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Global smoothing of Calabi-Yau threefolds

Yoshinori Namikawa and J.H.M. Steenbrink

Introduction

Friedman [Fr| has studied the relationship between local and global deformations of
a threefold Z with isolated hypersurface singularities which admits small resolutions.
One of his main results is as follows. Let Z be a Moishezon threefold with only ordinary
. double wpoints.{pi,z..;Pa}- - Assume that the canonical line bundle- Kz .of Z_is, trivial
Let 7 : Z — Z be a small resolution and let C; := 7='(p;) = P' be the exceptional
curves. Then he showed that if there is a relation Els,-s,,a.-[c,-] = 0 with a; # 0 for all
i in Hy(Z,C) and if the Kuranishi space Def(Z) of Z is smooth, then there is a global
smoothing of Z by a f{lat deformation, that is, there is a proper fat map f : Z —
A! from an analytic space Z to a 1-dimensional disc A! such that f~'(0) = Z and
that f~'(¢) is a smooth threefold for ¢ # 0. On the other hand, Clemens has compared
the topology of Z with that of Z, = f~'(¢) in [Cl]. We have a simple relation e(Z) =
e(Z:) + 2n for the Euler numbers. However, the relations between Betti numbers are not
so simple; there is a phenomenon called the defect of singularities. (See also {W], [Di].)

One can observe from these results that local deformations of singularities (Z, p;) are
not independent in global deformations of Z. The purpose of this paper is to generalize
the above results to the case where Z has more general isolated hypersurface singularities
which do not necessarily have small resolutions, and to clarify the mechanism of the
dependence and the defect of singularities. We can recognize a special importance in
studying such things for Calabi-Yau threefolds in the works of several people (cf. [H], [G-
H], [W], [Wi], [Re 2]). We shall explain our results in more detail. Let Z be a complete
algebraic variety with only isolated rational singularities. Let Weil(Z) (resp. Cart(Z))
be the group of Weil divisors of Z (resp. Cartier divisors of Z). Then the abelian group
Weil(Z)/Cart(Z) is finitely generated (cf. [Ka 1, Lemma (1.1)]). We denote by o(Z)
the rank of this group. When o(Z) = 0, Z is called Q-factorial. In this paper, by a
Calabi-Yau threefold, we mean a projective threefold Z with only rational singularities,
and with Kz ~ 0. Note that there is an example of a Calabi-Yau threefold Z with
one ordinary point where Z remains singular under any flat deformation ([Na, (5.8)]).
This example suggests that some global condition is needed for Z to be smoothable.
The notion of Q-factoriality is nothing but this global condition, and it also has a deep
connection with the defect of singularities in a smoothing. Our main results are the
following.



Theorem(1.3) Let Z be a Q-factorial Calabi-Yau threefold which admits only
isolated rational hypersurface singularities. Then Z can be deformed to a smooth Calabi-
Yau threefold.

Theorem(2.4) Let Z be a Calabi-Yau threefold with only isolated rational hy-
persurface singularities. Then Z can be deformed to a Calabi-Yau threefold with only
ordinary double points.

Theorem(3.2) Let Z be a normal projective threefold with only isolated rational
hypersurface singularities such that H*(Z,0z) = 0. Lel b(Z) denote the i-th Belti
number for the singular cohomology of Z. Then o(Z) = by(Z) — bo(Z). Moreover, if Z
has a smoothing f : Z — A, then we have

o(Z)=bs(Z)+ D, mlp)—bsZ)

fort € A" — {0}, where m(p) denoles the Milnor number of the singularity (Z,p).

" Théorém(1.3) is closély teélated t6 the classification thedry of Algebiaic thiéefolds. ‘Th
fact, let ¥ be a smooth projective threefold with Kodaira dimension zero. By the theory
of minimal models in dimension 3 (cf. [Mo], [Ka 3]), Y is birationally equivalent to a
normal projective threefold W with only terminal singularities such that m&w ~ 0 for
a positive integer m. We take the index 1-cover 7 : Z/ — W (cf. [K-M-M, 0-2-5]). Here
7" 1s a Calabi-Yau threefold with only terminal singularities, and 7 is a finite morphism
which is etale outside Sing(W). We can take a Q-factorial Calabi-Yau threefold Z in
such a way that Z is birational equivalent to Z’ (cf. [Ka 1, (4.5)]). By Theorem(1.3),
Z can be deformed to a smooth Calabi-Yau threefold Z,. Then Y inherits some nice
properties from Z; through this construction. For example, as pointed out by Kollar in
the preprint version of [Ko], we can prove that 71(Y') has a finite index Abelian subgroup
by using the Bogomolov decomposition of Z; (cf. [Be]). As a consequence, we have a
generalization of the Bogomolov decomposition to a smooth projective threefold with
Kodaira dimension zero:

Corollary(1.4)(Kollar)  Let Y be a smooth projective threefold with Kodaira di-
mension 0. Assume that m(Y) has infinite order. Then Y has a finite etale cover
m:V — Y such that V' s birationally equivalent to an abelian threefold or the product
of a K8 surface and an elliptic curve.

The proofs of (1.3) and (2.4) are both based on the fact that the Kuranishi space
Def(Z) of Z is smooth (cf. [Na, Theorem A}, [Ra], [Ka 4]). In this paper, we shall intro-
duce two different approaches to the smoothing problem; one of them uses the vanishing
theorem of Guillén, Navarro Aznar and Puerta (cf. [St 3]) which is a generalization of
Kodaira-Akizuki-Nakano vanishing theorem, and another one uses the invariant g intro-
duced in [Na §5] for an isolated rational singularity. A merit of the first approach is that
we can find a smoothing direction in Def(Z) in one step. But this approach cannot be
applied to a non-Q-factorial Calabi-Yau threefold. On the other hand, if we employ the
second approach, then we need some induction steps with respect to the invariant p to



find out a suitable smoothing direction in Def(Z). However, we can prove both theorems
(1.3) and (2.4) by this method.

In §1 we shall prove Theorem(1.3) by the first method. The key result is the following
theorem which is proved by using the vanishing theorem of Guillén, Navarro Aznar and
Puerta:

Theorem(1.1) Let (X,z) be an isolated singularity of a complex space, and let
m:Y — X be a resolution of X such that its exceptional divisor E has only normal
crossings. Let U = X \ {z}. Then we have a natural map 7 : H'(U,Q?) = HE(Y, Q%)
as a coboundary map of the exact sequence of local cohomology.

Suppose that (X,z) is a 3-dimensional isolated Gorenstein Du Bois singularity for
which 7 is the zero map. Then (X, z) is rigid.

Note here that H'(U,0%) = H°(X,Ty) by Schlessinger [Sch, Theorem 2] if (X, z)
is an isolated hypersurface singularity of dimension > 3. Going back to the original
situation, we let Z be a Calabi-Yau threefold with only isolated rational hypersurface
singularities, and let Y be a resolution of Z. For each singularity z € Z, we have

wnyckositded - oSt het sameétmap Ty -:"*T%‘x‘"ﬁr”“H ;‘5';('Y,“Qf,‘)'*a;s'?above;"‘where" ‘Fr=is*the-exceptional diviser -~

over z € Z . Take an arbitrary smoothing direction ¢ € H%(Z,T%). Then, by using
the Q-factoriality of Z, one can find an element 17 € @ esing(z) ker(7z) such that ¢ + 7
comes from Ezt!(Q},O0z). By combining Theorem(1.1) and some results concerning the
discriminant of the semi-universal deformation space of a hypersurface singularity, we
see that n; € T} _ is contained in the tangent cone of the discriminant locus for every
z € Sing(Z). Thus, we have been able to find a smoothing direction in Ext!(Q}, Oz).

In §2 we shall prove Theorem(2.4) by the second method. Let (X, z) be a rational
isolated singularity, and let @ : Y — X be its resolution. Then u(X, z) is defined to be
the dimension of the cokernel of the map (271)~!dlog : H'(Y, 03 )®zC — H' (Y, Q).
We shall prove that, for a 3-dimensional isolated rational hypersurface singularity (X, z),
w(X,z) = 0 if and only if (X,z) is a smooth point or an ordinary double point (cf.
Theorem(2.2)). The proof uses the theory of spectrum of a hypersurface singularity
developed by Arnold, Steenbrink, Varchenko, Morihiko Saito and others. The proof of
Theorem(2.4) goes as follows. Assume that there is a singularity with z > 0 on a given
Calabi-Yau threefold. Then one can find a small deformation of Z so that the lying
singularity becomes better in the following sense (Proposition(2.3)): for any resolution
Y of Z, this small deformation is outside the image of the map Def(Y) — Def(Z).
By some inductive process, Z is eventually deformed to a Calabi-Yau threefold whose
singularities all have ¢ = 0. This implies that this Calabi-Yau actually has only ordinary
double points.

In the final section, Theorem(3.2) is proved, and at the same time, we consider the
Hodge theoretic meaning of a smoothing in dimension 3. For example, the following
theorem is proved.

Corollary(38.13) Let Z be a Calabi-Yau threefold with only isolated rational hy-
persurface singularities. Then Z can be deformed to a Calabi-Yau threefold Y with only
ordinary double points whose cohomology groups H'(Y) (0 < i < 6) have a pure Hodge



structure .

The arguments here are more or less standard. In particular, Theorem(3.2) follows
immediately from a theorem of Goresky-MacPherson. The assumption that dim Z = 3
is essential.

§1.

Let (X,z) be an isolated singularity of a complex space. Let X be a good represen-
tative for this germ and let U = X \ {z}. Let # : ¥ = X be a resolution of X such
that 7='(U) = U and its exceptional divisor E has simple normal crossings. Identifying
7~ Y(U) with U, we have a natural map 7 : H{(U,Q%) — H%(Q%) as the coboundary
map of the exact sequence of local cohomology. We claim the following

Theorem(1.1). Suppose that (X, z) is a 3-dimensional isolated Gorenstein Du Bois
singularity for which T is the zero map. Then (X, z) is rigid.
... Proof. First observe that, as X is Gorenstein, (X, z) is rigid if and only if (U, QF) =
0 by Schlessmger [Sch Theorem 2]. We can factorize 7 via HE(Q2 (log E)(— E)) As
H*(Q% (log E)(—E)) = 0 by the vanishing theorem of Guillén, Navarro Aznar and Puerta
(cf.[St 3]), the map H' (U, Q%) — HEZ(% (log E)(—E)) is surjective. Define

why := Q% mod torsion ~ QF /% (log E)(—F).
Then we have the exact sequence
HY(E,wp) = Hp(Qy (log E)(—E)) — Hp(Q%)

and o factorizes via

HY(E,w2) S HY(E,Q%(log E) ® OF)

which is to be interpreted as the natural map GriH3(E,C) — Grk H{(X,C); by
semipurity o’ is the zero map (see [St 2, Theorem 1.11]). Hence « is the zero map, and
HE(Q% (log E)Y(—E)) — HE(Q%) is injective. So we have proved that

im(7) & Hé(ﬂff(log EY(—F)).

As (X, z) is a Gorenstein Du Bois singularity, we have that H'(Y, Oy(~E)) = 0 for
¢ = 1,2. We consider the spectral sequence of hypercohomology

ET" = HY(Y, Q% (log E)(—E)g) = 0

where the abutment 0 follows from the fact that for each point y € E the complex
OV (log £)(—E) is acyclic. By the vanishing theorem quoted above, the only possibly
nonzero terms in E, are E° for all p and B}, E'? and E?'. As the sequence converges
to 0, we have E}* = H*(Y, Q) (log E)(—E)) = 0 and the map d; : E}"' — EX' | ie.

H' (Y, Qy (log EY(—E)) = H'(Y, Q% (log E)(—E))

o WOPRR P a g
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_We assume that Z has at least one singular point. If HI(Z Oz) 75 0 then the Albanese

is surjective.
So suppose that 7 is the zero map. Then H%(Q%(log E)(—E)) = 0. We have the
surjection

HE (25 (log E)(— E)) — H(Qy (log £))
as H*(E,Qf(log E) ® Op) = GriH[,(X,C) = 0. Hence also HE(Q(log £)) =
0. By duality we get H'(Y, 4. (log E)(—E)) = 0 and hence by the remark above
H'(Y,Q%(log E)(—E)) = 0. We have the exact sequence

H'\(Y, 0} (log E)(—E)) = H'(U, Q) = Hg(9 (log E)(~ E))
hence H'(U,Q%) = 0. This means that (X,z) is rigid.
Remark 7 is a homomorphism of Oy ,-modules, so in general ker(7) is an Oy ;-

submodule of H'(U,%). By the proof above, dimker(r) < dimim(r).

Let Z be a Calabi-Yau threefold with only isolated rational hypersurface singularities.

VRV 78

map Z — Alb(Z) is a fiber bundle by Kawamata [Ka 2] Since Z has only “isolated
singularities, this implies that Z is smooth. Thus, we can assume from the start that
HY(Z,0z)=0. Let 7 : Y = Z be a good resolution of Z. Then there is an injection
T9 — m.Q%. Let = € Z be a singular point, and let £, be the exceptional divisor of =
over z. We denote by ¢, the composition of the maps H?,(Z,T7) = H?(Z,7.09}) —
HE(Y,Q%). Let o : HE (Y, Q%) - H*(Y, Q%) be the natural map.

Proposition(1.2)  Assume that Z is Q-factorial. Then v o ¢, : H{zz}(Z, 72) —
H2(Y,Q%) is the zero map.

Proof. Take a sufficiently small open neighborhood Z, of = € Z, and put
Ur = Z:\ {z} and Y; = n~Y(Z;). Since A" (U, Q) = H (U, Op) = Hi,(Z:,T3,) by
Schlessinger [Sch Theorem 2], ¢, is identified with the coboundary map H*'(Us, Q) —
HE (Yz, Q%) of the exact sequence of local cohomology. Here U, and 7~1(U,) are iden-
tified. Thus, the map ¢ o ¢, is identified with the composition of the following maps:

H' (Uz, %) — Hp (Yo, Q5 ) — H*(Y,0%)

Since the natural map H'(Y,Q}) = H'(Y;, Q. ) is the dual map of ¢, it suffices to show
that the composition of the maps:

HY(Y,Qy) — H'(Y,, Q) — H' (U, Q)
is the zero map. Consider the commutative diagram
H(Y,04)®2C — H'(U, Op,)®2C

(2ni)~'dlog | { 2ri)~tdlog
HY(Y, Q) — HY(U., Q)



The vertical map on the left-hand side is an isomorphism by Hodge theory because
HY(Z,02) = H¥Z,0z) = 0. The top horizontal map is the zero map by [K-M, 12.1.6]
since Z is Q-factorial. Hence the map H'(Y,Q}) = H (U, Q) is the zero map. Q.E.D.

Theorem (1.3). Let Z be a Calabi-Yau threefold which is Q-factorial and whose
singular points are all isolated hypersurface singularities. Then Z is smoothable.

Proof. Let ¥ denote the set of singular points of Z. Let U denote the regular locus
of Z and let 7 : Y — Z denote a good resolution of Z. Choose contractible mutually
disjoint neighborhoods Z, for all points z € I, put Y; = 77(Z,) and U, = Z; \ {z}.
Finally let E = 7='(Z). One has the map

T = @zEETm : @a;EEH](U:‘:s‘Q?JI) - HI%:'(Y’ Qf’)

whose composition with H%(Y, Q%) = H*(Y,Q%) is the zero map by Proposition (1.2).

Since Z; is a Stein open neighborhood of an isolated hypersurface singularity, we have

NG T T e e b g T BEISRETLU Y et ar T a7 . e (SRS vy E R N Ly TP LR T RURY YUY SR FRTLN VNr RPN L g
HY(Us, Q) = HY(Uz, Ou,) = 17,

by Schlessinger [Sch, Theorem 2].

As all singularities of Z are non-rigid, all maps 7, are non-zero. Hence their kernels
are proper submodules of the cyclic modules 77 .. The tangent cone to the discriminant
in the semi-universal deformation of each singular point of Z is the linear space which
corresponds to the maximal submodule of T}, (see [Te], p. 653), hence it contains
ker(7;) for each z € Z. Consider the following commutative diagram with exact rows

HY U, Q%) = HA(Y, Q%) — H(Y,0%)

I T D¢.
HY(U,0y) = @,ex HX(Z,T) = HY(Z,T)

Note here that the composition of the maps: @.exH{ (2, T9) = Bes HY(U,, Oy, ) =
@ H Uz, Q) 5 HE(Y,0%) coincides with @ @;. Choose a smoothing direction
¢ € @rEgH{zz}(Z, T2) and let ¢’ denote its image in HE(Y,%); this maps to 0 in
H*(Y,0%), hence (' is of the form v(n) for some n € H'(U,Q%). Then the image
a(n) of 7 in GesH'(Uz, Q) is a smoothing direction at every point. In fact, by def-
inition, a(n) — ¢ € P.ex ker(¢). By the above observations, every element of ker{¢,)
is contained in the tangent cone of the discriminant locus of Def(Z;). This implies that
a(n) is a smoothing direction. Q.E.D.

Corollary (1.4). Let Y be a smooth projeclive threefold with Kodaira dimension
&(Y) = 0. Assume that m(Y') has an infinite order. Then Y has a finite etale cover
w:V = Y such that V is birationally equivalent to an abelian threefold or the product
of a K8 surface and an elliptic curve.

L g AP = -



Proof.  We first prove that m,(Y’) has a finite index abelian subgroup. By the theory
of minimal models ([Mo], [Ka 3]), Y is birationally equivalent to a normal projective
threefold W with only terminal singularities such that mKw ~ 0 for some positive
integer m. Take the index 1-cover 7: Z' — W. Here 7 is a finite morphism which is an
etale morphism outside Sing(W), and Z’ is a Calabi-Yau threefold with only terminal
singularities (cf. [K-M-M, 0-2-5]). By [Ka 1, 4.5] there are a Q-factorial Calabi-Yau
threefold Z with only terminal singularities, and a birational morphism ¢ : Z — Z’ which
is an isomorphism in codimension 1. Note that a 3-dimensional Gorenstein terminal
singularity is an isolated cDV point, and hence, it is an isolated rational hypersurface
singularity. Thus, we have a smoothing f : Z — A! of Z by Theorem (1.3). Let Z,
be a general fiber of f. Then Z; is a smooth Calabi-Yau threefold. By the Bogomolov
decomposition theorem (cf. [Be]), Z; is a finite etale quotient of one of the following
three types: an abelian threefold; the product of a K3 surface and an elliptic curve; a
simply connected threefold. This implies that m(Z;) has a finite index abelian subgroup.
There is a sequence of homomorphisms of fundamental groups:

LT e A R R S W ARAT e A nv-‘.ﬂ‘:rfr'l (Y) '2‘71';( H/) ! e (Z ) L 7%"1“( )’- S taler S gl ST e L A A T

We have the first isomorphism by using a smooth threefold which birationally dom-
inates both Y and W. Since 7 is a finite morphism, the image of 7, is a finite index
subgroup of m(W) by [Ko, 2.9]. By [Ko, 7.8], ¢. is an isomorphism because both Z
and Z’ have only terminal singularities. There is a surjection m(Z;) = 7 (Z) (cf. [Ko,
5.2.2]). Since m(Z,;) has a finite index abelian subgroup, we see that m(Y) also has a
finite index abelian subgroup by the above observation.

We take an etale cover 7 : V — Y corresponding to the finite index abelian subgroup
of mi(Y). Then m (V) is an infinite abelian group by the assumption. Since 7 is an etale
cover and k(YY) = 0, we have x(V) = 0. Now the result follows from the classification
theory of threefolds with x = 0 and ¢ > 0 (cf. [Ka 2]).

§2

Let (X, z) be an isolated rational singularity of a complex space. Let 7 : Y — X be a
resolution of X. Then the invariant (X, z) is defined as the codimension in H*(Y,},)
of the image of the map

(2mi)~'dlog : H'(Y,O}) ®C—+H(YQ‘,)

Note that x(X|z) is independent of the choice of the resolution by [Na, §5].

Proposition (2.1). Let (X,z) be a rational isolated singularity and let (Y, E) —
(X,z) be a good resolution. Then

w(X,z) = dim H'(Y, Q) (log E)(—E)).

AR A



Proof. As X has a rational singularity, H'(Y,0y) = 0 = H*(Y,Oy). There-
fore HY(Y,0%) ~ H*(Y,Z) ~ H* E,Z). Also, H*(E,Og) = 0 hence H*(E,Z) is a
pure Hodge structure of type (1,1), with Gry ~ H'(E,Q}/Q} (log E)(—E)). As also
H'(E,Og) = 0 we have A'(12,C) = 0 so the sequence

0= HY (Y, (log E)(—E)) = H'(Y,,) - H*E,C) =0
is exact. The composition
HYY,03) = H'Y(Y,Qy) - H*E,C)
is just the natural map H*(E,Z) — H*(E,C). This proves the claim.

Theorem (2.2). Let (X,z) be an isolated hypersurface singularity of dimension
three which is rational and not an ordinary double point. Then u(X,z) > 0.

Proof. Suppose that pu(X,z) = 0. Then H'(Y, Q4 (log £)(—E)) = 0 by Proposition
(2.1). In the proof of Theorem (1.1), we have shown that d : H'(Y, Qy (log E)(~E)) —
e S YO (log B)(2TE)) s surjective. This “implies “that  H'(YV Q¥ (log”E)( o) B | A
Hence the map 7 : H'(U, Q%) — HE(Y, Q% (log E)(—E)) is an isomorphism by the ex-
act sequence of local cohomology because HQ(Y, Q2 (log E)(—E)) = 0 by the vanishing
theorem of Guillén, Navarro Aznar and Puerta (cf. [St 3]). Consider the exact sequence

0= HY(Y,Q(log E)(=F)) - H' (Y, (log E)) = H'(E,Q} (log E) @ Ok).
By duality, 2* (Y, (log E)) = RL(Y, Q% (log E)(—E)) = dim¢ T, Since
HY(E, Q5 (log E) ® Og) = Gri. H,(X, C),

we have dim¢ Ty < dimg H?z}(X, C) by the exact sequence.
Now let f = 0 be a defining equation for X in C*. Let X; denote the Milnor fibre of

[ and let T be the monodromy transformation of #3(X;, C). Let 7, be the semi-simple
part of T and define H*(X;, C); = ker(T, — I).

Claim 1. All Jordan blocks of T for eigen-value 1 have size 1. Moreover,
dimcH3(X;,Cy = dimcGri H*(X;,C);.

Proof. 1t suffices to show that Gr!¥ H3(X;,C), = 0 if i # 4. In fact, W is the
weight filtration of N = log(T") on H*(X/,C);, by [St1] Cor. (4.9), hence triviality of
W on H3*(X,,C), implies that T = [ on H*(X}, C);.

We shall use the following facts (cf. [St 1,2]):

(1) N =logT : H*(X;,C) —» H?*(Xy,C) is 2 morphism of the mixed Hodge structure
of type (-1, —1);

(2) N™: Grit _H3(X;,C) 2 GrlY _H*(X{,C), for r > 0;

(3) dimg Gri.Gr¥ H3(X;, C)y = dimg Gry*Gr¥ H3(X;, C), for r > 0 (Hodge sym-
metry);



(4) Assume that (X, z) is a rational singularity. Then GriH3(X,,C) # 0 only if
i=1,2.

For simplicity, we shall write h}’ for dimg GriGr!¥ . H3(X;,C),. By (2), we only
have to show that Gr¥ H3(X;,C); =0 forr = 5, 6, 7. By (4), it suffices to show that
A = 123 = pp® = B2 = A% = AP = 0. By (2) and (4), A" = AY? = 0. By
(2), 3) and (4), we have h2® = h}? = ]! = AP? = 0. Similarly, h1® = A7 =0,
R = p%% =0, h1® = A% = 0 and A3° = hy"? = 0. Thus, dimg H3(X;,C) =
dimg Grl¥ H3(X;,C);. Finally, note that hy* = A" = 0. From this it follows that
dime H3(X;, C); = dimg Gri H3(X,, C);.

We next consider the spectrum Sp(f) of f. Let m be the Milnor numer of f.
Then Sp(f) is a non-decreasing sequence of m rational numbers (ay, ..., @) such that
the frequency n, of @ € Q in this set is given by the dimension of C-vector space
Gri2®H3(X,, C)a, where H3(X;,C), = {z € H¥X;,C);Ti(z) = exp(—2ria)z}.
As f has a rational singularity, n, = 0 unless 0 < a@ < 2 and by the claim above
ny = dimker(7 —id) = dimker(y) = dim H3$}( (,C) where j is the intersection form
prcres mmsmneonafl 3 ( Ny €) infAssorstheslastrequality; see:[St+2y+(2:3) ) =Inv thesabove,<we shave:shown v~orame
that dimc 7% < n;. On the other hand, we have the following

Claim 2. dimT§ 2 X, 7.

o~

Proof. Let @ be the Jacobian ring of f. Then we have an isomorphism T} =
Qs/fQs. By [S-S, §7., p.656], we have the filtration V on @ indexed by rational numbers
such that dimg V,/V5a = na- By the proof of Theorem (7.1) in [S-S], the multiplication
by f on @y maps V, to V,4,. For an isolated rational hypersurface f, n, = 0 for o <0.
Hence fQf C V3Qy, where § is the minimal spectrum number greater than 1. Thus, we
have the inequality dimg Ty > dimg(Qs/Vs@s) = Ta<i a-

Combining Claim 2 with the above observation, one has n, = 0 for @ # 1, 1.e. T is
the identity. This implies that X is an ordinary double point by A’Campo [AC]. Q.E.D.

Proposition (2.3) Let Z be a Calabi-Yau threefold with HY(Z,0z) = 0 which
admits only isolated rational hypersurface singularities. Letm Y — Z be a resolution of
Z. Let p; (1 <i < n) be the singular points on Z which are not ordinary double poinis,
and let F; be the exceptional divisor over p;. Let Z; be mutually disjoint, contractible
Stein open neighborhoods of p; € Z. Set Y; = n='(Z;). Consider the diagram

1<i nﬁ"
Bzt'(9},02) S P H“(Z,',TZ‘-I_)EBF—S— b H'(Y:,0y,).
1<i<n 1<i<n
Then there is an element n € Ext'(Q},07) such that a(n); ¢ im(B;) for all i.
Moreover, when Z is Q-factorial, the same as above holds even if we set Sing(Z) =
{Phph ---;pn}-

Proof.  Let Sing(Z) = {p1y ...y Pny Prt1s oo, P} and let U = Z\{py, ..., pm}. Consider
the following commutative diagram similar to that in the proof of Theorem (1.3):



A T2 N A SR VY - Y

I KX
HY(U,00) % @)1<ian HE(Z,TS) = HY(Z,T})

Denote by ¢; the natural map HZ (Y,Q}) — H*(Y,Q}). In the above diagram, ¢; is
factorized as follows:

H2(2,T4) % HE(Y,0y) o HE(Y,00).
We shall prove that the map
u HE(Y, Q%) — HA(Y, Q%)

is not an injection for each 7 < n. If this is proved, then we take a non-zero element
(i € Ker(s;) for each 1 < n. By the above diagram, there is an element n € Ext'(Q},, Oz)

ssuch :thatsgyora! (n) =, Gr# Owinsparticular,»weshave-@;..0 o(n);+#£:0:4We then:seesthat . aus

a(n): ¢ image(f5;) by the exact sequence

H! (Y,,@y) = H(Z, TZ) HE (Y, Oy).
We shall finish the proof by showing the following claim.
Claim The map ¢; is not an injection for 1 < n.
Proof. (CASE 1: p; € Z is not an ordinary double point)
Since H'(Y,Oy) = H*(Y,Oy) = 0, there are isomorphisms

HA(Y,Qy) = H(Y, Q)" = (H(Y, 0?)(§C)*

Hence ¢; is factored as follows:
(*)

HE(Y,98) — (' (Y, 03) ® C)F — H(Y,0})
Z
The first map is the dual map of (1/272) " dlog : H'(Y;,05.)®z C — Hl(Y;,Q},)

which is not a surjection because u(Z;,p;) > 0 by Theorem (2.2). Thus, ¢ is not an

injection. Q.E.D.
(CASE 2: p; € Z is an ordinary double point, and Z is Q-factorial.)

Since Z is Q-factorial, and Z; is not Q-factorial, the second map in (*) is not an
injection. The map (1/27¢)~'dlog : H'(Y;, Oy,) @z C — H'(Y;,€,) is an injection by
[Na, §2. CLAIM]. The first map in (*) is nothing but the dual of this map. Thus, ¢; is
not an injection. Q.E.D.
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Theorem (2.4). Let Z be a Calabi-Yau threefold with only isolated rational
hypersurface singularities. Then Z can be deformed to a Calabi-Yau threefold with only
ordinary double points.

Proof.  Let p; (1 <1 < n) be the singular points on Z which are not ordinary double
points. We shall use the same notation as Proposition (2.3). Let Def(Z;) be the semi-
universal deformation space of Z; and let Z; be the semi-universal family over Def(Z;).
Def(Z;) has a stratification into Zariski locally closed, smooth subsets S¥ (k > 0) with

the following properties:
1. Def(Z;) = szﬂ S:\:,

2. 59 is a non-empty Zariski open subset of Def(Z;), and Z; is smooth over S;

3. S are of pure codimension in Def(Z;) for all £k > 0, and codimDef(Zl_)Sf‘ <
codimDef(Z‘_)Sf‘-‘ﬂ;

g ARk > Lthen SEYSE S0, © 0 ¢ o o e s e e e

5. Z; has a simultaneous resolution on each S¥, that is, there is a resolution Z¥ of
Zi XDef(z:) S¥ such that Z¥ is smooth over SF.

For example, we can construct such a stratification as follows. Denote by f; the
projection from Z; to Def(Z;). Since Z; has an isolated singularity, the locus of Z;
where f; is not smooth is finite over Def(Z;). Thus, by the theorem of Sard, we can
find a non-empty Zariski open subset S? of Def(Z;) on which f; is a smooth morphism.
Set F? = Def(Z;) \ S?. If we replace Def(Z;) by a small open neighborhood of the
origin, we may assume that all irreducible components contain the origin. Let F be
its irreducible components of maximal dimension. Take their resolutions ﬁ}o’J. Then we
have a flat family of isolated hypersurface singularities over £ by pulling back Z;. The
total space of this flat family admits a resolution, and it is clear by the theorem of Sard
that this resolution gives a simultaneous resolution of the flat family over a non-empty
Zariski open subset of F*7. We may assume that this Zariski open subset does not have
any intersection with the exceptional locus of the resolution. Take the complement of
this Zariski open subset in f:‘,-o‘“’. Then its image on F” becomes a Zariski closed subset
hecause the resolution is proper. Define S} to be the complement of the union of these
Zariski closed subsets and the non-maximal irreducible components in F?. By definition,
Z; has a simultaneous resolution on S}, and S} is smooth of pure codimension. Next we
set F' = FP?\ S}, and continue the same process. Then, we eventually obtain a desired
stratification.

Let us fix such a stratification for each Def(Z;). The origin of Def(Z;) is contained
in the minimal stratum S¥. By definition, the flat family Z; XDef(z;) Sk — SF admits
a simultaneous resolution. This simultaneous resolution induces a resolution =; : Y; —
Z;. Since w; is an isomorphism over smooth points of Z;, these fit together into a
global resolution 7 : ¥ — X. We here apply Proposition (2.3). Let g: Z - A be a
small deformation of Z determined by n € Exzt'(Q},0z). It determines for each i a

11



holomorphic map ¢; : A — Def(Z;) with ;(0) = 0. If p; € Z is not an ordinary double
point, then the image of ¢; is not contained in S¥. Moreover, if we take a general point
t € A\ 0, then ¢;(t) € S¥ for some k' < k by the property (4) of the stratification.
Since Def(Z;) is a versal deformation space for the singular point of 2, at ¢;(t) (cf. [Lo
(6.15)]), we can continue the same process as above for Z; by using Def(Z;). Finally, we
reach a smooth Calabi-Yau threefold or a Calabi-Yau threefold whose singular points
all have ¢ = 0. In the first case, we have finished, and in the second case, the resulting
Calabi-Yau threefold has only ordinary double points by Theorem (2.2). Q.E.D.

Remark Since Q-factoriality is preserved by a small deformation by Kollar-Mori
[K-M, 12.1.10], it follows from the above argument that any Q-factorial Calabi-Yau
threefold has a flat deformation to a smooth Calabi-Yau threefold.

§3.

Let Z be a normal projective variety with only isolated rational singularities. Denote

T by 'Weil(Z) (resp. ‘Cart(Z)) the group of ‘Weil divisors of 'Z (resp.” the group of Cartiér”

divisors of Z). Set Sing(Z) = {p1,...,pa} and take a resolution m : ¥ — Z of the
singularities such that the m-exceptional locus is a divisor with simple normal crossings.
Put E; =77 1(p;) and E = Li<icnBi. Let E; = I; E; ; be the irreducible decomposition
of F;. Take a sufficiently small open neighborhood Y; of F; in Y. We then have the
following isomorphism of abelian groups:

(3.1)

Weil(Z)/Cart(Z) = im{H'(Y,0}) —» @ (H'(Y:, 0}.)/5;Z(E: ;)

1<i<n

Since p; € Z is a rational singularity, we have
H\(Y;,0y.) = HX(Y,,Z) = H*(E;, Z).

Hence Weil(Z)/Cart(Z) is a finitely generated Abelian group. We let o(Z) denote

its rank.

Theorem(3.2) Let Z be a normal projective threefold with only isolated rational
hypersurface singularities such that H*(Z,0z) = 0. Define def(Z) = by(Z) — bs(2),
where bj(Z) denote the i-th Betti number for singular cohomology of Z. Then def(Z) =
o(Z). Moreover, if Z has a smoothing [ : Z — A", then we have

def(Z) = ba(Z) + EpeSing(Z)m(p) —b3(Z:)
fort € A' —{0}.

Set ¥ = Sing(Z) and U = Z \ E. First we need the following lemma.

12
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Lemma (3.3).(cf. [Di])

def(Z) = dimg coker[ H3(U, C) — H4(Z, C)).

Proof. Consider the exact sequence of local cohomology:

HYUY = Hi(Z) - HYZ) = HY(U) = H(Z)

Since Z has only isolated rational singularities, H3.(Z) = 0 by [St 2, (1.12)]. Thus,
we have dimg coker[H*(U) = HE(Z,C)| = by(Z) — by(U) by the exact sequence. On
the other hand, by duality, dimg H¥(U) = dimg HX(U). There is an isomorphism
H*(U) = H*(Z,X), where H*(Z,X) is the 2-nd relative cohomology of the pair (Z, X).
Since ¥ is isolated, we have H*(Z,%) = H*(Z). Q.E.D.

Teiina (3%4):" “bet Z-be a norinal projective threcfold“with ‘orily isolated Nypersufe: - "
face singularities. Suppose that 7Z has a smoothing f : Z — A' by a [-parameter flat

deformation, i.e. Z = f~1(0) and Z, is a smooth variety for t # 0. Denote by m(p;) the
Milnor number of (Z,p;). Then we have

def(Z) = b3(Z) + Em(p:) — bs(2:)

Proof.  Let B; be the Milnor fiber of (Z, p;). Then we have an exact sequence
0= H*(Z) = H*Z2,) - @H*(B:) = H'(Z) » H*(Z:) = 0.
By the exact sequence we have
bs(2) + Sm(p) = ba(22) = ba(Z) — ba( ).
By Poincaré duality, b4(Z;) = b2(Z;). Since by(Z) = by(Z), the result follows. Q.E.D.

The final step is to prove the following.

Lemma (3.5). Let Z be a normal projective threefold with only isolated rational
hypersurface singularities. Assume that H*(Z,0z) = 0. Then we have

o(Z) = dimg coker[H*(U) = H(Z)).

Proof. We shall use the same notation as above. Consider the commutative
diagram (3.6)

13



H3(U) % HA(Y) — HA(Y)
{ Té 1
H3U) 3 HY(Z) — HYZ)

where the horizontal sequences are exact, and the vertical maps are edge homomor-
phisms of the speciral sequence of Leray. By a theorem of Goresky-MacPherson (cf.
(St3, (1.11), (1.12)], the map ¢ fits into the exact sequence (3.7)

0— HY(Z) = Hg(Y) = HY(E) = 0.
Taking the dual of (3.6) and (3.7) we have

(3.6)
0 +— im(¥)" «— H*(E) +— H*Y)
L e i bt ey e e I A S A L R
0 +— im(p)* «— H3(Z)* « coker(yp)*
and
(3.7

0 +— HMZ) +— HYE) +— @;jC[E.-,,-] «— 0.

By (3.6)" and (3.7)" we have

coker(p)® = im[H*(Y) = H*(E)/ECg, ;-

Since H*(Z,0z) = 0 and Z has only rational singularities, we have H?(Y,Oy) = 0.
From this it follows that

coker(y)* = im[H'(Y,0;) @ C = H*(E)/ECg, ;1]
Comparing this with (3.1), we have the result. Q.E.D.

Example (3.8). Let Y be a smooth Calabi-Yau threefold with H'(Y,Oy) =
0. Assume that there is a birational contraction 7 : ¥ — Z of rational curves on
Y. Then Z has only Gorenstein terminal singularities because 7 is a small birational
contraction. Thus, Z is a Calabi-Yau threefold with only isolated rational singularities
(cf. [Re 1]). Let Sing(Z) = {pi,.-.,pa}, and let C; = #~'(p;). Then C; is a iree of
smooth rational curves. Assume that Z is smoothable by a flat deformation. Since
H*(Y,Oy) = 0 by Serre duality, we can apply Theorem (3.2). Let n; be the number

14



of irreducible components of C; and let L C H,(Y,C) be the subspace spanned by the
2-cycles associated with the exceptional curves of w. Put [ = dimmgc L. Then we have

bo(2,) = ba(Y) — |

b3(2,) = b3(Y) + Zini + Eim(p;) — 2!
ba(Z:) = ba(Y) — 1

We can also give a geometric description of the mixed Hodge structure on H3(Z) when
Z 1s a normal projective threefold with only isolated rational hypersurface singularities
and with H*(Z,0z) = 0. Let Z; be a contractible Stein open neighborhood of p; in Z.
Denote by Weil(Z;) (resp. Cart(Z;)) the group of Weil divisors of Z; (resp. the group of
Cartier divisors of Z;). Then we have

(3.9)
Weil(Z;)/Cart(Z:) = H'(Y;, O}.)/ ;2] E; ;]

Proposition (3.10). Let Z be a normal complete algebraic variety of dimension 8
which admits only isolated rational singularities. Assume that H*(Z,0z) = 0. Then the
weight filtration of the mized Hodge structure on H*(Z) has the following description:

Cri¥ H3(Z) = 0 for k # 2, 3;

dime Wo(H?(2)) = Sio(pi) — o(2).

Proof. Tt follows from the fact that Z is a complete algebraic variety that Gr}¥ H3(Z) =
0 for k£ > 3. We shall prove the second statement. Consider the long exact sequence of
mixed Hodge structures

(3.11)

o HYU) S H(Z) — H(Z) = H3(U) —> ...
Let 7 : (Y, E) = (Z,X) be a good resolution. By a theorem of MacPherson (cf. [St
3, (1.11), (1.12)}, we have a surjection of mixed Hodge structures H*(Y) — H?*(U) and
an exact sequence of mixed Hodge structures
0— HA(Y)— H*E) = Hi(Z)—0.
Therefore, H}(Z) = H*(E)/Z; ;C[E; ;], o(pi) = dim H},,(Z) and
(3.12)

im(@) = im[H*(Y) = HYU) — H*(E)/%; ;C[E:;]

Since U is a smooth open variety, we have Gr}¥ H3(U) = 0 if ¥ < 3. Hence by (3.11)
and (3.12) we obtain

Wg(HS(Z)) = H%(Z)/[I‘H(Q’) = COkCl‘“r‘Ig(Y) — f[Z(E)/E,JC[D,’J]]
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-. -relation.between. [C;] .in. Hg(}?., C). .We.then have.a small.deformation of Y ,in which,

Since H2(Y,Oy) = 0 by the assumption, we see that dimg Wo(H?(Z)) = Sio(pi)—o(Z).
The fact that H2(Z) is purely of weight two has been proved in the course of the proof
of Theorem (2.2) Q.E.D.

Corollary (3.13). Let Z be a Calabi-Yau threefold with only isolated rational
hypersurface singularities. Then Z can be deformed to a Calabi-Yau threefold Y with
only ordinary double points whose cohomologies H'(Y) (0 < i < 6) have pure Hodge
structures.

Proof. Z is deformed to a Calabi-Yau threefold Y with only ordinary double points
{py, -y Pu} by Theorem (2.4). By [St 2, 1.12] H*(Y) always has the pure Hodge structure
for i > 4. It is clear that H*(Y') has the pure Hodge structure for : < 2. Hence we only
have to prove that H3(Y) has the pure Hodge structure. Let ¥ be a small resolution
of Y, i.e. its exceptional locus are disjoint union of {—1, —1}-smooth rational curves C;
(1 < i < n). By Proposition (3.10) we have dimg Wo(H?*(Y)) = E<icno(pi) — o (V).
Suppose that the right-hand side is not zero. Then it follows that there is a non-trivial
some ordinary double points on Y are smoothed by [Fr, §4., (b)]. This implies that we
may assume that E,<i<,0(p;) — o(Y) =0. Q.E.D.
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