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Abstract

This is a next paper from a sequel devoted to algebraic aspects of Yang-
Mills theory. We undertake a study of deformation theory of Yang-Mills
algebra Y M-a “universal solution” of Yang-Mills equation. We compute

(cyclic) (co)homology of Y M.

1 Introduction.

Yang-Mills algebra Y M was introduced in [9]. Connes and Dubois-Violette
in [3] did the intitial mathematical study of Y M. We in [7] rediscovered it
supersymmetric version analyzing Howe-Berkovits construction [4] [1] of Yang-
Mills theory using pure spinors.

The algebra Y M is by definition a quotient of a free Lie algebra Free(V),
defined over complex numbers. It is generated by a linear space V', equipped
with a symmetric nondegenerate inner product. Fix an orthonormal basis

vs,8 =1,...,n of V, then the relations of Y M reads as
Z[US,[US,Uk]]:O,k:L...,n (1)

If we substitute matrices Ay € Maty for v, we recover Yang-Mills (YM)

equations for a theory reduced to a point.



In fact one can replace Maty by any other Lie algebra g and consider homo-
morphisms p : Y M — g, forming “shell surface” Sol = Sol(g). One of standard
choices are homomorphisms to the matrix-valued differential operators on R™
of order one:

) = 5+ Aule) = V., )

Relations 1 in this setting reproduce a classical YM-equations on a flat R™.
Another choice- g is equal to Weyl algebra W on n = 2k generators. This way
we recover YM theory on noncommutative affine space. Similarly we can define
YM theory on a noncommutative torus.

It is natural to consider a variable Lie algebra g as a “background” and of
Y M as “core” Yang-Mills.

One of the tasks of a researcher could be to understand (in)dependence of
the theory on the background, i.e. existence of a map vg,, 4, Which identifies
Yar,g0 © S0l(g1) — Sol(g2). In this framework we could ask about symmetries
Sol(g),i.e the case when g; = g2 . Suppose g has a automorphism «. Composing
p € Sol with @ we get a new element p; = a o p. This construction proves
symmetries useful for constructing new solutions.

One may try to apply this approach to the opposite end: take an automor-
phism  and define a composition ps = po g € Sol. The advantage of this
method is that it is universal and does not depend on g. In this paper among
other things we will investigate such symmetries.

The infinitesimal version of an automorphism is a derivation. We will briefly
outline a homological framework, which allows to analyze differentiations of g

in a systematic way.

Definition 1 Suppose g is an arbitrary Lie algebra and N is a g-module. There
18 a complex

C*(g, N) = Hom(A"(g), N) 3)

, called Cartan-Chevalley complex. The differential d : C*(g, N) — C*+1(g, N)



1s defined by the formula:

k+1
(de)(l, - 1) = Z(_l)ilic(lla ol )+
- A ) (4)
+ Z(—l)l+]716([li, lj], - ,li, ceey lj, ey lk+1)

i<j
The cohomology of this complex will be denoted by H*(g, N).

We will be mostly be interested in adjoint representation N = g or adjoint
representation in universal enveloping U (g).

For k = 1 in case of C*(g, g) it is easy to see that the condition dc = 0 is
c([li,12]) = [l1,¢(l2)] + [e(l1), l2]-the condition that ¢ € Der(g) is a derivation
of g. There is a class of trivial derivations In(g)-so called inner derivations
co(l) = [a,l]. Tt is natural to work with a quotient Der(g)/In(g) = Out(g).
The later group by definition coincides with H'(g, g). As an exercise the reader
can check that H°(g, g) coincides with the center of g.

Any derivation of g defines a derivation of universal enveloping U(g).The
converse is not true. If one would like to understand derivations of U(g), one
has to replace N by U(g) in 3. The groups H”(g, g) are a direct summands in
H*(g,U(g)).

The group H?(g,g) can be interpreted as a group of nonequivalent in-
finitesimal deformations of g. Similarly to the previous paragraph the group
H?(g,U(g)) classifies infinitesimal deformations of U(g).

Our plan is to apply the above constructions to the algebra Y M. The Lie
algebra Der(Y M) could be interpreted as Lie algebra of background indepen-
dent vector fields, tangent to the mass shell. The Lie algebra In(Y M) is a Lie
algebra of background independent gauge transformations.

We proved the following proposition

Proposition 2 If dimV > 2 then HY(YM,U(YM)) = C+ V + A%(V) D
C+ A%(V) = HY(YM,YM). The summands can be identified with dilation,
translations and Lorentz rotations.

HY(YM,U(YM)) = C-the center of U(Y M) is trivial, H(YM,Y M) =0



The algebra Y M is by no means “generic”. Its relations are produced from a

cyclic word £ = 7, . [vi, vj][vi, v;] (compare with tr(} >, [A4i, A;][A4i, A5]), As €

Maty), taking partial derivatives g—fg. One can deform £ by adding some small

i<l

hL’. Such modification would deform the relations and hence the algebra . Not
all hL' produce a nontrivial deformation, because there is a “field redefinition”.
Similarly two different AL’ and hL” could give isomorphic algebra. In such case
L' and L are called equivalent. The linear space L = @ L; of all nonequivalent
L' is graded by eigenvalues of dilation. An element vs has grading 2. One can

form a generating function F(t) = Y_ dimLyt*.

Proposition 3

F(t)=1-"In(1 - dimVt* + dimVt** — fg’“wﬁf) N

= (5)

1 <dsz(d12mV —D_ 1) 8 + dimVt8

Recall that (k) = 32y, 1

We postpone a discussion of appearance of the last two summands in 5 until a
mathematical part of the introduction.

It is interesting to understand what is the most generic deformation of the
algebra Y M. Deformations associated with deformation of the lagrangian were
discussed above. It turns out that the algebra Y M admits a non lagrangian
deformation.

Fix a complex-valued skew-symmetric matrix w = wkl, 1 <k/l<nanda
row of numbers a = (a1,...ay).

Define an algebra Y M (w, a) as a quotient of a free algebra T'(V) (not a free
Lie algebralll) by relations

n

fj = Z ([Usa [Usavj]] + aS[US’Uj]) + Zwkl{vka [’Ulavj]}v Jj= 1...n (6)

s=1 kl

As usual we set the degree of v; equal to two, {a,b} © b+ ba
One can associate a differential graded algebra bv(w,a) to Y M (w,a): the

algebra bv(w,a) is generated by vj,v*7,c,j = 1...n, degv; = 2,degv*l =



7,degc = 10. The differential generalizes standard BV differential:

d(’l}j) =0
d(v7) = fI ™
d(c) = Z ([vs, v™*] — asv™®) + Zwkl{vk,v*l}

s=1 ki

It is easy to see that d2 =0

Remark 4 Due to the linear term ) asv*° if formula for d(c) in 7 the algebras

with (as) # 0 have homological dimension equal to two.

We defer details about Y M (a,w), an explicit constructions of generic defor-
mation of Y M by incorporating a choice of lagrangian in Y M (w, a) construction
together with discussion of formality of U(Y M) to future publications.

There is one particular background we would like to discuss in more details-
flat background of R™. We however impose no restrictions on the gauge group.
It was proved in [8] that any solution, i.e. homomorphism of the form 2 is

completely determined by the traceless part of

Vi oo VieFi igsolz=0 (8)

In the last formula Fy; = [V, V] is the curvature, ()-stands for symmetrization.
For this purposes we in [8] introduced a free Lie algebra TY M = Free(M). The
linear space M is graded. The (k 4+ 2)-nd component My, is a linear space of
traceless k + 2 tensors M, ... iy ij.1 040, Which are symmetric with respect to
first £ + 1 indecies and antisymmetric with respect to the last two. Another
description of M is that it is a dense linear space in a Fourier transform of gauge
classes of solutions of Maxwell equation. The formula 8 gives a representation
of TY M in the the gauge group. It turns out that any representation of TY M
(see [8]) can be used to construct a formal solution of YM equation in a flat
space.

To study symmetries which do not depend on the gauge group one has to
study space of outer derivations of Free(M). It is unconstrained but enor-

mously big. The linear space M is an irreducible representation of conformal



Lie algebra s0,,12 (dimV > 2), which contains Lorentz rotations so0,. It can
be easily promoted to automorphism of TYM = Free(M), giving an exam-
ple of symmetries. In dimension four conformal group is a manifest group of
symmetries of the lagrangian, in any other dimension it is not.

It is a nontrivial task to find a formula for a symmetry in terms of connec-
tions, rather then derivatives of connections 8. A complication comes from non
locality of the most of such symmetries.

Polyakov in [10] among other things considered a problem of finding a gen-
erating function c(t) of dimensions of spaces of cyclic words in U(TY M). He

found a formula by direct counting. In our approach the formula

c(t)=1-> In(1- M(ﬁ))@
k>10 dimVit + dimVis — ¢4 (9)
—ammVi+ am —
1—M(t) = 0 panv

follows from general algebraic considerations (see Appendix).

From mathematical point of view algebra Y M is a graded algebra with
Poincare duality in (co)homology of homological dimension 3. There is a theory
of such algebras.

Denote HH*®(A, A)-Hochschild cohomology, HH,(A, A)-Hochschild homol-
ogy. HC,(A)-cyclic homology (in our case A becomes U(Y M), HH4(A, A) can
be substituted by He(Y M, U(Y M)) and HH®*(A, A) by H*(YM,U(Y M))). De-
tails about cyclic homology can be found in [5]. It is a general fact that for such

algebras HH' (A, A) = HH3_;(A, A) and

The over-line symbol denotes reduced theories. There is also an isomorphism
HH;(A,A) = HH;(A, A),i > 0. See [3] for application of these ideas to U (Y M).

There is one example of algebras of such type where deformation theory is
understood. These are so called Sklyanin algebras. Being deformations of poly-
nomial algebras on three variables, these algebras have a polynomial growth.

There is a deformation spectral sequence which allows to estimate Hochschild



cohomology groups of deformed algebra, by Hochschild cohomology of the un-
deformed. This idea was employed by Van der Berg in [11] .

The Y M algebras have exponential growth (see section 7.1). They are more
of a kin to free algebras and by no means are deformations of polynomials. In
this paper we developed new methods to deal with Hochschild cohomology of
such algebras.

Let us briefly outline the main steps in computation of (cyclic) (co)homology
of U(Y M). Some of the preliminary consideration can also be found in [3], which
were discovered the author independently.

Due to the short exact sequence 10 and vanishing of HH;(Y M,U(Y M)),i >
4, we conclude that HC;(U(Y M)) = 0,i > 3. Thus we have HC2(U(Y M)) =
HH3(YM,U(YM)). We have isomorphisms

HH;(YM,U(YM)) = HH3(Y M,U(YM)) = Z(U(Y M)) - the center (11)
Thus HC2(U(YM)) = Z(U(Y M)). We have an isomorphism
HH>(Y M, U(YM)) = HHNY M, U (Y M)) = Out(U(Y M))

The later group contains a derivation eu corresponding to the grading. It
defines an inclusion a — eu U a of Z(U(Y M) into Out(U(Y M), which splits

projection
HC,(UYM))— HHy(YM,U(YM)) L HCL,(U(YM)) = Z(UYM)) (12)

Thus we can identify

HC,(U(Y M)) = Z(U(Y M)
L(U(YM)) = Out(U(Y M))/Z(U (Y M)) (13)

3 3
Ql Q

o(U(Y M) = TH(Y M,U(Y M)

From this we con completely recover the group content of HH4(Y M,U(Y M))



and HH®*(Y M,U(Y M)):

HH(YM,U(YM)) = Z(U(YM)) -tautology

( (YM))

HHYYM,U(YM)) = Out(U(Y M)) -tautology

HH*(YM,U(YM)) = Out(U(YM))/Z(UXYM))+ HHy(YM,U(YM))/C
( (YM))

HH3YM,U(YM

HHy(YM,U(YM))
(14)

The map HHY(YM,U(YM)) — HH2(YM,U(YM)) used in 14 is defined by
the formula b — eu U b.

It is worthwhile to point out that the deformations constructed in 6are gov-
erned by cocycles Out(U(YM))/Z(U(YM)) Cc HH*(YM,U(Y M))

We can conclude that in order to know the group content of
HH*(YM,U(YM)) it suffice to know HC4(U(Y M)).

For a graded algebra reduced cyclic homology is graded HC;(U(Y M)) =
®D,>o HC;;(U(YM)). One can form a generating function x(t) of Euler char-

acteristics:

ZZ Yidim(HC (U (Y M)))t? (15)

=0 j2>0
There is an explicit formula for x(¢) in terms of generating function U(Y M)(t) =

S dimU (Y M)t =

17dith2J:dz‘th67t87 proved in Appendix. The formula
for x(t):

X(8) = =" in(1 — dimVi** + dimV** — ¢3%)
k>1

k
uu (16)
is also proved in Appendix. If we knew dimensions HC;; for i = 1,2, we would
have had a formula for generating function HC; (i) = 2250 dim(HC;(U(Y M)))t/,
i = 0 and hence for all other values.

This explains our interest to Z(U(Y M)) and Out(U(Y M)). It worthwhile to
notice that nontrivially of these groups is responsibly for extra two summands
in 5. It seems that general homological consideration are not sufficient to find
the groups in question and new ideas are needed.

The main idea, which stays behind all our computation is that Lie algebra



YM = ,5, Y M; contains a free subalgebra ( an ideal ) TYM = P,., Y M;
(see [7]).

We compute the groups H{(YM,U(TYM)),i = 0,1 first. To do this we
introduce a filtration F* of U(TY M) generated by powers of augmentation ideal
in U(TYM). It gives a spectral sequence, converging to H*(YM,U(TY M)),
whose EY term is isomorphic to H?(Y M, M®7), where the module M has been
described above .

The most difficult task was to compute cohomology of the higher differential
of the mentioned spectral sequence (see section 5.1, 5.2), which enables us to
prove that HO(YM,U(TYM)) = C and HY(YM,U(TYM)) = V + V (see
section 5).

Having made this crucial step we can step over computations H*(Y M, U (Y M))
(see section 6). We replace U(Y M) by Sym(Y M), because these representa-
tions are isomorphic. We introduce a filtration on Sym(Y M) defined by powers
of ideal, generated by linear space TY M. This filtration provides us with a
spectral sequence. We estimate in Fy term that the groups H*(Y M,U(Y M))
are not larger then stated in proposition 2. The estimate from below is obvious.

The paper is organized as follows: In section 2 we setup some notations.

In section 3 we accumulate some vanishing results needed in section 5.

In section 3.2 is mathematically most interesting part. We show an existence
of recursive relations between cohomology H*(Y M, M®7) (the Y M-module M
was defined in the introduction). The relations has a similarity with Connes
exact sequence.

In section 3.3 we prove that HY(Y M, M®7) =0 j > 1.

In section 4 we undertake a detailed study of module M and groups Tor(M, M).
The results will be used in section 5.

In section 5 we use our knowledge obtained in sections 3 and 4 to compute
HY(YM,U(TYM)), i=0,1. At this point we are on midway to the proof of
proposition 2.

Section 5.1, 5.2 are technically most difficult. We compute some segments

of a spectral sequence introduced in 5.



In section 6 is a culmination. We prove proposition 2.

Acknowledgment 5 The author would like to thank IHES and MPI, where the
most of the work has been done. He also would like to thank M.Kontsevich,N.Nekrasov,
A.S.Schwarz, D.Sullivan for useful discussions, M.Rocek for opportunity to present

this material at ”2005 Simons workshop”.

2 Notations

C stands for a field of complex numbers or a trivial representation of a Lie
algebra.

Free(W) stands for a free Lie algebra on linear space W

T (W) - free associative algebra.

Sym(W) - free commutative algebra ( algebra of polynomials).

A(W) - free anticommutative (Grassman) algebra.

A linear space V(complexified flat space-time) will be used throughout this
paper, dim(V) = n. This space is equipped with nondegenerate symmetric
bilinear form. To simplify the formulas we will typically choose an orthonormal
basis in the space V. It enables us to make no distinction between upper and
lower tensor indecies.

Let g be a Lie algebra. By U(g) we denote the universal enveloping of g.

There is an analog of cyclic homology for Lie algebras. Recall that for an
algebra A the group HCy(A) is the group of cotraces A/[A, A]. For a Lie algebra

g the analog of a trace tr(a) is g-invariant dot product.

Definition 6 For a Lie algebra g the group D(g) is a group of inner g-invariant
co-products: D(g) = Sym?(g)y. The linear space D(g) is generated by elements
aob,a,b e g. Subject to relation [a,b]oc+bofa,c] =0,a0b="boa and the

symbol is linear with respect to each of the arguments.

10



3 Vanishing results

As it was mentioned in the introduction the proof of the main proposition 2
uses spectral sequence technique. One is ingredients of the proof is to show that
certain terms of the spectral sequence vanish. This is proved in current section.

The main result in this section is lemma 20.

3.1 Generalities about cohomology of Y M

Let us set notations: v;,i = 1...n stand for generators of YM, z;,i =1...n
stand for generators of it abelenization V.

Suppose W is Y M module. The Lie algebra cohomology groups H*(Y M, W)
were defined in the introduction (see 1), the homology He(Y M, W) are similar
and defined in [2]. According to [8] there is an alternative way to compute

H{(YM,W) = Hs_;(YM,W). Construct a complex
COV)=0-WEWeaVviweVvBw -0 (17)

with differentials given by the formulas:

dow = Z p(vs)w @ A*® (18)
1<s<n
diw ® A — Z (p(vf)w ® A; — 2p(’UﬂJS)U) ® As + P(Usvi)w b2 As) (19)
1<s<n
dow ® A; = p(v;)w (20)

where p : U(Y M) — End(W) is representation.
Proposition 7 [8] H(YM,W) = H(C(W))

The Lie algebra Y M contains a Lie ideal, which consists of elements of degree
> 3. We denote this ideal by TY M. As usual we denote U(g) the universal
enveloping algebra of Lie algebra g.

One of the examples of representation s of Y M is Sym(V)-the universal

enveloping of abelenization of Y M. It admits two commuting actions of Y M:

left and right multiplications, (they in fact coincide).

11



Proposition 8 /8]

The second homology of C(Sym(V')) is nontrivial and equal to M- right Y M
module (it can be transformed to left module by the standard trick); the action
of YM on M factors through V.

H3C(Sym(V)) = C, all other cohomology vanish.

It was proved in [8] that TY M is a free Lie algebra. The space of its
generators coincides with a linear space M, which is Sym(V)-module.

The universal enveloping algebra of a free Lie algebra Free(X) is a free
associative algebra T'(X). These two objects, though belong to two different
categories, have the same space of generators X. An application of this obser-
vation to our setup is that U(TY M) is isomorphic to T'(M). If we fix an infinite
basis < e1,...,€es,--+ > of M then any element of U(TY M) can be uniquely
represented as a linear combination of monomials e;, ...e;,

The action of YM on U(TY M) is nonlinear in a sense that z;m = mq +
S myimyt ..., where m,my, my, my', ... are elements of generating space M,
x; is a generator of degree two in Y M

One can simplify the structure of the action by discarding nonlinear terms
starting with m;'m,’. Mathematically speaking we have U(TY M) = @, M®I
and the action of Y'M preserves a filtration FPU(TYM) = B>, M®J(in the
above constructions tensor product is taken over complex numbers). A certain
simplification of action can be achieved through adjoint quotient construction
GrU(TY M). The action of Y M preserves the additional grading Gr'U(TY M).
In particular Y M acts on the generating space GrlU(TY M) = M.

One can recover the action of Y M on GrU(TY M) = M®J from action
on M using Leibniz rule.

One can use the complex 17 to compute cohomology H*(Y M,U(TY M)) and
of H(YM,GrU(TY M)). The later groups can be considered as an approxi-
mation of the former. As H'(YM,GrU(TYM)) = @5, H (Y M, M®7) and
since it will be possible to prove vanishing of some of H(Y M, M®7) we will

concentrate on Gr-version of coefficients of cohomology.

12



3.2 On long exact sequence for H'(Y M, M®7)

The most important technical tool used in this paper - long exact sequence 25
is established in this section. We will use it throughout the paper.

Denote A(V,N) = A(V) ® N -the homological Cartan-Chevalley complex
of abelian Lie algebra V' with coefficient in module N . Since V is abelian, it
is equal to Koszul complex of Sym(V)- module N. Denote the cohomology of
A(V,N) by H(V,N). Denote g; generators of A(V)

One can notice some simplification in in the form of differential dy (19) for
the module M®7. Since the action of Y M factors through abelian algebra, we
have

diw @ A = Z (x?w ®A; — zsziw ® As)

1<s<n
which coincides with the formula (19) for d; in the complex (17).
We write differential in C(M®7) explicitly for later references. Denote

w1] ... w; a monomial in M%7,

dows| .. |lwy = Y Y wil..|mwg| .. Jw; @ A (21)

1<s<n 1<k<j

diwy|. .. |w; @ A = Z Z (wi] .. |zswy] ... |zswg|. .. |w, ® A;— (22)
1<s<n 1<k, 1<j

—wi|zswy . . Jzw] .. |w; @ Ay) (23)
down]...|w; @ x; = Z wl. .. |zwg| .. w; (24)
1<k<j

For any commutative algebra C' and a module B there is a canonical identi-

fication of modules C'® B = B. We would like to specialize this construction to
c
the case of C = Sym(V), B = M®J. Such specialization has its own specifics:
the algebra Sym(V') is a universal enveloping algebra of abelian Lie algebra V.
An isomorphism M®/ @  Sym(V) can be formulated in terms of coinvari-
Sym(v)

ants.

Definition 9 For any Lie algebra g and a g-module H denote Hy a quotient
space H/gH .

13



There are two commuting structures V module on M%7 @ Sym(V'). The first
one is v(a ®b) = va®b—a®vb where a @b € M® @ Sym(V). The second one
is va ® b= a ® vb.

It obvious that (M®/ @ Sym(V))y with respect to the first structure is
nothing else but M® @  Sym(V). It coincides with Sym(V') module M ®7

Sym(v)
with respect to the remaining second module structure.

Proposition 10 There is an exact sequence

0— H3(V, M®j) ﬂ Hl(V, M®(j+l)) B_J; H2(y]\47 M®j) Q)

— Hy(V, M®3) 2 o (v, e B g (v, 9y Bl (v, M®9) o

(25)
and isomorphisms
H3(YM,M®) =0 j>1 (26)
Ho(Y M, M®7) = Hy(V, M®7) (27)
H(V,M®) = A2 T5[V] s>2, ercept s=2,j=1 (28)
For j =1 we have
0— AW — Ho(V,M) - C —0
0— AV — H(V,M) -V -0 (29)
A*V=Ho(V, M)
There is Sym(V')-linear map
§¢: Hy(YM, M®7) — H; (Y M, M®I~1) (30)

Denote composition Bj_10l; = 5;-. Then 5;-71 o 5;- =0
Proof. Due to general homological arguments there is a quasiisomorphism
C(M®7) = C(A(V, M® ® Sym(V)) = A(V, M®) ® C(Sym(V)), (31)

where = is a quasiisomorphism and = is an isomorphism.

14



Indeed we can replace a tensor product M%7 = M® @  Sym(V) by
Sym(v)
homotopical version of it- A(V, M®J ® Sym(V')). This is a valid procedure (in

a sense that cohomology of A(V, M® ® Sym(V)) coincide with M®J because
Sym(V) is a free cyclic module over Sym(V)).

There is an isomorphism of complexes A(V, C(M®@Sym(V)) = A(V, M®
C(Sym(V)), because the differential in C(M®? @ Sym(V') does not depend on
M®J factor.

The complex A(V, M%7 @ C(Sym(V)) has a filtration

FIAV,M® @ C(Sym(V)) = P A*[V] @ M¥ @ C(Sym(V))  (32)

s<i

The E? term of the corresponding spectral sequence is equal to

E2, = H;(V, M®U+D) because H*(C(Sym(V)) = M (prop. 8) 3)
’ 33
Egl = H;(V, M®7) because H*(C(Sym(V)) = C (prop. 8)
The only possible higher differential § : E3; — E3; 5 defines a map H; o (V, M®7) LR
H;(V, M®G+D). The spectral sequence converges to H*(C(M®7)) < H, (v M, M®9).

Thus we can rewrite the spectral sequence in a form of long exact sequence:

co— Hy(Y M, M®7) — H,(V, M®) 5 H,_o(V, MEU+)) .

— H; (YM, M%) — ... o

We can make use of some obvious vanishing restrictions: H;(V, M®7) =0 fori <

0 and for ¢ > dimV. It was proved in [8] that the algebra Y M has homological

dimension 3 and as a result H;(Y M, M®7) = 0 fori > 3 and i < 0. Moreover for

any j > 0 an operator of multiplication on ) _ aszs has no kernel( formally this

is because a product of j quadrics is a smooth irreducible algebraic manifold

and M®J is a space of sections of appropriate vector bundle over it). Thus
H3(YM,M®7) =0.

This information is enough to deduce exact sequence 25 and isomorphism

27 from 34 restricting later to small values of i. For large values of i due to

15



vanishing of H! (Y M, M®7), we have isomorphisms:
Hy(V, M2U+D) = H; o (V,M®) for j >0 i>2andforj=0 i>2 (35)

Since H;(V,C) = A"V we conclude that 28 holds. This enables us to write exact
sequence 25 in its final form. We can apply 34 to j = 0 case. This way we

obtain 29 m
Proposition 11 The map S1 is an embedding.

Proof. The cocycles in Ha(V, M) = A*(V)+C are spanned by Fj;; ®<x Ag) and
Zi<j F;; ®i Ag;. The Si images of these cocycles in Ho(V, M®?) are Fi; @ Fiy
and >, ; Fi; ® Fy; which are clearly linearly independent (by grading reasons)
elements of Ho(V, M®?). m

Corollary 12 The map B is surjective

Proof. Combine propositions 11 and 10. m

3.3 Proof of the vanishing lemma

Consider a module N over algebra Sym(V), V =< z1,...,2, >, ¢ =Y ., z°

Definition 13 Denote Ann(N) = {m € Nlam =0 for a € Sym(V') such that a(0) =
0}.

Define Z(N) = {m; € N,i = 1...n|Y ;_xpxim; = qmy}, B(N) =
{m; = x;m|m € N}. It is easy to see that B(N) C Z(N). Denote H(N) =
Z(N)/B(N). Define a map p: H(N) — Ann(N/qN) by the formula

V:ml,...,mnﬁinmi (36)

Proposition 14 If multiplication on q in N has no kernel then the map v is

an isomorphism.

Proof. We check that the map v (36) is correctly defined first. Since
Tk Yy Tim; = gmy, € gN the element > . x;m; € Ann(N/gN). The element
m; = x;n maps into gn € ¢ is identically zero in Ann(N/qN).
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Suppose m € Ann(N/qN). Then by definition of Ann(N/¢N) we can find
some elements m; € N such that x;;m = gm; . It implies that Zl Tiqm; = qm
and gv(my, ..., my,) = gm. Assume that multiplication on ¢ has a trivial kernel.
Then we can cancel on ¢q. It proves that map v is surjective.

Suppose v(my,...,my) = 0 € Ann(N/qN). It means that there is an
element m € N such that ¢gm = >, x;m; By assumption ), xym; = qmy.
Hence we have xpgm = gmy. After canceling on ¢ we see that (mq,...,m,) is
a trivial element in H(N). m

It is easy to interpret the group Ann(N) in terms of Koszul complex A(V, N).
A direct inspection shows that a map m — mAjA---AA,, defines an isomorphism

of groups Ann(N) = H,(V, N).

Proposition 15 Suppose a multiplication on element q in module N has no

kernel and H,(V,N) = H,_1(V,N) =0. Then the group H(N) is trivial.

Proof. Due to assumptions we have a short exact sequence 0 — N 5 N —
N/gN — 0. Tt produces a long exact sequence, whose terminal segment will of

interest to us:
0— H,(V,N)— H,(V,N) — H,(V,N/gN) - H,_1(V,N) — ...

Due to vanishing of H,_1(V,N) and H,_1(V,N) we have H,(V,N/qN) = 0.
The proposition 14 implies that than H(N)=0. =

We would like to apply proposition 15 to modules M ®J. To do that we need
to check that multiplication on ¢ has no kernel.

It is convenient to introduce the following notations.

Definition 16 The algebra Sym(V), generated by x1,...,x, has a homomor-
phism A : Sym(V) — Sym(V) ® Sym(V), defined by the formula A(z;) =
z; ®14+1®x;. This homomorphism is call a diagonal. It can be used to define
a map A?Sym(V) — Sym(V)®3, by the formula (A® 1) oA = (1® A) o A.
There are similar maps AJ~! to Sym(V)®I which also do not depend of a way

we present them as composition of A.
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It is easy to see that element ¢ acts on M®7 through multiplication on the
image of A’~1(q) in A®J. Though the image of ¢ in A is trivial, the image of ¢
in A®? is equal to 2, x5 ® 5. More generally we have

. , !

NN =DNP a1+ > Y 1e.. 2,010 @, 1+10z)+
1<I<j-2 s

+1®j®2xs®ms=a+b+c

! . e
The element x, stands in the [-th position in the tensor product.

Proposition 17 Operator of multiplication on AI=1(q) in M®J has no kernel

for j > 2.

Proof.

The module M = @izo M; is graded, the module M®7 is polygraded. A
subscript in a homogeneous element m;, . ;. denotes polygrading of module
component the element comes from. We will probe this statement for j = 2
first. Without loss of generality we may assume that element m =3, ek Mij
is of total degree k. If 2y ® xym = 0 then vanishing must happen for every
individual summand, because ¢ for j = 2 does not mix the components. The
element m; ; is an element of H°(Q*?, M(i)KM(j)), where M is some homoge-
neous vector bundle on quadric Q. Similarly >, z,®@x, € H(Q*?, O(1)KO(1)).
Having this interpretation of elements ZS s @ T, and m;; we see that identity
3. Ts @ xym;; must hold pointvise over Q*2. For sections of locally free shaves
over smooth algebraic manifold this implies that one of the section must be zero.
It is m;; in our case.

Let us now turn to a general case j > 2. In the module M®U~2) intro-
duce a filtration FPM®U=2) = Dis iy 5y Miy ®--- @ M;,_, and a filtration
FPM®i = FPAf©G—2) ¢ M©2,

Lemma 18 1. The operator of multiplication on AJ=1(q) preserves filtration

FPM©I,
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2. On GrM®7 the action of multiplication on AJ~1(q) coincides with mul-

tiplication on element ¢ from 37 and has no kernel.

Proof. The elements a, b, c are defined in 37. By definition we have the following
inclusions: aFPM®I c FPT2 M@ bFPM®I C FPHIM®I, Tt implies that only
¢ acts nontrivially on GrM®7, which has no kernel by the proof for the case

j=2. m

Lemma 19 Suppose A, B are filtered finite dimensional vector spaces. A map
¥ 1 A — B preserves filtration and defines injection Gry of GrA into GrB.

Then the map ¥ is an injection.

Proof. This is left to the reader. m

In our case linear spaces A and B are graded components on M ®J of degree
k and k + 2. The filtration is induced by filtration from FPM®J.

From this we conclude that operator of multiplication on A7~!(g) has no

kernel on M®7 if j > 2. m
Lemma 20 For j >2 HY(YM,M®7) =0

Proof. We can use complex C(M®7) (17) to compute such cohomology. A
direct inspection shows that H'(C(M®7)) coincides with the group H(M®7),
defined in 13. According to proposition 17 the operator of multiplication on
AJ=Y(q) in M®7 has no kernel. Then by proposition 14 the group H (M ®7) is iso-
morphic to H,(V, M®7 /qM®7). By proposition 10 the groups H,,(V, M®7) and
H,,_1(V, M®7) are equal to zero, hence by proposition 15 we have H(M®7) = 0.

|
Corollary 21 The module M%7 is free over Sym(V') for j > maax(1, %) .

Proof. We use vanishing result of H;(V, M®7),i > 1 from proposition 20 in
conjunction with proposition 10, provided j > max(1, "7’3) This condition is
necessary and sufficient for a graded module M®7 to be free. m

Suppose X is a smooth algebraic variety, equipped with very ample line

bundle £. Denote by A = @izo A; the corresponding ring of homogeneous
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functions. Let N be an algebraic vector bundle and N the corresponding A-

module. Let W = A;. Then N is a module over abelian Lie algebra W.

Conjecture 22 There is a constant n(X, L) such that for any N; (i=1,...,n(X, L))
as above the module Ny ® No ® ... ® Ny (x ) is free over Sym(W) - universal
C C C

enveloping of W.

4 Homological properties of the module M

As the reader can see lemma 20 gives us information about H(Y M, M®7) for
j > 1. In our computation of cohomology H(Y M, U(Y M)) we will need to
have a good understanding of H'(Y M, M), which is by no means is zero. As
we shall see it is an infinite-dimensional space. Since the groups He(Y M, M)
and He(V, M ® M) are intimately related through exact sequence 25, we will
concentrate on the later group. The main proposition of this section is 33, where
Ho(V, M®DM) are computed. This result will be used in the proof of proposition
37.

For a pair Sym(V')-modules N, K the cohomology H; ;(V, N® K) (the second
index comes from the module grading) computes groups Torisdym(v)(N JK) =
Tor; ;(N, K). We drop algebra dependence of Tor, because the later be always
computed over Sym(V). A group Tor; ;(N, K) can be computed by other means,
e.g. by use of resolutions (see [2]). This was a motivation for a use of different

notations. If only one index is present it stands for homological index.

4.1 Structure of minimal Sym(V')-resolution of module M

The following fact is standard in homological algebra: for any graded Sym(V)-

module N a minimal free resolution has a form

N “Z* Torg(N, C) ® Sym(V) £ ... =" Tor, (N, C) ® Sym(V) — 0 = R(N)
(38)
The grading that exists on modules can be lifted to Tor groups, making it a

bigraded group Tor;(N, K) = B, Tor; ;(N, K).
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Proposition 23 Tor;(M,C) = Tor;; (M, C).

Remark 24 A graded Sym(V')-module N for which deg(Tor;(M,C)) = i is
called Koszul.

We can recover the differential in 38 from homogeneity and SO(n)-invariance.
The group Tor;(M,C) contains a regular part A*ti(V) and two sporadic
pieces: V =V C Tor;(M,C) and < e >= C C Tory(M, C). Denote < e; >,i =

1,...,nabasis of V,< f; >, i=1,...,n a basis of V.

Proposition 25 Restriction of the differential d on reqular part of R(M) co-

incides with Koszul differential
d(ae;, N---Ne;, ) = Zaxis(—l)seil A€o Neg, (39)

where a € Sym(V'). Restriction of the differential on the exceptional part is:

d(af;) = aijej Ae;

’ (40)
d(ae) = aijxj

J

Proof. We leave to the reader a proof that above formulas are the only pos-
sible SO(n) equivariant nontrivial Sym(V’) maps between modules R;(M) and
Ri_1(M). m

We can sheafify the complex R(M) by replacing it by direct sum of complexes

of sheaves on P™~! of the form:
M) E Torg (M, C)(i) 22 ... "=" Tor, (M,C)(i —n) — 0 = R(M(i)) (41)
Proposition 26 The complezx of sheaves 41 is acyclic

Proof. This is a simple corollary of Serre equivalence between category coherent
sheaves on P"~1 and a category of finitely generated graded Sym(V )-modules,

modulo finite-dimensional modules. m
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4.2 On the structure of Tor;;(M, M)

We will be dealing with the complex 41 restricted on a nonsingular quadric
Q = supp(M(1)), in particular we will use its sheaf(local) cohomology.

To get a better understanding of such restriction introduce a Sym(V') module
A = Sym(V)/qSym(V), where ¢ = Y _2? = 0 is a homogeneous equation of the
quadric Q.

Denote i : Q — P"~! the inclusion, 7,0 the direct image of the structure
sheaf of Q.

We would like to compute local(sheaf) cohomology of the complex

Toro (M, C)(6) & i Do Tor, (M, C) (i — n) 9.0 (42)

The later is completely determined by cohomology of

Torg(M,C) © A; 2 ... =" Tor, (M,C) ® A;_n, (43)

for large values of i (use Serre equivalence).
It turns out that the later groups can be computed for all values of ¢, because
the cohomology of 43 is Tor;(M, A). These can be computed by resolving the

second argument. Indeed there is a resolution
A — Sym(V) & Sym(V) (44)

A generator of the first free cyclic Sym(V')-module lives in degree zero, while a
generator of the second in degree two(because the quadric has degree two).

The complex A(V, A® A) computes groups Tor(A, A). The later due to exis-
tence of resolution 44 are all equal to zero, except Torg ; (A, A) = A;, Tor1 ;(A4, A) =

Aifz.

Proposition 27 In the complex A(V,A® A) a generator of Tor; 2(A, A) over
A is equal to

n

Z(ms@)l— 1®xs)®§s (45)

s=1
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Proof. Easy check. m
After tensor multiplication 44 on M over Sym(V') we obtain a complex with

trivial differential (multiplication in M on ¢ is identically equal to zero).

Proposition 28 The following identity folds: Torg ;(M, A) = M;, Tor ;(M,A) =
Mi,Q, TOI']CJ‘(]M'7 A) = 0, k > 2.

It is possible to represent classes Tory ;(M, A) by explicit cocycles in A(V, M®
A)(we do not bother to represent all classes, because we will be dealing only

with the later group).

Proposition 29 There is a map ¢ : M — M ® A ® A[V], defined by the

formula
n

G(m) = (zm@1—mez,) @, (46)

s=1

It satisfies dipy(m) = 0 and induced map M — Hy(V, M ® A) is an isomorphism.

Proof. Left to the reader. As a hint we say that an essential part of the proof
is a spectral sequence associated with filtration of M, defined by the grading.
]

As a corollary of proposition 28 we obtain

Proposition 30 The local cohomology of the complex 42 is equal to M(i) in

zero degree and M(i — 2) in degree one.

The knowledge we gained in this section enables us to compute local coho-

mology of the complex
Toro(M,C) @ M(i) £ ... =" Tor, (M, C) ® M(i — n) (47)
obtained by tensoring on 42 on M.

Proposition 31 Local cohomology of 47 is equal to M®?(i) in degree zero and

M®2(i — 2) in degree one.

Proof. The analysis is purely local over Q). It has no difference with com-

putation for 42 because locally M is isomorphic to O®* for some k. m
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Definition 32 Denote [wy,ws, ... ,w[n/g]] an irreducible representation of so,,,

which has the highest weight with coordinated [wy,ws, ..., Wy, 2] in a standardly
ordered basis of fundamental weights. For example [1,0,...,0] corresponds to
defining representation in linear space V, [0,...,1,...,0] where 1 stands in the

i-th place corresponds to A*(V) (i <n/2), [0,2,...,0] is the largest irreducible

representation in Sym?(A%(V)) and so on.

Proposition 33

TOI‘O’O(M, M) =
[0,2,...,0]+C
(2,0,...,0] + A%(V)
[1,0,1,...,0] + A*(V)
Tor M, M) =

0.1( ) Tory 1 (M, M) =
1,2,...,0] ’

V+

(3,0,...,0] 5 5
2,0,1 0l A% (V) + A% (V)
TOI‘O’Q(M, M) = TOrl,z(M, M) = (48)
2,2,...,0] + [0,2,...,0] + Torg o (M, M) =
[4,0,...,0] + [2,0,...,0] + AS(V)
(3,0,1,...,0] [1,0,1,...,0]
TOr(),i(M, M) = Torl,i(M, M) =
[4,2,...,0] + [i—2,2,..., 0] + Tor; (M, M) =
[i +2,0,...,0] + [¢,0,...,0] + AT (V)
[i+1,0,1,...,0] [i—1,0,1,...,0]

Proof.

There are two spectral sequences converging to hypercohomology of the
complex 47. The first one has F; term isomorphic to Ef’_t = Tors(M,C) ®
H'(Q, M(i — s)). Observe that for ¢ = 0 we recover the complex

Toro(M,C) ® M; & ... “2=" Tor, (M, C) @ M;_, (49)

This complex by definition from [6] is R(M) ® M, should compute the
Sym(v)
groups Tor;; (M, M).
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The cohomology of the sheaves M (i) are

HY(Q,M(i))=M;, i>0
HY(Q,M(-2))=C
H"3(Q,M(2-n))=C

H" 2(Q,M(—n—i)) =M}, i>0

K2

The groups were computed using Borel-Weyl-Bott theorem.

For ¢t > 0 almost all groups E} ! are equal to zero, making computations
particularly nice. Exceptional entries are (s,t) = (i +2,—1). In this case Ef’_t
is equal to Tor;12(M, C)-the groups computed in proposition 25.

Another exception is (s,t) = (n — 2, —(n —3)), E;""" = Tor,,_o(M,C) = C.

This gives us a good control over discrepancy between the limiting term of
the spectral sequence and cohomology of 49.

The second spectral sequence has second term E~’§’7t equal to zero, except
s =0and By ™" = HY(Q,M®2(i)) and s = 1,Ey " = HY(Q, M®2(i — 2)).
This spectral sequence degenerated in Es-term, due to representation-theoretic
considerations. The sheaf M is isomorphic to the tangent bundle to the quadric
Q (see [8] for explanation). The Picard group of @ is isomorphic to Z, with an
ample generator O(1). The canonical class is equal to K = O(2 — n). There
is a direct sum decomposition M®2 = Sym?(M) + A%(M). Moreover there is
a decomposition Sym?(M) = O(2) + Sym?,,.(M). The projection Sym?*(M) —
O(2) defines a nondegenerate symmetric pairing on M, which enables to identify
M(-2) =2 M*

The following tables (computed again using Borel-Weyl-Bott theorem) give
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representation content of cohomologies of A%2(M)(i), Sym?,,.(M)(i) and O(i):

H°(Q,Symj,, (M)(0)) = [3,2,...,0] i>0
H*(Q,Sym,, (M)(~2)) = [0,1,...,0]
H*(Q,Sym, (M)(=3)) = [1,0,...,0]

HTLiB(Q7 Sym?rr(M)(_n + 1)) = [1’ 07 e O]
H"3(Q,Sym?, (M)(—n+2)) =[0,1,...,0]
H"2(Q,Sym;,,(M)(—n —i—2)) = [i,2,...,0]

wrr

H(Q,A*(M)(i)) = [i,0,1,...,0] >0
H*(Q,A*(M)(-3)) = [0,0,...,0]
H"™4(Q, A2 (M)(3=n)) = [0,0,...,0]
H"2(Q, A*(M)(—n — 1)) = [3,0,1...,0]
H°(Q,0(i)) = [,0,0,...,0] i>0
H"2(Q,A*(M)(2—n—1)) =[,0,0...,0]

There is an isomorphism A%(V) ® A%2(V) = [0,1,0,...,0] ®[0,1,0,...

Sym?*(V) + A2(V) + A*(V) +[1,0,1...,0] 4+ [0,2,...,0]
There is an isomorphism
H°(Q,0(i)) = [i,0,0,...,0] i>0
H"2(Q,A*(M)(2—n —1)) =[,0,0...,0]
Finally
HY(Q,M®*(=2)) =C H'(Q,M®*(-2)) = A*(V)
H(Q,M®*(—1)) =V + A*(V)

HY(Q,M®2(i)) = [i,2,...,0] +[i +1,0,1...,0] +[i +2,0,...,0] i>0

(51)

(52)

(54)

(55)

The second spectral sequence E, indicates that hypercohomology of the

complex 47 live in degrees 0,1, ¢ > 1. It makes all higher differential d,.,r > 3 in

the first spectral sequence E, nontrivial. It means that the groups Tor;o(M.C)

contribute (via appropriate differential) to cohomology of 49 .
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Since we are working over a field the cohomology of 49 is a direct sum of
hypercohomology of 47 and groups Tore(M.C).
The case ¢ = 0 can be computed by hands.

We hope that the interested reader will be able to fill in all missing details

Suppose C, N are an algebra and a C-module. Choose elements x1,...,z,.
It makes C, N into Sym(V')-modules. We can consider complexes A(V,C) and
A(V,N). The action C ® N — N induces a map of complexes A(V,C) ®
A(V,N) — A(V, N), which induces a map of cohomology x H(V,C)®H/(V,N) —
H+(V, N).

We can specialize this construction to C' = A® A, N = M ® M. The

elements are zs ® 1 + 1 ® x5, = 1...n We have a map
xH(V,A® A) @ Hy(V,M @ M) — H,(V,M @ M) (56)
Proposition 34 The cokernel of the map 56 is equal to A°(V) + A3(V)+V

Proof. The proof mimics the proof of proposition 33. There are analogs of both
spectral sequences for complexes A(V; A® A) and A(V, M ® M). On the spec-
tral sequences there is a multiplicative structure corresponding to x. Consider
second terms of the second spectral sequences . These are equal to Eg’_t(A) =
HY(Q,0(i)), By~ " (A) = HY(Q, 0(i—2); By (M) = H(Q, M®%(i), Ey ™" (M) =
HY(Q, M®2(i — 2)( the i-th graded component). The map

Ey°(A)@ By (M) = HO(Q, 0(i—2))2 H(Q, M®2(j)) — H(Q, M(i+j—2)) = E;°(M)
(57)

is surjective in the following cases. Suppose i + j — 2 = k, then H°(Q, M(k))

is in range if j > 0 and ¢ — 2 > 2. The minimal & of this form is equal

to zero. Thus we see that the only nontrivial group not within the range is

H(Q, M(k)),k = —1. The later group is equal to A3(V) + V. It is easy to

enumerate cocycles in T'orq (M, M) which span the last group.

The cocycles spanning V' are

S FjoF;®c+2) FijoFj® (58)
1<y jk
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The cocycles spanning A?(V) are of the form
Z F[ks N Fms & Cm] (59)

As usual we denote o, A symmetric (resp. skewsymmetric) tensor product. Thus
the multiplication is surjective on the limiting term.

Let us turn to the maps of first spectral sequences. The limiting terms
of both spectral sequence coincide. It implies that it is surjective on Fs-term
(recall that it is equal to H(V,A® A) or H(V,M ® M) plus one standalone
simple group), modulo images of higher differential. These images are easy to

calculate. The higher differential maps Tors(M,C) = A5(V) into Hy(V, M@ M)

The image of Tors(M,C) in H1(V, M ® M) is spanned by cocycles of the
form

Fij ® Fis ® g4 (60)

as usual [|-sign denote skewsymmetrization.
Independently of the above it is also quite clear that the span of elements

60 does not intersect the image of the map x m

Corollary 35 Up to linear combination of 58,59,60 every cocycle in H(V, M ®

M) can be represented as

Z <Z Tsa; Qb; —a; ® xsbi> ® Ss (61)

Proof.

Combine propositions 27 and 34. m

Proposition 36 The cohomology H'(Y M, M) is equal to D> 1[i:2,...,01+
[i +2,0,...,0] + [ +1,0,1,...,0]. Itis a module over ring A = Sym(V)/(q).

The generating cocycles are
> Fij® A;

Fijx[k & Azﬁ] + Fklx[i ® A;]
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5 Computation of the cohomology H' (Y M,U(TY M))

At this point we are on a mid way collecting facts for the proof of proposition
2. Proposition 37 proved in this section is the key for 2. However proposition
37 has some interest by its own, because Ho (Y M, U(TY M)) can be interpreted

as equivariant homology with respect to the group of translations.

Proposition 37 Let IU(TY M) be the augmentation ideal of the universal en-
veloping of Lie algebra TY M. Then HO(Y M, IU(TYM)) = 0, H*(Y M, IU(TY M)) =
v

Proof. The universal enveloping algebra U(TY M) = T'(M) admits a filtra-
tion by powers of the augmentation ideal I C U(TY M). The adjoint action of
Y M preserves I, hence the filtration F* = I*?. We plan to compute cohomology
HY(YM,U(TY M)) using a spectral sequence of mentioned filtration.

The E, term of it is equal to EY = H*+7(Y M, M®7). In the previous section
we computed H'(Y M, M®7) for j > 1. According to proposition 20 the groups
are equal to zero for j > 2. Our goal is to examen the differential in the spectral

sequence on the group H'(Y M, M). The differential § acts:
§: Hy(YM, M) — Hy(YM,A*[M)) C Hi(Y M, M®?) (63)

In the following part of the section we shall prove that the kernel of § is
equalto V. m

Observe that there are a surjective maps By : Hy(V, M®?) — Ho(Y M, M)(see
corollary 12) and Iy : Hy(Y M, M®?) — Hy(V, M®?) (see proposition 10) from
long exact sequence 25.

We call elements of Hy(Y M, M), which belong to Im(H,(V,Sym?*(M))-
symmetric, to Im(H;(V, A%(M))-antisymmetric.

5.1 Analysis of §, restricted on antisymmetric part of Hy(Y M, M)

Recall that conventional way to compute He(Y M, M®7) is through Cartan-
Chevalley complex M®7 @ A(Y M)
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Explicit construction of the map Bj is given in the next proposition.

Proposition 38 Pick a Cartan-Chevalley cocycle Y, a; ® by ® v; representing
an element x € Hy(V,M®2). There is a procedure of constructing elements

ci,¢; € TY M such that an element

a:—X:aZ ® (b Avy;) —|—2:aZ (i NC) ¢, ¢ €TYM (64)

is a cocycle in M @ A?(Y M)-component of Cartan-Chevalley complex. Then
Bl ({E) =2
Proof. The element ¢;, ¢; are chosen to insure the identity dz = 0:

0= (—mia; ®b; — a; ® [£5,b;] + a; @ [ci, &]) (65)
The commutator [x;,b;] is equal to z;b; + m;, where m; € [TY M, TY M]. We
choose elements ¢;, ¢; in such a way that ). —a; @ m; + >, a; ® [¢;,&] =0

Proposition 39 The map § is an embedding on the image Im(H, (V,A%(M)) C
Hy(YM,M). The composition 6o : Hy(YM, M) — Hy(Y M, M) is a projec-
tion on Im(H;(V,A?(M))

Proof. The map Is is a direct image in homology induced by abelenization.
The differential of the spectral sequence is easy to compute on the cocycle
64. We lift 7 to some element of I/I3 ® A?>(Y M) and apply the differential of

the later complex. The result is

6(z) = Z[bi, a;| @ v; + ¢, ;] ® & — G5, 03] @ ¢ (66)

This element can be pushed to Hy (Y M, I?/I3) and further to Hy(V, M®?). We

get a formula:
I203105(Zai®bi/\vi):Zai®bi/\vi—2bi®ai/\vi (67)
We identify [a;, b;](an element in I?/I3) with a; ® b; —b; ® a; € M®? =12/I° =
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5.2 Restriction of § on symmetric part of Hy(Y M, M)

We would like to specialize construction of definition 6 to algebra ) = TY M /[TY M, [TY M, TY M]).
The algebra b is a direct sum of two linear spaces M + A?(M). The linear space
A%(M) is the center . The commutator [.,.] : M A M — A?(M) is an isomor-

phism.

Proposition 40 A linear space D(bh) is a Sym(V)-module. There is a short

exact sequence of modules
0 — A3(M) — D(h) — Sym*(M) — 0 (68)

Proof. A linear space D(h) is a quotient of Sym?(M + A?(M)) = Sym? (M) +
A?(M)® M + Sym?(A?(M)). The last summand is not present in D(h) because
of [a,b] o [¢,d] = —bla,[c,d]] = 0. A linear subspace Sym?(M) stays intact in
D(h). Since [a,b] o c = —[a,c] o b, only A*(M) part of A*(M) ® M survives in
the quotient.

The algebra Y M acts on TYM/[TY M, [TY M, TY M]], thus D(h) is Y M-
module. By definition commutators [v;,v;] act trivially on every element of
a € D(h). It means that the action factors through abelenization of Y M. m

It easy to check that the map Bz : A3(M) — Hy(Y M, A?(M)) C Hi(Y M, M®?)

is defined by the formula
aNbAc— (aNb)@c+(cha)@b+(bAc)®a (69)

The right hand side of the last formula is Cartan-Chevalley cocycle. It is a
cocycle because the action of a,b,c € TM on elements of A?(M) is trivial.
One needs to apply some effort to convert it to C'(M®?) cocycle, which we

would not do.

Proposition 41 There is a commutative diagram

Ho(YM, M) > Hi(YM, M®?)

1 By 1 Bs (70)

Hy(V,Sym?(M)) % Ho(V,A3(M))

The map 5 is the boundary map corresponding to extension D(b)
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Proof. is left to the reader. It is somewhat similar to the proof of proposition

39. m

Proposition 42 Restriction of map Bs on Ho(V,A3(M)) has trivial kernel.
Restriction of By on Hy(V,Sym?(M)) has kernel equal to A°(V)

Proof. The kernel of mentioned map is equal to Sao(Ha(V, M®?)). The group
Hy(V, M®?) was computed in proposition 33. In fact Ha(V, M®?) = Torg o(M, M) =
AS(V). The second grading indicates that cocycles are in My @ My @ A%(V) =
A2(V)®3. The tensor product A?(V)®3 contains one copy of AS(V) (with struc-
ture of so, representation) in Sym®(A2(V)). The map S, transforms it into
element of Sym®(M) ¢ M®3 and clearly misses A3(M)

The second statement is proved along the same lines. m
Proposition 43 The kernel of 6 is A5(V) + V.

Proof.
Any element of Ho(V,A%(M)) is a linear combination of elements of the

form Fi; ® 2% Fy — 2% Fjy @ Fyj, o is a multiindex. The corresponding element

of Hy(V,Sym?(M)) is equal to

Z(ﬂisFij R r%F — Fij @ xx%Fi) ® s

’ (71)
Z(xaFm ® xoFij — 2% Fy @ Fij) ® s

S

From commutativity of 41 and proposition 42, linear space A®(V) must be in a
kernel of 6. The check of da = 0, where a is defined in 58 is left to the reader as
an exercise. The cocycles 59 are skewsymmetric and will be ignored in present
discussion. Thus studying the kernel of 5 we can safely restrict 5 on span of
elements 71. According to corollary 35 there is a surjective map Ho(V, M®?) —
Hy(V, M®?)/A>(V)+A3(V)+V. It splits into a direct sum Hy(V, Sym?(M)) —
Hy(V, A2(M))/A3(V) and Ho(V, A2(M)) — Hi(V, Sym®(M))/AS(V) + V.

We need to set some more notations. We know that U(TY M) = T'(M). The

identification is not quite canonical. There are a filtrations F* on U(TY M) and
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on T(M); the isomorphism is compatible with filtrations and independent of
any choices on Gr’s.

The isomorphism enables us to transfer the action of Y M from U(TY M) to
T(M). This operation is defined up to mentioned above ambiguity.

The information we already possess enables us to write the action p(v;) of

generators v; of Y M on algebraic generators m € M C T'(M):
p(vi)m = xim + 7 (m) + 47 (m) + ... (72)

In this formula x;m is the action of generator x; € Sym(V') on element of
Sym(V)-module M, F : M — Free*(M) C M®* k=2,....

The algebra TYM C YM acts on T(M) by inner derivations. Denote Fj;-
Sym(V') generators of M. Then

[p(vi), p(v;)lm = Fiym — mkFj; (73)

This identity gives some restrictions on maps Y.

In terms of 1; = 7 it is easy to write the differential 5.
ox =

D (Whs(wsFij) @ 2% Fya + 25Fy5 @ s (x*Fr)) (a1 + by)

S

> (—vu(Fyj) @ 252% Fy — Fij @ s(ws2° Fr))  (az + ba)

S

> (Wha(@® Fia) ® 2 Fyj + 2% Fry @ o(2.Fi))  (as + bs)

S

> (—u(2,2° Fia) ® Fij — 2,0 F @ 9(Fy))  (aa + ba)

S

(74)

The element §z belongs to the group Ho(V, A*(M)), which gives some freedom

in algebraic manipulations. In particular

a1 + ag ~ <Z @/JS(;USFU) + fs’ébs(Fij)) ® 2% Fy (75)

There are similar formulas for by + bs, bs + by, a3 + a4. To simplify this formula

we need more information about ;.
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Suppose m € M. Let us write a formula for
> p)plvs)m < Am)
We have
A(m) =Y @tbs(m) + s (wsm) + c(m),  c(m) € F* (76)

The same form has left tensor factor in 75. Let is analyze how the formula
76 depends on the identification U(TUM) and T'(M). The identification is
determined by embedding p : M — U(TYM). It must satisfy the condition:
the composition M % F'/M? — M must be identity map. It is easy to
see that all such embedding is a homogeneous space under the group G of
automorphisms of U(TY M) which preserves the filtration F'* and whose action
on Gr(U(TY M)) is trivial. If we choose a reference point p(or isomorphism
U(TUM) and T(M)) we can identify the homogeneous space with the group

G. An element (3 is uniquely determined by its values on generating space M:
B(m) =m+a?(m)+a®(m)+..., o'(m)e M® (77)

In the following we will neglect elements in @jZB M®J | therefor to simplify
notations we set a?> = a. The inverse automorphism has a form 8=!(m) =
m—a(m)+.... Thus aAa™t(m) =3 (zs1hs(m) + Ys(@sm) — 22a(m)) +....
From the last formula we see that the leading term of A is defined up to addition
of > 2%(m; ® m}). This will not change the element dz in Hoy(V,A*(M)),
because for example in a1 +az-term we have Y 22a(F;; )@z Fyy ~ Y., a(F;)®
xzxo‘Fkl =0

To make our computations more tractable we need to make further simpli-

fication: we will map Ho(V, A3(M)) to A%(V) @ Ho(V, A%(M)).
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Indeed there is a map of Sym(V)-modules p : A3(M) — A%(V) ® A%2(M),

with trivial action on A?(V)-factor. The homomorphism is defined as:

p(aFij NbFiy A cFy) =
= CL(O)FZ'J' ANbF, A cFg+

. (78)
+ aF;; Ab(0)Fy A cFo+

+ aFy; AbFyy A c(0)Fy

In the last formula Fij should be considered as an element of A2(V). It is easy to
check that this is an unambiguously defined homomorphism of Sym(V')-modules.
This homomorphism produces a map of homologies p : Ho(V, A3(M)) — A%(V)®
Ho(V, A2(M))

As we know (see [8]) the components M; of graded Sym(V)-module M has
the following geometric interpretation: these are sections of so,-homogeneous
vector bundle T'(7)-O(i)-twisted tangent bundle on a nonsingular quadric Q. We
identify A%(V) with Lie algebra so,,. The operator acting on M that corresponds

to F‘ij € s0, we denote by ;.

Lemma 44 The following formula holds:

p(or) =4 Fy @ &un (79)

s<t
Proof.
A simplification pointed in 75 leads to
ox =
AF;; @ x%Fpy — Ax®Fiy ® Fij— (80)

— Fij @ Ax®Fiy + 2% Fp @ AF;

Therefor it is crucial to compute Az Fy;. Write Ax®Fy; = Axy, ... x5, Fij, |of =

k. We lift it to

Az Fy; = Z[xs, [Vs[viy, - .- Vi, Fij] .. ] (81)
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We replace commutators [v;,y],y € T(M) by z;y + 1;y and drop terms which
belong to F3. We see that

k
> e slviys - i, Fig] o]~ A@OF) + Y0 alwi, o, (- winFy)
s t=1
(82)
which justifies the choice of the lifting 81. On the other hand 81 is equal to

S

DD (s [+ [0y Fsiy iy [ Figl o 1) Y s, [vr, [+ [vs, Figl ]~

S

k
~ 2zzxsxi1 . "xit—l([FSit7xit1 FZJ]) + ZZxa[FSi’FSj]
t=1 s

S

We use the formula 83 to compute p(dx)

Making manipulations similar to 75 we have

plar + ag) = 2F,; ® Foj Na“Fiy — 2Fisj ® Fy; N 2% Fyy

plas + aq) = 26, @ Foj Na“Fg — 2F, ® Fij Nx®Fg,

p(by +ba) = 2Fy, @ Fyj Aa“Fy — 2F ® Fij A 1®Fyp, + 2F @ Fij A (§a7®) Fry

p(bs + by) = 2Fy ® Fij A (Eqa®) Fry + 2F0 @ Fyj A 2% Fiy — 2Fsj; @ Fyy A 2% Fy
(84)

From this we conclude that

plar +az +az +as+ by +bs+ba+ba) =4  Fu @ Ea(Fyy Ax*Fr)  (85)

s<t
]
The action of s0,, on Toro(M, M) = Hy(V, M®?) according to proposition
47 has no trivial subrepresentations. From lemma 44 the composition pS is

injective, thus §is injective m
6 Computation of H(YM,U(YM)), i=0,1
The goal of this section is to prove proposition 2
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Lemma 45

HY\YM,UYM))D>CH+V +A*(V) (86)

HY(YM,YM)>C+ A*(V) (87)

Proof.

Let us make some simple observations. Algebra Y M is graded, hence we
have one differentiation for free: differentiation corresponding to grading. This
explains C in 86

The linear space of relation 1 of Y M is invariant with respect to the action
of s0,,. The adjoint representation of so,, is equal to A%(IV). It explains the last
summand in 86.

Derivation Dg(vy) = d4 is compatible with relation 1. The linear space
generated by Dj; is isomorphic to V' as so,, representation. It is a derivation of
U(YM). Tt explains why V factor is not present in 87.

]

Let h be a Lie algebra of symmetries of a Lie algebra g. Due to Poincare-
Birkhoff-Witt theorem there is an isomorphism of h modules under adjoint ac-
tion

U(g) = Sym(g) (88)
Denote the symmetric product in Sym(h) by o.

To compute cohomology with coefficients in U(Y M), we can safely replace
last module by Sym(Y M).

Consider filtration F of Sym(Y M) defined by powers of an ideal generated
by the linear space TY M. It defines a filtration on Sym"(Y M), for which we
use the same notation. It adjoint quotients are equal F*/F*t! = Sym™ (V) ®
Sym'(TY M).

The filtration gives rise to a spectral sequence E¥. There is an easy estab-

lished formula for E:
EY = H™ (Y M, Sym™ (V) @ Sym*(TY M) (89)

The action of Y M on Sym"™*(V)-factor is trivial.
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Proof. of proposition 2 We use mentioned spectral sequence for com-
putation H'(Y M,Sym(Y M)). Our prime interest will be the fragment E¥,
i+ j = 0,1, because only it contribute to H*(Y M,Sym(Y M)),k =0, 1.

Computations of the previous section provide us with necessary information

about E}’ . It is reformulated in next two lemmas in a convenient form.

Lemma 46 H'(YM,Sym* (TYM)) = 0 i > 2, H' (YM,Sym (TYM)) = V
i=0,1 and H*(YM,Sym*(TYM)) =0,i > 1

Proof. Apply isomorphism 88 to g = TY M. Set F;j = [v;,v;] in algebra Y M.
The cocycles >, Fis ® A**, k=1,...,n of C(UT'YM)) (see 17), which span
HY(YM,U(TY M)) according to proposition 37, belong to H*(Y M, Sym*(TY M)).
The later is a direct summand of Sym(TYM). From this we conclude that
HY(YM,Sym“ (TYM)) = 0 i > 2. i = O-case was treated in details in [8]. In
particular it implies that that E%l*i =0 fori > 2.

The statement about zeroth cohomology follows from proposition 37. =

Lemma 47 H'(Y M,Sym’(V)® Sym*(TY M)) is equal to Sym" (V) @V if k =
0,1 and 0 ifk>1.
We also have trivial isomorphisms H°(Y M, Sym(V)) = Sym(V)

Proof. Easily follows from 46 m
We would like to compute differential d : E{J — Ei“’j . Information about
this differential is contained in the following two extensions (for the range i, j

we are interested in):
TYM ® Sym" *(V) — E, — Sym"(V), E,, = F°/F> (90)
and
Sym*(TY M) ® Sym™ (V) — G,, — TYM @ Sym" " *(V),G,, = F'/F? (91)

For n = 2 set G = Gy, E = FE5. Counsider a boundary differential § :
HYYM,V @ TYM) — HY(YM,Sym*(TYM)) in a long exact sequence of
cohomology of Y M associated with 91. By definition of d;- the differential of

Eij , it appropriate component is equal to 4.
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Lemma 48 The image of 6 is equal to A*(V)

Proof. There is also a boundary map & : HO(Y M,Sym?(V)) = E)® — E}0 =
HYY M,V @TY M) associated with extension E. It is also a component of d;.

We already know that 6 : HO(Y M, V) — H*(Y M, TY M) is an isomorphism,
hence 6 : HO(Y M, Sym?(V)) — HY(Y M,V ® TY M) is an embedding.

An equation 86 = 0 is a corollary of d?> = 0. From this 6Sym?(V) = 0
trivially follows. Thus the map § factors through A?(V).

In realization H(Y M, G) defined by C(G) ( see formula 17) an identity folds:

S

(92)
Z[Ul.FSt] o [v2, vs] — [v2.Fst] 0 [v1,vs] € C32(V @ TY M)

st

This is nontrivial C(V ® TY M) cocycle proved by degree counting argu-
ments.

]

We would like to generalize this statement. As in case n = 2 we prove that
§: HY(YM,Sym™(V)) — H'(YM,Sym" (V) @ TY M is an embedding. Due
to identifications H°(Y M, Sym"(V)) = Sym" (V) and H*(Y M, Sym" (V) ®
TYM) = Sym™ (V) ® V, we can interpret the boundary map § = d; as ah de
Rham differential dyr mapping polynomial functions to polynomial one-forms.

The differential d; satisfies

dy (ab) = dy(a)b+ad, (b),a € H*(Y M,Sym™(V)),b € H(Y M, Sym*(V)@TY M)
(93)
for suitable m, k. This is a standard property of differential in a spectral se-

quence produced by multiplicative filtration.

Lemma 49 Suppose we have a map dy : Sym(V) @ A (V) — Sym(V) @ A2(V),
such that di(ab) = dgrab + adib, a € Sym(V), didqr = 0 and dy(z;dqrz;) =

darr; N ddRﬂij, then di = dgg.

Proof. Left to the reader. m
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Corollary 50 The complex H(Y M, Sym(V)) 4 HY (Y M,Sym(V)®TY M) &
H?(YM,Sym(V) @ Sym*(TY M)) is acyclic in the middle term. The zeroth

cohomology is equal to C.

We can interpret this corollary as no subquotients of El1 0 give contributions
to HY(Y M, Sym™ (Y M)). Only H°(Y M, C) gives contribution to H*(Y M, U (Y M)).

This observation proves the
Corollary 51 H(YM,U(YM))=C

An alternative spot in the spectral sequence that can potentially contribute
to H'(YM,Sym"™(Y M) is EY"' = H'(Y M, Sym™(V)). We proceed with analy-

sis of this remaining case.

Lemma 52 The boundary map § : HY(YM,V) — H*(YM,TY M) associated
with extension E1 has image equal to Symz(V)/(Céij. di; stands for a symmetric

bilinear form on V which is invariant with respect to so0.,

Proof. Direct inspection of the complex C'(E7) similar to the carried out in the
proof of 48. =
Due to multiplicatively of d; one can decompose the boundary differential
associated with F,, into composition
HY(YM,Sym™(V)) = Sym" (V) @ V dan®l Sym" H(V) @ V&2 1ep o
— Sym™ (V) ® Sym*(V)/Cé;; € H*(Y M,Sym™ (V) @ TY M) oY
The map p is projection p : V¥2 — Sym?(V)/Cé;;. dy has the following geomet-
ric interpretation: the linear space Sym(V) ® V' can be identified with a space
of polynomial vector fields on C", Sym(V) ® Sym?(V')/Cd;;-space of polynomial
traceless (with respect to the standard metric d;;) symmetric two-tensors. The

value of composed map di (€) is a traceless part of the Lie derivative- L¢d;;.

Lemma 53 The kernel of the map di in 94 is a Lie algebra of conformal Lie

group.
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Proof. This can be considered as a definition . If dimV > 3 then the following

vector fields form a basis in such space:

0
a%—shifts
i _8 — x;——- rotations
! 833‘j 7 axz
; <$k331 Ox; - 1/23@? —8xk) = XS: ks —8x5 -conformal vector fields

n 8
Z x; — -dilation
i=1 Oz;

An interpretation of this lemma in terms of our spectral sequence is: only
Lie algebra of conformal group equal to Eg "has a chance to contribute to
HY(YM,Sym(Y M)). We already know that translations, rotations and dila-
tions are symmetries of Y M; they represent nontrivial cocycles in H(Y M, Sym(Y M))
and survive to the limiting term of the spectral sequence. It is not so clear for
conformal vector fields. In the remaining part of the proof we shall explore this.

We associate with a conformal vector field ES ks 6%5 a one-cocycle ZS Ars @
A** € C(Sym?(V)). The fact that di(a) = 0 means that the cocycle can be lifted
to a cocycle with values in E = F°/F2. We would like to know if it is possible to
lift it to cocycle with values in Sym? (Y M). To do that it is suffice to compute a
boundary operator associated with extension Sym?*(TY M) — Sym?(Y M) — E.

Lemma 54 The conformal vector fields could not be lifted to one-cocycles in

C'(Sym?(Y M))

Proof.
The boundary operator maps H (Y M, E) — H?(Y M,Sym*(TY M)) . The

result of computation is

§(ars A™*) = 4fvs, vi] o [vs,v:] @ At — [vs,v5] 0 [Vs, 5] @ Ay, € C?(Sym?(TY M)
(96)
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By grading counting this is nontrivial cocycle in C(Sym?(TY M)). Hence con-
formal vector fields could not be lifted to one-cocycles of Y M with values in
Sym*(YM). m

This computation is equivalent to computation of components ds : Eg 1
E2° of differential dy in the second term E% of the spectral sequence. The
computation tells us that conformal vector field does not survive to the second
term.

As a result of our computation of H*(Y M, Sym(Y M)) we are left with co-
cycles with values in Sym®(Y M), Sym' (Y M).

The first group is generated by shifts, the second group is generated by

rotation and dilation. m

7 Appendix

7.1 Generating functions of algebra Y M

The algebra Y M is graded, so it makes sense to talk about Poincare series
S dimU (Y M);t'. The sum of this series can be computed from acyclicity of

resolution (see [8]) :

We have the following formula:

1

T 1 dimVEE £ dimVi6 —¢8 (98)

> dimU(Y M);t’

7.2 Generating functions of module M

Denote M (t) = 37,5, dimM;t".

Proposition 55 1 —t2M(t) = 1_dmé}/f;§m\‘//t3_t4

Proof. The complex C*(Sym(V)) splits into a direct sum of homogeneous

components: C*(Sym(V)) = @D, le: (Sym(V)). The Euler characteristic is

X(8) =Y (=1 dimC}(Sym(V)’

j
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equal to —(1 — t2M (t)) because of the cohomology computations (proposition
8). By myltiplicativity x(t) = —Sym(V)(t)(1 — dimVt +dimVt3 —t*), It is well

known that Sym(V)(¢t) = ]

1

7.3 Cyclic homology of multigraded free algebras.

The formulas presented in this section are not new and should be well known
to specialists. The author decided to present them here because of inability to
find a reference.

Denote by A positively multigraded vector space A = @@ A,, where o =
(ir,. .. ix)-s a multiindex and |a] = 25_ i;. Then A(z) = A(z1,...,2) =
Do dim(Aq)z® is Poincare series. We say that positive integer s divides mul-
tiindex o = (i1,...,4x) (denote s|a) if s divides all i;. Denote GCD(«) the
greatest common denominator of 7;.

Denote Cyc(V) =T(V)/[T(V),T(V)] a linear space of cyclic words over an
alphabet, formed by some basis of V', Cyc(V) = Cye(V)/C.

Proposition 56 Suppose V is a positively multigraded vector space . Let T'(V)
be a free algebra on V. The reduced cyclic homology HC,;(T(V')) are equal to

zero fori >0 and

HCy(T(V))(z1,...,2k) = Cye(V) (21, ..., 2,) =
99
Z¢@m V(=D)L (<)) (99)
t>0

where Y (t) is the Euler psi-function (i.e. (t) counts the number of integers

which are less then t and co-prime with t).

Proof. The free algebra T'(V') is a universal enveloping of a free Lie algebra
Free(V). As a Free(V) module under adjoint action , we have an isomorphism
T(V) = @i>oSym"Free(V).

To compute Hochschild homology of Free(V) with coefficients in module M

we can follow [5] and use a complex

K=VeM3% M), (100)
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where the differential is defined as a ® m — am. Let M = SymFree(V).
We have an isomorphism HY(K (Sym(Free(V)))) = HHo(T(V)) = HCo(T(V))

with a refined decomposition

HCy(T @HCO @HO Sym (Free(V))))

k>0 k>0
According to [5] HH;(T(V)) =0 ¢ > 2. For small values of i we have Connes

exact sequence, which for graded algebras splits into isomorphism
HHy(T(V)) = HCo(T(V))
and
HHo(T(V)) = HCo(T(V)
. Denote HCY = Hy(K (Sym”(Free(V)), then (see [5]) Hy (K (Sym” Free(V)) =

H COH. We can write the following equation for generating functions:

Zx (Sym")) (21, -+, za)t' = [1 = V(21,. .., 20)](Sym(t, 21, . . ., 20) =

>0

=> t"(HCE(z1, ... 20) — HCY (21, 20) =

= 1
=Y t"HCl(z1,...,20) — - Ztkﬂcg(zl, ) =
k=1

k=0

=(1— %)ZtkHCk(zl,...,zn) +1

we infer

HC(t 21, 2) = t((Sym(t, 21, .., 2n)(1 = V(z1,...,20)) — 1)

t—1
To compute HC(1,z21,...,2,) we need to let ¢ — 1. To do so we can use
I’Hopitale rule
OSym(t, z1,...,2n
HO(17215"'7ZTL) = Y ( a; )|t:1(1_V(Zl,...,Zn))- (101)
For any positively multigraded vector space A the generating function Sym(A4)(¢, z1, ..., 2n) =

Yoco Sym‘(A)(z1,.. ., z,)t" can be computed by the formula Sym(A)(t, z1, ..., zp) =
IT}0 oaa(1+t2") e
TTejesen—Ez8) T 50

H\a|odd(1 - tza)Aa
H|a\even(1 - tza)Aa

Sym(A)(t, —z1,...,—2n) = (102)
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Using logarithmic derivative we have

0 —t2%A, tz%A,
atlnSym(A)(t, — 21y —2n) = Z + Z —

Hddl—tza o 1 —tzo
103
1 —tze
Then
d —1)lalzeg,
O svmA) b —1,. o —zler = 2 g4y, 2 )

We would like to specialize this construction to the case A = Free(V). We
have Sym(Free(V))(1,—z1,...,—2n) = m because Sym(Free(V)) =
T (V). Denote f, = dim(Free(V),). By 101

yled
HC,—z1,...,—2,) = Z 1_;afa :Z(—l)lo“faz,zo‘":

i : net (104)
=3y (1"
B n|B
The following manipulations follow from 102:
! : = —ln(1-V( )) = (105)
nl—V(—zl,...,—zn)_ " Zlyeeen T2n)) =
=Y faln(l—2%) = Y faln(l -z =Y (~1)llf, Z 2" (106)
|a|odd |a|even a n>0
fs
_ 3 iz
=22 (-1F & (107)
k|3
We need to remind some properties of 1 (t). There is a main identity
¥(k)
RSk 1
Z nk (108)

nk=l

Hence
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n

e n zom,k
=Y [l = V(=2", .. .,—z")]M => (=Dl ——u(k) =
n=0

[ k,n>0
- 1k
zzzﬁ Z (=1)\Blm pg Z E—Ec) =
B = Bol nk=5
GeD(Bo) = 1 (109)
nkm =1
= Zzg Z (_1)|ﬂ0‘mf50m = HC(L_Zla--'a_ZW«)
B = Bol
m|l

The last identity is due to 104 m

7.4 Some applications

In the following text we shall discuss some applications of the formula 99.

Suppose T(V) is a free algebra on a bigraded vector space V. Assume
that T'(V) is equipped with a differential of degree —1 with respect to the first
grading and homogeneous with respect to the second. The differential induces
a differential on the cyclic homology of T'(V'). Using formula (99) we can easily
compute Euler characteristic of HC(T'(V), d).

Proposition 57

VHC(T(V),d)(2) = — S dn(1 - V(—1, (—1)m+m) 28 q)

n
n>0

Proof. Is an obvious application of proposition 56 =

Proposition 58 Suppose A is a positively graded algebra. We have xHC(A) =
¥ (n)

— S () = D InA((—1)m ) S

Proof. We can define groups Torfj (C,C), where i is homological grading
and j is homogeneous grading.

Consider a space VI = Torf:_l,j (C,C), 1i,5=>0.

There is a structure of differential algebra on T'(V') with differential of bide-

gree (—1,0) which is quasiisomorphic to A (see [8] where we heavily used this

46



construction ). According to [5] we can compute reduced cyclic homology of A
as homology of Cyc(T(V),d)

Introduce a function Zmzo(—l)idimTorfj((C7 C)z/ = H(z).

Then A(z)H(z) =1, hence H(z) = ﬁ( a simple corollary of Bar-duality).

The function V(—1, z) involved in the formula 110 is equal

V(=1,2)=> > (~1)*'dimTor;(C,C)z’ =1— H(z) =1—
=0

j=1z

10 (111)

After substituting 111 into 110 we get our formula. m
Another application is computation of HCo(U(TY M))(t). This computa-
tion was made in [10]. It is interesting to compare his and our computations.
According to [8] the algebra U(T'Y M) is free and is isomorphic to T'(M). The
generating function for M was computed in proposition 55. Applying proposi-

tion 56 we get the following result

Proposition 59 HCo(U(TYM))(t) = —> .o In(1 — t** M (t*)) where M (t)

18 given in 5I.

Proof. Is obvious. The signs in 99 disappear, because M is purely even. m
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