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Global smoothing of Calabi-Yau threefolds

Yoshinori Nanlikawa and J.H.M. Steenbrillk

Introduction

Friedman [Fr] has studied the relationship between loeal and global deformations of
a threefold Z with isolated hypersurfaee singularities whieh adnlits small resolutions.
One of his main results is as folIows. Let Z be a Moishezon threefold with only ordinary

. doubIe~.points.i{Ph';: ... i-PnJ... =.,Assume ~hat the ean.onical.line~buI1ql~:-I(z .of ~\.<,i~. trivi~,:

Let 7r : Z ---+ Z be a sIllall resolution and let Ci := rr- 1(pd ~ pi be the exceptional
curves. Then he showed that if there is a relation ~l<i<nO'dCi] = 0 with (Yi f:. 0 for all
i in IJ2 ( Z, C) and if the Kuranishi space Def( Z) of Z- i; Sillooth, then there is aglobai
Sllloothing of Z by a flat defonnation, that is, there is a proper Hat lTIap 1 : Z ---+
ßl from an analytic space Z to a I-dilnensional disc ßl such that 1- 1(0) = Z and
that /-1 (t) is a smooth threefold for t f:. O. On the other hand, CleInens has cOlllpared
the topology of Z with that of Zt = /-1 (t) in [Cl]. We have a silnple relation e( 2) =
e(Zt) + 2n for the Euler numb.ers. However, the relations between Betti nUIllbers are not
so siInple; there is a phenomenon called the defect 01 singu/arities. (See also [W], [Di].)

One can observe froI11 these results tha.t local defofl11ations of si ngularitics (Z, Pi) are
not independent in global deforIllations of Z. The purpose of this paper is to generalize
the above results to the case where Z has more general isolated hypersurface singularities
which do not necessarily have slnall resolutions, and to clarify thc mechanislll of the
dependence and the defect of singularities. We can recognize a special importance in
studying such things for Calabi-Yau threefolds in the works of several people (cf. [I-I] l [G­
I-I], [W], [Wi], [Re 2]). We shall explain our results in more detail. Let Z be a cOlnplete
algebraic variety with only isolated rational singularities. Let vVeil( Z) (resp. Cart(Z))
be the group of vVeil divisors of Z (resp. Cartier divisors of Z). Then the abelian group
Weil(Z)jCart(Z) is finitely generated (cf. [Ka.1, Lemma (1.1)]). We denote by O'(Z)
the rank of this group. \tVhen 0'( Z) = 0, Z is called Q-factorial. In this paper, by a
Calabi-Yau thrcefold, we mean a projective threefold Z with only rational singularities,
and with J(z r"V O. Note that there is an exaIl1ple of a Calabi-Yau threcfold Z with
one ordinary point where Z reITIains singular under any Rat defonnation ([Na, (5.8)]).
This example suggests that some global condition is needed for Z to be smoothable.
The nation of Q-factoriality is nothing but this global condition, and it also has a deep
connection with the defect of singularities in a sn10othing. Our n1ain results are the
following.
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Theorem(1.3) Let Z be a Q-factorial Calabi- Yau threefold which admits only
isolated rational hypersu1jace singularities. Then Z can be deformed to a smooth Calabi­
Yau threefold.

Theorem(2.4) Let Z be a Calabi- Yau threefold with only isolated rational hy­
persurface singularities. Then Z ean be deformed to a Calabi- Yau threefold with only
ordinary double points.

Theorem (3.2) Let Z be anormal p1'ojective threefold with only isolated rational
hypersu'tjace singularities such that H 2(Z,Oz) = O. Let bi(Z) denote the i-th Betti
71u1nber for the singula1' cohomology of Z. Then a( Z) = bol (Z) - b2 (Z). A101'eover, if Z
has a s1noothing f : Z --r ß 1, then we have

a(Z) = b3 (Z) + L m(p) - ba(Zd
pESing(Z)

for t E ß I - {O}, where 1n(p) denotes the Milnor number 01 the singularity (Z, p).

" .·""Theon~m-( r. 3) "is 'Clos'ely 'i·ehi.tea tü' the claSsifi~atioil.theCiry '.gf '~-lgcbi-:äit thi·e'ef61ds. \ifi
fact, let }/ be a snlooth projeetive threefold with Kodaira diInension zero. By the thCOI'y
of minilnal models in dimension 3 (cf. [Mo), [Ka 3]), Y is birationally equivalent to a
nornlal projective threefold W with only terminal singularities such that m[(w rv 0 for
a positive integer m. We take thc index I-cover T : Z' --+ W (cf. [K-M-M, 0-2-5]). Here
Z' is a Calabi-Yau threefold with only tenninal singularities, and T is a finite lllorphislll
which is etale outside Sing(W). We ean take a Q-factorial Calabi-Yau threefold Z in
such a way that Z is birational equivalent to Z' (cL [Ka 1, (4.5)]). By Theorcm(1.3),
Z can be deformed to a snlooth Calabi-Yau threefold Zt. Then Y inherits some nicc
properties from Zt through this construction. For exaITIple, as pointed out by Kollar in
the preprint version of [Ko], we can prove that 1r] (Y) has a finite index Abelian subgroup
by using the Bogomolov deconlposition of Zt (cL [Be]). As a consequence, we have a
generalization of the Bogomolov decomposition to a smooth projective threefold with
Kodaira dimension zero:

Corollary(1.4)(Kollar) Let Y be a srnooth projeetive threefold with [\odaira di­
rnension O. Assulne that 7fl (Y) has infinite order. Then Y has a finite elale cover
7f : V --r Y such that V is birational/y equivalent to an abelian threefold or the produc/.
0/ a [(S Burface and an elliptic curve.

The proofs of (1.3) and (2.4) are both based on the fact that thc Kuranishi space
Def( Z) of Z is sll100th (er. [Na, Theorem A], [Ra], [Ka 4]). In this paper, we shall intro­
duce two different approaches to the sITIoothing problem; one of them uses the vanishing
theoreITI of Guillen, Navarro Aznar and PlIerta (cf. [St 3]) whieh is a generalization of
Kodail'a-Akizuki-Nakano vanishing theoreln, and another one uses the invariant J-l intro­
duced in [Na §5] for an isolated rational singularity. A merit of the first approach is that
we can find a slnoothing direction in Def(Z) in one step. But this approach cannot be
applicd to a non-Q-factorial Calabi-Yau threefold. On the other hand, if we elnploy the
second approach, then we need some induction steps with respect to the invariant J-l to
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find out a suitable sn100thing direction in D~f(Z). However, we ean prove both theorems
(1.3) anel (2.4) by this 111ethod.

In §1 we shall prove Theoren1(1.3) by the first method. The key result is the following
theoren1 whieh is proved by using the vanishing theoreln of Guillen, Navarro Aznar and
Puerta:

Theorem(l.l) Let (X,x) be an isolated singularity 0/ a complex space) and let
7r : Y --+ X be aresolution 0/ X such that its exceptional divisor E has only normal
crossings. Let U = X \ {x}. Then we have a natural map T : /1 1(U, n 2) -t Ilk (Y, f1~ )
as a coboundary map 0/ the exact sequence o/local cohornology.

Suppose that (X, x) is a 3-diJnensional isolated G01'enstein Du Bois singularity for
which T is the zero 1nap. Then (X, x) is rigid.

Note here that H 1(U, f1b) ~ HO(X, Ti) by Sehlessinger [Seh, Theorem 2] if (X, x)
is an isolateel hypersurface singularity of dimension;::: 3. Going back to the original
situation, we let Z be a Calabi-Yau threefold with only isolated rational hypersurface
singularities, and let Y be aresolution of Z. For each singularity x E Z, we have

~. ~'l-•• J.-'l.,<j.~';~,1 ... ,,>--,the t same4 Iilap.. ....,'T····':,T1 .• :,~··"H2l--.(ly,(f!2.).4äs·~above·o1where~Ej,,~is~lhe'"e·xceptiönäl(divisc1r ~, \"'.~" t\
x· Z ,x E;r'}~ , x

over x E Z . Take an arbitrary smoothing direetion ( E HO(Z, Ti). Then, by using
the Q-factoriality of Z, one ean find an element 71 E EBxESing(Z) ker(Tx ) such that ( + 17
comes from Ext 1(f1k, Oz). By cOlnbining Theorem(1.1) and SOll1e results concerning thc
discrilninant of the semi-universal defonnation spaee of a hypersurface singularity, we
see that 1]x E Ti ,x is eontained in the tangent cone of the diseriminant locus for every
x E Sing(Z). Thus, we have been able to find a sn100thing direction in Extl(nk, Oz).

In §2 we shall prove Theorem(2.4) by the second method. Let (X, x) be a rational
isolated singularity, anel let 1r : Y -t X be its resolution. Then J-1(X, x) is defined to be
the dimension of tbe eokernel of the nlap (21ri)-ldlog : H 1(y, O)~ )Q9zC -t H1(y, n}).
We shall prove that, for a 3-dilnensional isolated rational hypersurface singularity (X, x),
J-1(X, x) = 0 if anel only if (X, x) is a sn100th point or an ordinary double point (cf.
Theol'eln(2.2)). The proof uses the theory of spectrum of a hypersurface singularity
developed by Arnold, Steenbrink, Varehcnko, Morihiko Saito and others. The proof of
Theorern(2.4) goes as folIows. Assume that there is a singularity with J-1 > 0 on a given
Calabi-Yau threefold. Then one ean find a sll1all defonnation" of Z so that the lying
singularity becomes bettel' in the following sense (Proposition(2.3)): for any resolution
Y of Z, this small deformation is outside the ilnage of the map Def(Y) --+ Def( Z).
By some induetive proeess, Z is eventually deformed to a Calahi-Yau threefold whose
singularities all have {L = O. This implies that this Calabi-Yau aetually has only orclinary
double points.

In the final seetion, Theorem(3.2) is proved, and at the salne time, we consider the
Hodge theoretic meaning of a smoothing in dill1ension 3. For example, the following
theorern is proved.

Corollary(3.13) Let Z be a Calabi- Yau three/old with only isolated 'rational hy­
persu1jace singularities. Then Z can bc deforrned to a Calabi- Yau threefold Y with only
ordinary double points whose cohomology groups Ili(y) (0 ~ i ~ 6) have a pure Hodge
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structure .

The argluuents here are I110re 01' less standard. In particular, Theorem(3.2) follows
ill1Inediately from a theorem of Goresky-~1acPherson. The assumption that dilll Z = 3
is essential.

§1.

Let (X, x) be an isolated singularity of a complex space. Let X be a good represen­
tative for this germ and let U = X \ {x}. Let 1r : Y -f X be aresolution of X such
that 1r- 1(U) ~ U anel its exceptional divisor E has simple normal crossings. Identifying
1r-

1(U) with U, we have a natural map T : H1(U,flb) -f 1-[1(n~) as the coboundary
Inap of the exaet sequence of loeal COh0I110Iogy. vVe claim the following

Theorem(l.l). Suppose that (X, x) is a 3-dirnensional isolated Gorenstein Du Bois
singularily for which T is the zero map. Then (X, x) is rigid.

.. ._frpof.. F)rst .Qbs~rv~,.th~a,~,.~.~is Gorf?I)~t~ip",.JX, x ).,is rjgid)f a_n~. Q,tJ,!.Y)J H.~(fl, ~b )._~~°by Sehlessinger [Seh, TheoreIl1 2). We ean factorize T via H1(n} (log E)( -E)). As
EI2(n~(log E)( -E)) = 0 by the vanishing theoretn of Guillen, Navarro Aznar and Pllerta
(cf.[St 3]), the map [[leU, nb) -t H~(ni,.(logE)( -E)) is surjective. Define

w~ := n~ tl10d torsion ~ n~,./n~(logE)( -E).

Then we have the exaet sequence

and a faetorizes via
H1(E,w1) ~ H1(E, n~,.(log E) (9 OE)

which is to be interpreted as the natural map Gr}H3 (E, C) -t Gr}H{x} (X, C); by
sell1ipurity 0' is the zero map (see [St 2, Theorem 1.11]). Hence 0 is the zero map, and
H~(ni,.(logE)( -E)) -t H~(ni,.) is injectivc. So we have proved that

iIn(T) ~ H1(n~,.(1og E)( -E)).

As (X, x) is a Gorenstein Du Bois singularity, we have that Hi(y, C)y( - E)) = 0 for
i = 1,2. We consider the spectral sequence of hypercohoITIology

where the abutment °follows [rom the fact that for each point y E E the complex
o},. (log E)( - E) is acyclie. By the vanishing theorem quoted above, the only possibly
nonzero tenns in EI are Er for all panel Et,l, E:,2 and E;,l. As the sequence eonverges
to 0, we have E:,2 = EI2(y, O~(log E)( -E)) = 0 and the map dl : E:,l -+ E;,l, i.e.
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is surjeetive.
So suppose that T is the zero map. Then H~(n~(log E)( - E)) = O. \Ne have the

surjeetion
H~(n~(logE)( -E)) -r fJ~(n~(1ogE))

as H2 (E, n~,,(1og E) 0 VE) = Gr}IJ{x} (X, C) = 0. Henee also Hk(n~(1og E)) =

0. By duality we get HI (Y, n~" (log E) (- E)) = 0 and hence by the remark above
fI I (Y, n~,,(log E)( - E)) = O. We have the exaet sequenee

henee II I (U, Ob) = O. This Ineans that (X, x) is rigid.

Remark T is a hOlnolnorphism of 0 x,x-modules, so in general ker(T) is an 0 X,x­

submodule of H1(U,Ob). By the proof above, dilnker(T):::; diminl(T).

Let Z be a Calabi-Yau threefold with ouly isolated rational hypersurfaee singularities.
We assurne that Z has at least oue singular point. If HI(Z, Oz) #- 0, theu the Albanese

-··;....ap Z --+ Alb(Z) is -a' fibel: bu'ndI~ by K~w~~at~" [K~ -2] ..'sir;~~ ·Z' 1;'aS: o~fy ~ iso'lat~~r

singularities, this iIl1plies that Z is smooth. Thus, we ean assume from the start that
H I (Z, Oz) = O. Let 1r : Y -+ Z be a good resolution of Z. Then there is an injection
T~ -+ 1r*O~. Let x E Z be a singular point, and let Ex be the exeeptional divisor of 7r
over x. We denote by <Px the composition of the maps H{x}(Z, T~) -+ H{x}(Z, 7r*O~) -+
H1~JY, n~,,). Let [, : Hk~ (Y, Di,,) -+ I{2(y, Di,,) be the natural Il1ap.

Proposition(1.2) Assu1ne that Z is Q-facLorial. Then" 0 <Px : H{x}(Z, T~) -+
f/ 2 (y, n~,,) is the ze'I'O map.

Proof. Take a sufficiently snlall open neighborhood Zx of x E Z, and put
Ux = Zx \ {x} and Yx = 1r-

I (Zx)' Since Hl(Ux,n~~) ~ H1(Ux,G U ) ~ H{x}(Zx,T~;r) by
8ehlessinger [8eh Theorem 2], cPx is idcntified with the coboundary 111ap H 1

( UXl nb.J -+
H1:r(Yx , ni';r) of thc exact sequence of IDeal cohOIl1ology. Here Ux and 7r- 1(Ux ) are iden­
tified. Thus, the nlap " 0 <Px is identified with the composition of thc following lnaps:

Since the natural Inap H1(Y, n~,,) -+ H 1(Yx , nt) is the dual Inap of L, it suffices to show
that the COll1position of the maps:

is the zero lnap. Consider the eommutative diagram

Hl (Y, Vi" )@zC --+ HI(Ux , VU:r)@zC

(27ri)-Id log .!- .!- (27ri)- l d log

HI(y, D~,) --+ H1(Ux, flh;r)
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The vertical rnap on the left-hand siele is an isomorphism by Hodge theory because
f11(Z, Oz) = H7.(Z, Oz) = O. The top horizontal map is the zero Inap by [K-M, 12.1.6]
since Z is Q-factorial. Hence the map fl l (Y, O~.. ) --+ H 1(Ux , Oh;J is thc zero map. Q.E.D.

Theorem (1.3). Let Z be a Calabi- Yau threefold which is Q-factorial and whose
singular points are all isolated hype1'surface singularities. Then Z is smoothable.

Proof Let 1:: denote the set of singular points of Z. Let U denote the regular locus
of Z and let 1f : Y --+ Z denote a gooel resolution of Z. Choose eontractible mutually
disjoint ncighborhoods Zx for all points x E ~, put Yx = 1f-

1(Zx) and Ux = Zx \ {x}.
Finally let E = 1f-l(~). One has tbe I1lap

T = EBxEETx : EBxEEH
I (Ux , 0b;r) --+ H1(Y, O~.. )

whose cOfnposition with H~(Y,O}) --+ H7.(y, n~.. ) is the zero map by Proposition (1.2).
Sinee Zx is a Stein open neighborhood of an isolated hypersurfaee singularity, we have

by 8chlessinger [8eh, Theoreln 2].
As all singularities of Z are non-rigid, a11 Inaps Tx are non-zero. Henee their kerneis

are proper submodulcs of the cyclie 1110dules Ti x. The tangent cone to the discriminant,
in the senli-universal defornlation of eaeh singular point of Z is the linear spaee which
corresponds to the 111axinlal submodule of Ti x (see [Te], p. 653), henee it contains
ker( Tx ) for each x E Z. Consider the following ~onlmutative diagrain witb exact rows

11

HI(U, 8u) ~ Ef7xEE H;(Z, T~) ~ HO(Z, Ti)

Note here that the composition ofthe 111aps: Ef7 xEE H{x}(Z, T~) ~ EBxEEHl(Ux, 8 u;r) ~
Ef7xEE H2

( Ux,nb;r) -.; H};(Y, n}) coincides with Ef7 4>x. Choose a sll100thing direction
( E EBxEEH{x}(Z, T~) anel let (' denote its ilnage in 11~(Y, n}); this nlaps to 0 in

H7.(Y,n~r), hence (' is of the form ,(1]) for SOUle 1] E 1{I(UJJb). Then the ilnage
0:(1]) of 1] in EBXEE H1(Ux , 0b;r) is a snloothing direction at every point. In fact, by def­
inition, 0:(1]) - ( E ffixEE ker(<Px). By the above observations, every element of ker( <Px)
is contained in the tangent eone of the discrill1inant locus of Def(Zx)' This ilnplies tbat
0:(1]) is a smoothing elirection. Q.E.D.

Corollary (1.4). Let Y be a s1uooth projeclive thrcefold with [(odai-ra dimension
K:(Y) = O. Assu'me thai 1fl (Y) has an infinite order. Thcn Y has a finite etale cover
1f : V --+ Y such that V is birationally equivalent to an abelian threefold or the produet
01 a [{3 sU'lface and an elliptic curve.
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Proof We first prove that 7ft{Y) has a finite index abelian subgroup. By the theory
of minimal ITIodels ([Mo], [Ka 3]), Y is birationally equivalent to a, normal projective
threefold W with only tern1inal singularitics such that 1nl(w '" 0 for sOlne positive
integer 1n. Take the index I-cover T : Z' -t lV. Here T is a finite morphism which is an
etale 1110rphisln outside Sing(W), anel Z' is a Calabi-Yau threcfold with only terminal
singularities (cf. [K-M-l\1, 0-2-5]). By [Ka 1, 4.5] there are a Q-factorial Calabi-Yau
threefold Z with only terminal singularities , and abirational morphisn1 9 : Z -t Z' which
is an isomorphism in codimension 1. Note that a 3-dimensional Gorenstein terminal
singularity is an isolated cDV point, and hence, it is an isolated rational hypersurface
singularity. Thus, we have a smoothing f : Z -t 6,1 of Z by Theorem (1.3). Let Zt
be a general fiber of f. Then Zt is a SITIooth Calabi-Yau threefold. By the Bogomolov
decoInposition theoreln (cf. [Be]), Zt is a finite etale quotient of one of the following
three types: an abelian threefold; the product of a K3 surface and an elliptic curvej a
simply connected threefold. This implies that 7ft{Zt) has a finite index abelian subgroup.
There is a sequence of homoInorphisIl1S of fundamental groups:

We have the first isomorphism by using a smooth threefold which birationally dOIl1­
inates both Y and l'V. Since T is a finite morphisIn, the image of T. is a finite index
subgroup of 7f, (W) by [Ko, 2.9J. By [Ko, 7.8], g. is an iSOInorphisIl1 because both Z
and Z' have only tern1inal singularities. Thel'c is a surjection 1ft (Zt) -+ 7fl (Z) (cf. [Ko,
5.2.2]). Since 7f} (Zt) has a finite index abelian subgroup, we see that 7ft (Y) also has a
finite index abelian subgroup by the above observation.

We take an etale cover 'lT : V -+ Y corresponding to the finite index abelian subgroup
of 7ft (Y). Then 1ft{V) is an infinite abelian group by the assumption. Since 1f is an etale
cover and K(Y) = 0, we have K(V) = O. Now the result follows from the c1assification
theory of threefolds with K = 0 and q > 0 (cf. [Ka 2]).

§2

Let (X, x) be an isolated rational singularity of a cOinplex space. Let 1f : Y -+ X be a
resolution of X. Then the invariant /-l(X, x) is defineel as the codimension in fft (Y, n~.. )
of the iInage of the Inap

(27fi)-ldlog: Ilt(y, Vi.. )® C -+ H 1(y, n~,).

z

Note that /-l(X, x) is independent of the choice of the resolution by [Na, §5].

Proposition (2.1). Let (X, x) be a rational isolated singuladty and let (Y, E) -7

(X, x) be a good resolution. Then

/-l(X, x) = din1 H t (Y, n~.. (log E)( - E)).

7



Proof As X has a rational singularity, Jfl(y, Oy) = 0 = H 2(y, Oy). There­
fore H1(y,Oy) ~ H2 (y,Z) ~ H 2 (E,Z). Also, H2(E,OE) = 0 hence JJ2(E,Z) is a
pure Hodge structure of type (1,1), with Gr} f'V H1(E, !1}/O}(log E)( -E)). As also
H1(E, OE) = 0 wc have H 1(E, C) = 0 so the sequence

is exact. The composition

is just the natural 111ap H2(E, Z) --+ H2(E, C). This proves the clail11.

TheorelTI (2.2). Let (X, x) be an isolated hypersurface singularity of di7nension
three which is rational and not an 01'dina1'y double point. Then J.l(X, x) > O.

Proof Suppose that J1.(X, x) = O. Then H1(y, !1}(log E)( -E)) = 0 by Proposition
(2.1). In the proofofTheoreln (1.1), we have shown that d: Hl(Y,!1}(logE)(-E))--+

....~:.", ... -..~ 1,.lfl{y/nr(lö~fE) c.:!.nEn~~is ~suf:j'ectlV~:~{~jTliis·"iffiplies';~thKf'· H"11(Y,1;nrOo"ffEYC2"E)f ~,j'~(f'h."~Qtj~". -,-~

Hence the map T : H1(U, nb) --+ H~ (Y, !1i.. (log E)( - E)) is an isoIll0rphism by the ex-
act sequence of local cohomology because H 2 (Y, n} (log E)( - E)) = 0 by the vanishing
theorem of Guilh~n, Navarro Aznar and Puerta (cf. [St 3]). Consider the exact sequencc

o= H 1(Y, n} (log E)( - E)) --+ fl 1(Y, n~ (log E)) --+ IJ 1(E, n~, (log E) 0 OE)'

By duality, h1(y, n{,(log E)) = h~(Y, ni,(log EH-E)) = dirne Tl. Since

H1(E, n~,(log E) 0 OE) = Gr~H{x}(X, C),

we have dilne Tl :::; dime H{x} (X, C) by the exact sequence.
Now let f = 0 be a defining equation for X in C 4

• Let X j denote the Milnor fibre of
fand let T be the Inonodrotny transfonnation of IJ3(Xj, C). Let '1~ be the selni-simple
part of T and define H3 (Xj , Ch = ker(T~ - I).

Clain1 1. All Jordan blocks of T fo1' eigen-ualue 1 haue size 1. A10reover)
dinl,e H3 (Xj, Cl = dime GrJ.-'/f3 (Xj, Ch·

Proof. It suffices to show that Grr' H 3 (Xj, Ch = 0 if i #- 4. In fact, ~v is the
weight filtration of lV = 10g(T) on 113(Xj,C)I, by [Stil Cor. (4.9), hence triviality of
W on H3(Xj, C)l implies that T = J on H3 (Xj, ch.

We shall use the following facts (cf. [St 1,2]):

(1) 1'/ = log T : H3(X j, C) --+ H3( X j, C) is a morphisnl of the mixed Hodge structure
of type (-1, -1);

(2) Nr : Gr~~rH3(Xj, Ch ~ Gr~~rJJ3(Xj, Ch for r ~ 0;

(3) din1e Gr~GT~vH3 (Xj ,Ch = ditTIe GTF-iG1'~ H 3 (Xj, Ch for r 2:: 0 (Hodge SylTI­
rnetry);

8



(4) Asslune that (X, x) is a rational singularity. Then Gr~H3(Xj,C) =J. 0 only if
i = 1,2.

For simplicity, we shall write h~,i for di1TIc Gr~Grrr.iH3(Xj, ch. By (2), we only
have to show that Gr;v H3 (Xj, Ch = 0 for r = 5, 6, 7. By (4), it suffices to show that
h1,4 I 2,3 } 1,5 } 2,4 } 1,B } 2,5 0 B (2) d (4) h1,4 hO,3 0 B

1 = 21 = 2I = 21 = LI = LI = . y an 'I = I = . y
(2), (3) ancl (4), we have hi,3 = h~,2 = hi,1 = h;,2 = O. Similarly, h~,5 = h~I,3 = 0,
h2,4 } 0,2 0 hl,B h-2•3 0 cl h2,5 h- 1,2 0 Tl d· H 3 (X C)1 = 21 = , 1 = 1 = an I = 1 =. lUS, ImC j, 1 =
dime Gr~H3 (X j , ch. Finally, note that h~,3 = hi,I = O. Frotn this it follows that

dime H 3 (Xj , Ch = dime Gr}fI3 (Xj, C)I'

We next consider the spectrum Sp(f) of f. Let m be the Milnor nUIner of f.
Then Sp(f) is a non-decreasing sequence of rn rational numbers (al, ... , O'm) such that
the frequency n o of a E Q in this set is given by the dimension of C-vector space
Gr~-0][13(Xj,C)0, where H 3 (Xj,C)0 = {x E H3(Xj,C);1~(x) = exp(-21ria)x}.
As f has a rational singularity, n o = 0 unless 0 < a < 2 and by the claim above
nl = dirn ker(T - id) = dirn ker(j) = diIn H{x} (X, C) where j is the intersection fonn

~,,,,.:."4p .". ...~'-;'!··~on'"JH 3(:X'],,;" 8) ::fl(l;IAs~fop;"the .lilastC{equali tYi"see :{Sh"2;~ (2~"3)n~~Inl'the~above:,"',we :have<showm 't "I ~)I'\~p.!i.tltr ">:

that dime Tl ::; nl' On the other hand, we have the following

Claim 2. din) Tl ;::: LO::;l no·

Proof Let Q j be the Jacobian ring of J, Then we have an isoInorphisIn Tl ~

Qj / fQ j. By [8-8, §7., p.656], we have the filtration V on Qj indexed by rational l1tunbers
such that din1e Vo/V>o = n o. By the proof of Theorem (7,1) in [8-8], the lTIultiplication
by f on Qj maps Vo to Vo +1. For an isolated rational hypersurface /, no = 0 fol' a :::; 0,
Hence JQ j C \lßQ j, where ß is the miniIllal spectrum number greater than 1. Thus, we
have the inequality di1nc T} 2: dime(Qj/VßQj) = LO$I n o ·

Combining Claim 2 with the above observation, one has n o = 0 for 0' =J. 1, i.e. T is
the identity. This irnplies that X is an ordinary double point by A'Campo [AC]. Q.E,D.

Proposition (2.3) Let Z be a Calabi- fau threeJold with H1(Z, CJz) = 0 which
admits only isolated rational hypersurface singularities. Let 1r : Y -+ Z be aresolution of
Z. Let Pi (1 ::; ·i ::; n) be the singular points on Z which are not ordinary double points)
and let Ei be the exceptional diuiso'l' ouer Pi. Let Zi be mutually disjoint) contraclible
Stein open neighborhoods 0f Pi E Z. Sei. Yi = 1r -1 ( Zd. Consider fh e diagram

., I (n 1 /I"'l ) CI' ffi HO(Z Tl) EBl<i$n ßi ffi Ir I (V e )!!ixi HZ'VZ -+ W i, Zj ~ w· Ci, -Yi .

l~i~n l~i~n

Tlten ihere is an element TJ E Extl(n~,CJz) such that a(11)i ~ iIn(ßi) fo1' aU i.
M01'eover) when Z is Q-faet01'ial) the same as above holds euen if we set Sing(Z) =
{PI, P2, ... ,Pn},

P1'00f Let Sing(Z) = {Pt, "',Pn,Pn+h ... ,Pm} and let U = Z\{Pl, ... ,Pm}' Consider
the following comrnutative diagratn similar to that in the proof of Theorem (1.3):

9
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I

Jfl(U, GU ) ~ EBl$i$mH~;(Z, T~) ~ HO(Z, Ti)

Denote by t-i the natural Inap H~i (Y, Dir) -+ lI2 (y, f1}). In the above diagram, cPi is
factorized as folIows:

vVe shall prove that the map

is not an injection for each i ~ n. lf this is proved, then we take a non-zero elenlent
Ci E I< er(t-d for each i ~ n. By the above diagram, there is an element 7] E Ext 1

( f11, Oz)
i.t;~:j....~.I'"_'~ .,f;~;,;such ~that·.api:o~a'(1])i~='(:if.~=J.'O~~-'In>;particular(·we~havercPi~ ,o·a~(77!)i;:=I=IO::.(.vVethen;see'lthat- I -.,~b'·.

a(1])i ~ iIl1age(ßi) by the exact sequence

1 ß' - 2 r. r 0 1:/ 2Jf (Yi,GyJ.:::t I/p;(Z,Tz) ~ IfEj (Y,8y ),

We shall finish the proof by showing the following claiIn,

Clainl The map "i is not an injeetiol1 for i ~ n.

Pl'oof (CASE 1: Pi E Z is not an ordinary double point)

Since [[l(Y, Oy) = If2 (y, Gy) = 0, there are iS0l110rphisms

H2 (y, f1~) = H1(y, D~r ~ (H1(y, Oy) ® cr·
z

Hence ii is factored as folIows:

(*)

H1;(Y, n~) --+ ([fl(Yi, O;J ® Cr -+ H 2(y, f1~r)
z

The first map is the dual map of (1/21J"i)- l dlog: [fl(Yi,OyJ®zC -+ Hl(Yi,n~rJ,

which is not a surjection because J-l( Zi, Pi) > 0 by Theorem (2,2). Thus, ii is not an
injection. Q.E.D.

(CASE 2: Pi E Z is an ordinary double point, and Z is Q-factorial.)

Since Z is Q-factorial, and Zi is not Q-factorial, the second 111ap in (*) is not an
injection. The map (1/21J"i)-ldlog : lJ 1(Yi, OyJ @z C -+ H1(Yi, nL) is an injection by
[Na, §2. CLAIM]. The first map in (*) is not hing but the dual of this Inap. Thus, ii is
not an injection. Q. E. D.
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Theorenl (2.4). Let Z be a Calabi- Yau lh1'eefold wilh only isolaled rational
hypersurface sing1.lla1'ities. Then Z can be deformed io a Calabi- Yau threefold with only

ordinary double poinls.

Froo! Let Pi (1 ~ i ~ n) bc the singular points on Z which are not ordinary double
points. We shall use the same notation as Proposition (2.3). Let Def(Zi) be the selni­
universal defonnation space of Zi and let Zi be the selni-universal falnily over Def( ZJ).
Dcf(Zi) has a stratification iuto Zariski locally closed, smooth subsets St (k 2: 0) with
thc following propertics:

1. Def(Zi) = Uk~O SF;

2. Sp is a non-enlpty Zariski open subset of Def(Zi)' alld Zi is smooth over sp;

3. Sf are of pure codimension in Def(ZJ) for all k 2: 0, and codimDef(zi)St <
d· Sk+l.co 11l1Def(z;) i l

5. Zi has a simultaneous resolution on each Sik , that is, there is aresolution Zik of
Zi x Def(z;) st such that zt is smooth over Sr

For exanlple, we can construct such a stratification as folIows. Denote by li the
projection fronl Zi to Def(ZJ). Since Zi has an isolated singularity, the locus of Zi
where fi is not smooth is finite over Def( Zi). Thus, by the theorem of Sard, wc can
find a non-elnpty Zariski open subset Sp of Def(ZJ) on which fi is a Sll100th morphisl11.
Set Fp = Def( Zi) \ S? If we replace Def( Zi) by a small open neighborhood of the
origin, we l11ay aSSllllle that all irl'educible components contain the origin. Let FiO,j be
its irreducible components of maximal dilnension. Take their resolutions P?,j. Then we
have a ftat family of isolated hypersurface singularities over Fio,i by pulling back Zi. The
total space of this ftat family adlnits aresolution, anel it is clear by the theorem of Sard
that this resolution gives a simultaneous resolution of the Bat family over a non-enlpty
Zariski open subset of FiO,j. vVe may assullle that this Zariski open subset does not have
any intersection with the exceptional locus of the resolution. Take the cOlnplemcnt of
this Zariski open subset in FiO,j. Then its inlage on F?,j becollles a Zariski closed subset
because the resolution is proper. Define Sl to be the complement of thc union of these
Zariski closed subsets and the non-maximal irreducible components in Fio. By definition,
Zi has a silnultaneous resolution on Sl, anel Sl is smooth of pure codinlension. Ncxt we
set Fl = Fio \ Sl, anel continue the salne process. 'l'hen, we eventually obtain a desirecl
stratification.

Let HS fix such a stratification for each Def(Zi)' The origin of Def(ZJ) is contained
in the minimal stratulll Sr By definition, the Bat falllily Zi xDef(Zi) st -+ Sr aclnlits
a simultaneous resolution. This simultaneous resolution induces aresolution 1fi : Yi -+
Zi. Since 1fi is an isomorphisln over smooth points of Zi, these fit together into a
global resolution 1f : Y -+ X. We here apply Proposition (2.3). Let 9 : Z -+ ß be a
small defonnation of Z deteflllined by 17 E Extl(!lk,Oz). It determines for each i a
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holoI110rphic l11ap 'Pi : ß -r Def(Zi) with <Pi(O) = O. If Pi E Z is not an ordinary double
point, then the image of <Pi is not contained in Sr Moreover, if we take a general point
t E ~ \ 0, then <pi(t) E Sr for some k' < k by the property (4) of the stratification.
Since Def(Zd is a versal deformation space for the singular point of Zt at 'Pi(t) (cf. [Lo
(6.15)]), we can continue the same process as above for Zt by using Def(Zd. Finally, we
reach a smooth Calabi-Yau threefold 01' a Calabi-Yau threefold whose singular points
all have J-L = O. In the first case, we have finished, and in the second case, the resulting
Calabi-Yau threefold has only ordinary double points by Theorem (2.2). Q.E.D.

Remark Since Q-factoriality is preserved by a small deformation by Kollar-Mori
[K-M, 12.1.10], it follows [roln the above argUI11cnt that any Q-factorial Calabi-Yau
threefold has a Rat defofIl1ation to a SI1100th Calabi-Yau threefold.

§3.

Let Z be anormal projective variety with only isolated rational singularities. Denote
- - -"- ~>-"'DY 'Weil(Z) r( resp:' 'Cart('Z)) the grou'p 6f"\tVeil' divisors of'Z (j'csj:{" tEe' gr6up"of' Cal~'ti'ei; 0, __" .~_.-.o ~

divisors o[ Z). Set Sing(Z) = {PI, ... ,Pn} anel take aresolution 7r : Y -r Z of the
singularities such that the 7r-exceptionallocus is a divisor with simple normal cfossings.
Put Ei = 7r- 1(Pi) anel E = ~l$i$nEi' Let Ei = ~jEi,j be the irreducible decomposition
of Ei. Take a sufficiently snlall open neighborhood Yi of Ei in Y. We then have the
following isomorphism of abelian groups:

(3.1)

Weil(Z)jCal't(Z) ~ im[III(y,CJy) -r E:B (Hl(Yi,CJyJ/~jZ[Ei,j]
I$i$n

Since Pi E Z is a rational singularity, we have

Hence \tVeil(Z)JCart(Z) is a finitely generated Abelian group. We let o-(Z) denote
its rank.

Theorenl{3.2) Let Z be a nOTlnal projective threefold with only isolated 1'ational
hypersurface singularities such thal f/2 (Z, Oz) = O. Define def( Z) = b4 ( Z) - b2(Z),
where bi ( Z) denote the i-th Betti nUlnber for singular cohomology of Z. Then def( Z) =
a(Z). Moreovc1', if Z has a smoothing f : Z --+ ~1, then wc have

101' t E ~1 - {O}.

Set ~ = Sing( Z) anel U = Z \ L:. First we need the following lemn1a.
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Lemma (3.3).(eL [Di])

def(Z) = dime coker[JI3 (U, C) -+ [I~(Z,C)].

Proof. Consider the exaet seqllence of Ioeal eohomology:

Since Z has only isolated rational singularities, H~(Z) = 0 by [St 2, (1.12)]. Thus,
we have dime coker[IJ3(U) -+ H::'(Z, C)] = b4(Z) - b4(U) by the exact sequenee. On
the other hand, by duality, dime H4

( U) = dirne H;(U). There is an ison10rphism
H;(U) ~ H 2 ( Z, ~), where 112 ( Z,~) is the 2-nd relative eohOlTIology of the pair (Z, L:).
Since ~ is isolated, we have H2(Z, L:) ~ H2(Z). Q.E.D.

, ~J.je'in"ma{'3':4'): ". ''f;e't Z-';be "a"nothia!·proyective",·'th'ree!o'ldj'ivit/(fb'n'li/isd'lafea'"liYPCl'S1[fi~" .:l <lll~'·

face singularities. Suppose that Z has a smoothing f : Z -+ ~ I by ai-parameter fiat
defoNnation, i.c. Z = j-I (0) and Zt is a smoolh variety for t :j:. O. Denole by m,(pi) the
Mi/nol' nUlnbel' of (Z, Pi)' Then we have

Pl'OOf. Let Bi be the Milnor fiber of (Z, pi). Then we have an exact sequence

By the exact sequence we have

By Poincare dllality, b4 (Zt} = b2(Zt}. Since b2(Zt} = b2(Z), the result folIows. Q.E.D.

The final step is to prove the following.

Lenlma (3.5). Let Z be a nor'mal pl'ojective threefold witk only isolated rational
hypersurface singulal'ities. Assu'me that H2

( Z, Oz) = O. Then we have

a(Z) = dime coker[H3 (U) -+ [I::' (Z)].

Proo! "Ve shall use the sarne notation as above. Consider the comnllItative
diagram (3.6)
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JJ3(U) ~ H~(Y) ---t H4 (y)

11 t<P t
H3 (U) -4 Ht(Z) ---t H4(Z)

where the horizontal sequences are exact, and thc vertical maps are edge hOlnolnor­
phisms of thc spectral sequence of Leray. By a theorem of Goresky-MacPherson (cf.
[St3, (1.11), (1.12)], the map <p fits into the exact sequence (3.7)

o-t H~(Z) -t H~(Y) -t H4 (E) -t O.

Taking the dual of (3.6) anel (3.7) we have

(3.6)'

of- ill1('P)* ~ Ht(Z)* ~ coker('P)*

anel

(3.7)'

By (3.6)' and (3.7)' we have

coker('Pr = im[lf2(y) -t fJ2(E)/~C[Ei,jJ]'

Sincc H 2 (Z, Oz) = 0 and Z has only rational singularities, we have H 2 (Y, V y ) = O.
From this it follows that

coker('Pt = im[H1(y, Oy) ® C -t H2(E)/~C[Ei,j]]'

Comparing this with (3.1), we have the result. Q.E.D.

Example (3.8). Let Y be a sl1100th Calabi-Vau threefold with H1 (Y, Oy)
O. Assume that thel'c is abirational contraction 7f : Y -t Z of rational curves on
Y. Then Z has only Gorenstein tef111inal singularities because 1f is a slnall birational
contraction. Thus, Z is a Calabi-Yau thl'eefold with only isolaLed rational singularities
(cf. [Re 1]). Let Sing( Z) = {PI, ... ,Pn}, and let Ci = 1f-

1(pd. Then Ci is a tree of
smooth rational curves. Assunle that Z is snloothable by a Hat defol'lnation. Since
H2(y, Oy) = 0 by Serre duality, we can apply Theorem (3.2). Let ni be the l111illber
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of irreducible components of Ci and let L C H2(Y, C) be the subspace spanned by the
2-cycles associated with the exceptional curves of 'TL Put 1= dime L. rfhen we have

b2(Zt) = b2(Y) - 1

b3 (Zd = b3 (Y) + ~ini + ~i1n(Pi) - 2l

b4 (Zd = b4 (Y) - 1

We can also give a geolnetric description of thc mixed Bodge structure on H3(Z) when
Z is anormal projective threefold with onIy isolatecl rational hypersurface singularities
and with H2 (Z, Oz) = O. Let Zi be a contracti ble Stein open neighborhood of Pi in Z.
Denote by Weil(Zi) (resp. Cart(Zd) the group of Weil divisors of Zi (resp. the group of
Cartier divisors of Zd. Then we have

(3.9)

Proposition (3.10). Lel Z he a n01'1na/ complete algehraic va7'iety 01 dimension 3
which admits only iso/ated rational singularities. Assume that H 2 (Z, CJz) = O. Then lhe
weighl filtration 01 the mixed Jlodge structure on H 3

( Z) has the following description:

C;rf H3
( Z) = 0 for k f:. 2,3;

din1e 1112 ( H3
( Z)) = ~ia(Pi) - a( Z).

Proof It follows from the fact that Z is a complete algebraic variety that GrJ:' H3( Z) =
ofor k > 3. We shall prove the second statelnent. Consider the long exact sequence of
mixed Bodge structures

(3.11)

... --t H 2(U) ~ [1~(Z) --t [J3(Z) --t H 3(U) --t ...

Let 11" : (Y, E) --t (Z,~) be a good resolution. By a theorem of MacPherson (cf. [St
3, (1.11), (1.12)), we have a surjection of tnixed Hodge structures H 2(y) --t H2 (U) and
an exact sequence of mixed Bodge structures

o--t II~(Y) --t H2 (E) --t H~(Z) -r O.

Therefore, H~(Z) = H2(E)/~i,jC[Ei,j], a(pi) = dirn H{pd(Z) and

(3.12)

iln(a) = inl[H 2(y) -r /12
( U) -r H2

( E)/~i,jC[Ei,jJ

Since U is a snlooth open variety, we have Cl'lv H3( U) = 0 if k < 3. Beuce by (3.11)
and (3.12) we obtain
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Since H 2 (y, Oy) = 0 by the assurnption, we see that din1e W2 (H3 (Z)) = ~ia(]Ji)-a(Z).

The fact that Jif (Z) is purely of weight two has been proved in the course of the proof
of TheorelTI (2.2) Q.E.D.

Corollary (3.13). Let Z be a Calabi- Yau threefold with only isolated l'atioflal
hypersurjace si1lgularities. Then Z can be deformed to a Calabi- Yau thl'eefold Y with
only ordinary double points whose COhol11ologies Hi(y) (0 ::; i ::; 6) haue pure ROllge
structures.

Proof Z is deforn1ed to a Calabi-Yau threefold Y with only ordinary double points
{Pt, ... , Pn} by Theorelll (2.4). By [St 2, 1.12] [ii(y) always has the pure Hodge structure
for i .2: 4. It is clear that Hi(y) has the pure Hodge structure for i ::; 2. Hence we only
have to prove that H 3 (y) has the pure Hodgc structure. Let Y be a srnall resolution
of Y, i.e. its exceptionallocus are disjoint union of (-1, -1 )-smooth rational curves Ci
(1 ::; i ::; n). By Proposition (3.10) we have dirne 11/2 (H 3 (y)) = ~lSiSna(pd - a(Y).
Suppose that the right-hand side is not zero. Then it follows that there is a non-trivial

J,';.' :_~ •.,•..relat~~~)Jl, between [C7d .,in. H2 (:Y., C.) .. ~W~ ..th~n .have~a: smalLQ~for.n1at~0n,pfY.)p whi~~ " ~' ..~,.,.
SOlne ordinary double points on Y are sn100thed by [Fr, §4., (b)]. T'his implies that we
Inay assulne that ~ISiSna(Pi) - a(Y) = O. Q.E.D.
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