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e-FACTORS OF DISCRETE SERIES REPRESENTATIONS
...:

OF CENTRAL SThfPLE ALGEBRAS

ERNST-WILHELM ZINK

ABSTRACT. We assume a certain construction procedure t .... nt of discrete series
representations of A· where A I F is a centra! simple algebra and we compute the
e-factor e(", nf J 1/J) in terms of the parameter t. It turns out that some information
depending on A other than the reduced degree is neceBSary to determine e such that
the explicite coDStructions da not fit with the Abstract Matching Theorem. The
deviations are encapsulated in tbe Weil representatioDS to be used when construct­
ing nt which corne up rar different algebras A in a. different way. Using the Weil
representatian requires to assume F p-adic for p :I: 2.

1. DEFINITION OF THE e-FACTOR

.Let F be a p-adic field and A = M'!1(Dd ) a central simple algebra over F of
reduced degree N = md and let p :1: 2 (we need thisassumtion because we want to
use the Weil representation, see sections 8 and 9). Let't/J : P+ -+ c- be an additive
character.

Then according to Godement, Jacquet [GJ] an c-factor ces, II, t/J) is assigned
to any irreducible admissible representation II of A·. It depends on a complex
parameter s and appears in a functional equation relating Laurent polynomials i. e..
functions of s which are elements of C[p' ,p-']. Namely let .
4> E SeAl be a locally constant compactly supported complex valued function on A,
/ E rot(II) be a function on A" which is in the span of matrix coefficients of II.

There is a weIl defined Laurent polynomial 'E.(cI>, /, s) E C(p', p-'] associated to
4>, / (depending on II) such that

=.(~,1.1 - s) =(_l)N-m . e(s, TI, 1/;)'2(4), /, s)

where ~ E S(A) is the Fourier transform·of cl> with respect to a 1/;-selfdual Haar
measure on A, and where J E !.D1(fI) is given as J(g) = /(g-l) for 9 E A". The
functional equation implies

e(s, IT, 1/;) . e(1 - s, IT, 1/;) = wn(-1)

1
W(n,1/;) := e(2' IT, 1/1) E C

which implies IW(II, 1jJ)lc =1 for n unitary. Then we have

where WO : F· -+ eisthe central charader of n, and the root number is defined
~

(1)
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where q = IkFI is the 'order of the residue field of F and a(II,,p) is an integer. H
we switch to another additive character ,pb, b e F, given as ,pb(X) = ,p(bz) for all
x E F, then we have the transformation rules:

(2) W(IT, ,pb) =Wß(b) . W(IT,,p)

a(IT, tPb) =a(IT, tP) + N . vF(b)

(where N was the reduced degree of our algebra A). Moreover if X : F* -+ c- is an
unramified character and X= X 0 Nrd is the corresponding character of A*, then:

(3) a(x ~ II, 1/;) = a(II, 1/;)

independent of the choice of 1TF because X is ~amified.

Onee and for all we normalize the additive character 'r/J in such a way that it has
conducter PF', i. e. 'r/J(PF) =1 and 1/J(OF) '# 1. Then the restrietion of tjJ onto 0F is
an additive character of the residue field kp which we denote ;po

2. THE FORMULA OF BUSHNELL AND FRÖHLICH

We assume now that the irreducible admissible representation n of A· is a dis­
crete series representation. Then according to Bushnell and Fröhlich [BF85, 3.3.8]
the root number W(I1,,p) can be expressed as a Gauss sumo Namely consider a
maximal compact modulo center subgroup Jt of A* and.a "nondegenerate" irre.
ducible represention U of J\ which is contained in II. J\ = NA- (21) is the normalizer
of a uniquely detennined principal order 21 in A. Let'+l be the Jacobson radical of 21
and let fee) = ~j+l be the conductor of [l, i. e. 1+ fee) ~ Ker g. "Nondegenerate"
especially means that 21* rt: Ker e hence j ~ Q. Write N f(g) = (21 : f(ll)) for the
absolute norm. Then:

(1) W(I1, tjJ) := (_l)N-m . N f(e)-l/'J . T(e, 'r/J)

where r(e, 'r/J) is a Gauss sum assigned to the contragredient eof g. Namely r(e, 1/1)
is the value of the following scalar operator:

(2) T(g, t/J) = L Ü(c-1u) '1/JA(C-1U)
. uE!X-/1+ I(g)

where 'r/JA = 1/1 0 Trd A1F and eisa generator of the fraetional ideal f('l/JA)-l . I{g)
of 21 which is apower of 'lJ. As mentioned before we assume f(1/1) = PF hence
f ('t/JA) = 'lJ and lA+l(c) = j .

Remark. Bushnell and Fröhlich (3.3.8) do not make use of the assumption "II su­
percuspidal" but of the weaker assumption L(IT) =L(U) = 1 which also includes
discrete series representations. (See their remark 3.4.{c).) More precise1y if II is
essentially discrete series, then L(II) =L(Ii) =1 unless 11 is an unramified twist
of the Steinberg representation. Therefore our methods do not apply to Steinberg
representations. Instead one has to use the behaviour of "'(- and e-factors under
parabolic induction. For the sake of completeness we quote the result which for
A =MN(F) follows from [GJ, p.97] :
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2.1 Proposition. Let A !F be a central ~imple algebra 0/ reduced degree N =md,
let StA be the Steinberg represen~::tlon 0/ A• (wh ich is the trivial representation i/
A =DN ja a division algebra) and let X be an unramifie4 c~aracter 0/ F·. Then:,

hence a(x ® StA, tPF) = -1. For X = 1 we especially see that c(s, StA , tPF) =
(_l)N-l, q<!-')(-l). And i/1/JF has the conductor OF, thenfrom 1.(2)2 we conclude
a(x ® StA , tPF) =N - 1.

3. PARAMETERS FOR DISCRETE SERIES REPRESENTATIONS

Our aim is to express c(s, 11, 1/J) of a discrete series representation 11 of A· in
terms of a certain set of parameters for those representations. We briefly recall
what the parameters look like:

Consider F[T)irr the set of irreducible polynomials of degree ~ 1 where the
highest coefficient is 1, and let F C-..+ F[T]irr, a t-+ T - a be the natural embedding.
Then the exponential distance lIF(a - b) E Z on F has a weIl defined extension to
an exponential distance wF(/(T), g(T») E Q onF[T]irr, i. e.

WF (J(T), g(T)) ~ mini wF(.J(T), h(T») ,wF(h(T), g(T))}

wF(T - a, T - b) = lIF(a - b) for a, b E F .

(see [Zi92]). Moreover there exist approximation procedures on F[T]irr with respect
to the exponential distance WF.

3.1. An approximation procedure is a map

(1) F[Thrr x Q ..... F[T]irr , (J(T), j) f-+ Ji (T)

such that:

(i) Ji (T) =T for all i if J(T) =T
(ii) WF(!, Ji) ;::: j and Ji (T) = /1+( (T) if WF{J, Ji) ;::: j + e for some e > 0 '

(iii) deg fi (T) [,deg"f(T) and the same divisibility holds fOT the ramification expo­
nent and inertial degree 0/ the polynomials.

(iv) WF(!, g) ;::: j implies fi (T) =gi (T).

The existence of approximation procedures was proved by H. Koch [KoS!].

3.2. Note that for J(T) E F[T]irr, lIF(0) E Q is the same for all roots 0 of J{T) in
a fixed algebraic closure FIF, and Ji (T) =T for j ~ VF(O) i. e. the approximation
of J(T) starts /rom the polynomial T E F[T]irr (which is the azero element") and
it ends up tDith foo (T) = f(T).

Thete is no p-adic expansion of irreducihle polynomials hut it is suggestive to
think of fi (T) as of the partial SUffi of a p-adic expansion. Just as for p--adic numhers

"there are many approximation procedures and we have to fix one of them. For later
use we describe how to fix the first nontrivial approximation 0/ f(T). Namely we
will fix a complementary group CF in F*, i. e. F· =CF X (1 +lJF). CF is generated
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by a fixed prime element 1rF and by the roots of unity of o.rder prime to p in F.
Now let 0 ~ CF be a fixed. complementary group of FjF, P- = 0 x (1 +PI') which
containes CF. ä contains all roots of ,unity of order prime to p and is fixed by
choosing a "string" of roots of 1rF.

The approximation pr~ced~e on F[T]irr can be fixed in such a way that the first
nontrivial approximation of f(T) is given as folIows:

Take a root Q e F of f(T) and consider the uniquely detennined "symbol"
symb(a) E C such that

(2)

Then f'" (T) = T and

Q =symb(a) mod 1 + PI"

(3) f",+e(T) := minimal polynomial of symb(a) over F,

if 11 = lIF(O) and e > 0 small.

It is possible to see that symb(a) is conjugated to symb(ß) if a is conjugated to ß
such that f",+e(T) is well defined. But we note that {symb(ß) ; ß conjugated to o}
~ {conjugacy class of symb(o)} can be a proper subset.

NQW we define

3.3 A polynomial f(T) E F[Thrr is called a minus polyn.omial with respect to
the fixed approximation procedure if already IO(T) = f(T). The set of minus
polynomials is denoted F[T]i;r.

3.4 Consider pairs (4), ß) where ß e F is the root of a minus polynomial and
4> : K· /1 + PK -t C' is a tarne character of a field K such that:

(i) KIF(ß) is an unramified extension of fields,
(ii) 4> is regular over F(ß), i. e. all conjugate characters are different.

The Galois group ~F = Gal(FIF) acts as folIows:
(j 0 (4), ß) := (4) 0 (1-1 , (j(ß)) for (j E ~F, and by t =[4>, ß] the Galois orbit of the

pair (4), ,8) is denoted. The degree of such a parameter is defined as degt = [K : Fl,
and a twist with tamely ramified characters X : F- /1 + PF -t C' is given as:
X~ t := [(X 0 NKIF)q" ß].

3.5 11 AIF is a central simple algebra 01 reduced degree N then TN = {t =
[4>, ß]; degtlN} may seroe as a system 01 parameters lor the irreducible discrete
series representation 01 A*.
(The minus sign in TN reminels to the fact that the numbers ß are roots of minus
polynomials over F).

The parameter set Ti is not canonical because it is necessary to make choices
when constructing a discrete series representation IIt out of a parameter t. In order
to obtain a weIl defined IIt one has to fix a character :A/3 : F(ß)· -+ C- for all ß
such that the following compatibility relations are fulfilled.

3.6. (i):Aß 0 (j-1 =Aa(ß)" tor all q e ~F.

(ii) Aß =1 the unit character 01 F- if ß = O.
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(iii) (Ap(Ab O NF(ß)lF]-l)(l+x) =.,po TrF(ß>lF((ß-b)x) /orx E p~{;~+l and

j = -IIF(ß)(ß - b) i/ b E F. ," . ' .
(Note that IIF(ß) (ß - b) =eF(ß)lF' wF(!p(T), T - b) i.s a negative integer

because ß, b are roots 0/ minus polynomials and b E F).
(iv) Aß(P) = 1. - -',

Conditions (iii) , (iv) are compatible because IIF(ß) (ß) < 0 implies that the cyclic
group (ß) and the principal units 0/ F(ß)· have trivial intersection.

Unfortunately the compatibility relations of 3.6 are not complete because what
we need in (ili) is compatibility between Aß and A,. for arbitrary 'Y whereas we have
assumed 'Y = b E F. So far the general compatibility between Ap and >ry can be­
expressed only in terms of the algebra A at hand such that fixing a compatible
system of characters {Aß} ß might depend on A.

3.7 H we have fixed an approximationprocedure on F(Thrr (see 3.1) we say that j
is a jump of f(T) if fi (T) t: fi+! (T) for all e > O. When approximating f(T) in
general the number ofjumps can be infinite hut for a minus polynomial it is certainly
finite because fO(T) = f(T), i. e. all jumps are negative. Now the cOnStructioo
of a compatible system of characters {Aß}p proceeds by induction 00 the number
of jumps of ß (that is to say the number of jumps occuring if we approximate the
minimal polynomial of ß aver F). It st~s from Aß =1 for ß =0, the oo1y number
which has no jumps. According to (2), (3) a numbe'r ß gives rise to precisely one
jump iff ß = symb(ß) E C. In this case ß is the root of a minus polynomial i.ff
VF(ß) < 0 and to fix Aß the conditions 3.6 (iii) with b =0 i. e. Ab =1 and 3.6 (iv)
will do. Hence the characters Aß can be chosen independently /rom A if ß has not
more than one jump.

3.8 Let AIF be central simple of reduced degree N and let Ad'?screte be the set
of equivalence classes of irreducible discrete series representations of A-. Fixing a
map 7N -+ Ad~crete' t = [4>, ß] ~ rrt means to fix a compatible system {A3}ß of
characters A~ : F(ß)- -+ (:- , which gives a well defined map

(4) t = [cP, ß] ~ [cP, ß, A~] ~ rrt .

We remark that the construction of II t uses all characters A~ where the minimal
polynomial of l' is an approximation polynomial of the minimal polynomial of ß.

In the tarne case p t N it is known that the system {A$}p can be chosen in­
dependently from A and that the "approximation characters" A")'of Aß are not re­
ally necessary to construct IIt • In this case it happens that IIt is determined by
At =4>. (Aß 0 NKIF(ß») which is a charaeter of K·. In the general case the situation
is less satisfactory but we are able 10 take some advantage of the remarks in 3.7.

4. THE RESULTS

We are going to state the results. According to 3.(4) our aim is to describe
the e-factor e(s, rrt, .,p) in terms of (q" ß, Aa] in order to see tö what extend it
depends on A. In asense this is a test if the explicite constructions t ~ ~A for the
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different central simple algebras A IF of a fixed reduced degree N reflect the loeal
matching theorem of [BDKV]. Then the e-factors should only d~pend ('D N but not
on A. But in fact we will see that e(s, rrt, tP) depends on A :uch that the explicit
constructions have to be modified in order to match. We have to exclude Steinberg
type representations which require special treatment (see Proposition 2.1. above).
The corresponding parameters are t = [q,,0] where cl> is an unramified character of
F- (i. e. 4> is trivial on the units of'F). No unramified extension KIF can occur
because unramified characters cannot be regular.

From now we assume t = (tIJ, ß] where ß #: 0 or the tarne character cl> is ramified.

Gase 1: Assume t = (r/J,O] and consider the finite fields kN ::> kK ::> kF, where kF is
the residue field of F and kNlkF is the extension of degree N. The tarne character
<p of K- restricted to the units gives a character (iJ of ki<, and the additive character
t/J of F restricted to the integers gives 1j; of kt. (see 1.).

Theorem 4.1. For t = [cI>,O] we obtain:

(i) a(Ilt,lP) = 0, e(s,Ilt,,p) =W(nt,,p)
(ii) W(nt, 1P) = (_I)N-l . q-N/2 . T(~-l 0 NkNlkK' 1j; 0 TrkNlkF)

where T(X, 11') = L::z: Ek'" X(x),p(x) i/ X, 1/J are a multiplicative and an additive char..
acter 0/ a finite field k.
Especially we see that the E-/actor 0/nt doea not depend on the alge-bra A but only
on the reduced degree N 0/ AIF.

Gase 2: Assurne t = [<p, ß] where ß 'f:. 0 and the symbol b = symb(,B) E C
generates a tarne extension F(b)IF. Then

Theorem 4.2.· (i) a(nt, 1/1) = -N . VF(ß) (see 1.(1))
(ü) W(nt,1jJ) = (_I)N-m+Nb-(m,Nb). XWb(b)-l . [tPt(M}]Nt .ä(Ab)Nb

where Nb = N /(F(b) : F), Nt =N / degt, 1PK(ß) =1/J 0 TrKIF(ß) and the character
Ab = At does not depend on A (see 3.7).

c)(,xb) is given completely in terms of the field F(b), namely let p be the prime
ideal of F(b) and v the p-exponent. Then:

{

I, if v(b) is odd

c)(,xb) = Np-l/2. E 'xb(l + x) . 1jJF(b)(bx) if j = -v(b) is even.
:zEPj!'J /pj!2+1

XWb is the character of a Weil representation which is given in terms of A, and
XWb (b) e {±l} is a sign. This is due to the fact that the ramification exponent of
F(b) IF is the denominator of 11F (b) E 41, hence F(b) IF tamely ramified means that
the denominator of vF(b) = VF(ß) is prime to p, hence bE O/CF is of order prime
to p, and XWb(b) only depends on b. According to Howe [Ho], Proposition 2.(iv),
XWb (b) is an integer, and it has to be of absolute value 1 because IW(IItA, tP)lc = 1
if the character t/J is unitary (see section 11 below).
Remarks. 1. From 4.2(ü) we see that in case 2 the root number W(~A, tP) is the
product of a sign namely (_l)N-m+N.-(m,'N·)Xwb(b)-l which depends on A and
of the factar [tPK(ß)/,p(ß)]N, . Ö(Ab)N. which is independent from A.
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2. The representation IIf is not in general position if the cond~ctor a(IIf,!/» =
-N . VF(ß) can be reduced by twisting IIf with a character X0 NrdAIF where Xis
a character of F·. This is equivalellt to the fact that b ='symb(ß) E F and implies
(_1)N-m+N.-(m,N·)Xw.(b)-1 =1, hence W(IIf,!/» does not depend on A ifilf is
a representation which is not in general position.

Gase 9: Finally we consider t =[.p, ß) where ß "# 0 and the symbol b = symb(ß) E C
generates an extension F(b)IF which is not tamely ramified. Then:

Theorem 4.3. (i) a(IIf, t/J) =-N . VF(ß) (see 1.(1))

(ii) W(IIA .1,) = (_1)N-m . Ixw,(b)1 . [1J!KfPl]N.
t ,'I' xw,(b) ~

Again XW. is the character of a Weil representation which is given in terms of
A but now the character value Xw, (b) need not to be on the unit circle. Therefore •
W(IIf,t/J) has the factor (_l)N-m. Ixw,ml which depends on A and the factorxW,
[t/JK(ß)!4>(ß))N, which only depends on t = [.p, ß] but not on A. Moreover we note
that in case 3 the character Aß or "approximation characters" of Aß play no role
at all. Therefore in the wild case 3 in a sense the root number formula is simpler
than in the tarne case 2.

Corollary 4.4. Assume t = [.p, ßl where ß "# 0, and lor a tame character X 01
F(ß)" let tx = [.p . (X 0 NKIF(ß»), ß]. Then we get:

(i) ö(s, IIf, t/J) = IßI~t-,)N .W(IIf, t/J)
(ii) W(IIf ,1/') = X(ß)-N•. W(IIf,t/J)

x

where IßIF = q-vp(ß) is the extension 01 the normali:ed absolute value Irom F to
P and where N ß = N/(F(ß) : F).

Remarks. 3. The reason for the change from (.p, ß) to (,p . (X 0 NKIF(ß»), ß) is
that .p·(XONKIF(ß») is again regular over F(ß) because,p is regular and XONKIF(ß)
is invariant under automorphisms of KIF(ß).
4. We expect that the maps t ...... IIf have corrections t -- II~(t,.. ) where X(t, A) is
an appropriate tarne character of F(ß)" such that the root number W(IIf )' t/J)

Je (LA.

does not depend on A. In the tame case p f N such corrections were established
by C. Bushnell, A. Fröhlich [BF83J, A. Moy [M) and H. Reimann [Rei) in the case
where A is a division and split algebra respectively.
5. We also note that the formulas in 4.1-4.3 do not change if we replace (.p, ß)
by U 0 (.p, ß) = (.pu- 1, u(ß)), hence the formulas only depend on the parameter
t = [.p, ß).
6. G.Henniart [He) has computed ö(s, IIA , t/J) modJl for certain supercuspidal rep­
resentations of A·, where Jl denotes the complex roots of unity of order a p-power.
Henniart's assumptions in terms of our parameters are:
a) lcm(degt,d) =N, wmch means that IIt is supercuspidal,
b) t = [.p,ß) such that b = symb(ß) E G generates a fully ramified extension of
p-power degree.
Therefore either IIf is not in general position (see remark 2) or we are in the
situation of 4.3. b = symb(ß) plays the role of Henniart's "gu» and 4>(ß)-N,
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plays the role of Henniart's WIi1(g.. ), because n = IIf has the central character
wrr = (t/J. >"$ 0 NKIF(ß»N, IFo. 1{JK(ß) does not appear in Hennjprt's formula, be
cause it is in 1'.

5. COMPUTATION OF THE CONDUCTOR a(IIf,1{J)

Because IIf is a discrete series representation of A· we can use the following for­
mula of Bushnell, Fröhlich [BF85]. Assume that the discrete series representation n
of A· contains a "nondegenerate" irreducible representation g of J\ = NAo (21) (see
2.). Then:

(1)

where the conductor ! is a certain power of ':j3 = Jac(21) and N! = (21 : f).
Now from the construction of 11 C IIf out of t = [t/J, ßl it will be clear (see below)

that

(2) !,
if ß ~°

hence !(g) . !(1{JA)-l = ':j3-~'ll(ß) because 1/J is of conductor PF. Moreover A =
Mm(Dd) implies

(3)

where kD is the residue field of the division algebra and rs = m, lI<;p(1I'F) = rd.
Therefore

(4)

(21 : ':j3) = qd..•

(21 : ':j3-~'ll(ß» = q-d..·.~'ll(ß) = q-N'~F(ß)

because N 2vF(ß) = (drs)2 vF (ß) =dr·s2 ,v':jl(ß). Putting (4) into (1) we conclude

In the case ß = °the conductor of 11 C nf is !(Il) = ':j3 because we have excluded
t = [r/J,O] where r/J is an unramified character. For 11 C nf this means that 21· rt.
Kerl!. Now !(I!) = ':j3 implies !(g) . !(1/JA)-l =21, N(f(g) . !(1/JA)-l) =1 and (1)
turns into

c(S,~A,1/J) =W(II~,1/J), a(~A,1/J) =°
ü t =[r/J,O]. Thus we have seen part (i) of Theorems 4.1,4.2, 4.3.

6. THE PROOF OF THEOREM 4.1

Assume t = [r/J,O] and r/J: K· -+ CO is a ramified tarne character which is regular
with respect to the unramified extension KIF. ! = [K : F] is a divisor of N ü
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tEIN' HA = Mm(Da) we consider FalF the unramified extension of degree d in
Fand we let

(1) I' := 1/(1, d) =' [K': K n Fa).

I' = lcm(l,d)/d divides N/d = m and we introduce the numbers e := N/I,
e':= rn/I'.

Now let 2l., be the standard principal order in A which is determined by the
divisor e' of m. H ~ is the Jacobson radical of 2l., then:

(2)

and we use </J to distinguish a cuspidal representation of that group. Namely because
of l'd = lcm(l, d) we have K ~ Fra and we let X := </J 0 NF1'dIK ' This is a tame
character of Fi'a which is regular over Fa hence the "reduction" X is a character
of (kDkK)* which is regular over kD. Thus X determines (up to equivalence) a
cuspidal representation (1 = (1x of GL/,(kD)' Th~ tensor power (10.' is a cuspidal
representation of [GLr (kD))"' with central character X·' on kD. Because e' =
N/I'd = [FN: Fra) we see that X·' and xoNFNIFI'd = ~ONFNIK give rise to
the same character of kD, Hence using (2) we can infIate (10.' to a representation
of 2l:, and then we can extend it to F* . 21:, in such a way that on F* the central
character is </J 0 N FN IK = </J·I F"· The resulting representation of F* .2l:, we denote
r.p.

6.1 Proposition. For a/l discrete series representations TI 01 A* which contain
r.pl'll" we get the e-Iactor as described in 4.1..'
Fraof. We are left to compute the root number

(3) W(TI,1,/J) := (_1)N-m. NI(g)-1/2. r(i},1,/J)

where i} denotes the contragredient of an irreducible representation g of .R.' such
that TI :J ,g :J r,.I'lI· .

'P .'

Because of I(g) - 'iJfrom 2.(2) we conclude that r(g,1/i) is the value of the '
scalar operator L: g(U)1/iA (u) where 1/iA = 1/i 0 Ti"dA1F and where the sum is over all
u E (2l.,/'iJ)*. Because of g:J r.pl'll° it is obvious that L:r.p(u)1/iA(U) is a scalar.'operator of the same value. Now we consider

thjnking of [GLr(DD))"' to be diagonally embedded into 2l:,. Then we can repre­
sent u E (2le'/'iJ)* by (Xl,,,, ,X.') E [GLr(DD))"" Now we use:

1,/JA(U) =;p 0 Ti"kDIk,(Ti"xl + ... +Ti"x.,)

r.p(u) =(10.' (u) =(1(xt} 181 "'181 (1(xe')

r(g,1/J) . I =LT.p(U)1/JA(U).
u

9



Taking the trace of the last operator equation we find:

(dimer)e' . T(U, 1/J) = L XCT(Xl) ••• XCT(.fe,) • t,b 0 TrkDlkJl' (TrXl + ... + TrzeI )

(:!l •..•:!., )

where the sum is over all (Xb'" xe') E [G~I' (kD)je' and!i E [GLI' (k.Q)) respec..
tively and where we bave used the notation 1/J"D =1/J 0 ThkD Ikr. L:! U(X)1/JJ:D 0 Tr(x)
is a scalar operator of value say T(O', ,p"D)' Hence we conelude

I - e'
(dimO')e . T(I1, 1j;) = [dimer. T(O', tPkD)]

r(Il,1f;) = r(O',ifikD)e' .

Now we apply Kondo's formula (see Macdonald [Mac]) to the cuspidal representa­
tion Cf of GLI' (kD)' It says that T(U, 1PkD) = (-1)1' . qd(/,2_f ')/2 . [-r(x, tPkDkK)]
where r(x, 7PkDkK) = EZE(kDkK)- X(X)7j;kDkK (x). Because of e'I'd ~ md = N, the
Hasse-Davenport formula yields:

,
[-r(x, 1PkDkK)] e = -r(~ 0 NkNlkK' ifikN)

hence

r(Il,'l/J) = r(Cl,1[;kD)e' = (-I)m~(JI-l)/2(-I)r(~oNkNlkK,tPkN)

Now we insert this formula into (3) using /(11) =~ hence N /(g) = (21. : '.P) =
qe' dJ'2 = qNJ'. Then we obtain the result. 0

7. THE ROOT NUMBER IN CASE ß i: 0 - A FIRST REDUCTION

Now we consider t = [tP,ß,;\a) ~ rrt E (A*)A in the case ß f; 0, and we want
to compute tbe root number W(Ilt, 1/1). We recall same basic facts concerning the
construction of rrf. The parameter t contains the fields K ::> E = F(ß) (up to F ..
isomorphism), and we fix an embedding of these fields into A. For the centralizer
of E we obtain:

AE =Mmo(Ddo ) where DdolE is a central division algebra ofindex
da = d/(d, [E : F]), and mo = (m,N/[E : F]) because moda =
N/[E : F], md =N.

Take a maximal extension L'IE in AE such that fL'IE = [K : E]/([K : E), da).
Let 2lL 'IF be the principal order in A which is normalized by ·L' -. t = [4», ß, ;\1]
determines an irreducible representation 7rf of the group E- . ~l'IF and there are

precisely Nt =N/[K : Fl disCrete series representations of A- which contain 7rf.
They only differ by unramified character twists, and ~A is one cf these. Tbe root
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number W(IltA , t/J) will be independent of that choice. To compute it, we start from
the fonnulas 2.(1), (2) where we choose an irreduci~le x::~presentation (} of ~L'tF

such that rrt ~ u~ rrf· In 2.(2) the sum is over ~* = ~l'IF which is contained in
E*21*. Because T(g, t/J) is a scalar operator we will get the same value if we replace
(d by an irreducible component of the restriction O!!•. Hence T(U, t/J) is also the value
of the scalar operator

T(irf, t/J):= L *f(C-1U)t/JA(C-1U) .
uE(21//).

The conductor of {} and 7rr is the same power of ~ =Jac(21) namely

(1) f(7rf) ='.Pi +1 where; = -v'.P(ß).

We have ß E E* ~ Jt = RL'IF and more precisely ß in A is uniquely determined
as an element of the fundamental domain AL'IF for AdR\A(e', f')/21L'IF' where

e' =eL'IF, f' = fL'IF. Because of (1) we may choose c- 1 =ß such that:

(2) T(e,1j;) = value of the scalar operator L frr (ßU)'l/JA (ßu).
uE(21/ f)-

Now we use rrf = Ind(Tcf1 ® 1rß), where the induction is frorn E*21l,'IEJffi,L'IF onto

E*21i.'IF' We abbreviate JÜ = 21i.'IEJJ,L'IF' A =Tcf1®1rP' Note that A remains irre­
ducible if it is restricted from E* JO to JO. Now the value of the scalar operator (2)
is preserved under induction (see [Zi93]), hence

(3) T(g, 1/;) = value of the scalar operator L A(ßU)1/JA(ßU).
uEJO /1+ f(A)

We consider the principal unit subgroups Ui = 1 + '.Pi in R = RL'IF and the
induced subgroups Ji =Ui n JO for i ~ 1. The next information we use is that the
restrictions AJi are isotypic representations. Moreover for i = [j /2} + 1 (see (~))

we have Ui .= Ji and
AUi (1 + x) = 'lj;A (ßx) . 1 .

Therefore the same argument a.s in the proof of [T, §1, Proposition 1] can be applied
to obtain

7.1 Proposition.

N f(A)-1/2 . L A(ßU)tPA (ßu) =A(ß) ·,pA(ß) if 2 f j(A)
u

= A(ß) . tPA(ß) . N~-1/2 [~A(l + X)tPA(ßX)] if 2Ii(A)

where j(A) =j = -~(ß) and where the sum is over x E '+lj/2 /~j/2+1.

Note that this fonnula fits into 2.(1) because of (3) and f(u) = f(7rf) = f(A).
In the following we shall derive a formula in the more delicate case 21; which will
be compatible with 2 f j such that the final statement is independent of the parity
of j.

11



8. FURTHER REDUCTION IN THE CASE 21i
We write the right hand aide of 7.1 as the product of two operators, namely:

Because DID2 = JJ ·1 is a acalar operator and because D 1 is invertible, we get

(1)

Moreover tr(D11
) = XA(ß) is the character value of ß with respect to A = Tt/J ~;rß'

We recall the construction of 1rf3 E (Jß,L' IF)''' namely: *'ßIJA = (JJ, HJ ~ 9ß) is a
Heisenberg representation and 1rßIHß = 9ß ~ Wß, where Wß " W(JJ/H~,Xß) is

the Weil representation of Hß/HJ +==- RL'IE/U1(RL'IE) corresponding to the pair
(Jb/HJ, Xß)· Therefore by a result of R. Howe [Ho] we have:

8.1 Proposition. iß @ 1r'ß =IndH~tJ~ (1) D.

For the character X/3 of *'13 this means Xß(ß) . Xß(ß) ~ 0 because ß E E* ~ Hß·
Now we consider A = T tP @ i ß of ~E* JO. T t/J is an irreducible representation of the
factor E* JO / Jl ~ E*21LI 1E /l + 'llL'IE' Because ß e E* ~ in the center of that
group we see that T tP (ß) is a scalar operator. As we know, the central character of

T,p is q'JNf IE- where Nt = N/[K : F] = [~~A1F). Further we make use of 1rßIH~ =
Bß @ Wß, and eß(ß) = Aß 0 NrclA8 IE(ß) = Aß(ß)N/[E:Fl = 1 because of 3.6(iv),
hence X,ß (ß) = x,w~ (ß) and XA (ß) = Xß (ß) . XT. (ß) = XW" (ß) . et>Nt (ß) . dimTtP ~ O.
Now the equation (1) yields

(2) tPA(ß)· N~-1/2 [~XA(l + X)tPA(ßX)] = jJ.' XA(ß) =7.1

=N f(A)-1/2 . T(Ä, 1/;) . XW~ (ß) . rPNt (ß) . dimTt/J

Because A = TtP ® *ß gives AIJl = dimTtP • *'13IJl we can substitute XA(l + x) =
dimTtP . Xß(l + x), and by a division (2) turns inta:

The sum is over x E ~/2/~i/2+1. We use that 1rplJl = (Jl, Hl, 9ß) is a Heisen­
berg representatian and that 1rßIJi/2 is a multiple of the Heisenberg representation
(Ji/2,Hi/2, res8ß). From the general expression H[11/2]+1 = 1 + Ei>l1('-P[i/21+1 n
A-i), where A_ i is the centralizer of the approximation ß-i of ß,-we see that
Hi/2 = H[i.:?]+l = 1 +~/2 n.~ + ~j/2+1 where b = ß-j+l is the first nontrivial
approximation of ß. Similar: J[rtl] = 1"+ Ei~t1(~[it-ll nA_i) i. e. Jj/2 = Jfit!l =
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1 + ~j/2 because ß-i = 0, A_i = A. Therefore the character of the Heisenberg
representation 11 = (Ji/2 , Hi/2 , res8p) is ,.

{
0 if x E ~j /2. - Ab

X1J(1 + x) = dim1]' 9ß(1 + x) if x E Ab' ._',

where we have introduced the notation Ab = ~j/2 n Ab + ~i/2+1. Now 1TßIJi/2

being a multiple of 1], we conclude

{
0 if x E ~j/2 - A~

X.a(1 + x) = dim1Tß . 8p(1 + x) if x E A~.

We put this into (3) and note that dim1Tß = dimWß. Then we obtain
(4)

N f(A)-1/2 . 7(A, t/J) = '!/J:,(ß)· dimWß . N'iJ-l/2 . L 8ß(1 + x) . '!/JA (ßx) .
<p (ß)· XWß (ß) :z:EA~/f.Pj/2+1

Moreover we know that vc;p(ß-b) ~ -j+l implies (8ß8b"1)(I+x) = ?PA (ß-b)x) for

1+x E H~nU(~1+1 . But the last intersection is nothing else than 1+A~. Therefore
in (4) we may replace 8ß(I+x) = Bb(l+x) '1PA (ß-b)x). Now Bb E X(Hb,L'IF) has
been chosen in such a way that Bb = 'xb :~ Ab 0 NrdAbIF(b) on JlL'IF n Ab C Hb,L'IF'
Because the surn in (4) is over A~ /'J,li /2+1 = Ab n 'J,li/2 / Ab n 'J,li/2+1 we can replace
Bb by Xb and (4) turns into:

8.2 Proposition. 1/21j then:

where the sum is over x E Ab n ~j/2 lAb n ~j/2+1.

9. HANDLING THE WEIL REPRESENTATION

The ahn of this sectio~ is to replace dimWß/Xw" (ß) in 8.2 by dimWb/xw& (b)
where b = ß-j+l is the first nontrivial approximation of ß. We assume b ~ ß
because otherwise there is nothing to show. Wß = W(JJ/Hb, Xß) is the Weil
representation of Sp(Xß) +- JirJ /U1 (R.rJ) whieb comes from the Fp - vector space
J~/H~ provided with the nondegenerate altemating character Xß. Now for Wß we
have the basic fonnula [Zi]:

(1)

where t denotes the following combination of maps:

"'( =ß-. denoting the last approximation of ß E 6.L'IF ~ A(e',f')X ~ JlL'IF. Note
the assumption "'( ~ 0, i. e. approximating {3 we have more than one jump. Hence
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~(ß) = ZIc;p(,.) < -8-1, ,.-ß E ~-. ~,.~ and we seethat ,.-lß E 1+~ = Ul(Ji),
which implies t(ß) =7. Therefore from (1) we conclude

(2) .....

Now we consider the orthogonal ~th respect to X/i decomposition:

Note that the second term of the orthogonal decomposition is normalized by .ft{J
because the first term is normalized and the altemating character X/3 is invariant
with respect to conjugation by ~.

9.1 Lemma. The adjoint action 01 ß on H~~] /H1~] is trivial.

Proof. Consider H~~] 2 H1~] 2 H[s/2]+1 where omitting the index means that

for , and ß we have the same group. Now Hß = H[.,/2]+1~ and H.., = H[i /2]+1 Jty
where -s' < -8 is the last jump in the approximation of , = ß-8. This implies

H.., = H[8/2]+IJty and H~~] = H(·/2]+1 . (Jty n H~~]). We conclude that the

adjoint action of, on H~~] / H(8/2]+1 =Jt,.nH~T] / JtynH~"~2]+1 is trivial because
Jty is in the centralizer of 'Y. On the quotient under consideration tbe groups Jty
and ii/3 both act by conjugation. Especially we consider the action of ß. Because
'Y acts trivially we see:

for all x E H~~].

But , =ß mod'+l-·, ,ß-1 =1 modß-1 '.ll-8 = s;pi- 8
• The assumption , =ß-., i= 0

again implies j - s 2: 1, i. e. '*'(ß-l is a principal unit. Therefore tbe adjoint action

of "ß-1 on H~~] / H[8/2]+1 is trivial, and from (3) the asertion follows. 0

Now we reca1l that the Weil representation W/3-.., occuring in (1) was Wß-.., =

W(H~!:f.J/H1~1·,Xß). Therefor.e from (2) and the Lemma we conc1ude the fol­
lowing relation of character values:

Tagether with dimWß = dimW.., . dimWp_.., we obtain

dimW dimW__.;....ß_ ..,

XWß (ß) - XW"f (,.)

If the last approximation of "y is nontrivial we can repeat the argument with '*'(

instead of ß, and iterating this process we arrive at

(4)
. dimWp _ dimWb

XW~ (ß) - xw, (b)
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where b =ß-j+l is the first nontrivial approximation of ß E ßL'IF.. We pnt this
into 8.2.and we use two other small remarks, namely:

(5) tPA(ß) =tP 0 TrdAIF(ß) = tP 0 TrK1F 0 TrdAKIK(ß) = tPK(ß)Nt

because ß E K and AKIK is of reduced degree Nt = N/[K : F],

(6) (dimWb)2 . (Ab n ~j/2 : Ab n 'iJj/2+1) =N'.P

which is obtained from the fonnulas following 8.(3) for b instead of ß:

Jt = 1 + '+l n Ab + 'llj/2, Ht = 1 + '.P n Ab + '.Pj /2+1 , hence

(dimWb)2 =(Jl : Hl) = (1lj /2 : s,pj/2 n Ab + '+lj/2+1) .

Then from 2.(1), 7.(3), 8.2 together with (4), (5), (6) we obtain:

9.2 Proposition. I/ t = [cP, ß, A$] and 2li (= lI~(ß)) then:

w(rrf,1/J) = (_l)N-m [1/Jt<~)]N, . Xw, (b)-l . M-1/ 2 • S

where M := (Ab n s,pj/2.: Ab n s,pj/~+1)

S ·-.-

Dur next aim is to simplify the expression for S which requires to split into the
subcases where the extension F(b)IF is tamely ramified or not.

10. THE CASE WHEN THE FIRST APPROXIMATION 15 TAME

Äb is a character of Ab and 'of~ := JtL'IF n Ab. Moreover for the centralizer Ab
we obtain:

Ab ~ Mm,,(Dd,J, where mbdb = Nb := N/[F(b) : F], mb = (m,Nb)
and where Ddr.IF(b) is a central division algebra of index db =
d/([F(b) : F); d) ..

Dur main observation is that 'fj;ß =1/1 0 TrF(b)jF is an additive character of F(b) of
concluctor P= PF(b) because we assume that" F(b)IF is tamely ramified. The one
dimensional representation 'xb of Ab is not discrete series, unless Ab is a division
algebra. Nevertheless we define W(Äb, ,pb) as in 2.(1), (2) with respect to the central
simple algebra A."IF(b) and the maximal compact mod center subgroup Jt = ~
in Ab:

(1)

Note that we have n = {} = Xt, because Xb is of dimension one. We apply Propo­
sition 7.1 to the character 5tb of Jl" (instead of the irreducible representation A of
E*~) and we use 'xb(b) =Ab(b)N. =1 (see 3.6(iv)). Then we obtain:

(2) N /()..b)-1/2 . T(X;l, Wb) =tPA(b) . M-1/ 2 • S
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where tbe notations are as in 9.2. Note that M =S =1 if '.Pi / 2nA" =~i/2+1 nAb.
Now we can apply [BF85, 2.8.13 (ü)] for the central simple algebra A"IF(b), where
the group is G =Jt". This yields

(3)

where W(Ab' ,pb) iB Tate's root number for the character Ab of F(b)-. We note
that Ab(U}Cb») :j; 1 because Vc;p(b) = ,.,,(ß) = -j < O. From (1), (2), (3) and

:; 1/JA(b) = t/Jb(b)NII we deduce:
I

On the other hand the root number computation in [Tl and tbe fact '\b(b) = 1
imply:

Ij
,

(4) M- 1/ 2S =(-l)Nb-mbW(Xb,1/Jb)1,UA( -b) =

= (_l)NII-mb [W(Ab' 1/Jb)1f'b( _b)]Nb .

(5)
W(..\bl 1/Jb) . 1,Ub( -b) = 1 if jo = -v(b) is ocid

= (Np)-1/2 . L "\b(l + x)1/Jb(bx) i(jo is even,
zEpjo/2/pjO/2+1

where p denotes the prime ideal of F(b) and 1I =Zlp is the corresponding exponent.
We abbreviate the right hand side of (5) by 6(..\b) such that from (4), (5) we obtain:

(6) M- 1 / 2S = (_I)Nb- m b . c5(Ab)Nb , if j is even and F(b)IF is tamely
ramified.

Remark. We know IW(..\bl 1f;b)!C =1 because ..\b is a unitary character. Hence from
(5) we see that c5(Ab) is a complex number of absolute value 1.

11. THE CASE IF WILD RAMIFICATION OCCURS

11.1 Lemma. 11 in the extension F(b)IF wild ramification occurs, then

1 + x ~ 'xb(I +x) . tPA(bx)

is a character on 1 + (Ab n ~i/2)/1 + (Ab n '.13;/2+1 ).

Prao/. We use the abbrevation w(l + x) := Xb(l + x) ·1,UA(bx). Then we find:

w(l + x + y + xy) =WA(bxy).
w(l + x) . w(l + y)

With the same notation as in 10. we may write f/JA(bry) ="pb 0 TrdAbIFCb)(bzy) =
1/Jb (b·TrdAbIF(b) (xy)) for x, y E .At,n~/2. Because~n~ ia the Jacobson radical of
A"n21 and Abn'+V ia a certain power of Abn'+l, we see that TrdA.IFCb)(~n'.lV)=
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(2)

F(b) n~j. But b E F(b) n~-j such that b· TrdAbIF(b)(XY) E OF(b) is an integer of
F:(b) if x, y E At, n ~j/2. '

Now we make use of our assumption that in F(b)IF wild ramification occurs.
For the differente of F(b)IF this means

where p is the prime ideal of F(b), eb = eF(b)IF and 6 > 0 is a natural number. AB
a consequence we obtain

TrF (b)IF(pl-6) = PF , TrF(b)lF(OF(b») ~ PF

such that 1/JA(bxy) = ,p 0 TrF(b)IF (b· TrdAbIF(b) (xy) ) =1 far x, y E Ab n ~;/2. 0

Because of the Lemma S is a sum over the values of a character on 1 + (Ab n
'l3;/2)/1 + (Ab n qJ;/2+1). Heuce either w(l + x) =1 f~r x E Ab n 13;/2 or S = 0
which is impossible because W(IIt ,1P) i: 0 (see 9.2). "Therefore we conelude S =
(Ab n 'l3;/2 : Ab n '-13;/2+1), hence

(1) M-1
/

2S = M 1
/

2 if j is even and if wild ramification occurs in F(b)IF.

Further we note that the discrete series representation nt has" the central character

w(x) = [4>. A: 0 NKIF(ß)]Nt (x) "for x E F-,

[Zi]. Therefore w is unitary iff t/> is. On the other hand it is weil known that IIf
is unitary iff its central eharacter w' is unitary and this implies jW(IIf, t/J)!c = 1.
Now putting (1) iota 9.2 and asSuming <I> unitary we canelude

M-1/2S = M 1/ 2 = IXWb (b)1 if j is even and if wild ramifieation
oceurs in F(b)IF.

12. THE CASE WHERE j IS 000

Putting 10.(6) and 11.(2) inta 9.2 we get 4.2(ii) and 4.3(ii) respectively if j =
-vl,JJ(ß) is even. Finally we want ta see bow this matches with the case where j is
odd. From the first equation in 7.1 we canelnde that A(ß) is a scalar operator if j
is 9dd, and

(1)

where {A(ß)} denotes the value of tbe scalar operataor. We recall A = T r/J ®ifß' T t/J (ß)
is a scalar operator of value cjJNt (ß) (see the remarks following 8.1), 1rßIH~ = (Jß ®Wß

and Oß(ß) = Xß(ß) = 1. This implies that Wp(ß) is a scalar operator tao, and:

(2) {A(ß)} = t/JNt(ß) . {Wp(ß)}.

"" { xw~(ß) XW (b) •
Moreover Wp(ß)} = dim1V~ = di~W.' where the second equatlon follows frorn
section" 9.

But now Wb = W(J: / Ht, Xb) is the unit representation because j = -lIi:p(ß) =
-1Ic;p(b) is odd, hence a similar cornputation as in 9.(6)ff. yields J: = Hl = 1 +
(~n At,) + ~(;+1)/2. Therefore from (1), (2) we obtain:
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I'

"

1:.1 Proposition. W(ITt, 1t') =(_l)N-m [~]Nt if j =-vr;p(ß) is odd. 0

This Proposition fits into 4.3(ü) which has been proved for j even, because Wb
is the unit representation if j is odd. What we are left to show is that it also fits
into 4.2(ii). We have defined 6(..\h) as to be the right hand side of 10.(5). Because
vt;p(ß) = v'.J}(b) odd implies that v(6) is odd, we can smoothly extend the definition
of 6(..\h) by 6(..\h) = 1 if v'.J}(b) is odd. Comparing 4.2(ii) and 10.1 it is now enough
to verify that

(3) mod2 if 2 f vr;p (b) .

Let eh, fh be the ramification exponent and the inertial degree of F(6)IF. We know
that:

e. = denOminator(:d) = rd/(j, rd) I

where r = r(21) is the period of the order 21 = 21L 'IF which we have fixed in
section 7. Namely IIF(b) = IIF(ß) = -j/rd is the unique jump of b (see 3.(7».
Because N = md = srd, this implies:

Furthermore s = (m, fL'IF) is divisible by (m, fh). Hence:

Assume that Nb is even. From the last equation we conclude that s is even because
j is odd. Hence m = rs and (m, Nh) are even numbers tao. On the other hand
(m, Nb) odd if Nh is odd, and we are done.
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