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LOCAL-GLOBAL QUESTIONS FOR DIVISIBILITY IN
COMMUTATIVE ALGEBRAIC GROUPS

ROBERTO DVORNICICH AND LAURA PALADINO*

Abstract. This is a survey focusing on the Hasse principle for divisibility of points
in commutative algebraic groups and its relation with the Hasse principle for divisi-
bility of elements of the Tate-Shavarevich group in the Weil-Châtelet group. The two
local-global subjects arose as a generalization of some classical questions considered
respectively by Hasse and Cassels. We give an overwiev of the long-established results
and the ones achieved during the last fifteen years, when the questions were taken up
again in a more general setting. Furthermore we give an answer to the local-global
divisibility in semidirect products of a torus of dimension 1 with an elliptic curve.

1. Introduction

In 1923-1924 Hasse proved the following famous statement.

HASSE PRINCIPLE: Let k be a number field and let F (X1, ..., Xn) ∈ k[X1, ..., Xn] be a

quadratic form. If F represents 0 non-trivially in kv, for all completions kv of k, then

F = 0 has a non-trivial solution in k.

The assumption that F is isotropic in kv for all but finitely many completions (implying

the same conclusion) gives a stronger form of the principle. Since then, many math-

ematicians have been concerned with similar so-called local-global problems, i.e., they

have been questioning if the validity of some properties in all but finitely many local

fields kv could ensure the validity of the same properties in k. When the answer to

such a problem is affirmative, one says that there is a local-global principle or a Hasse

Principle.

Local-global questions have often an equivalent formulation in terms of principal

homogeneous spaces under some group schemes G over k, that are classified by the first

cohomology group H1(G, k) (see for example [24]). When the hypotheses require the
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validity of the assertion in all completions kv, one can study the behaviour of the Tate-

Shafarevich group X(G, k) to get information about the failure of the principle. In fact,

this group is the intersection of the kernels of the mapsH1(G, k)→ H1(G, kv), as v varies

in the set Mk of places of k, and its vanishing ensures a positive answer to the question.

On the other hand, by answering the problem in some cases, one can get information

about X(G, k) and so check the validity of the Birch and Swinnerton-Dyer conjecture in

particular instances. When the hypotheses of a local-global question require its validity

in all but finitely many completions kv, the group that interprets the hypotheses of the

problem in the cohomological context is not exactly X(G, k), but a similar group, i. e.,

the intersection of the kernels of the map H1(G, k) →
∏
v∈ΣH

1(G, kv), as v varies in a

subset Σ of Mk containing all the places v, such that there exists a local solution in kv.

The two groups often coincide, but there are examples in which they are not equal (see

for instance [39] and Section 6.2). In various cases it suffices to study the behaviour of

one of them to understand the structure of the other (see Section 5).

In this paper we will be concerned with the following two local-global problems and

their cohomological setting.

Problem 1. Let k be a number field, Mk be the set of the places of k and G be a

commutative algebraic group defined over k. Let P ∈ G(k) and let q be a positive integer.

Assume that for all but finitely many v ∈Mk, there exists Dv ∈ G(kv) such that P = qDv.

Is it possible to conclude that there exists D ∈ G(k) such that P = qD?

Problem 1 was stated by the first author and Zannier in 2001 in [18] and they named

it Local-global divisibility problem. In fact, it is a particular case of the following second

local-global question.

Problem 2. Let k be a number field, Mk be the set of the places of k and G be a

commutative algebraic group defined over k. Let q be a positive integer and let σ ∈
Hr(k,G). Assume that for all v ∈ Mk there exists τv ∈ Hr(kv,G) such that qτv = σ.

Can we conclude that there exists τ ∈ Hr(k,G), such that qτ = σ?

When r = 0 Problem 2 is nothing but Problem 1. In the present form, for all

commutative algebraic groups, Problem 2 was stated in 2016 by Creutz (see [16]). In

fact, when r = 1, the question was firstly posed by Cassels in [7] only in the case when

G is an elliptic curve. Later on, it was considered by Bašmagov in the more general case

when G is an abelian variety (see [3] and [4]) and recently by Çiperiani end Stix (see
2



[14]) too. Both problems are generally studied in the cases when q = pl, with p a prime

number and l a positive integer. In fact, an answer for all powers of prime numbers

suffices to solve the problem for a general integer q, by using the unique factorization in

Z and Bézout’s identity.

At first we give a historical overview of the formulation of the two problems and their

classical solutions. Then we describe a cohomological interpretation for Problem 1. Sec-

tion 4 is dedicated to Problem 2 and Section 5 to the link between the two problems.

The following Sections 6-8 are dedicated to the description of the results achieved for

Problem 1, respectively in the case of elliptic curves, in the case of algebraic tori and in

the case of general commutative algebraic groups. In the last section we give an answer

to the local-global divisibility in semidirect products of a torus of dimension 1 with an

elliptic curve. The paper ends with an Appendix in which we describe some recent results

about the number fields generated by torsion points of elliptic curves.

Acknowledgments. The main part of this paper was written when the second author

was a guest at the Max Planck Institute for Mathematics in Bonn. She thanks every

people there for their kind hospitality. The authors are grateful to Brendan Creutz for

some useful remarks about earlier versions of this paper.

2. Classical problems and classical solutions

In the case of a quadratic formX2+rY 2, where r is a rational number, the Hasse Principle

is equivalent to the statement “if a rational number is a square in Kv, for all but finitely

many v, then it is a square in k”. It is then natural to ask if such a principle still holds

for q-powers of rational numbers, where q is a general positive integer, and not only

for rational squares. The answer to such a question was given by the Grunwald-Wang

Theorem (see [2, Chap. IX and Chap. X]). Here we state the theorem in its classical

form, in the more general case when k is a global field. For every positive integer q, we

denote by ζq a primitive q-th root of the unity. Furthermore, let ξh be a 2h-th root of

the unity such that ξh+1 = ξh, and let ηh := ξh + ξ−1
h . In particular, for every field k,

there exists an integer sk ≥ 2 such that ηsk ∈ k, but ηsk+1 /∈ k.

Theorem 2.1 (Grunwald-Wang, 1933-1950). Let k be a global field, let m be a positive

integer and let Σ be a set containing all but finitely many places v of k. Consider the
3



group P (m,Σ) of all x ∈ k such that x ∈ kmv , for all v ∈ Σ. Then P (m,Σ) = km except

under the following conditions:

1.: k is a number field;

2.: −1, 2 + ηsk and −(2 + ηsk) are non-squares in k;

3.: m = 2tm′, where m′ is odd and t > s;

4.: v /∈ Σ, for all v|2 where −1, 2 + ηsK and −(2 + ηsk) are non-squares in kv.

In this special case P (m,Σ) = km ∪ a0k
m, where a0 = ηmsk+1.

In particular, when k = Q, the principle for q-powers of rational numbers could fail

only for q = 2t, with t ≥ 8. The first example violating the principle was showed by

Trost in 1934 (see [39]).

Theorem 2.2 (Trost, 1948). The equation x8 = 16 has a solution in the p-adic fields

Qp, for every p 6= 2, but it has no solutions in Q2 and in Q.

Similar examples can be constructed for all powers 2t, with t ≥ 8 and, consequently,

for all integers m = 2tm′, where m′ is odd and t ≥ 8, as in the statement of the theorem.

Theorem 2.1 was originally proved by Grunwald in 1933, but he made a mistake, including

some cases in which the answer is negative in the ones with an affirmative answer. The

mistake was corrected by Wang around 1950, when he took up again Trost’s example

and considered some similar ones.

Denote by Gm the multiplicative group over k. Then the Grunwald-Wang Theorem

holds in the commutative group Gm as well as in k. By questioning if its validity still

holds for a general commutative algebraic group G instead of Gm, we get nothing but

Problem 1, i.e., the Local-global divisibility problem in commutative algebraic groups. In

fact, in [18] the authors say that Problem 1 was motivated by a strong form of the Hasse

principle considered for q-powers of numbers and not only for squares and in the more

general setting of commumative algebraic groups instead of simply Gm. So in the cases

when the answer to Problem 1 is affirmative, we have a kind of a generalization of the

Hasse Principle for squares of k-rational numbers. We postpone the description of the

results achieved for Problem 1 since its formulation in Section 6, 7 and 8. Meanwhile,

we describe the classical setting for Problem 2.
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Let k̄ be the algebraic closure of k and let Gk be the absolute Galois group Gal(k̄/k). As

usual, we denote byH1(k,G) the groupH1(Gk,G(k̄)). Furthermore, for every Gk-module

G, we denote by X(k,G) the Tate-Shafarevich group X(Gk,G(k̄)), defined by

(2.1) X(k,G) :=
⋂
v∈Mk

ker(H1(k,G)
resv−−−−−→ H1(kv,G)),

where resv denotes, as usual, the restriction map. More generally, one can define

Hr(k,G) := Hr(Gk, A(k̄)) and

(2.2) Xr(k,G) :=
⋂
v∈Mk

ker(Hr(k,G)
resv−−−−−→ Hr(kv,G)).

Clearly X(k,G) = X1(k,G). We will often use the second notation with the exponent

1, but we will keep the classical notation X(k,G) too, especially when G is an abelian

variety.

In 1962, Cassels stated the following question in the third of his famous series of

papers Arithmetic on curves of genus 1. (see Problem (b) in [10] and Problem 1.2 in [9];

for the whole series of mentioned Cassels’ papers see [7], [8], [9], [10], [11], [12]).

Problem 3 (Cassels’ question). Let k be a number field and E an abelian variety

of dimension 1 defined over k. Are the elements of X(k, E) infinitely divisible by a

prime p when considered as elements of the Weil-Châtelet group H1(k, E) of all classes

of homogeneous spaces for E defined over k?

Here infinitely divisible by p means divisible by pl, for all positive integer l. As

mentioned above, Cassels’ question is a particular case of Problem 2. In fact, it can be

reformulated as follows.

Problem 3. Let k be a number field and E an abelian variety of dimension 1 defined over

k. Let p be a prime number. Assume that for all v ∈Mk there exists τv ∈ H1(kv, E), such

that plτv = σ, for every positive integer l. Can we conclude that there exists τ ∈ H1(k, E),

such that plτ = σ, for all l?
5



3. A cohomological interpretation of the local-global divisibility prob-
lem

As stated above, in the case when G = Gm, a solution of Problem 1 is given by the

Grunwald-Wang Theorem. When G 6= Gm an useful way to proceed was showed in [18],

in which the authors give a cohomological interpretation to the problem.

For every positive integer q, we denote by G[q] the q-torsion subgroup of G and by

K := k(G[q]) the number field generated over k by the coordinates of the points in G[q].

SinceK is the splitting field of the q-division polynomials, thenK/k is a Galois extension,

whose Galois group we denote by G. Let P ∈ G[q] and let D ∈ G(k̄) be a q-divisor of P ,

i. e. P = qD. For every σ ∈ G, we have

qσ(D) = σ(qD) = σ(P ) = P.

Thus σ(D) and D differ by a point in G[q] and we can construct a cocycle {Zσ}σ∈G of

G with values in G[q] by

(3.1) Zσ := σ(D)−D.

Proposition 3.1. The cocycle {Zσ}σ∈G defined in (3.1) vanishes in H1(G,G[q]) if and

only if there exists D′ ∈ A(k) such that qD′ = P

Proof. Assume that {Zσ}σ∈G vanishes in H1(G,G[q]), then there exists W ∈ G[q] such

that σ(W ) −W = Zσ = σ(D) − D, for all σ ∈ G. We have σ(D −W ) = D −W , for

all σ ∈ G. Thus D′ := D −W ∈ G(k) and qD′ = qD − qW = qD = P . The other

implication is trivial. �

In particular, the triviality of H1(G,G[q]) assures an affirmative answer to the problem.

The triviality of some first cohomology group often ensures an affirmative answer to this

kind of problems. This is quite a standard way of proceeding in local-global questions, so

we stated the proof of Proposition 3.1 for the reader’s convenience. The goal in [18] is the

introduction of a subgroup of H1(G,G[q]), whose vanishing still ensures an affirmative

answer to Problem 1.

Definition 3.2. Let Σ a subset of Mk containing all but finitely many valuations, such

that v /∈ Σ, for all v ramified in K. For every v ∈ Σ, let Gv := Gal(k̄v/kv), where w is
6



a place of K extending v. We call the first local cohomology group (of G with values in

G[q]) the following subgroup of H1(G,G[q]).

(3.2) H1
loc(G,G[q]) :=

⋂
v∈Σ

(kerH1(G,G[q])
resv−−−−−→ H1(Gv,G[q])),

The first local cohomology group portrays the hypotheses of the problem in the coho-

mological context. In fact, the elements of H1
loc(G,G[q]) are represented by cocycles that

vanish in H1(Gv,G[q]), for all v ∈ Σ. We can say that they are coboundaries locally. By

Proposition 3.1, then there exists a point Wv ∈ G(kv) such that Zσ = (σ − 1)Wv. Since

Σ does not contain the valuations v that are unramified in K, then, by the Chebotarev

Density Theorem, the local Galois group Gv varies over all cyclic subgroups of G as v

varies in Σ. Since we can identify a cyclic subgroup with one of its generators, we can

associate every σ ∈ G with some v ∈ Σ, such that Gv = 〈σ〉. We can also denote by

Wσ the q-torsion point Wv as above. Then we have the following equivalent definition of

H1
loc(G,G[q]).

Definition 3.3. A cocycle {Zσ}σ∈G ∈ H1(G,G[q]) satisfies the local conditions if, for ev-

ery σ ∈ G, there exists Aσ ∈ G[q] such that Zσ = (σ−1)Aσ. The subgroup of H1(G,G[q])

formed by all cocycles satisfying the local conditions is the first local cohomology group

H1
loc(G,G[q]).

This second definition shows explicity the kind of cocycles that one has to check to see

if they are coboundaries or not. Such a description is useful to get a solution to the

problem both when the answer is affirmative and when it is negative. First of all we have

the following result.

Theorem 3.4 (Dvornicich, Zannier, 2001). Let G := Gal(K/k). If H1
loc(G,G[q]) = 0,

then the local-global divisibility by q holds in G over k.

Furthermore, it is sometimes better to look at the p-Sylow subgroup Gp of G, since the

authors also show that the triviality of H1
loc(G,G[q]) is equivalent to the triviality of

H1
loc(Gp,G[q]).

Proposition 3.5 (Dvornicich, Zannier, 2001). Let Gp be the p-Sylow subgroup of A. An

element of H1
loc(A,A[pl]) is zero if and only if its restriction to H1

loc(Gp,A[pl]) is zero.
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As we can see in the statement of Theorem 3.4 (and Theorem 3.5), it is crucial to

know the extension K/k (instead of F/k), i. e. to know explicitly two generators of G[q].

As we will see in next Theorem 3.6, the extension K/k is the one important in finding

counterexamples too. Consequentely, the second author developed an interest in number

fields generated by torsion points of elliptic curves and in families of elliptic curves with

a small p-torsion, where p is a prime number and small is intended in terms of the degree

of the extension K/k. We state some results about those number fields in Appendix A.

3.1. How to find counterexamples

The triviality of H1
loc(G,A[q]) is not exactly a necessary condition for the local-global

divisibility by q in G over k. In fact, the existence of a cocycle of G with values in G[q]

that satisfies the local conditions and it is not a coboundary ensures the existence of a

counterexample over a finite extension of k. Here is the precise statement, proved in [20].

Theorem 3.6 (Dvornicich, Zannier, 2007). Let K := k(G[q]) and G := Gal(K/k). Let

{Zσ}σ∈G be a cocycle with values in G[q] representing a nontrivial element in H1
loc(G,G[q]).

Then there exists a number field L such that L ∩K = k and a point P ∈ G(L) which is

divisible by q in G(Lw) for all unramified places w of L, but not divisible by q in G(L).

Some evidence that the non-vanishing of H1
loc(G,A[q]) implies the existence of a

counterexample was firstly showed in [18] in the case of the algebraic tori and in [19] in the

case of elliptic curves. We will describe the mentioned counterexamples in the following

dedicated sections. In their third paper about the topic, the same authors describe the

following general method to construct counterexamples and proved Theorem 3.6.

Assume that H1
loc(G,G[q]) is non-trivial and let {Zσ}σ∈G be a cocycle satisfying the

local conditions, that does not vanish in H1
loc(G,G[q]). With such a Zσ, we can obtain

an equation (3.1), where the variables are the coordinates of D. When we know explicit

equations for the group law of G, as for instances in the case of elliptic curves, we get an

explicit system of equations in the coordinates of D, as variables. For instance when G is

an elliptic curve, we have a systems of two equations in two variables. In [20], the authors

show that, as σ varies in G, that system defines an algebraic variety B that is isomorphic

to G over K. Furthermore, they show that every k-rational point of B, corresponds to

a point D ∈ E(K), such that P = qD is a k-rational point of G(k) violating the Hasse
8



principle for divisibility by q. That construction clarifies why in certain cases the non-

vanishing of H1
loc(G,A[q]) is not a necessary condition; it depends on the existence of a

k-rational point on the variety B. In the case when B has no k-rational points, we are

not able to find a counterexample over k. Anyway, Theorem 3.6 ensures the existence of

an L-rational point in B, where L is a finite extension of k, linearly disjoint from K over

k.

Once we have a counterexample for pl, the following statement (see [33]) gives a

method to prove the existence of counterexamples to the local-global divisibility by pl+s,

for every s ≥ 0.

Theorem 3.7 (Paladino, 2011). Let p be a prime number and let l, t be positive integers

such that t ≤ l. Suppose there exists a cocycle Ẑ of the group G with values in G[pl−t],

representing a nonzero element in H1
loc(G,G[pl]). Furthermore, suppose that there are

no k-rational pt+1-torsion points in G(k). Then, for all positive integers s, there exist

number fields L(s) linearly disjoint from k(G[pl]) over k, and points Ps ∈ G(L(s)) such

that Ps is locally divisible by pl+s for almost all v ∈ Mk, but Ps is not divisible by pl+s

in G(L(s)).

The proof is based on producing injective maps between some first local cohomology

groups. The most suitable cases to apply Theorem 3.7 are for very small t. The best

possibility is, of course, when t = 0. In this case G must have no k-rational p-torsion

points. For every G, that happens for infinitely many primes p. When G is an elliptic

curve we have Merel’s theorem (see Theorem 6.5) and we also have explicit bounds to the

maximal order of a torsion point (see [30] and [37] and Subection 6.1). As a consequence

of Theorem 3.7 we have the following result.

Corollary 3.8 (Paladino, 2011). For all but finitely many primes p, the existence of

a counterexample to the local-global divisibility by pl in G ensures the existence of a

counterexample to the local-global divisibility by pl+s in G, for all positive integers s. 2

Theorem 3.7 can be useful only to show the existence of counterexamples, but it

gives no methods to find explicitly some of them. Under the same assumptions, the

next theorem shows how we can find numerical counterexamples. In particular, it shows

how to find a sequence of points Ps, with s ≥ 0, such that Ps violates the local-global

divisibility by pn+s.
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Theorem 3.9 (Paladino, 2011). Let l, t be positive integers such that t ≤ l. Let

K0 := k(A[pl]). Suppose there exists a cocycle Ẑ of the group G with values in A[pl−t],

representing a nonzero element in H1
loc(G,A[pl]). Suppose that there are no k-rational

pt+1-torsion points in A(k). Furthermore, suppose that there exists a point D ∈ A(K0) of

infinite order such that Ẑ(σ) = Dσ−D for all σ ∈ G. Then, for every positive integer s,

the point Ps := pl+sD is divisible by ph+s in A(kv) for all valuations v ∈Mk unramified

in K0, but Ps is not divisible by pl+s in A(k).

Theorem 3.7 and Theorem 3.9 were applied successfully in the case of elliptic curves

to produce counterexamples for 2l and 3l, with l ≥ 2, respectively over Q and over Q(ζ3)

(see Subsection 6.2 for further details).

4. Local-global divisibility of elements of the Tate-Shafarevich group in
the Weil-Châtelet group

In this section we give some more information about Problem 2. As mentioned in the

Introduction, Problem 2 was considered by Cassels in 1962, in the case of elliptic curves

defined over number fields. It is clear that an answer for all powers of primes p gives an

answer to all integers q. An affirmative answer to the local-global divisibility by p for

elements in H1(k, E) was immediately given by the following Lemma proved by Tate (see

Lemma 5.1 in [10]) and by Tate’s duality.

Lemma 4.1 (Tate, 1962). Let A be a Gk-module that is isomorphic to Z/pZ × Z/pZ.

Then an element of H2(Gk,A) is trivial if it is everywhere locally trivial.

Here locally trivial everywhere means the vanishing in H2(Gkv ,A(k̄v)), for all v ∈Mk.

On the contrary, for powers pl, with l ≥ 2, the problem remained open for decades,

even in the case of elliptic curves defined over Q. An affirmative answer in this special

case for all powers p ≥ 5 has been lately proved. We will describe it in Section 6, since

it is a direct consequence of some answers given to Problem 1 in elliptic curves.

In the more general case when G is an abelian variety A, the problem was firstly consid-

ered by Bašmakov in [3] and [4]. Even if he stated the question for abelian varieties, in

his papers he focuses especially on elliptic curves. Some more general results in the case

of abelian varieties have recently been proved in [13], [14] and in [15]. In [15], Creutz
10



showed some counterexamples to the local-global divisibility by p of elements of the Tate-

Shafarevich group X(Q,A) in the Weil-Châtelet group, where A is a Jacobian of a cyclic

cover of the projective line.

Theorem 4.2 (Creutz, 2013). For every prime p, there exist infinitely many abelian

varieties A defined over Q, such that X(Q,A) 6⊆ pH1(Q,A).

Theorem 4.2 is a consequence of the following result, reproved in [14] (see Proposition

14).

Theorem 4.3 (Creutz, 2013). Let A be an abelian variety defined over a number field

k and let A∨ its dual. Let q be a positive integer. In order to have that X(k,A) ⊆
qH1(k,A) it is necessary and sufficient that the image of the natural map X(k,A[q])→
X(k,A) is contained in the maximal divisible subgroup of X(k,A∨)

div(H1(k,A∨) :=
⋂
q∈N

qH1(k,A∨).

What really counts in proving an affirmative answer for divisibility by q of elements of

X(k,A) in H1(k,A) is to prove the triviality of X(k,A∨[q]). In fact, the exact sequence

0 −→ A[q] −→ A
[q]
−−→ A −→ 0,

where the map [q] as usual denote the multiplication by q, implies the long-exact sequence

of cohomology

... −→ Hr(k,A[q]) −→ Hr(k,A) −→ Hr(k,A)
δ−−→ Hr+1(k,A[q]) −→ ...,

where δ denotes the boundary map. In [16], Creutz explicitly observes that an element

σ ∈ Hr(k,A) is locally divisible by q if and only if its image under δ is in X(k,A[n]) and

that it is globally divisible by q if and only if δ(σ) = 0. Then the local-global divisibility

by q holds in Hr(k,A) if and only if Xr+1(k,A[q]) = 0. Because of Tate’s duality, one

gets the following statement.

Theorem 4.4 (Creutz, 2016). Assume any of the following:

1): r = 0 and X1(k,A[q]) = 0;

2): r = 1 and X1(k,A[q]∨) = 0;

3): r ≥ 2.
11



Then the local-global divisibility by q holds in Hr(k,A).

Theorem 4.4 has an extension to the case when k has positive characteristic, that

was implemented by Creutz and Voloch in [17]. When A is an abelian variety principally

polarized, then A ' A∨ and X(k,A) is a finite group. Therefore the triviality of

X1(k,A[q]) is a sufficient condition to the local-global divisibility by q in Hr(k,A), for

every r ≥ 0.

Corollary 4.5. Let A be an abelian variety principally polarized defined over a number

field k. If X1(k,A[q]) = 0, for some positive integer q, then the local-global divisibility

by q holds in Hr(k,A), for every r ≥ 0.

In [14] the authors give some sufficient conditions to have an affirmative answer to Cassels’

question in the case of an abelian variety. In fact, for a fixed prime p, they show some

sufficient conditions to have X(k,A[pn]) = 0, for every n ≥ 0.

Theorem 4.6 (Çiperiani, Stix, 2015). Let A be an abelian variety defined over a number

field k and let p be a prime number. Then

X(k,A[pn]) = 0, for every n ≥ 1,

if we assume that

1): H1(G,A[p]) = 0 and

2): the Gk-modules A[p] and End(A[p]) have no common irreducible subquotient.

In the case of elliptic curves, an answer to Cassels’ question for many primes can

be deduced by the results achieved for Problem 1 in the last few years, in view of the

connection between the two problems that we are going to explain better in next section.

In particular, in elliptic curves defined over Q, we have an affirmative answer for all p ≥ 5.

The mentioned results to Problem 1 for elliptic curves will be presented in Section 6 and

the concequence about Problem 2 will be stated in Subsection 6.1.1.

5. First local-cohomology group and Tate-Shafarevich group

The definition of H1
loc(G,G[q]) 3.4 is very similar to the classical definition of the Tate-

Shafarevich group X1(k,G[q]). We describe this relation. Firstly, we recall that as a

consequence of Chevalley’s Theorem on the classification of the commutative algebraic
12



groups in characteristic zero (see [38] and also [18, §2]), we have a group isomorphism

G[q] ' (Z/qZ)n, where n is a positive integer depending only on G. In the case when G
is an abelian variety of dimension g, it is well-known that n = 2g. Therefore we have a

representation of the absolute Galois group Gk = Gal(k̄/k) in the general linear group

GLn(Z/qZ). The image of Gk in GLn(Z/qZ) is isomorphic to G, and we still denote by

G such an image. The q-torsion subgroup G[q] is a Gk-module as well as a G-module. By

letting v vary in the wholeMk instead of Σ and considering the Gk-module G[q] instead of

G in definition 3.4, we get a subgroup of H1
loc(G,G[q]) isomorphic to the Tate-Shafarevich

group X1(k,G[q]) defined in (2.1) (in view of the cited isomorphism between G and the

image of Gk in GLn(Z/qZ)). The Tate-Shafarevich group was firstly defined for abelian

varieties, but later the definition has been generalized to the case of an algebraic group

G. It is then clear from the definitions (3.4) and (2.1) that the Tate-Shafarevich group

X(k,G[q]) is isomorphic to a subgroup of H1
loc(G,G[q]). In particular, the triviality

of H1
loc(G,G[q]) implies the vanishing of X(k,G[q]). Thus, every affirmative answer to

Problem 1, obtained by showing the triviality of H1
loc(G,G[q]), gives an affimative answer

to Problem 2 for divisibility by q. On the other hand, observe the Kummer exact sequence

0→ G(k)/qG(k)→ H1(k,G[q])→ H1(k,G)[q]→ 0.

If X(k,G[q]) = 0, then the map H1(k,G[q])→ H1(k,G)[q]) is injective and G(k) ' qG(k)

(see also [15]). Therefore, the triviality of X(k,G[q]) is a sufficient condition to get an

affirmative answer to Problem 1 for local-global divisibility by q in G over k, as well as it

is a sufficient condition to get an affirmative answer to Problem 2, for r = 1. In the case

when G is an abelian variety A principally polarized, then the vanishing of X(k,A[q])

is a sufficient condition to have an affirmative answer to both Problem 1 and Problem 2,

for all r ≥ 0, accordingly to Corollary 4.5. The two groups X(k,A[q]) and H1
loc(G,A[q])

often coincides and are both trivial. For instance, this is the case for p sufficiently large

(see [4], [3] and [16]). Anyway, in a few cases, the two groups may differ. This happens

for examples in some elliptic curves, having points locally divisible by 4 in all p-adic fields

Qp, with p 6= 2, but not divisible by 4 in Q and in Q2 (see [19] and Subsection 6.2).

6. Local-global divisibility in elliptic curves

In this section we will be concerned with the local-global divisibility in elliptic curves.

In particular, we firstly describe the affirmative answers given to Problem 1 in the last
13



fifteen years, then we proceed by underlining the consequences of those results to Problem

2 and we finish by showing some counterexamples to Problem 1.

6.1. Local-global divisibility of points in elliptic curves

In the case when G is an elliptic curve E , the local-global divisibility of points has been

widely studied during the last fifteen years. In fact having explicit equations satisfied by

torsion points of such commutative algebraic groups was useful to describe the extension

K/k and the group H1
loc(G, E [q]) in various examples. The problem was considered for

powers of primes p. In fact, as previously underlined, by the unique factorization in Z

and Bézout identity, an answer for q = pl, with l ≥ 1, implies an answer for all integers

q. By Tate’s Lemma 4.1 and the Kummer sequence showed in the previous section, the

local-global divisibility by p holds in elliptic curves defined over number fields. That

result was reproved in [18] and [40] too. The most interesting case for the local-global

divisibility problem, is clearly when k = Q. In fact, many results obtained over Q can

be extended to other number fields. In 2007 the following affirmative answer in elliptic

curves defined over Q for various powers of primes was given in [20].

Theorem 6.1 (Dvornicich, Zannier, 2007). Let E/Q be an elliptic curve and let P ∈ E(Q)

a point which is locally divisible by pl in E(Qv), for all but finitely many v ∈MQ, where

v is a prime number and l ≥ 1. If

p /∈ S = {2, 3, 5, 7, 11, 13, 17, 19, 37, 43, 67, 163},

then P is divisible by pl in E(Q).

Theorem 6.1 is particularly interesting for its generalization to many number fields k. In

fact, with mild hypotheses on k (see [34] and [35]), the same proof gives the following

statement (see [20]).

Theorem 6.2. Let p be a prime. Let E be an elliptic curve defined over a number field k

which does not contain the field Q(ζp+ζ−1
p ), where ζp is a primitive pth root of the unity.

If E does not admit any k-rational isogeny of degree p, then the local-global principle holds

for divisibility by pl in E over k, for every positive integer l.
14



When k = Q, Mazur’s famous theorem on rational isogenies of prime degrees (see

[28]) produces the set S as above. Stronger conditions have been given in [35] and [36].

We summarize the results of the main statements of those two papers in the next theorem.

Theorem 6.3 (Paladino, Ranieri, Viada, 2012-2014). Let p be a prime number. Let E be

an elliptic curve defined over a number field k that does not contain the field Q(ζp + ζp).

Suppose that at least one of the following conditions holds:

(1) E has no k-rational torsion points of exact order p;

(2) k(E [p]) 6= k(ζp);

(3) there does not exist any cyclic k-isogeny of degree p3 between two elliptic curves

defined over k that are k-isogenous to E.

Then, the local-global principle for divisibility by pl holds for E over k and for all positive

integers l.

Observe that when k = Q, in view of Mazur’s Theorem on the possible subgroups Etors(Q)

of rational torsion points of elliptic curves (see [28]), condition (1) implies that the local-

global divisibility by pl, with l ≥ 1 holds for E over Q and for all p > 7. Furthermore,

Merel proved that an equality as Q(E [p]) 6= Q(ζp) implies p ∈ {2, 3, 5} or p > 1000

(see Appendix A for further details). Then condition (2) implies that the local-global

divisibility by pl, with l ≥ 1, holds for E over Q and for all p > 5. Finally, in [25]

Kenku proved that condition (3) is impossible for p = 5, by showing that the modular

curve Y0(125) has no rational points. Then Theorem 6.3 implies that the local-global

divisibility by pl, with l ≥ 1, holds for E over Q, for all p ≥ 5.

Corollary 6.4 (Paladino, Ranieri, Viada, 2012-2014). Let E be an elliptic curve defined

over k and let p ≥ 5. Then local-global divisibility by pl, with l ≥ 1, holds in E over Q.

This result is best possible, since for powers pl, with p ∈ {2, 3} and l ≥ 2, there are

counterexamples, as we will see in next subsection.

For a general k, condition (1) is also very interesting in view of Merel’s Theorem on

torsion points of elliptic curves (see [29]). Here we recall its statement.

Theorem 6.5 (Merel, 1994). For every positive integer d, there exists a constant B(d) ≥
0 such that for all elliptic curves E over a number field k, with [k : Q] = d, we have

|Etors(k)| ≤ B(d)|.
15



Thus Theorem 6.3, combined with Theorem 6.5, implies the next interesting fact.

Corollary 6.6. Let E be an elliptic curve defined over a number field k. Then there

exists a constant C([k : Q]), depending only on the degree of k over Q, such that the

local-global principle holds for divisibility by every power pl of primes p > C([k : Q]). In

addition C([k : Q]) ≤ (3[k:Q]/2 + 1)2.

Remark 6.7. Observe that the statement of Corollary 6.6 holds for all k and not only

for number fields that do not contain Q(ζp + ζ−1
p ). In fact the number C([k : Q]) can

be chosen as the maximum max{p0, B([k : Q])}, where p0 is the largest prime such

that k contains the field Q(ζp0 + ζp0). In his very cited but unpublished paper [30],

Oesterlé showed that Merel’s constant B([k : Q]) can be taken as ≤ (3[k:Q]/2 + 1)2. Since

p0 ≤ 2[k : Q] + 1, then C([k : Q]) ≤ (3[k:Q]/2 + 1)2.

The hypothesis that k does not contain the field Q(ζp + ζ−1
p ) is necessary, for all the

conditions (1), (2), (3) in Theorem 6.3, as showed by an example constructed in [36,

Section 6].

6.1.1. Consequent results about Cassel’s question. As explained in Section 5, the trivial-

ity of H1
loc(G, E [q]) implies the triviality of X(k, E [q]). Then, in view of Theorem 4.4,

Theorem 6.3 assures an affirmative answer to Cassels’ question (i.e. Problem 3) over

Q for all prime numbers p ≥ 5. We have also an affirmative answer to Problem 2, for

all r ≥ 0, for every q = pl, with p ≥ 5 and l ≥ 1. Furthermore, for a general number

field k, Theorem 6.3, combined with Corollary 6.6, imply an affirmative answer to Cas-

sels’ question (respectively to Problem 2, for all r) in elliptic curves over k, for every

p > (3[k:Q]/2 + 1)2 (resp. for all powers pl of a prime p > (3[k:Q]/2 + 1)2).

6.2. Counterexamples

The first paper dedicated exclusively to the local-global divisibility of points of elliptic

curves is [19]. As stated above, in that article the authors construct an explicit coun-

terexamples to the local-global divisibility by 4 in some elliptic curves over Q. They

use equation (3.1) and the method explained in Subsection 3.1. One of the counterex-

amples is given by the curve y2 = (x + 15)(x − 5)(x − 10), with its rational point

P = (1561/122, 19459/123), that is locally divisible by 4 in Qp, for all p 6= 2, but it is not

divisible by 4 in Q and in Q2. Similar counterexamples appear in [31] and in [16]. In [19]
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the authors also show an example in which the local divisibility by 4 holds in all Qp and

the global divisibility fails, i. e. the curve y2 = (x+ 2795)(x− 1365)(x− 1430) and the

point P = (5086347841/18482,−35496193060511/18483). In [33], by applying Theorem

3.9 it is showed that the cited counterexamples to the divisibility by 4 can be raised to

counterexamples to the local-global divisibility by 2l, for all l ≥ 2. In particular, the

point 2l−2P gives a counterexample to the divisibility by 2l.

The first counterexamples to the local-global divisibility by 3l, for some l ≥ 2, where

produced in [32]. They are counterexamples to the local-global divisibility by 32, but the

points giving the counterexamples have rational abscissas only, whereas the ordinates

are not rational and are defined over Q(ζ3). In [33] again, Theorem 3.9 is used to raise

those counterexamples to the local-global divisibility by 32 to counterexamples to the

local-global divisibility by 3l, for all l ≥ 2 in elliptic curves over Q(ζ3). In 2016 Creutz

produced the first explicit counterexamples to the local-global divisibility by 3l, for all

l ≥ 2 in elliptic curves over Q (see [16]). Those examples are given by the elliptic curve

E : x3 + y3 + 30z3 = 0 defined over Q, (with distinguished point P0 = (1 : −1 : 0) and

the rational point P = (1523698559 : −2736572309 : 826803945). For every n ≥ 2, the

point 3n−1P is locally divisible by 3n in all p-adic fields Qp but it is not divisible by 3n

in Q.

Remark 6.8. The most interesting case for counterexample is when k = Q, since a

counterexample over Q gives also a counterexample over all but finitely many number

fields k. In fact, assume that P is a point giving a counterexample to the local-global

divisibility by q in E over k and let D be a q-divisor of P , i. e. P = qD. Consider the

extension F (D) = k(E [q])(D) of k, generated by the coordinates of D and the ones of the

points in k(E [q]). Since two different q-divisors of the same point differ for a q-torsion

point in E , then L/k is a Galois extension. If L is linearly disjoint form F (D) over k,

then P is locally divisible by q in all but finitely many completions Lv, with v ∈ ML

(because it is locally divisible by q in all but finitely many p-adic field Qp), but it is not

divisible by q in L (since the coordinates of the q-divisors of P lie in F (D)).

Remark 6.9. All the mentioned counterexamples in particular show that Problem 2 has

a negative answer for r = 0 in elliptic curves over Q, when q = pl, with p ∈ {2, 3} and
l ≥ 2.
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Remark 6.10. When the question about the local-global divisibility is restricted only to

the torsion points of an elliptic curve, the set of primes for which the answer is affirmative

can be enlarged to all odd primes p, as recently proved in [21]. On the contrary, for powers

of 2 there are counterexamples even in this case.

7. Local-global divisibility of points in algebraic tori

The study of the local-global divisibility on the algebraic tori was initiated in [18]. In

particular the authors proved the following statement.

Theorem 7.1 (Dvornicich, Zannier, 2001). Let T be an algebraic k-torus of dimension

n ≤ max{3, 2(p− 1)}.

Then the local-global divisibility by p holds in T over k.

That result was improved in [26].

Theorem 7.2 (Illengo, 2008). Let T be an algebraic k-torus of dimension

n < 3(p− 1).

Then the local-global divisibility by p holds in T over k.

Illengo also shows that his bound is best possible, since for all n ≥ 3(p− 1) there are

counterexamples.

Theorem 7.3 (Illengo, 2008). Let p 6= 2 be a prime and let n ≥ 3(p − 1). Let Fp
be the field with p elements. There exists a p-group G in SLn(Z) such that the map

H1(G,Fnp )→
∏
H1(C,Fnp ), where the product is taken on all cyclic subgroups C of G, is

not injective.

In [18] too, the authors produce a counterexample to the local-global divisibility by p in

algebraic tori. They show that for every number field k and for every prime p there exists

a torus with a point locally divisible by p over kv, for all but finitely many v ∈Mk, but

not divisible by p over k. It is especially interesting that the counterexamples appearing

in [18] to the local-global divisibility on the torus are given by torsion points.

For divisibility by powers of pl, with l ≥ 2, the question is open.
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8. Local-global divisibility in other commutative algebraic groups

We have seen that the local-global divisibility by p holds when G is a torus isomorphic

to Gm and when G is an elliptic curve. This is not true in general for other commutative

algebraic groups G (as showed for example by the results presented in the previous section

about the tori of dimension n > 1), and it seems to depend on the dimension of G[p] as a

vector space over Fp. Even for abelian varieties of dimension higher than 1 it is not true

in general that the local-global divisibility by a prime p holds. In [18] the authors show

some examples of p-groups Γ formed by matrices either in GL3(p) or in GL4(p), pointing

out that if the p-Sylow subgroup of some Galois group Gal(k(G[p])/k) is isomorphic to

such a Γ, thenH1
loc(Gp,G[p]) 6= 0. Anyway, there are no explicit examples of commutative

algebraic groups G over a number field k having such a p-Sylow subgroup of G, and so

the situation is not completely clear yet. A recent result, not published yet, gives certain

conditions on G[p] ensuring the validity of the local-global divisibility by p. A precise

statement is the following.

Theorem 8.1 (Paladino, 2017). Let p > 3 be a prime number. Let k be a number field.

Let G be a commutative algebraic group defined over k, such that G[p] ' (Z/pZ)n. Assume

that G[p] is an irreducible Gk-module or a direct product of irreducible Gk-modules. Then

1): for every n ≤ 12, the local-global divisibility by p holds in G over k;

2): for every n > 12, there exist a prime pn, depending only on n, such that the

local-global divisibility by p holds in G over k, for all p > pn.

Observe that 1) holds in particular for abelian varieties of dimension g ≤ 6. A direct

consequence of Theorem 8.1 is the following statement that can be considered as a weak

generalization of Theorem 6.2 to all commutative algebraic groups for the local-global

divisibility by p.

Corollary 8.2. Let p be a prime number. Let G be a commutative algebraic group defined

over k, such that G[p] ' (Z/pZ)n. For every n, there exists a prime pn, depending only

on n, such that if G does not admit a k-rational isogeny of degree pα, with 1 ≤ α ≤ n−1,

then the local-global divisibility by p holds in G(k), for all p ≥ pn. In particular we can

take pn = 3, for all n ≤ 12.

Furthermore, we have the following result concerning Problem 2.
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Corollary 8.3. Let p be a prime number. Let A be an abelian variety defined over k

of dimension g, principally polarized and such that A[p] ' (Z/pZ)n. For every g, there

exists a prime pg, depending only on g, such that if p > pg, then X(k,A[p]) = 0 and

X(k,A) ⊆ pHr(k,A), for all positive integers r. In particular we can take pg = 3, for

all g ≤ 6.

The proof of Theorem 8.1 in particular show all possible Galois groups G for which the

local-global divisibility may fail in G and X(k,G[p]) can be nontrivial.

When G is an abelian variety A of dimension 2, we have some more information about

Problem 1, proved by Gillibert and Ranieri in [22].

Theorem 8.4 (Gillibert, Ranieri, 2017). Let A be a principally polarized abelian variety

defined over a number field k. Let p > 3840 be a prime number that does not divide

the degree of the polarization and such that k ∩ Q(zp) = Q. If there exists l such that

H1
loc(G,A[pl]) 6= 0, then there exists a finite extension k̃/k of degree d ≤ 24 such that A

is k̃-isogenous to an abelian surface with a k̃-rational torsion point of order p.

Furthermore, when Problem 1 is restricted only to the torsion points of an abelian

variety A of GL2-type, the same authors obtained the following result in [21].

Theorem 8.5 (Gillibert, Ranieri, 2016). Let A be an abelian variety of GL2-Type defined

over a number field k. Let E be a number field of degree dim(A) such that there exists

an embedding φ : E ↪→ Endk(A) ⊗ Q and let OE the ring of integers of E. Let R =

E ∩ φ−1(Endk(A)⊗ Z) and assume that p is a prime that does not divide [OE : R] and

that splits completely in E. Then the local-global divisibility by pl, l ≥ 1 holds for the

torsion points of A.

9. Local-global divisibility in Gm o E

We consider the special case when G is isomorphic to a semidirect product of the multi-

plicative group Gm and an elliptic curve E . This case was never treated in the literature

before. We show a complete answer to the local-global divisibility for these particular

commutative algebraic groups. We recall that by Chevalley’s Theorem on the classifi-

cation of the commutative algebraic groups in characteristc 0 (see for example [38] and

also [18]), for every G there exist positive integers r, s and an abelian variety B, such
that we have an exact sequence
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0 −→ Grm ×Gsa −→ G −→ B −→ 0,

where Ga is the additive group over k.

Theorem 9.1. Let q = pl, where p is a prime number and l is a positive integer. Let

G be a commutative algebraic group defined over k, isomorphic to the semidirect product

Gm o E, where E is an elliptic curve. The local-global divisibility by q holds in G if and

only if it holds both in Gm and in E.

Proof. Let ϕ : E → Aut(Gm) and assume that G ' Gm oϕ E . The group Aut(Gm)

is formed by the identity and the automorphism that maps an element g in Gm to

g−1. Let ∗ be the operation of the group Gm oϕ E and let (g1, P1), (g2, P2) ∈ Gm oϕ
E . Then we have two possibilities for (g1, P1) ∗ (g2, P2): if ϕ(P1) is the identity, then

(g1, P1) ∗ (g2, P2) = (g1g2, P1 + P2); if ϕ(P1) is the automorphism mapping g to g−1,

then (g1, P1) ∗ (g2, P2) = (g1g
−1
2 , P1 + P2). Assume now that Q = (g, P ) ∈ G is a point

locally divisible by a positive integer q. For all but finitely many places v of k, we

have that there exists Rv ∈ G(kv) such that qRv = Q = (g, P ). Let Rv = (gv, Dv). The

condition Rv ∈ G(kv) implies that both gv and Dv are kv-rational. As above, we have two

possibilities for q(gv, Dv). If ϕ(Dv) is the identity over Gm, then q(gv, Dv) = (gqv, qDv).

In that case g = gqv and P = qDv. If the local-global divisibility by q holds both in Gm(k)

and E(k), then there exist d ∈ Gm(k) and D ∈ E(k) such that g = dq and P = qD. We

have a k-rational point (d,D) of G such that q(d,D) = Q and an affirmative answer to the

local-global divisibility in G. Otherwise, if we have a counterexample to the local-global

divisibility by q in at least one between Gm and E , then we have a counterexample in

G too. If ϕ(Dv) is the automorphism of order 2 of Gm, then it maps gv to g−1
v . If p

is an odd prime, then Q = q(gv, Dv) = (gv, qDv). For all but finitely many v ∈ Mk,

g = gv ∈ kv and P = qDv. If the local-global divisibility by q holds in E(k), then there

exist D ∈ E(k) such that P = qD. Therefore q(g,D) = Q and Q has the k-rational

q-divisor (g,D). If the local-global divisibility by q does not hold in E(k), then we have

a counterexample in G too. Finally, if p = 2, then Q = q(gv, Dv) = (1, qDv). As in the

case of odd primes, Q is divisible by q over k if and only if P is divisible by q in E(k).

We can conclude that the local-global divisibility by q holds in G if and only if it holds

both in Gm and in E .
�
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Appendix A. Number fields generated by torsion points of elliptic curves

Let E be an elliptic curve defined over a number field k. As above, let q denote a positive

integer and p denote a prime. In this appendix we recall some results obtained about

the generating sets of the field k(E [q]) and about the families of elliptic curves defined

over Q with a small p-torsion subgroup (small here is intended in terms of degree of the

extension Q(E [p])/Q).

If P1 = (x1, y1) and P2 = (x2, y2) are two q-torsion points of E forming a basis of

E [q], then k(E [q]) = k(x1, x2, y1, y2). Because of Artin’s primitive element theorem one

knows that the extension k(E [q])/k is monogeneous and in principle one can find a single

generator by combining the above coordinates. Anyway, in some cases to find such a

generator is neither easy, nor useful for applications. On the other hand, observe that,

by the properties of the Weil pairing eq, we have that ζq := eq(P1, P2) ∈ k(E [q]) is a

primitive q-th root of the unity. In [5] and [6], the second author and Bandini underline

that ζq could be used as an important generator of k(E [q])/k and they show some sets

of generators contained in {x1, x2, y1, y2, ζq}, that are minimal (i.e., with the smallest

number of elements) for infinitely many q. First of all k(E [q]) = k(x1, x2, ζq, y2), for

every q. Furthermore, for all odd q (and sometimes for even q too) that generating set

could be further restricted as follows.

Theorem A.1. Let E be an elliptic curve defined over a field k with char(k) 6= 2, 3. Let

q > 4 a positive integer and let ζq a primitive qth root of the unity.

1): If q is an odd number, then

K(E [q)) = K(x1, ζq, y2).

2): If m is an even number, then either K(E [q)) = K(x1, ζq, y2) or [K(E [q]) :

K(x1, ζq, y2)] = 2 and its Galois group is generated by the element sending P2 to
q
2P1 + P2. In particular, if q is even then K q

2
⊆ K(x1, ζq, y2).

Note that 1) holds in particular when q is an odd prime number. Such a generating set

could be useful for many applications, even in analytic number theory. For example the

discriminant of the field k(E [q]) could be more easily calculated in many cases. Observe

that, since the p-th division polynomial has degree p2−1
2 and [K(x1, ζp) : K(x1)] 6 p− 1,

then

[k(x1, ζp, y2) : k] 6
p2 − 1

2
· (p− 1) · 2p = |GL2(Z/pZ)|.
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By Serre’s Open Image Theorem, if E has no complex multiplication, then [k(x1, ζp, y2) :

k] = |GL2(Z/pZ)|, for almost all but finitely many prime numbers p, and the generating

set {x1, ζp, y2} of k(E [p])/k is minimal among those contained in {x1, x2, y1, y2, ζp} . A

recent bound on exceptional primes for which the Galois representation ρE,p of G in

GL2(E [p]) is not surjective was proved for instance in [27]. When ρE,p is not surjective

the set {x1, ζp, y2} can be often reduced to {ζp, y2} as a generating set for E [p] (see [6] for

further details). In [6] there is also a classification of all possible number fields k(E [q])/k

in terms of explicit generators, degree and Galois groups, for q ∈ {3, 4} (see also [5] for

an explicit classification of Q(E [3])/Q).

Another interesting question that arose in this context was about the elliptic curves

defined over Q such that Q(E [p]) = Q(ζp). Because of the mentioned property of the

Weil Pairing one always has Q(ζp) ⊆ Q(E [p]). In [29] Merel proved that if an equality

Q(E [p]) = Q(ζp) holds, then p ∈ {2, 3, 5} (or p > 1000). When p = 2 the question

is trivial, since the elliptic curves with Q(E [2]) = Q are the curves of the family y3 =

(x−α)(x− β)(x− γ), with α, β, γ ∈ Q and α+ β+ γ = 0. When p = 3 the problem was

solved in [32].

Theorem A.2 (Paladino, 2010). Let E be an elliptic curve with Weierstrass form y2 =

x3 + bx + c, where b, c ∈ Q. Its 3-torsion subgroup E [3] is such that Q(E [3]) = Q(ζ3) if

and only if E belongs to the family

(A.1) Fβ,h : y2 = x3 + bβ,hx+ cβ,h β, h ∈ Q \ {0},

with bβ,h = −27
β4

h4
+18

β3

h2
−9

β2

2
+3

βh2

2
−3 h4

16
,

cβ,h = 54
β6

h6
−54

β5

h4
+45

β4

2h2
−15

β2h2

8
−3

βh4

8
− 1

32h6
. 2

When p = 5 the problem was lately solved in [23].

Theorem A.3 (González-Jiménez, Lozano-Robledo, 2016). The elliptic curves defined

over Q with Weierstrass form y2 = x3 + bx+ c, b, c ∈ Q, having full 5-torsion over Q(ζ5)

are the following elliptic curves
23



1): the elliptic curves curves parametrized by the non-cuspidal points of the modular

curve X(5) with Weierstrass model

y2 = x3− t
20 − 228t15 + 494t10 + 228t5 + 1

48
x+

t30 + 522t25 − 10005t20 − 10005t10 − 522t5 + 1

864
,

with t ∈ Q;

2): the quadratic twists of the curves E in 1) except the quadratic twist E5;

3): the curves of the family

y2 = x3 +
(t2 + 5t+ 5)(t4 + 5t2 + 25)(t4 + 5t3 + 20t2 + 25t+ 25)

4 · 1728
x+ q,

with t ∈ Q and q ∈ Q satisfying the equation of the j-invariant j = 1728(4p3)/(4p3+

27q2),

where

p = (t2 + 5t+ 5)(t4 + 5t2 + 25)(t4 + 5t3 + 20t2 + 25t+ 25)

and

j =
(t2 + 5t+ 5)3(t4 + 5t2 + 25)3(t4 + 5t3 + 20t2 + 25t+ 25)3

t5(t4 + 5t3 + 15t2 + 25t+ 25)5
.

Furthermore González-Jiménez and Lozano-Robledo proved that if Q(E [q]) = Q(ζq), for

any integer q, then q ∈ {2, 3, 4, 5}. They also describe in [23] the family of elliptic

curves such that Q(E [4]) = Q(ζ4). Finally, they study some properties of the extension

Q(E [q])/Q in the case when it is abelian. In particular they describe all possible abelian

Galois groups Gal(Q(E [q])/Q) and prove the following statements.

Theorem A.4 (González-Jiménez, Lozano-Robledo, 2016). Let E be an elliptic curve

defined over Q and let q be a positive integer. Assume that Q(E [q])/Q is abelian. Then

n ∈ {2, 3, 4, 5, 6, 8}.

Corollary A.5. Let E be an elliptic curve defined over Q and let q be a positive integer.

If q ≥ 9, then the image of the Galois representation

ρE,q : Gal(Q̄/Q) ↪→ GL2(Z/qZ)

is non-abelian.
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