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¢-FACTORS OF DISCRETE SERIES REPRESENTATIONS
OF CENTRAL SIMPLE ALGEBRAS

ERNST-WILHELM ZINK

ABSTRACT. We assume a certain construction procedure ¢t — II# of discrete series
representations of A* where A | F is a central simple algebra and we compute the
e-factor (s, I'I;,"‘,v,b) in terms of the parameter ¢. It turns out that some information
depending on A other than the reduced degree is necessary to determine £ such that
the explicite constructions do not fit with the Abstract Matching Theorem. The
deviations are encapsulated in the Weil representations to be used when construct-
ing IT# which come up for different algebras A in a different way. Using the Weil
representation requires to assume F p-adic for p # 2.

1. DEFINITION OF THE £-FACTOR

Let F be a p-adic field and A = Mpn(Dg) a central simple algebra over F of
reduced degree N = md and let p # 2 (we need this assumtion because we want to
use the Weil representation, see sections 8 and 9). Let ¢ : F* — C* be an additive
character.

Then according to Godement, Jacquet [GJ] an e-factor £(s,I1,¢) is assigned
to any irreducible admissible representation II of A*. It depends on a complex

parameter s and appears in a functional equation relating Laurent polynomialsi.e. = =~ =

functions of s which are elements of Clp*,p~*]. Namely let

@ € S(A) be a locally constant compactly supported complex valued function on A,

f € I(II) be a function on A* which is in the span of matrix coefficients of II.
There is a well defined Laurent polynomial Z(¢, f, s) € C[p*,p™*] associated to

&, f (depending on II) such that

2(d, f.1—5) = (=)™ e(s, IL, $)Z(0, £, 5)

where ¢ € S(A) is the Fourier tra.x}sform~of ¢ with respect to a y-selfdual Haar
measure on A, and where f € M(II) is given as f(g) = f(g~!) for g € A*. The
functional equation implies

e(s,I,4) - e(1 - 3,11, ¢) = wn(-1)

where wyy : F* — C is the central character of II, and the root number is defined
as .

wW{,y) = E(%,an) eC
which implies |W(II,%)}|c = 1 for I unitary. Then we have
© £(s,T1, ) = W(IL, ) - g4 —*)a(#)
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where g = |kp| is the order of the residue field of F' and a(II,+) is an integer. If
we switch to another additive character i3, b € F, given as ¢y(z) = ¥(bz) for all
z € F, then we have the transformation rules:

(2) . W (I, ) = wn(b) - W(II, %)
a(Il, %) = a(Il,¥) + N - v (b)

(where N was the reduced degree of our algebra A). Moreoverif x : F* - C* is an
unramified character and ¥ = x o Nrd is the corresponding character of A®, then:

(3) W(x®Iy) = W) - x(xp)* @Y o(x @10, %) = a(IL, %)

independent of the choice of 7¢ because x is unramified.
Once and for all we normalize the additive character ¢ in such a way that it has

conducter pr, i. e. ¥(pr) =1 and Y(or) # 1. Then the restriction of ¢ onto o is
an additive character of the residue field kr which we denote 1.

2. THE FORMULA OF BUSHNELL AND FROHLICH

We assume now that the irreducible admissible representation I of A* is a dis-
crete series representation. Then according to Bushnell and Fréhlich [BF8S5, 3.3.8]
the root number W (II,v) can be expressed as a Gauss sum. Namely consider a
maximal compact modulo center subgroup £ of A* and a “nondegenerate” irre-
ducible represention g of & which is contained in II. £ = N4.(2) is the normalizer
of a uniquely determined principal order 2 in A. Let ‘B be the Jacobson radical of A
and let f(g) = P’*! be the conductor of g, i. e. 1+ f(g) C Ker ¢o. “Nondegenerate”
especially means that A* ¢ Ker g hence j > 0. Write N f(g) = (% : f(g)) for the
absolute norm. Then:

(1) WL y) = (-1)N"™ . Nf(e)™'/? - r(3,%)

where 7(3, ) is a Gauss sum assigned to the contragredient § of g; Namely 7(g,v)
is the value of the following scalar operator:

@ CTEW = Y HCT) )

“u€A* /1+f(Q)

where 14 = ¥ 0 Trdjr and c is a generator of the fractional ideal f(14)~" - f(o)
of A which is a power of 3. As mentioned before we assume f(3) = pr hence
f(¥a) =P and vp(c) = 3.

Remark. Bushnell and Frohlich (3.3.8) do not make use of the assumption “II su-
percuspidal” but of the weaker assumption L(II) = L(IT) = 1 which also includes
discrete series representations. (See their remark 3.4.(c).) More precisely if II is
essentially discrete series, then L(IT) = L(II) = 1 unless I is an unramified twist
of the Steinberg representation. Therefore our methods do not apply to Steinberg
representations. Instead one has to use the behaviour of 4- and e-factors under
parabolic induction. For the sake of completeness we quote the result which for
A = My(F) follows from [GJ, p.97)] :



2.1 Proposition. Let A! F be a central ~imple algebra of reduced degree N = md,
let St4 be the Steinberg represerniation of A® (which is the trivial representation if
A = Dy is a division algebra) and let x be an unramified character of F*. Then:

~

(s, X ® StA,vp) = (=1)V 1 . x(zp)"L - g3-C-D)

hence a(x ® St4,9¥F) = —1. For x = 1 we especially see that (s, St4,yF) =

(=1)¥-1.q(d=)(1), And if Yr has the conductor o, then from 1.(2); we conclude
(7 ® StA, $r) = N — 1.

3. PARAMETERS FOR DISCRETE SERIES REPRESENTATIONS

Our aim is to express €(s,II, ) of a discrete series representation II of A* in
terms of a certain set of parameters for those representations. We briefly recall
what the parameters look like:

Consider F{T)ir the set of irreducible polynomials of degree > 1 where the
highest coefficient is 1, and let F < F{T)irr, a — T — a be the natural embedding.
Then the exponential distance vp(a — b) € Z on F has a well defined extension to
an exponential distance wr(f(T), ¢(T)) € Q onF|[Tir, 1. e.

wr (f(T),9(T)) 2 min{wr (£(T), (T)), wr(K(T),o(T))}
wrp(T —a,T - b) = vp(a—1b) fora,be F.

(see {Zi92]). Moreover there exist approximation procedures on F[T};. with respect
to the exponential distance wg.

3.1. An approzimalion procedure is a map

(1) FlTlie xQ = F(Tlie, (F(T),5) — F(T)

such that: |

() (M) =T foralljif f(T)=T
(i) wr(f, 1) > § and F1(T) = FI4¢(T) fwp(f, 1) 2 j+¢ for some e >0
(iii) deg f7(T)|deg f(T) and the same divisibility holds for the ramification ezpo-
nent and inertial degree of the polynomials.
(iv) wr(f,9) > j implies f(T) = ¢/(T).

The existence of approximation procedures was proved by H. Koch [Ko81].

3.2. Note that for f(T) € F[T)irr, vr(a) € Q is the same for all roots @ of f(T) in
a fized algebraic closure F|F, and f/(T) = T for j < vp(a) i. e. the approzimation
of f(T') starts from the polynomial T € F[T)irr (which is the “zero element”) and
it ends up with f(T) = f(T).

There 1s no p-adic expansion of irreducible polynomials but it is suggestive to
think of f7(T) as of the partial sum of a p-adic expansion. Just as for p-adic numbers
‘there are many approximation procedures and we have to fix one of them. For later
use we describe how to fiz the first nontrivial approzimation of f(T). Namely we
will fix a complementary group Cr in F*,1.e. F* = Crpx(1+pr). CF is generated
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by a fixed prime element mr and by the roots of unity of order prime to p in F.
Now let ¢ O Cr be a fixed complementary group of F|F, F* = € x (1+pp) which
containes Cr. C contains all roots of unity of order prime to p and is fixed by
choosing a “string” of roots of 7F.

The approximation procedure on F[T];r, can be fixed in such a way that the first
nontrivial approximation of f (T) is given as follows:

Take a root @ € F of f(T) and consider the uniquely determined “symbol”
symb(a) € € such that

(2) a =symb(a) modl+pp.
Then f*(T) =T and

(3) f*7¢(T) := minimal polynomial of symb(a) over F,
if v = vp(a) and € > 0 small.

It is possible to see that symb(a) is conjugated to symb(f3) if a is conjugated to 8
such that f¥+¢(T) is well defined. But we note that { symb(8); 8 conjugated to a }
C {conjugacy class of symb(a)} can be a proper subset.

Now we define

3.3 A polynomial f(T') € F[T)i, is called a minus polynomial with respect to
the fixed approximation procedure if already f°(T) = f(T). The set of minus
polynormials is denoted F[T;..
3.4 Consider pairs (¢,3) where 8 € F is the root of a minus polynomial and
$: K*/1+pxg — C* is a tame character of a field K such that:
(i) K|F(B) is an unramified extension of fields,

(ii) ¢ is regular over F(8), i. e. all conjugate characters are different.
The Galois group B¢ = Gal(F|F) acts as follows:

oo(¢,B) = (¢p00™1,0(8)) for o € &F, and by t = [, 8] the Galois orbit of the
pair (¢, 8) is denoted. The degree of such a parameter is defined as degt = [K : F],
and a twist with tamely ramified characters x : F*/1 4+ pp — C* is given as:
X ®t:= [(xo Nkjr)é,8].

3.5 If A|F is a central simple algebra of reduced degree N then Ty = {t =
[¢,8]; degt|N} may serve as a system of parameters for the irreducible discrete
series representation of A*.

(The minus sign in 7y reminds to the fact that the numbers 8 are roots of minus
polynomials over F).

The parameter set 7 is not canonical because it is necessary to make choices
when constructing a discrete series representation II; out of a parameter ¢. In order
to obtain a well defined II; one has to fix a character Ag : F(8)* =+ C for all 8
such that the following compatibility relations are fulfilled.

3.6. (i) Agoo™"=Ayp): foralloe &p.
(i) Ag =1 the unit character of F* if 3 =0.
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(i) (As[Xs o Nr(g)r] "Y1 +2) = Yo Tre(gyr((B-b)z) forze pe/at and
j=-vpp(B-b)ifbeF.
(Note that vp(gy (B —b) = ep(ayF - wp( f8(T), T —b) is a negative integer
because (3, b are roots of minus polynomials and b € F).
(iv) As(8) =1.
Conditions (iii), (iv) are compatible because vp(g)(B) < O implies that the cyclic
group (B) and the principal units of F(8)* have trivial intersection.

Unfortunately the compatibility relations of 3.6 are not complete because what
we need in (iii) is compatibility between Ag and A, for arbitrary -y whereas we have
assumed v = b € F. So far the general compatibility between Ag and A, can be
expressed only in terms of the algebra A at hand such that fixing a compatible
system of characters {Ag}s might depend on A.

3.7 If we have fixed an approximation procedure on F[T};, (see 3.1) we say that j
is a jump of f(T) if f(T) # f*+¢(T) for all £ > 0. When approximating f(T) in
general the number of jumps can be infinite but for a minus polynomial it is certainly
finite because fO(T) = f(T), i. e. all jumps are negative. Now the construction
of a compatible system of characters {A\s}s proceeds by induction on the number
of jumps of B (that is to say the number of jumps occuring if we approximate the
minimal polynomial of 3 over F). It starts from Ag = 1 for 8 = 0, the only number
which has no jumps. According to (2), (3) a number 3 gives rise to precisely one
jump iff B = symb(B) € C. In this case 8 is the root of a minus polynomial iff
vr(B) < 0 and to fix Ag the conditions 3.6 (iii) with b=01.e. Ay =1 and 3.6 (iv)
will do. Hence the characters Ag can be chosen independently from A if 8 has not
more than one jump.

3.8 Let A|F be central simple of reduced degree N and let A} oo D€ the set
of equivalence classes of irreducible discrete series representations of A*. Fixing a
map Ty —+ Aficreter t = (6, 8) = II# means to fix a compatible system {4} of
characters )\g : F(B)* = C*, which gives a well defined map

(4 - t=[6A = [6,8,25] - TIf.

We remark that the construction of II; uses all characters A? where the minimal
polynomial of v is an approximation polynomial of the minimal polynomial of 8.
In the tame case p t N it is known that the system {A%}s can be chosen in-
dependently from A and that the “approximation characters” A,of Ag are not re-
ally necessary to construct II;. In this case it happens that II; is determined by
= ¢-(Ag o Nk|F(g)) which is a character of K*. In the general case the situation
is less satisfactory but we are able to take some advantage of the remarks in 3.7.

4. THE RESULTS

We are going to state the results. According to 3.(4) our aim is to describe
the e-factor £(s,II#,9) in terms of (¢, 3,A5] in order to see to what extend it
depends on A. In a sense this is a test if the explicite constructions ¢t = II# for the
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different central simple algebras A | F of a fixed reduced degree N reflect the local
matching theorem of [BDKV). Then the e-factors should only depend ~n N but not
on A. But in fact we will see that £(s, IIf, 1) depends on A zuch that the explicit
constructions have to be modified in order to match. We have to exclude Steinberg
type representations which require special treatment (see Proposition 2.1. above).
The corresponding parameters are t = [¢, 0] where ¢ is an unramified character of
F* (i. e. ¢ is trivial on the units of F'). No unramified extension K|F can occur
because unramified characters cannot be regular.

From now we assume t = [¢, 5] where 8 # 0 or the tame character ¢ is ramified.

Case 1: Assume t = [¢, 0] and consider the finite fields ky D kx D kr, where kr is
the residue field of F and kn|kF is the extension of degree N. The tame character
¢ of K* restricted to the units gives a character ¢ of k), and the additive character
¥ of F restricted to the integers gives ¢ of kf. (see 1.).

Theorem 4.1. Fort = [¢,0] we obtain:

(i) e(TIf,9) =0, e(s,0If,9)= (Ht )

(i) WA, 9) = (1N g7V 7(671 o Niy ke » ¥ © Triwjie)
where T(x, %) = 2 e X(Z)W(z) if X, ¥ are a multiplicative and an additive char-
acter of a finite field k.

Especially we see that the e-factor of IIA does not depend on the algebra A but only
on the reduced degree N of A|F. .

Case 2: Assume t = [¢, 3] where 8 # 0 and the symbol b = symb(8) € C
generates a tame extension F'(b)|F. Then

Theorem 4.2.. (i) o(II#,¢) = =N -vp(B) (see 1.(1))
(i) W(IIA, ) = (~1)N—m+Nom(m) Ly (5)=1 . @™ . g(0,)

where Ny = N/(F(b) : F), Ny = N/degt, Yi(B) = ¥ o Tr|p(B) and the character
Ay = A does not depend on A (see 3.7).

0(As) is given completely in terms of the field F(b), namely let p be the prime
ideal of F'(b) and v the p-exponent. Then:

1 o if v(b) is odd
o(As) = Np-1/2. > M(l+2) Yre(bz) if j = —v(b) is even.
zEpi/a pi/a+1

Xw, is the character of a Weil representation which is given in terms of A, and
xw,(b) € {£1} is a sign. This is due to the fact that the ramification exponent of
F(b)|F is the denominator of vr(b) € Q, hence F(b)|F tamely ramified means that
the denominator of vp(b) = vr(3) is prime to p, hence b € C/CF is of order prime
to p, and xw, (b) only depends on b. According to Howe [Ho], Proposition 2.(iv),
Xw, (b) is an integer, and it has to be of absolute value 1 because |W (II#, ¢)|c = 1
if the character ¢ is unitary (see section 11 below).

Remarks. 1. From 4.2(ii) we see that in case 2 the root number W (II{, ) is the
product of a sign namely (—1)N-m+N—(mMN)yy (b)~! which depends on A and
of the factor [Wx (8)/(B)]N - §(\s)N* which is independent from A.
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2. The representation II#* is not in general position if the conductor a(II#, %) =
~N -up(B) can be reduced by twisting I with a character x o Nrd4r where x is
a character of F'*. This is equivalent to the fact that b ='symb(8) € F and implies
(=1)N=-m+Ne=(m.No)y i ()~1 = 1, hence W(II, ) does not depend on A if I is

a representation which is not in general position.

Case 3: Finally we consider ¢ = [@, 5] where 8 # 0 and the symbol b = symb(8) € C
generates an extension F(b}|F which is not tamely ramified. Then:

Theorem 4.3. (i) a(I'I : ):—N vr(B) (see 1.(1))

(i) W(O#, ) = m . Lol ey ™

Again xw, 1s the character of a Weil representation which is given in terms of
A but now the character value xw, () need not to be on the unit circle. Therefore

W(IIA,4) has the factor (—=1)V-™ . I’;—‘Wv:z(—? which depends on A and the factor

[¥x (8)/¢(8)}* which only depends on ¢ = [¢, 5] but not on A. Moreover we note
that in case 3 the character Ag or “approximation characters” of Ag play no role
at all. Therefore in the wild case 3 in a sense the root number formula is simpler
than in the tame case 2. '

Corollary 4.4. Assume t = [¢, 5] where 8 # 0, and for a tame character x of
F(B8) lett, =[é-(xo Nkrp)), B Then we get:

(@) (s, 4, p) = |81~ . w(ma, )
(i) WA, 4) = x(8)~e - W(IIA, v)

where |8lr = ¢~*7P) is the extension of the normalized absolute value from F to

F and where Ng = N/(F(B) : F).

Remarks. 3. The reason for the change from (4, 8) to (¢ - (x o Nkjr(s)), B) is
that ¢'(XONKIF(ﬁ)) is again regular over F'(8) because ¢ is regular and x o Nk |F(g)
is invariant under automorphisms of K|F(83).

4. We expect that the maps ¢ — II{# have corrections t — Hf‘( ) Where x(1,4) 1s
an appropriate tame character of F(8)* such that the root number W(H;‘:“(hm, ¥)
does not depend on A. In the tame case p 4 N such corrections were established
by C. Bushrell, A. Frdhlich [BF83], A. Moy [M] and H. Reimann [Rei] in the case
where A is a division and split algebra respectively.

5. We also note that the formulas in 4.1-4.3 do not change if we replace (¢, 5}
by oo (¢,8) = (¢07!,(B)), hence the formulas only depend on the parameter
t =[¢, 4]

6. G. Henniart {He] has computed £(s, 14, %) modu for certain supercuspidal rep-
resentations of A*, where u denotes the complex roots of unity of order a p-power.
Henniart’s assumptions in terms of our parameters are:

a) lem(degt, d) = N, which means that II# is supercuspidal,

b) t = [¢, §] such that b = symb(8) € C generates a fully ramified extension of
p-power degree.

Therefore either II# is not in general position (see remark 2) or we are in the
situation of 4.3. b = symb(8) plays the role of Henniart's “g,” and #(8)~™
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plays the role of Henniart’s wi'(g,), because II = II# has the central character
wn = (¢ A§ o Nkr())™t|F-. ¥ (B) does not appear in Henniert’s formula, be
cause it is in u.

5. COMPUTATION OF THE CONDUCTOR a(II{, ¢)

Because II# is a discrete series representation of A* we can use the following for-

mula of Bushnell, Frohlich [BF85). Assume that the discrete series representation IT

of A* contains a “nondegenerate” irreducible representation g of & = N4.(2) (see
2.). Then:

~8)/N

(1) e(s, I, 9) = N(f(e) - Flwa) ) 3N . wm, )

where the conductor f is a certain power of P = Jac(A) and Nf = (A : f).

Now from the construction of ¢ C II out of t = [¢, F] it will be clear (see below)
that

N

2 - flo) =P+ 80

hence f(g) - f(¥Wa)~t = P~+# because y is of conductor pr. Moreover A =
M. (Dy4) implies

(3) A/P = [M,(kp)]

where kp is the residue field of the division algebra and rs = m, vgp(rr) = rd.
Therefore

(ﬁ : m) = qdr’z
(4) (2 m—um(ﬁ)) = q-drgz.p.p(g) _ q_Nn"P'(ﬁ)

because N2vg(8) = (drs)?vr(B) = dr - s® - vg(8). Putting (4) into (1) we conclude
e(s, I, 9) = 4= CNr ). w(m,, 9),  a(ll,, %) = —~Nvp(8)

In the case A = 0 the conductor of g C [I# is f(g) = P because we have excluded

t = [¢,0] where ¢ is an unramified character. For o C II#! this means that A* ¢

Kerg. Now f(0) = P implies f(p) - f(1a)™! = A, N(f(0) - f(¥4)™?) =1 and (1)

turns into
e(s, I, 9) = W, ¢), o(ff,9)=0
if t = [¢,0]. Thus we have seen part (i) of Theorems 4.1, 4.2, 4.3.

6. THE PROOF OF THEOREM 4.1

Assume t = [¢,0] and ¢ : K* — C* is a ramified tame character which is regular
with respect to the unramified extension K|F. f = [K : F] is a divisor of N if
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t € Ty If A= Mm(Dg) we consider Fy|F the unramified extension of degree d in
F and we let

(1) fl=f(f,d) = [K:KNFq.

f' = lem(f,d)/d divides N/d = m and we introduce the numbers e := N/f,
e :=m/f.

Now let %, be the standard principal order in A which is determined by the
divisor €’ of m. If P is the Jacobson radical of %,/ then:

(2) (% /P)" = [GLy (k)] ,

and we use ¢ to distinguish a cuspidal representation of that group. Namely because
of f'd = lem(f,d) we have K C Fyq and we let x := ¢ o N, k- This is a tame
character of F},, which is regular over Fy hence the “reduction” ¥ is a character
of (kpkk)* which is regular over k. Thus ¥ determines (up to equivalence) a
cuspidal representation ¢ = og of GLy (kp). The tensor power o®¢ is a cuspidal
representation of [GLs (kp)]® with central character x¢ on k}. Because ¢’ =
N/f'd = [Fn : Fy4) we see that %¢ and ¥ o Npy|Fpg = do Nrpy ik give rise to
the same character of k},: Hence using (2) we can inflate 0®¢' to a representation
of A}, and then we can extend it to F'* - 2, in such a way that on F™* the central
character is ¢ o Np, 1k = ¢°|r-. The resulting representation of F'* - A}, we denote
T¢,. :

6.1 Proposition. For all discrete series representations II of A* which contain
'r¢|g1:, we get the e-factor as described in 4.1.

Proof. We are left to compute the root number
(3) WL, y) = (-)N"™ Nf(e)™"/* - 7(5,9)

where 3 denotes the contragredient of an irreducible representation g of K. such
thatHD-‘QDqulm:’. .

Because of f(p) = B from 2.(2) we conclude that 7(g,¢) is the value of the
scalar operator ) o{u)i4(u) where ¢4 = 90 Trd 4 r and where the sum is over all
u € (Aer/P)*. Because of g D 74la-, it is obvious that Y r4(u)pa(u) is a scalar
operator of the same value. Now we consider

[GL# (Dp)]¢ — (A /P)* = [GLy (kp))*

thinking of [GL;(Op)]¢ to be diagonally embedded into 2Z,. Then we can repre-
sent u € (A /P)* by (z1,...,2¢) € [GLp(Op))e. Now we use:

$a(u) = o Trep e, (Tr2y + - + Triy)
To(u) = 0% (u) = (%) ® - ® 7(Ze')

(0, 9) 1= 74(u)palu).
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Taking the trace of the last operator equation we find:

(dimo)® - 7(p, ) = Z xa(iﬁ)---xc(fef)-117°’Il';,,|k,(’1‘-r£1+~-+Tr£¢:)
, (21,...2,/) S

Z H Xo (Z:)9 © Trip iy (20)] = [Z Xo (Z)¥ip © TT(Z')]

(21 el gt ) =1

'

where the sum is over all (Z,,...%) € [GLy (kp)]* ¢ and Z € [GL;: (kD)] respec-
tively and where we have used the notation ¥, = YoTrp ke 2z 0( Z) i, o Tr(Z)
is a scalar operator of value say 7(c, ¥z, ). Hence we conclude

(dima)*" - (e, %) = [dimo - 7(0, Pkp)] ’
7{0,%) = 7{o, d;kp )c'

Now we apply Kondo’s formula (see Macdonald {Mac]) to the cuspidal representa-
tion o of GLy (kp). It says that 7(o, ¥kp) = (-1 -qd(f'z-f')ﬂ . [-‘r()z,g[-;kp;,x)]
where 7(%, Vkpkx ) = 2 s (kpkx)® %(Z) Dk pky (z). Because of e’ f'd = md = N, the
Hasse-Davenport formula yields:

[-7(% Yiprx)] ‘= —7(¢ © Newlt» Pin)

hence

T(Qa ¢) = T(Gr dgkn)c‘ = (_l)mq_N(f'—l)/2(_1),r(5 o Nk~|kx: 'ﬁkw)

Now we insert this formula into (3) using f(g) = P hence Nf(p) = (A : P) =
g° 4" = ¢Nf'. Then we obtain the result. O

7. THE ROOT NUMBER IN CASE 3 # 0 - A FIRST REDUCTION

Now we consider ¢t = [¢, 8,A5] = II{! € (A")" in the case 8 # 0, and we want
to compute the root number W (II{,1)). We recall some basic facts concerning the
construction of II#. The parameter t contains the fields K D E = F(8) (up to F-

isomorphism), and we fix an embedding of these fields into A. For the centralizer
of E we obtain: -

A E M, (Dg4,) where Dy, | E is a central division algebra of index

= d/(d,[E : F]), and mo = (m,N/[E : F]) because modo =
N/[E’ Fl,md=N.

Take a maximal extension L'|E in Ag such that frg = [K : E|/([K : El],dy).
Let A7/ r be the principal order in A which is normalized by L'*. t = [¢,ﬁ,z\§]
determines an irreducible representation wf of the group E* - ﬁi,l p and there are

precisely N; = N/[K : F) discrete series representations of A* which contain 7.
They only differ by unramified character twists, and II# is one of these. The root
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number W (II{, v) will be independent of that choice. To compute it, we start from
the formulas 2.(1), (2) where we choose an irreducible representation ¢ of f./p .

such that II# > ¢ D . In 2.(2) the sum is over A* = A},  which is contained in
E*2*. Because T(g,v) is a scalar operator we will get the same value if we replace

o by an irreducible component of the restriction gg-. Hence 7(3, ) is also the value
of the scalar operator

T@aF,g) = Y #f (e u)palc ).
ue(%/f)*

The conductor of ¢ and wf is the same power of P = Jac(2) namely
(1) f(xF) =P where j = —vp(8).
We have 8 € E* C & = &, r and more precisely 8 in A is uniquely determined

as an element of the fundamental domain A7, for AdR\A(e', f')/LF, where
e =epyr, f' = frr. Because of (1) we may choose ¢! = 3 such that:

(2) 7(8,%) = value of the scalar operator Z ﬁf (Bu)ya(Bu).

u€(2/f)" :
Now we use 7}’ = Ind(7s ® #3), where the induction is from E*A7. 575 1 F ONtO
E*27, . We abbreviate J° = A}, pJj 1. g A = 7, ®7p. Note that A remains irre-

ducible if it is restricted from E*J° to J°. Now the value of the scalar operator (2)
is preserved under induction (see [2i93]), hence

(3) 7(8,%) = value of the scalar operator Z A(Bu)4(Bu).
' u€JO/1+(A)
We consider the principal unit subgroups U* = 1+ P* in & = fpr and the
induced subgroups J* = U*N J? for i > 1. The next information we use is that the
restrictions Ay are isotypic representations. Moreover for i = [j/2] + 1 (see (1))
we have U= J* and
Ayi(l +$) = 1J)A(ﬂﬂ:) -1.

Therefore the same argument as in the proof of [T, §1, Proposition 1] can be applied
to obtain

7.1 Proposition.

Nf(A)™2- 3" A(Bu)pa(Bu) = A(B) - $a(B)  if2135(A)

= K(8) - va(B) - Np~/? _[2 A+ z)wwz)] if 213(A)

where j(A) = j = —vp(B) and where the sum is over z € P2 ppila+L,

Note that this formula fits into 2.(1) because of (3) and f(g) = f(z¥) = f(A).
In the following we shall derive a formula in the more delicate case 2|j which will
be compatible with 2 { j such that the final statement is independent of the parity
of ;. .

11



8. FURTHER REDUCTION IN THE CASE 2|j

We write the right hand side of 7.1 as the product of two operators, namely:

-~

Di=K(g), Da=ya(f) NP~/ [Z A1 +2)¢a (Bz)] :

Because D1 D; = p - 1 is a scalar operator and because D, is invertible, we get
(1) tr(D2) = p - tr(D71).

Moreover tr{(Dy!) = xa(A) is the character value of 8 with respect to A = 74 ® #3.
We recall the construction of #5 € (Jg,L\r)", namely: gl = (J5,Hp,05) is a
Heisenberg representation and 73|y, = 83 ® W, where Wj = W(Jé JH },,X 3) is
the Weil representation of Hg/Hj +— A/ g/U*(R1g) corresponding to the pair
(J3/H}, Xp). Therefore by a result of R. Howe [Ho| we have:

8.1 Proposition. i ® 7 = Indn,1,(1) O.

For the character x5 of % this means x3(8) - x3(8) # 0 because 8 € E* C Hp.
Now we consider A = 74 ® #tg of E*J°. 7, is an irreducible representation of the
factor E*JO/J! «— E*}, 5/1+ Prp. Because 5 € E* is in the center of that
group we see that 75(3) is a scalar operator. As we know, the central character of
T is ¢™'|g- where Ny = N/[K : F] = "—V&‘ngj Further we make use of #gly, =
05 ® Wg, and 85(8) = Ag o Nrdaze(B8) = As(B)V/B:Fl = 1 because of 3.6(iv),

hence x5(8) = xw,(B) and xa(8) = x8(8) - X, (B) = xw, () - ¢™*(8) - dimry # 0.
Now the equation (1) yields

(2) va(B) NP~/2 [Z xa(l+ z)wwx)] =p-xa(B) =7.1
= NF(A)TV27(R, ) - xw,(B) - $™(B) - dimry

Because A = 14 @ g gives A|,» = dimry - 7g|;n we can substitute xA(l + z) =
dimTy - x3(1 + z), and by a division (2) turns into:

3) NfFA)V2.r(A,p) = M'(;{(f»)v,(ﬂ) -NpTV? [Zxﬁ(lﬂ)m(ﬁz)]

The sum is over z € P7/2/93/3+1, We use that #s|,1 = (J, H!,8p) is a Heisen-
berg representation and that #g| /2 is a multiple of the Heisenberg representation
(J3/2, Hi/2 resfg). From the general expression H[Y/A+1 = 14+ 3., (PI/2+ 0
A_;), where A_; is the centralizer of the approximation B_; of 8, we see that
Hi/? = gUF'HL = 1 4 9/2 0 A, + P7/3+1 where b= B_j,1 is the first nontrivial
approximation of A. Similar: JIH = 1+ 5, >0 BHINA_) i e Ji2 = JIF) =
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1 + P3/2 because f_; = 0, A_; = A. Therefore the character of the Heisenberg
representation n = (J7/2, Hi/? resfp) is

0 if z € Pi/2 - Al
a+a={ e
dimn -8p(1 + z) if z € 4.

where we have introduced the notation A} = P/2 N A4, + P/*+1, Now #g|siss
being a multiple of 7, we conclude

0 if z € P2 - A}

1 =
xo(l+2) {dimﬁ'g-@g(l+z) ifz €A

We put this into (3) and note that dim#z = dimWjy. Then we obtain
(4)

NF(A)~Y2. 7K, p) = ;I;a((g)) ilng) CNp—/2. Z/ 05(1+ 2} - a(Bz).
A ZEA'L/!D’. 241

Moreover we know that vp(6~b) > —j+1 implies (8565 *)(1+z) = 4 ((8—b)z) for
1+z € H éﬂU[Lii]+1. But the last intersection is nothing else than 1+ A4}. Therefore
in (4) we may replace 85(1+z) = 85(1+1z)-94((8—b)z). Now 6y € X (H, /|r) has
been chosen in such a way that 8, = 5\5 = A oNrdA.,'IF(b) on KrpN Ap C Hy piF-
Because the sum in (4) is over A, /P7/2+! = A, N P//2/A, N PI/2+! we can replace
8, by Xs and (4) turns into:

8.2 Proposition. If 2|j then:

NI r(R ) = ST N T K ) - dalta),

where the sum is over z € Ay NPI/2 /4, NPI/23+T,

9. HANDLING THE WEIL REPRESENTATION

The aim of this section is to replace dimWs/xw,(8) in 8.2 by. dimW, /xw, (b)
where b = f_;4, is the first nontrivial approximation of 3. We assume b # 3
because otherwise there is nothing to show. Wj = W(Jé /H},,Xg) is the Weil

representation of Sp(Xy) « £Rg/U'(Rg) which comes from the F,-vector space
J5/H} provided with the nondegenerate alternating character Xjg. Now for Wy we
have the basic formula [Zi]:

(1) Wp(z) = Wy (u(Z)) ® Ws—(2),
where ¢ denotes the following combination of maps:
vi Ra/UN(Rg) = ReUN(R)/UN(R) < K,UHR)/UNR) — &, /U RY),

7 = f-4 denoting the last approximation of € A7, p €& A(e, f')* € Apr. Note
the assumption v # 0, i. e. approximating 8 we have more than one jump. Hence
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vp(B) = vp(7) £ —s—=1,7-B € P~* C vP and we see that y~' 8 € 1+P = U(R),
which implies ¢(3) = 4. Therefore from (1) we conclude

(2) - Ws(B) =Wy (7) ® W (B) -

Now we consider the orthogonal with respect to X5 decomposition:
J/HY < JE) U o gl gl gl g gl gl

Note that the second term of the orthogonal decomposition is normalized by #5
because the first term is normalized and the alternating character X is invariant
with respect to conjugation by Ag.

9.1 Lemma. The adjoint action of 8 on H-[,,L}‘,*:l]/‘Hllﬁ_lI is trivial.

Proof. Consider H-[,._#] 2 H Ef’u] D H{#/2+1 where omitting the index means that
for y and 3 we have the same group. Now Hy = Hl*/2*1 g5 and H, = Hl'/2+1 g
where —s' < —sg is the last jump in the approximation of 4¥ = $_,. This implies

H, = Hle/A+1g and BYF = g2+ (& 0 HYF). We conclude that the

adjoint action of y on 1':1’-[,£","_1]/H["/zl"'1 = R,ﬂH-[,L-F]/R.,ﬂH-[,'_/zI'H is trivial because
£, is in the centralizer of 7. On the quotient under consideration the groups £,
and g both act by conjugation. Especially we consider the action of 3. Because
- acts trivially we see:

(3) BzB =py -z (Br)'  mod HWH  forallze HFL

But v = S modP~*, v4~! =1 modS~1P~? = P ~*. The assumption y= -, #0
again implies j — s > 1, i. e. 487! is a principal unit. Therefore the adjoint action
a$1
of v4~! on H-[,_?_]/ H(s/2+1 ig trivial, and from (3) the asertion follows. O
Now we recall that the Weil representation Wjs_., occuring in (1) was Wg_, =

s 1y
W(HI,_FI JH L:H,X 3). Therefore from (2) and the Lemma we conclude the fol-
lowing relation of character values:

xws(B) = xw, (7) - dimWg_, .
- Together with dimWy = dimW, - dimWjs_., we obtain

dimW; _ dimW,
xws(B)  xw, (1)

If the last approximation of v is nontrivial we can repeat the argument with
instead of B3, and iterating this process we arrive at

- dimWp _ dimW,
XWa (8) Xw, (b)
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where b = B_;4; is the first nontrivial approximation of 8 € AZ,I p- We put this
into 8.2.and we use two other small remarks, namely:

(5) Pa(B) = ¥ o Trd 4 )r(B8) = ¥ o Trgyr © Trdax 1k (B) = ¥ (B)™
because § € K and Ag|K is of reduced degree Ny = N/[K : F],

(6) (dimW)? - (Ay NP2 : 4 NP2+ = N

which is obtained from the formulas following 8.(3) for b instead of 3:

X

JA=14+PBNA+P/?, H =1+PnAy+P/?, hence
(dimWp)? = (J} : HY) = (P72 . P2 0 A, + P2+
Then from 2.(1), 7.(3), 8.2 together with (4), (5), (6) we obtain:
9.2 Proposition. Ift =[¢,,A]] and 2|j (= vp(B)) then:

N,
WA, ) = (~1)N-" [‘”K—("’] o ()1 M. S

¢(8) .
where M= (Abngpj/?: Abnmj/2_+l)
5= ) Xo(1 +z) - Pa(ba).
TEANPI/2fA,NPI/2HL

Our next aim is to simplify the expression for S which requires to split into the
subcases where the extension F'(b)|F is tamely ramified or not.

10. THE CASE WHEN THE FIRST APPROXIMATION IS TAME

X is a character of Aj and of £ := f/|p N As. Moreover for the centralizer A,
we obtain:

Ay = My, (Dg,), where mpdy = Ny := N/[F(b) : F], my = (m, Np)

and where Dy, |F(b) is a central division algebra of index dy =
d/(F(b) : F),d).

Our main observation is that 13 = 9 o Trp()|F is an additive character of F(b) of
conductor p = pp(s) because we assume that F(b)|F is tamely ramified. The one
dimensional representation X of A} is not discrete series, unless A, is a division
algebra. Nevertheless we define W (s, ) as in 2.(1), (2) with respect to the central

simple algebra A;|F'(b) and the maximal compact mod center subgroup & = £,
in Ab:

1) W(he, ) = (=1)M=™ . N F(X) 2 1 (350, ).

Note that we have Il = p = Xs because 1}, is of dimension one. We apply Propo-
sition 7.1 to the character A, of £, (instead of the irreducible representation A of
E*J3) and we use Ap(b) = Ap(b)™ =1 (see 3.6(iv)). Then we obtain:

(2) Nf(Re)~Y2 735 ) = Ya(d) - M~Y2. 8
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where the notations are as in 9.2. Note that M = § = 1if P#/2nN A4, = P/2+1N 4,.

Now we can apply [BF85, 2.8.13 (ii)] for the central simple algebra Ay|F(b), where
the group i8 G = £. This yields

(3) W (Ao, ) = W (s, )™,

where W (), ¥s) is Tate’s root number for the character Ay of F(b)*. We note
that Ay (Uk ) # 1 because up(b) = vp(f) = —j < 0. From (1), (2), (3) and
Y4(D) = 15 ()™ we deduce:
(4) M=128 = (~1)M =™ W (X, hp)a(—b) =

= (=)™ (W (s, ) (—B)]™

On the other hand the root number computation in [T] and the fact As(b) = 1
imply:

(5)
W{(ks,tp) - ¥s(=b) =1  if jo = —v(b) is odd
=(Np)~2- Y NI+ z)s(bz) if jo is even,
z€pio/3 /pia/2+1 : .

where p denotes the prime ideal of F(b) and v = vy, is the corresponding exponent.
We abbreviate the right hand side of (5) by §(\s) such that from (4), (5) we obtain:

(6) M~128 = (=1)Ne=ms . §(X;)™, if j is even and F(b)|F is tamely
ramified.

Remark. We know [W (s, ¥s)|c = 1 because A is a unitary character. Hence from
(5) we see that d()) is a complex number of absolute value 1.

11. THE CASE IF WILD RAMIFICATION OCCURS
11.1 Lemma. If in the extension F(b)|F wild remification occurs, then

l1+z+— :\b(l + z) - a(bz)
is a character on 1+ (As N P/2)/1 + (A, NP/ 2L,
Proof. We use the abbrevation w(1 + z) := Ay(1 + z) - ¥ 4(bz). Then we find:

Wwil+z+y+zy)
wl+z) -wl+y)

= Ya(bzy).

With the same notation as in 10. we may write Y4 (bxy) = s 0 Trd 4, F(s) (bzy) =
Po(b-Trd a, | F ) (zy)) for z,y € A,NPF/2. Because A,N'P is the Jacobson radical of
Ay N2 and A, NP7 is a certain power of A NP, we see that Trd,|r(s)(As NP =
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F(b)NP?. But b € F(b) NP7 such that b- Trd 4, F(s)(zY) € 0p(s) is an integer of
F(b) if z,y € Ay N PI/2,

Now we make use of our assumption that in F(b)|F wild ramification occurs.
For the differente of F(b)|F this means

— wes—1+6
DOp(L)lor - p ’

where p is the prime ideal of F(b), e, = ep(p)|r and 6 > 0 is a natural number. As
a consequence we obtain

Trreyr(P %) =pr,  Trreyrlore) € pr

such that Y4 (bzy) =y o Trp(b”p-(b . 'I&'dA”p(b)(:z:y)) =1for z,y € A, NP2, O

Because of the Lemma S is a sum over the values of a character on 1 + (4, N
Pi/2)/1 + (A N PI/2H1). Hence either w(l +z) =1forz € 4, NP/ 2 or S =0
which is impossible because W (II#,v) # 0 (see 9.2). Therefore we conclude S =
(A NPI/2 : Ay NPI/2+Y), hence

(1) M~Y2§ = MY?if j is even and if wild ramification occurs in F(b)|F.
Further we note that the discrete series representation IT# has the central character
w(z) = [¢ . /\3 o NK|F(13)]N' (2) forz e F*,

[Zi). Therefore w is unitary iff ¢ is. On the other hand it is well known that II{
is unitary iff its central character w is unitary and this implies |W (I, ¥)|c = 1.
Now putting (1) into 9.2 and assuming ¢ unitary we conclude

(2) M~Y28 = MY? = |xw,(b)| if j is even and if wild ramification
occurs in F(b)|F.

12. THE CASE WHERE j IS ODD

Putting 10.(6) and 11.(2) into 9.2 we get 4.2(ii) and 4.3(ii) respectively if j =
—vgp(B) is even. Finally we want to see how this matches with the case where j is

odd. From the first equation in 7.1 we conclude that A(3) is a scalar operator if j
is odd, and :

1) W, 9) = (DY ™{A(B)} " - $a(B)

where {A(8)} denotes the value of the scalar operataor. Werecall A = 74®73, 74(5)
is a scalar operator of value ¢™* (3) (see the remarks following 8.1), #g|x, = 05®W3

and 85(8) = Ag(B) = 1. This implies that Ws(B) is a scalar operator too, and:
(2) {A(®)} = o™ (B) - {(W5(8)} -

Moreover {Ws(8)} = %:%g} = %%, where the second equation follows from
section 9.

But now W, = W(J1/H}, X,) is the unit representation because j = —u«p(ﬁ) =
~vg(b) is odd, hence a similar computation as in 9.(6)ff. yields J} = H} =1+
(PN A)+ ‘.p(1+1)/2 Therefore from (1), (2) we obtain:
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12.1 Proposition. W(I#, ) = (-1)N-™ %%?]M ifj=-vp(f) isedd. O

This Proposition fits into 4.3(ii) which has been proved for j even, because W
is the unit representation if j is odd. What we are left to show is that it also fits
into 4.2(ii). We have defined §(As) as to be the right hand side of 10.(5). Because
vp(B) = vp(b) odd implies that v(b) is odd, we can smoothly extend the definition
of 6(As) by 6(Xs) = 1 if vp(b) is odd. Comparing 4.2(ii) and 10.1 it is now enough
to verify that

(3) Ny=(m,Ny) mod?2 if 2 { vg(b).

Let ey, f5 be the ramification exponent and the inertial degree of F(b)|F. We know
that: A

ey = denominator (rid) =rd/(j,rd),
where » = r(2) is the period of the order 2 = 2A;4r which we have fixed in

section 7. Namely vp(d) = vr(8) = —j/rd is the unique jump of b (see 3.(7)).
Because N = md = srd, this implies:

N 8- (j,rd)
Ny = = — .
T h e fo

Furthermore s = (m, fr/r) is divisible by (m, f;). Hence:

Ny- fo/(m, f3) = (m_m . (j,rd).

Assume that Nj is even. From the last equation we conclude that s is even because
j is odd. Hence m = rs and (m, N;) are even numbers too. On the other hand
(m, Ny) odd if Ny is odd, and we are done.
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