C such that

wU+1)(xt) = w*. Moreover, we have

18



Let I~{;l) be the set of points xr E Ip such that W(j+l) (xn = w(j) (x*) for x* E I;;~.

Then the conclusion (i) of Lelllma 3.1 is obviously true for j + 1 anel w(j+l) lllaps

I~{;l} onto 0')'. So W(j+l) is well-defined on VJ+l and (3.4) is also valid for j + 1

with C3 = 2cz. Seeing that, for Xl, Xz E I~{;l) + Tj+l with lXI - x21 :::; rj+I,

I

ß[bj ] ( ) ß[bj ] ( )1 1 J1ß
2
bj (~)( )1 1

8x Xl - 8x X2 :s: (211")" Tn 8x8x X, Y Xl - X2 cf Y

:s: n . r;)l ·1 ~;; 1v. . lXI - x21 :s: Sj+l . ,,' lXI - X21 (4.26)
J

if 8 :::; 05 with X E XIX2, the straight line connecting Xl and X2 anel cOlnpletely

contained in I;;~ + ~rj+l' the equation (3.1) is then verified for j + 1. In (4.26)

we have applied the Cauchy's estiInate to analytic function ßßb
j

. It remains to
:f

verify (iii) anel (iv) for j + 1. For this, we define \lJ j.

Note that the Fourier series expansion

bj(x, y) = [bj](x) + L bj;k(x)ei(k"y)
D,i:kEZ n

is defined on tij*. Let bj(x, y) = L: bjjk(x)ei(k"y). V\fe take generating function
D;i:kEZn

'ljJj(x, y), of the sYlnplectic transfonnation 'l1 j , as the solution of the equation

'ljJj(X, Y+ w(j}(x)) - 'ljJj(x, y) + Tmjbj(x, y) = 0,

with ['ljJj](x) = 0, where

Tmjbj(x, y) = L bjjk(x)ei(k"y)
O<lkl~mj

with mj given by
T+l _ 1

m· --
J T'

J

(4.27)

(4.28)

We find

L bJ"k(X) "(k)
. X - - 'el "y'ljJJ ( ,y) - i(k,wU)(x)) - 1

O<lkl~mj e
(4.29)

Lemma 4.5. 'ljJj(x, y) is well-defined and real analytic on lij* and is 21r-pcr'iodic

in each variables 01 y. Mo reDve1'J il J E Cb(Ip x T n ), thcn wc haue thc following

estimates for its gradient:

1~~ (x, y) 1 :s: 0"1 s;~rci, I~~ (X, y) 1 :s: 0"1 S;:1ci (4.30)
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for (x, y) in

V· - j(j) (~. ~. )
j - Pi, + 4 TJ+1, 4 8J+ 1 ,

where 01 is a positive constant depending only on n and T.

Proo/: Thc well-definedncss of 'l/;j is proved by silnply verifying the nonvanish

ing of (ei(k,wU)(x)) -1) for x E I~1~ + ~rj+1 and 0< lkl ::; rnj. By the definitions of

I~1~ and 771j with the notice that Tj+1 = 4->'rj anel that A ~ 2, we gct for x· E j~{~,

Ix - x·1 ::; ~rj+1 and 0 < Ikl ::; 771j,

lei(k,WU)(x)) - 11 ~ lei(k,W(j)(x-)) - 11-lei (k,wU)(X)) - ei(k,wU)(x-)) 1

2': I~T - 21 (k, wU)(x) - wU)(x*)) 1

I 51 ,
2: Ikl r - 2mj' 2" 2"rj+l 2:: 4"' Ikl r '

which does not vanish. Thc analytieity and the periodicity in the last n vari

ables of this function are clear. The remaineler of this lemma can be proved by

differentiating the cquation (4.27) with respect to x and y, and then estimating

1
a'l/; 'I Ia'lj; '1 1ab 'I 1ab 'Ia; and a; over Vj* in terms of the norms a: v.- anel a: v.- respeetively,

J J

by using the standard arguments. The details are referred to [10] and [13] for a

siInilar problenl.

Therefore, Wj : (~,1J) --t (x,y) is well-elefined from 'l/;j by (2.18). More pre

eisely, we have the following result which is easily provecl by the standard con

traction argument.

Lemma 4.6. 1/8::; 66 = (8nolC2,a)-1, then Wj and its inverse WjI ar'e well

defined on Vj2 and rnap ~2 into ~. with

(4.31)

and 'lJjl 0 R j 0 B j 0 Wj is well defined and real analytic on \1;+1 and maps VJ+l

into ~*.

Let <I>j+1 = <I>j 0 Wj. Then, <1>j+1 is well-defined anel real analytic on ,~2 and

comlnutes with 1fk, k = 1, ... ,n and, from (4.21),
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with Cl = 2al C2. (3.2) is then verifiecl. Next we verify (3.3) for j + 1. Note that

Cj +l = Rj~l o\lFi l oRjoBjow j 1 which is analytically defined on VJ+1 anel con1mutes

with 1rk, k = 1, ... 1 n allel, Inoreover , it may be ,vritten as (C 1]) -+ (t, i]) with

" a7jJ,,, a7jJ· ab,
~ = ~ - -aJ (~, i)) + -8J (E, y) - -aJ (x, y)

Y Y Y
a7jJ -" 87jJ - ab· .".

il = 17 + 8E (~, y) - a[ (~, y) + a; (x, y) - W(J+l}(~) + W(J)(X),

It - ~I = 887jJj (t, y) - 8
a

7jJj (~, y) + EJab
j (x, y)

y y y

::; 11 + 12 + 13 + 14 ,

I
87jJ '" 87jJ . ab . (. " (') Ilil - 171 = a[ (~, y) - a[ (~, y) + 8: (x, y) - W J+l(~) + W J (x)

::; J1 + J2 + J3 + J4 + ./5 + J 6 + J71

where

11 = 0:;; (t, y) _ : (~, fj) I,
12 = 187jJj(~,y) _ 87jJj(~lY+W(j)(~))I,ay ay

1
8~' a~· ab· I

13 = a: (~, Y+ wU)(~)) - a: (~, y) + a~ (~, y) ,

I
abj ( " ) 8bj ( ) I],. = ay X, Y - ay ~,y ,

J 87j;j (i ") 87j;j (C ")
1 = 8~ '-:., Y - a~ '-:., Y ,

I
87j;' a'ljJ' . I

J2 = aE (~, y) - a€ (~, y + w(J\~)) ,

1

87j;. a'ljJ· 8wU) 8'ljJ- ab- I
J 3 = a[ (~, y + wU)(~)) - 8[ (~, y) - ----at:(~) a: (~, y + w(j)(~)) + a; (~, y) 1
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I
8bj ( ~ ) 8bj ( )IJ4 = ax x, y - 8x ~,y ,

I
· . 8w(j) IJ5 = w(J)(i;) - w(J) (~) - ~(~)(i; -~) 1

-18w(j) (81.jJj (j) 81.jJj abj ,,)I.h - ~(~) 8y (~, y + w (~)) - 8y (~, y) + 8y (x, y) ,

h = la~;] (€) - a~;] (~)I + Iw(j)(€) - w(j)(~)I·

By Taylor formula and Cauchy's estimates with thc notice that all the concerned

variables are in the corresponding shrunken domains with shrunken width, say,

(irj+1l ~Sj+d, we obtain

12 ::; n.GSj+l) -I I:Iv. ·1)) - y - w(j)(~) 1::; sj~r-l . 172C~ . ,cf,
)

with 02 = 8nOl (01 + 3), here thc following estimate has been used

I)) - y - w(j)(~) 1= Iw(j) (5;) - w(j) (~) + ~; (5;, y) I

::; 2,lx - ~I + 1

8
abj

I_
x \I.•

)

2 I
8bj I 2 Ia1.jJj I Iab

j I::; ,- + ,- +-ay \/.. ay \I.. 8x \/..
) ) )

::; S7';1 .2(01 + 3) . ,et·
13 is bounded by (cf. [10], p. 684)

1 I
abj 'Tl 8bj I a->"-T-1 ~3::; -8 - 1 mj -8 ::; 8j+1 . ,ern

y y I (j) TTl ( 6 ~ )
p;')' X + "irj+l, 4 Sj+l

(4.32)

if So is small enough but depends only on n, T, A, a. FroIll (4.32), we get the

estimate Ix - ~l ::; S7';l . (01 + 2) . ci, which implies

( 1 ) -1 I8bj I I~ cI>" T 8 ( 2) j ~14 ::; n· "4 rj+l 8y \/.•. x - ~ ::; sj+1 . n 01 + Ca' ,eh'
)
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Noting that c~ = sj+i . C2,attOa·-:5. sj+i . a2 1 if 0 is sinall enough, say,

we get, by combining the above estimates,

(4.33)

By estiInating Jk , k = 1, .. ',7 in a sinülar way to the abovc with luaking use of

the previous estimates, we obtain

if 8 is snlaller, say,

I" - I< a-.\-2r-l. 6 d
1] 7] - Sj+l , b' (4.34)

( 2 )-18 ::; 08 = a2 C2,a

anel So is chosen to be small as befüre. Tü slunmarize, if 8 ::; 00 = min 01 with So
19~8

sufficiently small anel depending on n, T, A, 0:, thcn

IC 11 (o-I).\-i
j+l - \'i +1 ::; 6s j +1 . let (4.35)

duc to the fact that (a -1)"\ < a -,,\ - 27 -1 < a - A - 7 - 1. As argucd in [10],

p. 688, für b = a, (4.35) is bounded by 1'€~+1 with an appropriate choice of So,
say, S~Q-l)'\ ::; 4-(a-l) /6. Anel für any finite b ~ a, we can also bound (4.35) by

,~+l in only finitely many iteration stcps - thc Ilumbcr of steps needccI is, say,

Nß,Q = (ß - l)/(a - 1) and, of course, the constant C2,b involvecl in ~ has to be

acljusted to a larger one, say, 4(ß-o).\Nß,oC2,b, and the üthcr rclated constants CI,b,

C3,b also change accardingly, but all üf these constants da not change für b = a,

which inlplies that the smallness of 8 required by the induction does not change

allel thcreforc, does not depend 011 ß. This shows that the iteration from j-th

step to (j + 1)-th step Inay be carried out anel thcreforc, Lelnlna 3.1 is provcd.

5. Proof of Theorem 1.2

To prove Theoreln 1.2, we only need to recxanüne LClnma 3.1 anel its proof.

Under the assumption (1.2)' for w, thc corresponding llondcgencracy condition

for win Lemlna 3.1 is

,tt 1dx 1 ::; 1dw (x ) I ::; f 1dx I, x E 1p + 2

23
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with J-L = 08-1 anel p = ,8-1. Accorclingly, thc eqllation (3.1) of Lemma 3.1

turns Oll t to be

and all other assulnptions and conclusions in Lemlna 3.1 renlain unchanged. The

smallness condition for h , of thc fonn (1.11), and therefore, the slnallness condi

tion 0 < oa :::; 0 with thc corresponding notation

instead of (2.25), and with f definecl froln h by (2.3), is needed only for proving

the existence of I~{::-I) such that w{i+1) (I~{::-I)) = D')' from j-th step to (j + 1)-th

step in induction. But this is no problem because in this case, to apply Lemrna

4.4, we need only to let C = {x*} + ~J-Lrj without any other change. Fron1 (5.2)

and the induction assumption for thc first j steps, we havc

(5.4)

. .. IßFI 4WhlCh unphes that Bx D ::; 3'" By Taylor's fonnula for F(Xl) - F(X2) up to

second order anel Cauchy's estimate with thc noticc that C + 4-Irj C D anel

8
2
F I -I 4-aa ::; (4- 1rj) . -" we easily show that, for Xl, X2 E C,

x x C 3

(5.5)

As a result, we get L = min {IIF(x) - v112} ~ ~2fJt2rj with y = w(j)(x*) as
xEDC 24n

assumed tacitly. Therefore, sup{IIF(x) - G(x)lb} ::; j7i Ißßbj I ::; ~. -21 2,J-L2
rj,

xEG X v.. 8 4n
J

if J is small enough but only depcnding on n, T, A and a becausc the assurnption

(5.3) will certainly lead to such an estimate for bj , which guarantees thc existence

of IM;l) as required. The proof of the remainder is standard.

6. Application to small twist problem

A direct application of thc above theorenls gives the existence of invariant tori

with a smooth foEation structure (differentiable, Coo-slnooth or analytic accord

ing to thc corresponding slnoothness of the consicIcred rnapping respectively) of
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a nearly integrable symplectic mapping with a sIllall twist. Thc result may be

fonllulated a.s folIows.

Theorem 6.1. Under the assumptions 0/ Theorem 1.1, consider one pararneter

/amily 0/ mappings St : (p, q) -+ (p, ij) with So = I and SI = S 1 to be defined in

phase space I x T n by

{
ß= P - t~~ (ß, q) = P - t~~ (p, q)
ij = q + t a:: (ß, q) = q + tw (ß) + t ~~ (ß, q).

(6.1)

Under the smallness conditions fOT h 0/ Theorems 1.1 and 1.2 (in the case when

only nondegeneracy condition (1.2)' is satisfied by w), the corresponding conclu

sions oJ them are still valid Jor St, 0 < t ::; I, only with the Jollowing remarks:

1. n..,. is replaced by

ll',7 = {w E ll, : lei(k,tw) - 11 ~ I~~T for k E zn \ {O} } , (6.2)

which means to depend on both 'Y and t, where 0. denotes the set 0/ points in n
with distance to its boundar'y at least equal to 2,; and accordingly, 1..,. is replaced by

I t,..,., a closed subset 0/ I; w..,. replaced by Wt,..,. : I t,..,. --+ Ot,..,., an onto map; cI> replaced

by <Pt : I t ,..,. x T n --+ Rn X T n and R replaced by R t : (~, TJ) --+ (~, 7] + tWt,..,.(~)).

2. 1/0 is a bounded open set 0/ type D in Anlold's sense [1}, then we have

the following Lebesgue meaSUTe estimate

(6.3)

fOT t E (0,1], with constant D only depending on 11, T and the geometry oJ n. So

in this case, nt ,..,. is still a large Cantor set in n i/, is srnall enough.

We conclude the note by remarking that Theormll 6.1 implies the existence

of invariant tori with smooth foliation structure anel therefore, also implies the

existence of n independent smooth invariant functions which are in involution

and well-defined on the set filled by the invariant tori in the \;Yhitney's sense, of

a symplectic numerical integrator applied to an integrable or a nearly integrable

Hailliltonian systenl if the system is nondegenerate and thc time-step size of the

integrator is small enough. The invariant tori are just those level sets of the 11

invariant functions. The nondegeneracy cf a nearly integrable systeIl1 means the

nondegeneracy of the integrable part of the systelTI. Symplectic integrators or, in
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other words, symplectic algorithms with their COlllputer perfonnance are refcrred

to [4].
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