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Abstract. In this paper, we initiate an investigation of the stability properties of a
one—parameter family {ﬁ} of spatially homogeneous, time almost—periodic classical
solutions to a class of nonautonomous semilinear _pa.rabolic initial value problems with
Neumann boundary conditions on bounded regions {1 of RN . In particular, for p € (N,m)
and for every 4 € {ﬁ} , we construct in the Sobolev space H2’p(ﬂ,lR) a codimension—one
local stable manifold of classical solutions of small amplitude, which thereby all stabilize
exponentially rapidly around { . Our method of investigation exploits the Banach algebra
structure of Hz’p(ﬂ,IR) , and mainly rests upon the construction of fixed point solutions to
certain nonlinear integral equations in weighted Banach spaces of exponentially decaying
Hz’p(ﬂ,lR)—va.lued maps. The class of equations which we analyze here contains in
particular Fisher’s type reaction—diffusion equations of population genetics. The results of

this paper are thereby complementary to those of [14] and [15] .



1. Introduction and Outline.

This is the second of a series of articles devoted to the analysis of stabilization phenomena
for certain classical solutions to real semilinear parabolic Neumann boundary value

problems of the form

u, (x,t) = Au(x,t)+s(t)g(u(xt)) , (xt)eMxR?

Ran(u) C (uO,ul) (1.1)
_‘g% (x,t) = 0 , (x,t)E(?ﬂX[R+

([14]—[17]). In equations (1.1), 1 denotes an open bounded connected subset of RN
with smooth boundary 0 and N € [2,@) N Nt , while A stands for Laplace’s operator
in the x—variables. Furthermore, s : RT —5 R is the restriction to RT of a Bohr
almost—periodic function on R which we shall also denote by s, while g € 6’(1)(IR,IR)
possesses at least two zeroes uy and u; such that g(u) > 0 for every u € (uO,ul) , with
the property that g’(up) >0 and g’(u;) < 0. Finally, Ran(u) denotes the range of u
and p stands for the normalized outer normal vector to Q. In [15], we proved that for
every (suitably defined) classical solution (x,t) — u(x,t) to problem (1.1), there exists a

classical time almost—periodic solution t — §(t) to the initial value problem

3/(t) = s(t)g(hi(t)), tER
Ran(t) C [ug,u,] (1.2)
0(0) = 2 € [ug,u]

such that u(t) - ﬁ(t) — 0 as t — o, strongly in the Sobolev space H2’p(ﬂ,IR) for

some p € (N,m), where u(t)(x) = u(x,t) for every x € 1. In fact, we proved this result



under the additional hypotheses

lim Gu)=-o (1.3)
u—u
0
lim Gu)=+4+ o (1.4)
u—u,

where G denotes any primitive of 1/g over the open interval (uO,ul) , and under the
condition that § be Holder continuous on RV . Furthermore, we distinguished two very
different cases; in the first one we assumed that the primitive of s is itself
almost—periodic, in which case we proved that every attractor 3 is a classical

almost—periodic solution to (1.2) of the form

t
Ay = G_l{JOdfs({) + G(:"/)} (1.5)

where ¥ € (uo,ul) , and where G™! denotes the monotone inverse of G . In the second
case, we assumed that the primitive of 8 is not almost—periodic and moreover that its
time average pp(s) satisfies up(s) <0 (resp. pp(s) >0 ) . Under such conditions, we
proved that the (global) attractor is given by the equilibrium solution i= u, (resp.

d= u; ). With the exception of the case i = Uy those results of [15] thus left entirely
open the question of the stability properties of the one—parameter family of functions

{ﬁ} A , since for a given LE (ugsuy) it is a priori still conceivable that the
vE(ug,u,)

corresponding solution & of (1.2) attracts no classical solution of (1.1).

In this paper, we initiate an investigation of the stability properties of the one—parameter



.
family {1} A . In Section 2, assuming that the primitive of s is also
v€(ug,u,)

almost—periodic, our purpose is to prove that for p € (N,w) , for every de {ﬁ} AL
vE(ug,uy)

and under further restrictions concerning the regularity of s and g, there exists in
H2’p(Q,IR) a smooth one—codimensional local stable manifold of classical solutions of small
amplitude to Problem (1.1). We also prove that those solutions stabilize around
exponentially répidly, with a rate determined by the largest negative eigenvalue of some
appropriate realization of Laplace’s operator in Hz’p(ﬂ,ﬂl) . In order to accomplish this, we

first analyze the initial-boundary value problem

u,(x,8) = Au(x,t)+s(t)g(u(xt)), (xt) € MxRY
u(x,0) = f(x) € (uguy) , x €0 (1.6)
g% (x,t) =0, (xt) € oxR™

rather than (1.1). We then transform (1.6) into a suitable dynamical system on

Hz’p(ﬂ,lR) , a space which becomes a commutative Banach algebra with respect to the
usual pointwise operations and an appropriate norm [1]. We finally exploit the Banach
algebra structure of Hz’p(n,IR) to carry out the stable manifold construction without any
growth conditions on g , upon invoking fixed point arguments in a weighted Banach space
of exponentially decaying maps defined from IR'(*)' into Hz’P(n,m) . By using some
regularity arguments and the strong parabolic maximum principle, we can then easily
prove that our construction provides the classical solutions to problem (1.1) that we seek.
Methodologically, the techniques of this section are in fact complementary to those used in
[7], [8] and [10]—[13] for the analysis of some hyperbolic problems. In Section 3, we

assume that the primitive of s is not almost—periodic and moreover that is time average

pp(s) satisfies pp(s) <0 (resp. pp(s) > 0). Under further restrictions on s and g
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and using techniques similar to those of Section 2, we then prove that the two equilibria
U, and u, are exponentially asymptotically stable with the decay rate
ruo =g (ug)up(s) < 0 (resp. rul = g’ (u;)pp(s) < 0) . In Section 4 we apply the results

of Sections 2 and 3 to Fisher’s type equations of population genetics. Finally, Section 5 is
devoted to some remarks and to the discussion of some open problems while Appendices A,
B and C are devoted to proving some more technical facts of the theory. For a short

announcement of the above results, we refer the reader to [16].

At this point, it is worth observing that the stabilization processes discussed in this article
have a very different physical origin in the case where 8 has an almost—periodic primitive,
than they do have when s has a time average different from zero. In fact, our methods of
proof will show that in the first case, the convergence of the solutions of small amplitude to

the attractors {ﬁ} A e is mainly governed by the diffusion process. This is in sharp
vE(u,,u
071

contrast to the second case, where the convergence to the equilibria u, and u, is
governed by the reaction process. In the third and last part of this work [17], we shall

complete our stability analysis of the attractors {4} R through the construction
vE(up,u,)

of a one—parameter family of one—dimensional local center manifolds corresponding to the
fact that zero is an eigenvalue of Laplace’s operator in (1.1). The combination of that
analysis with comparison arguments based on parabolic maximum principles will then show
that the above remark is not merely limited to the particular solutions constructed in this
article, but applies to the stabilization process of every classical solution to Problem (1.1).
We still refer the reader to [15] for further references regarding the origins of the problems

investigated here.



2. A Qne—Parameter Family of Codimension—One Stable Manifolds associ ith
Problem (1.1).

| Let Rp be the Bohr compactification of the real line ([4], [6], [9]). Whenever

convenient we shall identify a real Bohr almost—peﬁodic function 8 with its unique

uniformly continuous extension on Ry , thatis 8 € €(Rp,R); in this case we have

8(t) ~ 2 8, exp [iA, t] (2.1)
vent - X

for every t € R, where

5= pplo) = 1im €71 j a&s()x(€) (22)

and t — x (t) = exp[—iA,t] for each k. In particular,

pp(s) = ;'lm ¢! Id{s({ (2.3)

denotes the time average of s . It then follows from a classic criterion of Bohr that
t
¢ —-.J dés(€) € $(Ry,R) if, and only if ¢ _-’J dgs(€) =0(1) a8 [t] — o [4].
0

Under this condition and under the hypotheses concerning g described in the preceding
section, we proved in [15] that Problem (1.2) possesses the one—parameter family of

almost—periodic U( )—solutlons {u} be " ) given by relation (1.5); in addition, we
u,,u
01

proved that each one of those solutions remains uniformly bounded away from the
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equilibria u, and u, and that every Fourier exponent of 3 is a finite linear
combination with integer coefficients of the Fourier exponents of s . In order to construct a

local stable manifold for every de {ﬁ} A , we now proceed to define the notion of
vE(up,u,)

classical solution to Problems (1.1) and (1.6). Let [N/2] be the integer part of N/2;
throughout the remaining part of this paper, we shall assume that {1 hasa

gt [N/2] —boundary in the sense of [1], in such a way that 1 lies only on one side of
00, and that it satisfies the interior ball condition for every x € ). We note that we
have assumed the boundary 1 to be more regular than in [15] (compare with the proof
of Lemma 2.1 below). We shall also write {1 for the compact closure of 1, and denote by
3'2'1(QXIR+,IR) the set consisting of all functions z € & (QxIRJ",[R) such that

(x,t) — 87D %(x,t) € g(OxRT R) forall a= (ay,ay) € NY | 4 €N, satisfying
N

2 a; + 29 < 2.In asimilar way we define ¢ 1’O(ﬁx[R'*',IR) as the set consisting of all
j=1

z€ ¢ (HXIR'*',IR) with the property that D% € ¢ (Ux[R+,1R) forall a € NN such that
N

2 a; <1.Now fix p € (N,o) ; we then have the following

j=1

Definition 2.1. A function u € ¢> (xR R) n ¢(xRE R) n #1OMxRYR) is said to
be a classical solution to Problem (1.1) (resp. (1.6)) if the following conditions are satisfied:

(C)) There exists 6 € (0,1] and, for every 7€ ER+, a function ¢ € LP(QR) such
that Ju(x,t)u(xt’)] <c(x)|t—t" | 9 for every x € {1 and every
t,t” € [7,0).

(Cy) x —i u(x,t) € 9’(2)(ﬂ,ER) for every t ERT .

(Cy) (xt) —u(xt) € € (ﬁx[R+,[R) and in fact t — u,(x;t) € € (IR+,[R)

uniformly in x € {1.



(Cy) u satisfies relations (1.1) (resp. 1.6) identically.

It is then clear that every classical solution to Problem (1.1) is also a classical solution to
Problem (1.6), and that conversely every classical solution to (1.6) is a classical solution to
(1.1) by the strong parabolic maximum principle. Now let u be any classical solution to

problem (1.6), pick 1 € {ﬁ} A and define y(x,t) = u(x,t) — ﬁ(t) for every
v€(uy,u,

(x,t) € ﬁxﬂg . Upon using relations (1.2) and (1.6) we then conclude that y is a classical

solution to the initial-boundary value problem

7=t = Ay(xt)+a(t)g’ (B (RO+s(te, (y(xt), (x,1) ERT

v(x,0) = A(x)-P ,x €71 (2.4)
% (x,t) =0 , (x,t)E8OxRT
where

g, (ty(x)) = g(U()+¥(x,t))-8(U ()-8 (A (t))y(x,t)

Clearly, the stability analysis of 3 is then reduced to the stability analysis of the trivial
solution of the partial differential equation in (2.4). Let H2’p(dl) = Hz’p(ﬂ,C) be the usual
Sobolev space consisting of all complex LP—~functions z with LP—distributional derivatives

D% for |a| € [0,2] , equipped with the norm

P }llp (2.5)

Da
%Il

Z—||2

2,p={ 2

|a|€[0,2]

where

. ||p denotes the usual LP—norm. For 8 € (0,1—p_1N] , let
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gLP (€)=¢ LA (f1,€) be the Banach space of all complex Hélder continuous functions on
Tl with Holderian derivatives D% of exponent 8 for |a| € [0,1] and the norm

Lo+ max _ sup |x—y|7P|D%(x) - D%(y)|
= |a]| €[0,1] x,y€N
xty

Z

vl

= max _ sup |D%(x)| + max 8up |x—y|_ﬂ|Daz(x)-Daz(y)| (2.6)
|al€[0,1] la] €[0,1] x,y€N
xEﬁ x%y

Recall that there exists the continuous embedding
H2P(€) — w1 B(¢) 2.7)

and that Hz’p(ﬁ) is a commutative Banach algebra with respect to the usual pointwise
operations and a norm equivalent to (2.5) [1]. We denote by Ap v the LP(C)—realization
of Laplace’s operator on the domain Dom(A p, /) = Ha’,p(dl) , where

B2P(¢) = {z € B2P(Q) : %’% (x)=0, x€ an} (2.8)

1t follows from the standard methods of [5] that Ap _y 18 the infinitesimal generator of a

compact holomorphic contraction ¢ (0)—semigroup on Lp(d:) : in addition, A D jhas a

discrete point spectrum, namely o(8_ ,) = {A,} U {0} where {A,} CR,
P ket T Y K ent

the eigenvalues A, have finite multiplicities and A} — —m a8 k— o [15] . Let

p(Ap, /) be the resolvent set of Ap, and fix A, € p(Ap, ) NR; we first renorm
B2P(€) with
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zZ—||2

d2p (R N (29)

It then follows from the closed graph theorem and standard elliptic theory that the norm
(2.9) is equivalent to that defined by (2.5). According to the above remarks and without
restricting the generality, we shall thus assume that H2jp(C) is a Banach algebra with
respect to the usual pointwise operations and the norm (2.9). This Banach algebra will
henceforth be denoted by Hi(’)l’) ‘//(C) . Our first preparatory result states the existence of

a diffusion semigroup on Hi P /(C) whose properties are identical to those of the
0 ’

semigroup generated by Ap, %

Lemma 2.1. Let A /be the Hi(’)l’) /(C)—rea.ljzation of Laplace’s operator on the domain
Dom(a ,) = {z € B4P(0) : a, 42 € H?\(’){’ AQ} . Then A, is the infinitesimal
generator of a compact holomorphic contraction # (0)—semigroup on H?\[')I: /(C) .In
addition, A s has a discrete pure point spectrum, namely

a(A )= ap(A = {Ak}kEN"' U {0} , where {Ak}kEN-i' CR,the A.’s have finite

multiplicities and )‘k —3-m a8 k—im.

be the 3(0)—881111' roup generated by A on LI C H
+ g N
0 p)

. . . 2,p
since {W t) is holomorphic, we have W (t)(LP(€)) CH“P(C) for
{ b, 4 ]tem“g Ao Y4

Proof. Let {W, (1)
{ s }tEIR

every t € Rt by the smoothing property, so that {W A (t)} leaves Hi P /(C)
A 0

+
tEIR0

globally invariant. Let {W(t)} be the restriction of {W t) to
tERD Ao, # teRY
Hi P AC) - We claim that {W(t)} 4+ 18 the desired semigroup with the infinitesimal
0 teR
0
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generator A . ; it is indeed easily verified that {W(t)} isa € (0)—semigroup on

+
tEIRO

2 ‘e
H ,\[’)1,) Q) . In addition

||W(t)z

1ot =[Ot VAN S

A

S“(AO_APM’)Z P {I*[1Ag2p

for every t € Rt and every z € u2:P AC) , s0that {W(t)} is a contraction
0 Ao [R-(i)-
semigroup. Using similar graph—norm arguments we can prove that the compactness and

the holomorphy of {W(t)} " follow from the corresponding properties of
t
0

2
W, (1) . Now let z € Dom(A ,);then % =(A—A_ )z€HSP (), s0
{ A, 4 ]tem'g Vs 078p, 4 EHy T A

that we obtain

']t—l(W(t)z-z) - Ap, '/Vz"AOr?,D =

_ |l A A A
= ”t (WAp,f(t)z—-z)-—Ap’/z p—-—-bU (2.10)

as t — 0. Hence z € D , the domain of the infinitesimal generator of {W(t)} 4
teER
0

Conversely let z € D ,set 2=(A—~A_ )z and Z =slim t_l(W(t)z—z) in
0 "p, A t=0

2
HA(’]I’) /(d'.) ; then
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-1 A A . i | I
”t Wy 08502, ], =
-1 ~ .
= ||t (W(t)z—z) — z AP — 0 (2.11)

as t-0. Hence £ € B3P () sothat 2 € HP(C) by elliptic regularity, which
0)

implies that z € Dom(4 ) since Ap,jz = Aoz—g € Hi(’)l,’ #AC) . In addition we have

A

from the definition of % , as well as

A, 4= o P (2.13)

which follows from relation (2.11). Since A, € p(A p ) » we infer from relations (2.12)
and (2.13) that z = Ap _y% - We conclude from this that D= Dom(4 ,), and that the

infinitesimal generator of {W(t)} is Ap _y Testricted to Dom(A ) . Finally, let
t ¥

+
E[RO

¢ € Dom(A /) be an eigenfunction of A , corresponding to the eigenvalue A ; thena
fortiori @ € Ha’,z(ﬂ:) and is trivially an eigenfunction of the corresponding
L2(€)—realization of the Laplacian associated with the same eigenvalue. Conversely, let
pE€ Ha‘,z(d:) be a (generalized) eigenfunction of the LZ(C)—rea.ljza.tion of Laplace’s
operator. Since ) hasa ¢ 5+[N/2] —boundary, it follows from standard elliptic regularity
theory that ¢ € B [N/212¢) , ¢%1,0) . Hence p € HEP(€) and

Ap,ﬂ =Ap € H?\(’JI” Q) ,sothat ¢ € Dom(A ) and is an eigenfunction of 4 ,

associated with the same eigenvalue. In addition, the remaining spectral properties of A s
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are identical to those of Ap, % -

From now on we shall write Hi P #(R) for the real component of Hi P AC) and
0’ 0’

W, (t) for the restriction of the diffusion semigroup of Lemma 2.1 on
Ay Jvery

Hi(’)l,) /(IR) . Our next preparatory result states that {W A /(t)} -~ enjoys properties
0

of exponential dichotomies on Hi P #(R) similar to those of {W,  (t) 4 on
0’ p, A tEIR0
LP(R) . In fact, define the operators P and Q on Hi P /([R) by
0 ]

P=1 -Q
/\0,2,1)

(2.14)
Qz= |0 | dxe(x)
)

where 1 A denotes the identity operator. It is then easily verified that P and Q are

0,2,1)
ecti 2,p i .
projection operators on H A(’), /(IR) . We write ‘ | ’ | I |m, A0,2,p for the usual operator

norm on Hi P //(IR) . We then have the following counterpart of Proposition 2.3 of [15].
0 )

Lemma 2.2. The diffusion semigroup [W A (t)} leaves Ran P globally invariant;
v 4

+
tER
moreover, if Al denotes the largest negative eigenvalue of A Nz there exists a positive

constant ¢, dependingon N, p, Al and the geometry of 1, such that the estimates
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£
[1[Wa_, 0P| [|ag2 € iexp Dy
and (2.15)

| | |A Wy /(t)PI | | <eptlexp[a,t]
m’AO’z’p

€ + leaves Ran Q pointwise invariant;
R

0

hold for every t € RY . Finally, {W, (t)
Ayl

that is,

W, I(t)z =2z (2.16)

for every tEIR'(')' and every z € Ran Q.

Proof. We first show that relation (2.15) follows from relation (2.35) in Proposition 2.3 of
[15] through an appropriate graph—norm argument. Since the first estimate (2.15) also
holds for t = 0 we may assume that t € RT throughout; then from relation (2.35) of
[15] we get

z

“wA (P, S cpemplit] (2.17)

Y

: 2,p . .
for every z € HY’ R) , since on this space {W (t)} and {W t)}
g 4 Ao, Jier? v tERY
coincide. We further notice that on Dom(A ,) N H2:P R) , we have
A )40,

(A2 )P =P(A5—A ), Ap =4 ,and AJ’WAJ(t)=WA /(t)A/;moreover,

W, J(t)P leaves Dom(A ./V) n Hi(’)l,) I([R) globally invariant. Therefore, upon using
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relation (2.17), we obtain

||WA /(t)Pz "0:211) - Il("O_Ap, -’V)WA /(t)Pz P~
_ |WA/(t)P(A0—Ap’ il <
< cpexp[A,t] I ()‘O_Ap, /) p = €1€XP [A,t])|z Ap2p (2.18)

for every z € Dom(A /) n Hi’p /([R) . Inequality (2.15) then follows by extending the
0 )
validity of (2.18) by a density argument to every z € Hi’p Jy(IR) . The proofs of the
0 ]

remaining statements of the lemma are identical to those of the corresponding statements
in Proposition 2.3 of [15]. -
In relation with our stability analysis of the trivial solution of equation (2.4), we now
observe that the linearized part of (2.4) also contains an almost—periodic perturbation to
Laplace’s operator. Accordingly, we next investigate a related family of evolution operators
2 ,P . A A
on H"O’ 4(R) . Pick u € {u}

A

; On H?\’p /([R) , define the two—parameter
vE(up,uy) 0’

family of operators {U A(t’r)}t>r>0 by
A 212

t
Ut - exp j dm(nlg’ (Bn)| Wy ) (2.19)

Our next result states that in fact the family {U A(t,r)} £>r>0 €njoys the same
4 212



exponential decay properties as the diffusion semigroup {W A (t)} 4
tER

Proposition 2.1. Let 5 € #(RgyR) be such that t—-’J'dm(r,)=0(1) a3 [t| —o.

Let g€ ¢ (1)(IR,[R) be such that there exists uy ; €R with g(u)) = g(u;) =0 and
g(u) > 0 for each u € (uy,u,), in such a way that g’(ug) > 0 and g’(u;) <0.Let G
be the primitive of 1/g over the open interval (uo,ul) and assume that it satisfies

relations (1.3) and (1.4). Pick o € {4} A . Then the two—parameter family (2.19)
vE(u,,u,)
01

generates a compact family of evolution operators on H§ P #R) . Moreover, the following

conclusions hold:
(A) The evolution system {U A(t,r)} 1>r>0 decays exponentially on Ran P ; that is,
A 212

there exists a constant Cy € IR+ uniform in t and r such that the estimate

holds for every t 212 0.

< cqexp [A (t-1)] (2.20)

2P =

(B) The evolution system {U A(t,r)} {>r>o remains uniformly bounded on Ran Q ; that
A 212

is, there exists a constant Cg €R" uniformin t and r such that

”|U (“)Q||| 2,05 (2.21)

(C) The restriction of each one of the operators {U s (t,r)] 10 0 Ran Q is invertible.
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Proof. The first part of the statement follows immediately from relation (2.19) and the

compactness of {W A [t) . As for the proof of estimate (2.20), it is sufficient to

+
y 4 }'LEIR0
show that

t

(1) — exp| [ ams(nlg’ (A()

is bounded since we already know that estimate (2.15) holds. We first notice that the

differential equation in (1.2) implies the relation

t t R
[ ams(ng’ (n) = [ an T Lae(b(n) = In [ﬂi(—(—;ll] (2.22)
0 0 v

It then follows from (2.22), the almost—periodicity of t — g(fi(t)) and statement (C) of
Proposition 2.1 of [15] that

t A
£,r) — d ‘(4 = g(u(t) 2.23
(1) exp[j rlolg'(8(m) | = £3C1 (2:2)

remains uniformly bounded as the product of Bohr almost—periodic functions. This proves
statement (A). The proof of statement (B) is then immediate since, by relation (2.186), we

obtain

t
U, (t)Q = e[ [ am(nle’ (Bm)]Q (220

u

as an operator equality on Hi’p /(IR) . As for the proof of conclusion (C), we note that
0 H
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the equality

t
U, (0Q = exp [j OHCO) . (2.29)

holds on Ran Q . [ ]

Remark. We note that if we choose y, € Dom(A .A’) n Hi P I(R) N Ran P, then the
01
Hi P R) — valued function y(t) = U (t,0)y, provides a classical solution (in the sense
0’ u

of the theory of evolution equations on Banach spaces) to the equation

y'(t) = (A, + s(t)g” (B(t)))y(t) (2.26)

which decays exponentially rapidly as t — w . On the other hand, if Yo € Ran Q then
t — y(t) provides an almost—periodic classical solution to (2.26). This observation thus
suggests that we identify Ran P with the codimension—one stable manifold associated
with equation (2.26),' and Ran Q with its one—dimensional center manifold. While
nonlinear versions of Ran Q will be constructed in [17], our purpose in the remaining
part of this section is to construct a local nonlinear version of Ran P associated with the

initial value problem

\ (2.27)

[y'(t)=(a Ve s(t)g'(ﬁ(t)))y(t)+s(t)&ﬁ(t,y(t)),t € m*}
y(0) =4 - ¥

on Hﬁ P 4(R) , corresponding to equation (2.4). In relation (2.27), we have
0’ :

g NUDE Hi(’)p /([R) — Hi(’)l” (R}, and this map will be properly defined and analyzed
u H
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in Proposition 2.2 below. It is in the proof of Proposition 2.2 and in the related Appendix A
that the Banach algebra structure of Hi P J,(ER) will be used for the first time in a crucial
0 H

way. The precise result is the following

Propgsition 2.2. Assume that s and g satisfy the hypotheses of Proposition 2.1 and pick

deqly, . Assume in addition that g € $(/®R) ; for 2 € H2'P (R) and
vE(uy,u,4) 0’
t ER, define
A A 7 A
ﬁ(t ,z) = go(u(t)+z)—gou(t)~(g’ ou(t))z (2.28)

Then g,\(t )€ ¥ 2) ,Pj(m iip/([R)) for every t € R . Moreover, for j=0,1,2
0!

+

there exist non decreasing mappings & £j) : [RO — Rt
u

0 such that the following estimates

hold uniformly in t € R and for all zhk € H}'? (R):
0!

(E,) (t )32 <§(0)[ {2 p] (2.29)
(E,) D} (b I A2 S q.(l)[ . A0,2,p] "h” Y2 (2.30)
S P NI T A N

In the above expressions, Dg (t -) and D2 A( -) stand for the first and the second
u

Fréchet derivative of g (t, ) , respectively.

A
u
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s A 2
Proof. The fact that z € Hi[’f,’ (R) implies gﬁ(t,z) € HA[')I,’ AR) forevery t €R

follows immediately from relation (2.28), the embedding (2.7) and the smoothness of g .
The proof of the fact that g € 3’(5)([R,[R) implies &A(t, .)€ 3(2)(11'2‘!1’ /(m)’};[iap /(FR))
u 0’ 0

is given in Appendix A. There we establish the relations
Dg ,(t,2)h = (8" o(4(t)+2)—g  ol(t))h (2.32)
u
and

D2§ﬁ(t,z)(h,k) = g"o(8(t)+2)hk (2.33)

valid for every z,hk € Hi P /(iR) in the sense of pointwise multiplication in
0 ]
Hi »P #R) . It remains to prove estimate (E, ), (Ey) and (E,). In order to establish (2.29),
0:

we have to estimate the LP—norm of (,\O—A D, ) ﬁ 4 (t,z) . We first write
A
(A8, f)sﬁ(t,z) =
- ,\O(go(ﬁ(t)+z)—goﬁ(t)) - g’oﬁ(t)(,\O—Ap’ e
—g"o(8(t)+2)A, 42 —g"o(d(t)+2)|Vz| 2_ (2.34)
= Ag(Bo(H(t)+2) — got(t) — g” o(l(t)+2)z) — g  oU(1)(Ag=4 )z

+8o(H(t)42)(AgA, r—g"o(h(t)+2)|Vz|?
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We then proceed to estimate the LP—norm of each term in (2.34). In order to simplify the
notation somewhat, we omit all of the irrelevant positive multiplicative constants in the
formulae that follow; this includes in particular all of the embedding constants. With this
in mind consider the first term in (2.34) and write momentarily (t,x) = 4(t) + 2(x) ;
then

4 Z

| T(x,t)| < [4(t)] +

1o Ca) + (2.35)

A0,2,p

uniformly in t and x , because of the boundedness of § and embedding (2.7); in relation

(2.35), a, denotes some positive constant. We then infer the estimate

go(u(t)+2)

<sup max |go(d(t)+2(x))| <

< sup lg(7)] (2.36)
|| €0,a,+]lz]l 0,2,p]

This leads us to define ¢ , :IR':)'——»IRB' by ¢ (&)= sup lg(7)] ;
Lu Lu | T1€[0,a;,+¢]
clearly, ¢ , is non decreasing and we have

l,u

Z

go(t(t)+2)

<
P- ’61,{1[ A0,2,p]

uniformly in t € R . The second term in (2.34) is handled in a similar way. As for the third

one, we may write
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'oﬁt+zz <sup max ’oﬁt+zx zl|. £
<sup max |g’o A (t)+z(x z 2.37

x €N »

because of embedding (2.7); we then argue as above to conclude that the estimate

<

p__Z

A

g’o(ﬁ(t)+z)z

¥ [ ] (2.38)
/\0,2,P 2,ﬁ )‘0,2,13

Rt +

holds with some non decreasing function ¢ , : 0 — [RO uniform in t . The remaining

2,u
terms can be handled in a similar fashion, upon using the definition of

' ”Ao’z:P and
embedding (2.7). This proves estimate (E, ). As for the proof of inequalities (2.30) and
(2.31), we start from relations (2.32) and (2.33). From the method of Appendix A we
already know that g’ o(fi(t)+z) —g’oli(t) € Hii’ll’) #R) along with g"o(8(t)+z) .

Invoking the Banach algebra properties of Hi P _#(R) , we then obtain from (2.32) and
0 ?

(2.33) the inequalities

(2.39)

A A A
e e
||Dgﬁ(t,z)h Ap2p S g o(u(t)+z)—g ou(t) 220l MlA g2

and

24 A
o8, comny op<[erotersnly ool zolidls 2o @40

In order to prove estimate (E2) and. (E3), it is thus sufficient to show that the inequalities
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g’ o( A (t)+2)g’ ou(t)“ A2 31 )[ ] (2.41)
P 0%
and
A (2)
” g'o(d(0)+a)y 5 <34 [ o J (2.42)
hold for some nondecreasing functions $ £ 1,2) : IR'g — IR'(')' . But this follows from
u

considerations entirely similar to those entering the proof of estimate (E, ). -

In order to construct a codimension—one stable manifold associated with the trivial solution

of equation (2.27), we now convert the initial value problem (2.27) into an integral

equation on H§ P /([R) . The interplay between the estimates of Proposition 2.2 and those
0 ’

of Proposition 2.1 is here essential. We begin with the following

Definition 2.2. As before let A, be the largest negative eigenvalue of A i We denote by

Y, the set of all continuous maps y: IR'[*)' — H 2,p /([R ) such that
1

iy = sup
” M et

tEIRO

|y(t)|| 22020 t] < (2.43)

It is clear that Y A becomes a real Banach space with respect to the usual pointwise

operations and the weighted norm (2.43).
The conversion of equation (2.27) into an equivalent integral equation will be proved for

decaying solutions of the following kind.
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Definition 2.3. Let y: IR'(*J' —_— Hi P j([R) ; we say that y is an exponentially decaying
0 ]

classical solution to equation (2.27) if the following three requirements are satisfied:

(Rl) y€ Y’\l
2 1 2
R)  y€SREELP ®)0 o )(m’f,HA;J? R)
R y(t) € Dom(A )N g2:p R) and satisfies equation (2.27) identically on
3 A7 A0

2,p +
HAO,,I(IR) for every t ER™ .
The basic conversion result is then the following

Proposition 2.3. Let s and g satisfy the hypotheses of Proposition 2.1. In addition,
assume that g € ¢(®)RR) and that s be locally Hélder continuous on RT . Pick

deqly, andlet y €Y, besuchthat y € #(D@®YE2P (R)). Then y is
VE(uO,ul) 1 0’

an exponentially decaying classical solution to equation (2.27) if, and only if, the integral

equation

]
() = U, (10)Py(0) + [ 46U, (1,005(£)P8,, (£3(6)
0

A
u

_l d{Uﬁ(t,f)S(E)(I Ao,z,p—P)ﬁﬁ(c,y(f)) (2.44)



holds for every t € IR';‘)' . In the first two terms of relation (2.44), {U A (t,{)]tz £0 is

given by relation (2.19), while in the third one we have defined

¢
U, (462 = U (Et)z = exp J'dm(n)g’(l'i(n))}z (2.45)
u u £

for £2t20 andevery z € Ran Q, according to Statement (C) of Proposition 2.1 and
relation (2.25).

Proof. Let y be an exponentially decaying classical solution to equation (2.27) and write
yp(t) = Py(t), yQ(t) = Qy(t) foreach t € IR':)' . We then infer from (2.27) that the

equations
(0 = (8 s)g” ((0Nrple) + sC)PE, (13(0) (2.46)
and
74(6) = s’ (B0rg(t) + S0k, () (247)

hold for each tEIR'g ,8ince P and Q are continuous operators on Hi’p A,(IR) and
0)
. 2,p
since A =PA ,, A =QA ,=0 on Dom(A ,)NnHY’ R) . We now prove
4P =P 4 8 ,Q=0Q #NEYS A

that equation (2.46) implies the relation

t
yp(t) = U, (LOIPY(0) + [ d€U, (LO(€)PE , (€:3(6)) (248)
u 0 u u

7
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for every t € Rt , while equation (2.47) implies

7Q(t) = —l 460, (L OO, 5 57P) (63(6) (249)

with the absolute convergence of the integral in (2.49). This will prove relation (2.44) since
y(t) = yp(t) + yQ(t) . In order to derive (2.48) from (2.46), it is sufficient to show that

£— U, (LES(OP, (63(6)) € Ll((o,t).Hi(;{’ P (2.50)

for then (2.48) follows from a standard argument involving the variation of constants. But

statement (2.50) is a simple consequence of inequalities (2.20) and (2.31), for

£ —

U, (WP (63(ON]|) 5 €
: '

a] 450-
0

< C,exp [Al(t_f)]

Y ERGTG) P (251

< cyexp[A;(t=£€)] |8

) NP TG e

< cyexp (1)1 s

o2 22| ) ||y||§1e:cp[2Ale]

5

o * o 3 o2, €

< C,exp [A 1t]
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In order to establish relation (2.51), we have successively used relation (2.20), the

second—order Taylor expansion

éa(e,y(e)) = da(l—a)Dzéﬁ(e,a(e))yz(e) (2.52)

o=

around the origin of H§ WP #R) , estimate (2.31) and relation (2.43) through the

B|

(2.48) holds. We now prove that (2.47) implies (2.49). To this end, define

monotonicity properties of 6(2) and the notation

= sup |8(£)| . Hence relation
ok = 118 140)]

t
z(t) = UG(O,t)yQ(t) = exp l_'([ dms(n)g (u(n))] yQ(t) (2.53)

for every t € [R'g according to definition (2.45). We then obtain yQ(t) = UA(t,O)z(t) ,
u

from which we infer that the relation
y4(t) = U, (10)a" (8) + s(t)g’ (A(A)U, (+,0)a(t) (2.54)
u u

holds for each t € [R'(')' . Comparing equation (2.54) with (2.47), solving for z’(t) and

integrating over [t,f] for some fixed ¢ € (t,o) , we obtain

e
U, (00a(t) = yo() + [ 4€U, (LO(EQE ,(£:3(8) (2.55)
u t u u

where [U A(t,f)} et is given by relation (2.45). For any fixed t € R , We IOW Ccan
u 2t20

—
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prove that

{—

1 +
0, (€368 (63(E)] 2, € L) RE)

upon invoking the boundedness of (t,§) — U, (t,£) on Ran Q and an argument similar
u

to that leading to estimate (2.51). This and classic results of integration theory now imply

the absolute convergence of the integral in relation (2.55), with

U, (10)e(w) = yq(t) + [ A€V, (1) E)QE , (63() (2.56)
u t

and z(w) = s—lim z(t) . In order to show that (2.49) holds, it remains to prove that
t-w

z(w) = 0 . But this is immediate, for

z(t)

|30’2=P s 0(1)| | |Q| | |m,A0,2,p”y| Alexp[llt] -—0

as t — o . This proves the only if part of the proposition. Conversely, assume that

relation (2.44) holds for every t € [R'g and define

t
71(8) = U, (40)P¥(0) + [ d€U, (1, &)s(£IPE, (£3(8)) (257)
u 0 u u

7,(8) = [ €U, (L O8(6)QR  (£3(6) (2.58)
t u u
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Clearly, t — U, (t,0)Py(0) is continuously differentiable on Rt and belongs to
u
Dom(A /) n Hi P /(IR) for every t € R . The same property holds true for the second
0 ’

term in (2.57); in fact, invoking the remark immediately following the proof of Proposition

A.lin Appendix A, we have § — &A(f,y(f)) € %’(1)(1R+,H§ P /(IR)) ; the continuous
u 0

differentiability of the second term in (2.57) then follows from the local Holder property of

8, the fact that {W, _(t)
{ v }tER}';

the standard arguments of [3] and [5]. Moreover, y,(t) € Dom(d ,) N H§ P 4R) and
0)

is a holomorphic semigroup and minor modifications of

y1(6) = (& o+ s(t)g’ ((t)))y,(¢) + s(t)PE A (L¥() (2.59)

for every t € RT . Since y€E ¥ (1)([R+,H§ 1P I(IR)) by hypothesis, it follows in the same
01

way that t — y,(t) = y;(t) —y(t) is continuously differentiable on Rt with
7o(t) € Dom(A )N H?\al” /(R) and

y5(t) = (A 4+ s(t)g’ (4(t)))yft) - s(t)qéﬁ(t,y(t)) (2.60)

for every t € RT . Equation {2.27) is then obtained upon subtracting relation (2.60) from
relation (2.59). -

While it is conceivable to analyze relation (2.44) as an integral equation on Hi P J,(IR) , it
0 ]

is now our intention to interpret it as a fixed point equationon Y 3. To this end, define
1

F ,(y)(t) =0, (t,0)Py(0) (2.61)
0,u u
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t
Py 40)(t) = [ €U, (6, 80(O)PE ,(£:3(8)) (2.62)
o u

OOR —I 40 (OO, ;PIE,(63(6) (263)

It follows from easy considerations that t — F , (y)(t) € ¢ (1R+,H§ P /(IR)) for each
ju 0’
y €Y, .Inaddition, it follows from the arguments used in the first part of the proof of
1

Proposition 2.3 that F, maps Y, into itself for every ] (for instance, estimate (2.51)
u,j 1

proves immediately that y € Y, impliesthat F  (y) €Y, ). Equation (2.44) may
A 1,4 A

thus be read as the fixed point equation

2
y=) F () (2.64)
j=0 _],11

on Y, . With the results of Propositions (2.2), (2.3) and relation (2.64), the structure of
1

our theory thus becomes identical to that developed in ([10]—[13]) for the analysis of
some hyperbolic problems. We are thereby in a position to invoke the methods developed

in those articles to solve equation (2.64) in small balls of Y ). - In this way, we get the
1

following local stable manifold theorem for equation (2.27), which is the main result of this

section.

Theorem 2.1. Let s and g satisfy all of the hypotheses of Proposition 2.3. Let

i€ {ﬁ} A and choose p € RY insucha way that
vE(up,u,)
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I(pg) ={vER:| v—b| < Po} € (uguy) - Let c € Rt denote the embedding constant
v

corresponding to the embedding (2.7). Then there exist constants 20 € (0,0) , EO € [1,)

and, for each € € (0,%0) , an open spherical neighborhood .A’( ? )—1 of radius (21?0);1
2
0/¢

centered at the origin of H§ P 4(R) , such that the following statements hold:
0 ]

(A) Forevery n€ .A’( b )__1 N Ran P, there exists a unique y,(7) € 4, such that
2 u

0/¢
Py,(n) = n, and a unique function
u

t—7, () € s(mg,ﬂﬁaf’ AR)N e'(l)(m*",nfa? ®)

which provides a classical solution to the Cauchy problem

{y’(t)=(A Ve s(t)g’(ﬁ(t)))y(t)+s(t)éﬁ(t,y(t)), t€ m+}

(2.65)

y(0)=y,(n)

u
Moreover, the inequality
—1
Yﬁ(ﬂ)” Ap2p <c¢ Tp (2.66)
holds.
(B) The exponential decay estimate

Yﬁ(t:ﬂ)lho’g,p < € €xp ["lt] (2.67)

holds for every t € [R'g .
(C) There exists a codimension—one ¢ (1)_manifold 4 lof C Hi P #R), tangent to
0 )

Ran P at the origin, namely
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10 = {h(n) ,NE N

CL= b 1 N Ran P} (2.68)

O)E

Proof. Upon using the result of Proposition 2.2, we first easily get for g A (t,+) an
u

estimate analogous to relation (3.27) in Lemma 3.1 of [13]. This combined with relations

(2.61), (2.62), (2.63) and with inequalities (2.20), (2.21) of Proposition 2.2 then leads

immediately to estimates for the F ,’s which are identical to those of Proposition 3.3 of
U

[13]. By a nearly verbatim adaptation of the proof of Theorem 3.1. of [13], we therefore

conclude that there exists €y € (0,m), f‘[) € [1,m) and, for € € (0, eo] , &n open

spherical neighborhood _y of radius (2%):1 centered at the origin of

(2k,)-
g2:P /(IR) , such that for every n € 4 N Ran P the nonlinear mapping
Yo | (2k )1
0/e€
2
y—F,5n)=U,t0n+) F (3 (2.69)
u u —1 hU
J_
becomes a contraction in the ball
S, (e)=1{y€Y ”y” e (2.70
A { A Pl )

Now define 20 = min(eo,c_lpo) , choose € € (0,20) and let us carry out the above
construction for such a restricted set of €'s . Then the mapping F A (-,7) defined by

relation (2.69) possesses a unique fixed point y,(+,7) €S 3. (€) . In order to prove
u 1
statement (A), we first notice that t —y, (t,7) € ¢ (IR*O',Hi P 4R)) by definition of
u 0’

Y, ;in
A
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addition, it follows from relation (2.69) that the equation

t
yy(61) = U, (t0)n + [ d€U, (LO(OPE, (3, (6m)
u u 0 u u u
(2.71)

-] 40, (LEBENT, 5 5PIE, (€, (6:0)
| t u u u

holds for every tE[R"(')'.Set y,(n)=y,(0,n); dearly y,(n) € #_ and Py,(n) =1,
u u u u

the latter relation being a consequence of relation (2.71) with t = 0. Since it follows from

Appendix B that t — y,(t,7) € 3’(1)([R+,H§ 'p/(IR)) , we conclude that (2.65) holds
u 0’

as a consequence of relation (2.71) because of Proposition 2.3. Finally, relation (2.66)
follows from the definition of 20 and the choice of €’s . This proves statement (A).
Statement (B) follows immediately from Definition 2.2. The proof of Statement (C) follows

from a direct adaptation of the proof of the corresponding statement in Theorem 3.2 of

(8] m

Remark. The necessity of having inequality (2.66) may at first look rather mysterious; in
fact, its role is elucidated by translating the content of Theorem 2.1 back into the context
of Problem (1.1) or (1.6). The precise result is the following statement which i8 a simple

consequence of Theorem 2.1.

Corollary 2.1. Let 8 and g satisfy the same hypotheses as in Theorem 2.1. Fix

te {ﬁ}A and let p, ¢, 20, ﬁO be a8 in Theorem 2.1; for ¢ € (0,20) and
vE(up,u,)

n¢ /(21‘;0)

_yNRanP , let y,(-,n) bethe classical solution to problem (2.65) which
u
€
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satisfies estimates (2.66) and (2.67). On {Ix R'g , define the function

xt) —u(x,t,p) =y, (t,7)(x) + 3(t) . Then the following conclusions hold:
1

(A) Forevery n€ I( ¢ )_1 N Ran P , the function u(-,-,n) is a classical solution to
2

0/e
Problem (1.1) in the sense of Definition 2.1 for every p € (N,m) . In addition,

x—s u(xt,5) € #3PMIR) for each t € R and each B€ (0,1—p N7 . Finally, if
7 ¥ 1y , the function u(+,+,7,) is not identically equal to u(+,+,7s) .

(B) There exist positive constants ¢ 45 depending only on N, p and the geometry of
such that the following exponential decay estimates hold for every t € IR'(*)' and every

A€ (0,1~p~IN] :
sup |u(x,t,n)—u(t)| < cyeexp[A;t] (2.72)
x€ll
sup |Vu(xt,n)| < cge exp[A;t] (2.73)
x€f
sup  [x—y | Plu(xtm-u(mtm)| € cpe explAyt] (2.74)
x,y€Ef
y
sup %=y | P Vu(x,t,m)Vu(y,tm) | € ce explA,t] (2.75)
X,y _
xty

Remarks. (1) We first note that relations (2.72), (2.73), (2.74) and (2.75) immediately
imply relations (2.10), (2.11), (2.12) and (2.13) of [15]. However, we shall prove in [17]
that the converse statement is not true: in general, an arbitrary classical solution to
problem (1.1) stabilizes only polynomially rapidly around i ; this is related to the fact

that there exists a one—dimensional center manifold around 1 since zero is an eigenvalue
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of A ,. Relations (2.72), (2.73), (2.74) and (2.75) thus only reflect a codimension—one
exponential stability of 3.

(2) We stress the fact that the method of investigation of this paper is essentially
different from the philosophy of [15]; in that paper, we started with any classical solution

u to problem (1.1) and proved that there exists a 1 € {ﬁ} A such that relations
vE(ug,u,)

(2.10), (2.11), (2.12) and (2.13) of [15] hold. In contrast, here we start with any

4 € {4} A and prove that there exists a smooth codimension—one stable manifold
vE(uy,u,)

of classical solutions to (1.1) which satisfy relations (2.72), (2.73), (2.74) and (2.75). This
complementarity of the two approaches will be exploited in [17].

(3) Relations (2.72), (2.73), (2.74) and (2.75) show that the exponential stabilization
of the solutions u(-,-,n) around 3 is essentially governed by the diffusion process in
(1.1) through the largest negative eigenvalue of A _y - This was not a priori obvious since
in equation (2.65), Laplace’s operator is perturbed by an almost—periodic function coming
from the reaction term.

(4) From the definition of (x,t) — u(x,t,n) in the preceding corollary, we note
that the set of initial configurations for Problem (1.6) may be written as

u(+,0,7) =y,(n)+ U where ¥ € (uo,ul) . According to Statement (C) of Theorem 2.1,
u
those configurations thus also generate a smooth codimension—one manifold in Hi P J(IR)
0 ’

parametrized by n € 4 _1 N Ran P . Since the construction of Theorem 2.1 can be

(2k,)7
repeated for each 4 € {ﬁ} A , we obtain a one—parameter family
vE(ug,uy
{#loc, of such manifolds indexed by & € (ug,u,) .
8, V) v€(uy,u,)

We now can give the
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Proof of Corollary 2.1. We start by proving that u(-,-,7)€ #(MxRT R)n (D@AxR R) ;
we first note that y, (to,n) is uniformly continuous on {1 for each fixed ty € RT )
u

because of embedding (2.7) and the compactness of {1; in addition, the same embedding
(2.7) implies that t —y , (t,7)(x) € ¢(RT,R) uniformly in x € T1. These two
u

properties combined prove the joint continuity (x,t) — ¥, (t,7)(x) € U’(HXIR'*'JR)
u

through the triangle inequality. In a similar way we have
(x,t) — (v,),(tn)(x) € S’(Tile"',R) , since y, (tq,) i8 also uniformly continuous on 01
u u

for each t, € R by equation (2.65) and embedding (2.7), and since
t—y,(t,n) € ‘6’([R+,H§ P #R)) . A similar argument holds to prove that
u 0’

(x,t) — (7,), (t,7)(x) € #(xRT R) for each j € {1,..,N} . We conclude thereby that
U]

u(s,n)=y,(m()+ ﬁ(-) € ?(HXIR'*',[R) n 8’(1)(ﬂ><IR+,IR) . In order to prove the
u

required regularity of Definition 2.1, it remains to show that u_ ,x_( v EFE (ﬂ><IR+,[R)
17)
for every i,j € {1,...,N} . Since y,(t,7) € H‘j;,l’(m) for t €RY by construction, we
u
already know that u(-,t,n) € 83’ﬁ(ﬁ,IR) — ﬂz(ﬁ,lR) for every t € RT and every

g€ (0,1—p_1N] . The fact that u_ _ (+,*,n) € ?(QXER'*',IR) then follows from standard
"]

parabolic regularity theory ([2], [18]) and we conclude that

u(-.+,m) € 82’1(ﬂx[R+,[R) n ¢({=xRTR) n S’I’O(HxIR+,R) . It remains to prove that

conditions (C,)~(C,) of Definition 2.1 hold. From Appendix C we know that y (-,n) is
u

globally Hoélder continuous on every interval of the form [7,0) and for every 7 € RY .

From the definition of u(-,-,n), embedding (2.7) and the fact that & is Lipschitz

continuous on R , we infer the existence of a constant Cq € RT and the existence of some

6 € (0,1) such that the estimate
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lu(x,t,n)-u(x,pt’ )| < Iyﬁ(t,n)(X)—yﬁ(t’,n)(x)l + | u(t)-a(t’)|

(2.76)
<c

A A 0
yy (), ()| + 1804001 Seglet’|

holds for every x € 1T, every t,t’ € [7,0) and every 7€ R . This proves that (C))
holds. Condition (C,) has already been proved; condition (C,) follows easily from the fact
that t —y/(t,n) € #(RTHZ'P (R)). As for condition (C,), we first observe that

u 01 .

inequality (2.66) and embedding (2.7) imply that y, (7)(x) + VET 1(pg) for every
u v

x € TI; we then conclude from equation (2.65) that the function (x,t) — u(x,t,7)

satisfies the initial boundary value problem

u,(x,8) = Au(x,t)+s(t)g(ulx,t)),(x,t) EMxR™

u(x,0) = y,(7)(x)+¥ € (npny), x €0 (2.77)
du u N

T (x,t) = 0, (x,t)EMNxR

But since 8 is uniformly bounded in t and since g is smooth, it follows f.rom'the strong
parabolic maximum principle that u(x,t,n) € (uO,ul) for every (x,t) € xR , and hence
that u(-,-,n) is a classical solution to Problem (1.1). The fact that

x —iu(x,t,p) € € 3. (,R) foreach t € R' and each B € (O,I—p_lN] has already been

proved. Finally, assume that NMo€ A 1
) (2ky) e

u(x,t,nl) = u(x,t,n2) on {Ix IR40' , then yn(t'”l) = Ya(tiﬂz) would hold for each
i i

N Ran P with nlinz;ifwehad

t€ [R?]' . In particular, this would imply that yﬁ(O,r;l) = yﬁ(O,q:z) , 80 that

Py A(0,1;1) =1, =Py A(O"Tz) = 1. would follow from Statement (A) of Theorem 2.1,
u u
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thereby contradicting the hypotheses mn ¥ g - This proves Statement (A). As for
conclusion (B), it follows immediately from relation (2.67) and embedding (2.7). -

Remarks. (1) Without any further conditions on 7, the above method does not allow one
to construct classical solutions to Problem (1.1) which satisfy condition (C,) of Definition
2.1 with #=1 (compare with the proof of Proposition C.1 of Appendix C). However, if

ne A ( N Ran P N Dom(A ,) andif s is globally Hlder continuous on Rt ,a

-1
ok 0) €
much stronger result holds: the classical solutions of Corollary 2.1 satisfy

[u(x,t,7)—u(xt’,n)| <clt—t’ ] (2.78)
for every x €11, for some ¢ € Rt and for every t,t’ € Rt (and not merely for
t,t” € [7,0) foreach 7€ R+) . This follows immediately from estimate (2.76) and
Proposition C.2 of Appendix C. It is precisely the global stabilization properties of classical
solutions satisfying the conditions of Definition 2.1 with (C,) replaced by (2.78) which
were discussed in [15].

(2) It is not possible to reiterate the above construction if i= ug o - In fact, the

classical solutions to Problem (1.1) remain uniformly bounded away from u, and u;
1

when t __;J dns(n) = 0(1) as |t| — o [15].
0

In the next section, we investigate the stability properties of the two equilibria U and u;

when pp(s) #0.

3. On the Exponential Stability of the Two Equilibria u, and u .

In this section we prove that under certain restrictions on the selection function s, there
exist classical solutions of small amplitude to Problem (1.1) which converge exponentially
rapidly to uy or u,. We also show that the corresponding rates of decay are determined

solely by g"(ug), g"(u;) and pp(s), and thus that they do not depend on any spectral
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property of Laplace’s operator. Throughout this section, we still assume that fl and &
satisfy the same geometric conditions as before, and that the notion of classical solution is

the same as in Section 2 . We begin with the description of the exponential dichotomies of

the compact families of evolution operators {U_  (t,r) defined by
Uy 1 t2r20

y

t
U, (o) = exp [g'(uo) j dﬂﬂ(n)] Wy () (3.)
and
i
U, (t) = exp [g' () | dm(ﬂ)} Wy () (3.2)
T

In relations (3.1) and (3.2), {W, (t) 4 is the diffusion semigroup of Lemma 2.1.
A4 JtER 0
We remark that expressions (3.1) and (3.2) correspond to relation (2.19) when 8 = Uy -

Proposition 3.1. Let s € ¥(Rg,R) be such that pp(s) # 0 and assume that
t

t— J dnﬁ(q) =0(1) as |t|] — o, where we have defined § = s—pp(s) . Let
0

g:R—— R be differentiable at u; and u, insuch a way that g’ (ug) > 0 and
8" (u;) < 0. Set ru0 = g’(uo)pB(s) and r111 = g’ (u;)up(s) - Then there exists cr € R

such that the following two conclusions hold:

(A)If pg(s) <0, then the estimate

logoolllasgspSeemtvgn
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holds for every t2r20.
(B)If pp(s) >0, then the estimate

| | |Uﬂ1(t’r)| l lm,/\oﬁ.p < cqexp [rul(t_r)] (34)
holds for every t 212 0.

Proof. Write 8 = pB(s) + £ in relation (3.1); relation (3.3) then follows from the facts

that § has an almost—periodic primitive and that {W A () is a contraction

N ]tE[R'g
gemigroup on H2 P (R). The proof of estimate (3.4) is of course similar. -
AO’

Remarks. (1) The hypothesis concerning § in Proposition 3.1 is satisfied whenever s is
periodic, and for a wide class of almost—periodic functions such as for instance

8(t) = 1 + cos(w;t)+cos(wyt) where {w),w,} CR/{0} is rationally independent.

o
However, it fails to hold for instance for s(t) =1 + E k_zexp [ik_zt] , since the
k=1
@
Y A —2 =24 .
primitive of t — 8(t) = z k “exp[ik “t] is unbounded.
k=1

(2) In contrast to the estimates of Proposition 2.1, estimates (3.3) and (3.4) hold on
the whole of Hi'p ‘A,(IR) , irrespective of the fact that 0 € o_(A J,) . In fact, the nature of
0’ P

the spectrum of A s plays no role in the considerations that follow.

In order to investigate the stability properties of Uy and u; , We may now proceed along

the lines of Section 2; the relevant initial value problems on Hi P /(ER) are then
0 b}
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{y' () = (8 S8 g+ s()8, (1) } .
y(0) = p-u,
and
{y’ (1) =A(A A s(t)g” (u))y(t) + E*(t)ﬁul(y(t)) } (35)
y(0) = p-u 1
In relations (3.5) and (3.6), we have defined
g“o 1(3) =go (u0,1+z)—g'(u0,1)z (3.7)

for every z € H?\’p _#(R) . Converting first equations (3.5) and (3.6) into appropriate
0 H]

integral equations when g is sufficiently smooth and using then fixed point arguments
similar to those of Section 2, we obtain the following statement which is the main result of

this section.

Theorem 3.1. Let s satisfy the hypotheses of Proposition 3.1. Assume in addition that s
is locally Holder continuous on RT . Let g € 6’(5)(IR,[R) be such that there exist U1 ER
with the property that g(uy) = g(u;) =0, g(u) > 0 for every u € (uy,u;) and

g (ug) >0, g'(u;) <0.Let c€ R denote the embedding constant corresponding to
the embedding (2.7). Then there exist constants 21 € (0,0) , ﬁl € [1,0) and, for each

€€ (0,21) , an open spherical neighborhood ./V( ¢ )_1 of radius (2&1)_16 centered at
2

1 €
the origin of H3'P_(R) , such that the following statements hold:
0 )
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(A) X pp(s) < 0, then for every 1]6/+ 4y =1in€H , . :np>0o0n {1},
B (2k))7 e (2t e

there exists a unique function

L, (0n) € SEEENP @) 0 s W@t 3P )

which provides a classical solution to the Cauchy problem (3.5) with y(0) = 5 . Moreover,
the exponential decay estimate

¥, (7 " Seexplr t] 3.8
uO( )10,2,p U, (3.8)

holds for every t € IR'(*]' .

(B) I pp(s) > 0, then for every 176/_ _ ={1;6/ 4 <0 onﬁ},
“B (k) e (2, e

there exists a unique function

Ly (L) € SEEENP ®)0 s’“)(m*,ﬂi‘;{’ AR)

which provides a classical solution to the Cauchy problem (3.6) with y(0) = % . Moreover,
the exponential decay estimate

ra (60)[3 90 € €Lz, 1) (39)

holds for every t € IR'(*)' :
In addition, the inequality

-1
<5

holds in both cases.

We omit the proof of Theorem 3.1 since it is essentially a repetition of the arguments of
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Section 2 through Proposition 3.1. We simply observe that inequality (3.10) comes about in
suitably restricting the set of admissible ¢’s , as we did in the proof of Theorem 2.1 to

obtain inequality (2.66). We also emphasize the fact that for any 5 € .A’:(b ﬁ)—l , t
2 €

corresponding initial condition is y, (0,7) = n, and not a more complicated function of
0,1

n as in Section 2. This is because of the fact that the exponential dichotomies of the

he

evolution operators {U  (t,r) hold on the whole of H2:P J,(IR) .
9.1 Aps

2120

marks. (1) We can easily verify that the sets Ve -1
C 2k e

in the Hi P _yR)—topology. In order to see this let #(R) be the usual Banach space
0’ '

are (non empty and) open

consisting of all real continuous functions on I equipped with the uniform norm. Since

there exists the continuous embedding H3'P (R) — #(R), and since /( - is
0 2 €
1

an open ball in HE P /(IR) , it is then sufficient to prove that the set of all positive (resp.
0 ]

negative) continuous functions on {1 is open in #(R) . This fact is easily verified for, if

'%EU@)WM1%>0onﬁ,mmﬂmmuMSR0>ONMMMt%ZROMa

consequence of the compactness of {1. It is thus clear that for every € € (O,RO) , the open

ball of radius. € centered at {; in the ¢(R)—topology consists exclusively of positive

functions on T1. The sets 4~ thus provide H2P /(tR)—smooth manifolds of
(2k)) e Ao

small initial data associated with the exponentially decaying solutions yuo( -,n) and

yul( V1) -

(2) The conclusions of Statements (A) and (B) already hold if the subsets

e _y arereplacedby . _, .Inthis case,itis theopenball # , _,
(2k)) e (2k) e (2k) e

which provides a manifold of small initial data associated with the exponentially decaying
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solutions yuo( -,n) and yul( -,n) . However, without the additional sign constraints of

Statements (A) and (B) and without inequality (3.10), it is not possible to garantee that
the functions u(-,*,n) =y, (*,n) + v, and u(-,-,n) =y, (-,n) + u; satisfy the range
U, u, 1

condition in (1.1). In fact, the role of these additional constraints is clarified in the

following

roll .1. Let s and g satisfy the same hypotheses as in Theorem 3.1. Let ¢ ¢k
Corollary 3.1 g ypo )

be as in that theorem; for € € (0,21) and n € Jgt )—le

1
classical solution to problem (3.5) with y(0,7) = n which satisfies estimates (3.8) and

(3.10) when pp(s) < 0.On MIx [R’g , define the function

L |

, let yuO(o,n) be the

(x,t) — u(x,t,n) =y, (t,7)(x) + v . Then the following conclusions hold:
0

(A) For every n € .AE + ? )_1 , the function u(-,-,n) is a classical solution to Problem
2

1) €

(1.1) in the sense of Definition 2.1 for every p € (N,w) . In addition,

x — u(x,t,n) € Cs’ﬁ(ﬂ,[R) foreach t € Rt and each BE (0,14 1N] . Finally, if

7 ¥# 7 , the function u(-,+,n;) is not identically equal to u(+,*,75) .

(B) There exist positive constants °g.9 depending only on N,p and the geometry of {1

such that the following exponential decay estimates hold for every t € [R?)' and every

BE (0,1-p INT :

Sup Iu(X,t,ﬂ)—uol SCSE exP[ru t] (311)
x€N 0

sup |Vu(xt,n)| € cge explr, 1] (3.12)
0

x€N



sup |x-y| Plu(xt,n)-u(ram| € cge explr, ¢] (3.13)
x,y€EN 0

¥y

sup |x-y | Vu(xt,n)-Puy,t,m)| < cge expr, t] (3.14)
x,iEﬂ 0
XFy

(C) Identical statements hold for the function (x,t) — u(xt,n) =y, (t,7)(x) + v,
1

when pp(8) >0 and n€ A

(2ﬁ )_16 , with uy and rul replacing 1, and T in
1 B

0
estimates (3.11)—(3.14).

Proof. The above statements follow from Theorem 3.1 exactly as Corollary 2.1 follows
from Theorem 2.1. We simply note that because of inequality (3.10) and embedding (2.7)
weget |n(x)| <u;—u, forevery x € {1, which implies that

u(x,0,7) = n(x) + uy € (uy,u;) if 7> 0 on f1. In a completely similar way

u(x,0,n) = 1(x) + u; € (ug,u;) if 7 <0 on T, s0 that the range condition in (1.1) is

satisfied in both cases by the strong parabolic maximum principle. -

Remarks. (1) We first note that relations (3.11)—(3.14) imply relations (3.1) and
(2.12)—(2.13) of [15]. We shall in fact prove in [17] that if s satisfies the condition of
Theorem 3.1, and if s is globally Hélder continuous on IR+,then every classical solution to
(1.1) converges to Uy or Uy exponentially rapidly with a rate of decay determined by

I Oor r

(2) Relations (3.11)—(3.14) show that the exponential stabilization of the solutions
u(+,,n) around u, or u; is essentially governed by the reaction—selection process in
(1.1), in contrast to the results of Section 2.

(3) A remark similar to that immediately following the proof of Corollary 2.1 can be

made concerning Condition (Cl) of Definition 2.1; in particular, if 5 is chosen sufficiently
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regular and if 8 is globally Hélder continuous on rT , then the classical solutions of
Corollary 3.1 are globally Lipschitz continuous in the time variable on RY .

In the next section, we discuss several examples.

4. The Role of Reaction—Diffusion Processes in Some Examples from Population Genetics.

It is instructive to reconsider some of the examples of Section 4 of [15] in light of the

preceding results. We begin with the following

Example 4.1. Consider the problem

(1, (x,t)=Au(x,t)+(cos(w, t)+cos(wyt) Ju(x,t) (1—u(x,t))(au(x,t)+(1—a)(1-u(x,t))]

(x,t) € OxRT
| Ran(u) C (0,1) H(4.1)
;g%(x,t) =0 (x,t) € oR .

where a € (0,1) and where {w;,w,} CR/{0} is rationally independent. Here we have
g(u) = u(1-u)(au+(1-a)(1-u)) with uy =10, u; =1 and 5(t) = cos(w;t) + cos(w,t).
We can easily verify that all of the hypotheses of Theorem 2.1 or of Corollary 2.1 are
satisfied. We can then conclude that every attractor 8 € {1} be(o,1) is quasiperiodic. In
addition, given any de {ﬁ} 1‘/6(0,1)’ there exists a codimension—one manifold of classical
solutions to (4.1) which stabilize around 3 in the sense of relations (2.72)—2.75). In this

example, the role of the diffusion process is thus predominant.



— 46 —

Example 4.2. Conclusions entirely similar to those of the preceding example hold for the

boundary value problem
u,(x,t) = Au(x,t)+sin(wt)sin(ru(x,t)) , (x,t) € OxRT
Ran(u) C (0,1) (4.2)
g%(x,t) =0 (x,t) € xRT

where g(u) = sin(mu), u, =0 and u, = 1; here s(t) = sin(wt) with w € R/{0}, and all
0 1

of the attractors are time periodic with period 7 = 21r| w| L.

We conclude with the following

Example 4.3. Consider the problem

u, (x,t)=Au(x,6)+(cos(w; ) +cos(ayt}£1)u(x,)(1-u(x,t) lexpl-u(x,t)]
(x,t) € OxR™T

|Ran(u) C (0,1) | (43)

Fat) =0, (x,t)€ OxRY |

where {w,,wp} is asin Example 4.1. Here g(u) = u(1-u)exp[-u] so that uy =0 and
u; = 1. Moreover, §(t) = cos(w;t) + cos(wyt)1, with up(s) = £1. It is then easily
checked that all of the hypotheses of Theorem 3.1 and of Corollary 3.1 are satisfied, so that
Problem (4.3) possesses classical solutions converging to uy =0 if pp(s)=-1,and to

u; =1 if pp(s) = 1. In the first case the rate of decay is r, = -1, while in the second
0
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1

case we have = — . In both cases the reaction—selection process is primarily

responsible for the stabilization phenomenon.

We refer the reader to the references of [15] for more information concerning the

significance of Examples (4.1)—<4.3) in population genetics.

5. Concluding Remark and Formulation of an Open Problem.
In relation with the developments of the preceding sections, the major open problem

concerns Neumann boundary value problems in which the selection function exhibits a

spatial structure. Those boundary value problems are of the form

o, (xt)=Bu(x,t)+s(x,t)g(u(x,t)), (x,t) € AxRT
Ran(u) C (uo,ul) (5.1)
%{x,t) =0 (x.t) € xRt

where the selection function depends explicitly on x € {l in such a way that t — s(x,t) is
Bohr almost—periodic for each x € II, and that x — 8(x,t) is smooth on T for every
tERT.In (5.1) we assume that g satisfies the same hypotheses as in Section 2. Define

8(t) = max s(x,t) and g(t) = mins(x,t). If t — jéd:ﬁ(n) =0(1) as |t| — o, it i8
x€Nl x €N

possible to show that every classical solution to (5.1) stabilizes around a spatially

homogeneous, time almost—periodic solution to the initial value problem

o/ (4)=8(t) g(u(t)) tER
Ran(u) € [uy,u,) (5.2)
4(0) = 2 € [ug,u,)
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On the other hand, if ug(8) < 0 (resp. pp(s) > 0), then every classical solution to (5.1)
converges to the equilibrium u, =0 (resp. u; = 1). While these statements easily follow
from the methods of [15], it is important to note that a local geometric theory similar to
that developed in Sections 2 and 3 does not exist at the present time. It is thereby
impossible to determine how fast the above stabilization processes develop, and to specify
their physical nature. Due to the presence of a spatial structure in s, the physical origins of
the stabilization phenomena for the solutions to (5.1) are presumably more complicated
than just the combination of reaction—diffusion processes. In this context, the major open
problem consists in developing an invariant manifold theory for nonautonomous parabolic

problems such as (5.1).
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Appendix A. On the Fréchet Differentiability of §(t.+) on H3'P (R).
0,4

In this appendix we complete the proof of Proposition 2.2 by proving the following
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Proposition A.1. Assume that s and g satisfy the hypotheses of Proposition 2.2. Pick
A A .

u€ {u}i‘/E(uO,ul) and define gA(t,*) by relation (2.28) for every t € R. Then

A 2) 2 2

B,y € e @l @E P ).

Proof. For simplicity we shall write g(n) for the n*I—derivative of g- From relation (2.28)
we obtain

gA(tz+h) — gA(t,z) =
= g o (d(t)+z+h) —g o ((t)+2) — (6 o A(t))h

(A.1)

for every h,z € Hg(’]l’) _/(R). We now prove that we in fact have
B(toth)-g4 (1) =
(8Wo(d(t)+2)sMotit))n + hzf;d«x(l—a)g@)o(ﬁ(t)+z+4h) (A.2)
on Hial,’ _/R). From relation (A.1) and for each x € TI, we obtain
B (tath)(x) — B p(t2)(x) =
— o((E) 40 +hx)-g(A(e)+o()-g” (B0 = (A3)

1
= OV [ ds1-agD(be+a00)+ n(x).
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In order to derive relation (A.2) from relation (A.3), it is thus sufficient to prove that
gWo(d(t)+2)got() € BZ:P (R) along with gPo({(t)+2) whenever
0 )

z € Hi ‘P (R). It is clear that these two functions belong to LP(R) and satisfy
0

Neumann’s boundary condition. As for their partial derivatives, we obtain

(8Wo(d(t)+2)-gMod (1)), = e Po(d(t)+2))z, (A4)
J J

(g WotbpargMobo), ;. = EDotbran 6 Dobpa (49

in the first case, and

(s(z)o(ﬁ(t)w))xj = (s(”o(ﬁ(t)ﬂ))zxj (A.6)

(A7)

. X.

(g“’o(ﬁ(t)+z)),[i,xj= (3(3)°('Al(t)+z))zxi,xj+(5(4)°(ﬁ(t)'*'z))lez J

in the second case, for each i,j € {1,...,N}. From the smoothness of g, the properties of |

and embedding (2.7), we then infer that (g(!)o(8(t)+2)-(Mod (1)), € LP(R) along with
j
the second—order derivatives given by (A.5). The conclusion for (A.6) and (A.7) is similar,

0 that relation (A.2) holds. Now, define DgA(t,z) by
D§ A(t2)(b) = (6 Vo(d(t)+2)-gMod ()b (A.8)

where pointwise multiplication in HE P _#(R) is meant on the right—hand side of (A.8).
0 4

From the Banach algebra properties of H?‘ P _(R), it follows that Dg ﬁ(t’z) is a linear
0 )
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bounded operator on Hi P /(IR) for each g, with its uniform operator norm bounded
O H

above by

| [p8yceo

| |m,,\0,2,p < ”s(l)o(ﬁ(t)+2)—s(1)oﬁ(t)|| AP (A.9)

We now wish to prove that z — Dﬁ ﬁ(t,z) is continuous on Hg P 4(R) for every t ER.
0 ¥
Assume that z — z strongly in HE P _(R); it is then sufficient to prove that
0 ’
(Do W4 2P - -
g\ ‘o(u(t)+z,) — g* /o(u(t)+z) stronglyin Hy’" (R) according to relations (A.8)
0!

and (A.9). From the smoothness of g and embedding (2.7), it is already clear that
g(l)o(ﬁ(t)-i-zn) — g(l)o(ﬁ(t)+z) strongly in LP(R). By the definition of the norm (2.9),
. . (1) (A (1) /A

it thus remains to prove that Ap’ A8 7o(u(t)+z)) — Ap, A8 7o(u(t)+z)) strongly
in LP(R). To this end, write momentarily fA(t) = (t)+z and fa (t) = u(t) +z,. We

have the identity
ay, A8 Med(t2) -8, feMo(lit)+2) =
=4, /(g(l)of{\l’n(t))—Ap’ AeMota(t)) = (A.10)
= oty (04, a8 (0-8, a0+, aa)e@oty ()-g@oty(t))

+(goty ) |vty 10| >

w1y ()] D) + |vta0)| 6oty 0Pty )

Since fA ,n(t) — fA(t) strongly in H?\[’,l’) AR) for each t €R, it follows from the

* smoothness of g and embedding (2.7) that every term in (A.10) converges strongly to zero
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in LP(R). Thus 2 — D g A (t,z) is continuous. In order to conclude that D ﬁ A(t,-) is the

smooth Fréchet derivative of § A(t,+), it remains to prove that
a1 2 (2)_ A
”h” h J- d4(1—4)g*“/o(u(t)+z+4h) — 0 (A.11)
0

1\0,2,1)

- .
as h—0 in HAOI: 4(R). Write

1(z,h) = h J; ds(1—4)g Do (h(t)+2+ 4h) (A.12)

By the Banach algebra properties of Hi 1P /(IR), we obtain the estimate
0 ’

e o(d(t)+2+ 4h)

1
=
h" r(z,h)” < ”h" ds (A.13)
" 20,2,p 20,2,p "0,2,pJ 0 40,2

)’p

In order to prove (A.11) from (A.13), it is thus sufficient to show that

h_‘,l.l ds 3(2)o(ﬁ(t)+z+4h)
0

| 2.2, remains bounded a8 h — 0. In fact we prove a
0) 1

stronger result, namely that

lim ldd g(z)o(ﬁ(t)+z+4h)

A.14
h=0 40 ( )

2
Ag2p " ”3( do(t(1)+2) Agi2:P

This in turn follows from the fact that 5(2)0 (ﬁ(t)+z+ sh) — g(2)o(ﬁ(t)+z) strongly in
Hg’p #(R), uniformly in 4 € (0,1) as h — 0. In order to see this, write
0 ’

A .
fﬁ,ah(t) = u(t)+z+sh and fA(t) = i(t)+z. Clearly, fﬁ,ah(t) —qfﬁ(t) strongly in
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Hi'p /(R) uniformly in 4 as h — 0; since g(n) is continuous for n = 2,3,4, we infer
0!

from thig that

g(2) o fﬁ,dh(t) — g(2)of{i(t) (A.15)
¢® o £y ®)— gofa(t) (A.16)
g(4)o fﬁ,dh(t) — g(4)ofﬁ(t) (A.17)

uniformly on {I, uniformly in 4 € (0,1) as h — 0. It now follows from (A.15) that

Aog(z) ofa ,{)— Aog(z) o fA(t) strongly in LP(R), with the same uniformity in 4.

Since

[e®ety, 01— Pty ]y 5 = (2, EDot 1Dty

. . 2 2 .
it remains to prove that Ap, /(g( Jof A ,4h(t)) — Ap’ /(g( Jot A(t)) strongly in LP(R)
uniformly in 4 € (0,1) as h — 0. To this end we note as above that the relation

A, A,(g(2)ofﬁ,d —A Ag Jofa(t)) = (A.18)
=(g®oty LB, 4o 40 -8 gae)a, ity -gPoty)
+g®oty (1)) | vy u(t) | 2 | viA(t) | 2)4 | via(t) | %Moty p(0-gMoty()

holds. Invoking relations (A.16), (A.17) and the strong convergence fA , (t) — fA (t) in
H?‘ P I([R) uniformly in 4, we can now conclude that each term in relation (A.18)
0 H
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converges to zero strongly in LP(R) with the desired uniformity in 4 € (0,1). This proves
relation (A.14), and hence that D é A (t,-) is the smooth Fréchet derivative of é ﬁ(t’ *)
for every t € R. While the above arguments require g € ¢ (4)(IR,[R), we note that the
hypothesis g € ¢ (5)([R,[R) allows one to carry out the above steps once more to prove that

D2 (t,2)(0,k) = gPo(d(t)+2)hk (A.19)
is the smooth Fréchet derivative of Dé A (t,°). -

marks. (1) Using relation (2.28) and arguments similar to those of the above proof, it

is possible to show that if ¢ — y(¢) € 4R, E2'P (R)), then
0)
£ — gﬁ(f,y({)) € 13(1)([R+,H§ 'p/(IR)) as well. This fact was used in the second part of
0!

the proof of Proposition 2.3.

(2) A proof identical to that of Proposition A.1 also shows that if

g€ €O)RR), then g“m € 3(2)(11,2\61’ l(m),nﬁép /(R)) where gu01 is defined by

relation (3.7). This was used implicitly in the proof of Theorem 3.1.

Appendix B. Proof of the Continuous Differentiability of the Fixed Point Solution

to Equation (2.71).

The main purpose of this appendix is to complete the proof of Theorem 2.1.

Propogition B.1. Let 8 and g satisfy all of the hypotheses of Theorem 2.1. Let
i€ {u}s

€(u.,u,) and let yA(-,n) be the fixed point solution to equation (2.71). Then
"1

yA(-m) € 3'(1)(ER+,H§(’)I” 4R)) for every n as specified in Theorem 2.1.
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We begin our discussion by splitting equation (2.71) into the sum of the three terms

Fo 4Ga(,m)(t) = U4(t,0)Py4(0,n) (B.1)
t

Py AGa0m)(t) = IOdEUﬁ(t,f)s(f)Péﬁ(f,y{;(f,n)) (B.2)

Fo 4a(-m)(t) = - Ede{;(t,f)s(f)Qé A&y a(€m) (B.3)

according to the notation introduced in relations (2.61), (2.62) and (2.63). We first notice
that t — F. A(ya(-,7)(t) € 3'(1)(IR+,H2’p/(IR)) for j=0 and j=2.For j=0 this
hutvu "0’

is an immediate consequence of relation (2.19) and the fact that {W A /(t)}tER'*' is a
0

holomorphic semigroup. For j =2 we first invoke relation (2.45) to rewrite (B.3) as
t A
Fo A(yAC-,m)(t) = —exp || dns(n)g’(u(m))| x
’ 0

f A A
<[ agem |- [ amtnlg/ Ao |s(OQb ey (B4
t 0

The result then follows from the absolute convergence of the integral and the fact that

¢ \
exp [ am(n)e’ () |s(E)QRy(7p(6m) €

€ Ll((t,m),Hi(’)I,’ BN 8’([t,m),H§(’)13 AR)
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for every t € R. The remaining part of this appendix is therefore devoted to proving that
t— F, aGaC-m)t) € eU@YE2P(R)). We begin with the following
1,u\Mu )«0,

Lemma B.1. The functions {——’yﬁ(f,q) and £ — &ﬁ({,ya({,ﬂ)) are both locally
Holder continuous on R™.

Proof. In the first case it is sufficient to prove that t — F id (yA(-,m)(t) is locally
Holder continuous on R for each j because of relation (2.71) (Note that Fj, AyaCem)
is uniformly bounded in t for each j since F j,ﬁ(yﬁ( MEY A by construction).

Because of the remark preceding the statement of Lemma B.1, we already know that the
statement holds true for j=0 and j= 2. We complete the proof of the first part of the
Lemma in showing that t — Fl, A(yA(+,m))(t) is locally Holder continuous on RY. Fix
t, € R* arbitrarily and choose T € RY in such a way that t, € (0,T). Since

yA (+,n) € S’(!R'*',Hi(’)l” /(IR)) by construction it follows from relation (2.28) and the

2,p .
smoothness of g that & — BA(£,yA(£,7)) € U(IR+,H ) R)). Now write
ut>vu 0 /\O,I(

¢ \ ¢
Fy 40 = exp UO am(ng’ (A(m)] = J 4wy (-0ep(6) 9
according to relation (2.19), where we have defined
3 s oA A
p(6) = exp |- (g e)|spbptespien) (B

It follows from the remark immediately preceding (B.5) and from relation (B.6) that
ph € Lq((O,T),Hﬁ’p 4R)) for every q € (1,m) since
0 '
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o4O 2 SO0 EtCemgem)]y 2 € LYQTIEY)

Since {W A (t)}tE[R+ i8 holomorphic it then follows from the standard Holder estimates
v 4 0

t
of [5] that t -—»I déW, j(t—f)ga A (£) is Holder continuous on [0,T], and hence a
0

fortiori locally so around t,. This and relation (B.5) then imply that F, A(yA(-,n)) is
locally Holder continuous on RY. We conclude that the latter property holds true for
yA (+,n) because of relation (2.71). As for the second part of the lemma we first notice that

we have

gA(EYA(E,M) = go(B(&)+yA(£,m)-got(£)8’ o8 (£)yA(£:m) (B.7)

from relation (2.28). We next observe that each term in (B.7) is uniformly bounded in {

in the Hi P I(IR)-tOpology, and that the last two terms on the right—hand side are
0 ’

trivially locally Holder continuous on R because of the corresponding property for

£— ﬁ(f) and § —y 1»\l(f ,1n)- It thus remains to prove that the property holds true for
£— go(ﬁ(f)+yﬁ(£,n)). To this end, write momentarily 2(¢) = 4(&) + yA(£,7); upon
using the mean—value theorem and the Banach algebra properties of H%(’)E’ /(IR). as in the

proof of Proposition A.1 we get

goz(£)-goz(¢”)

1
XI ds
0

2(£)-2(¢)

< .
A0,2,p = "0:2:1) X (B 8)

g o (z(f’)+4(z(E)—Z('f’))||A0,2,P
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for every ¢,& €RT. Now fix ¢,6’ €R™ and define yA(£,£’) by the relation
u

2(&’ )+ (= £)-2(£)) = B(E+x4(6:€7) (B.9)

Clearly xﬁ(f,ﬁ V€ Hi P J’([R); it then follows from relation (2.41) of Proposition 2.2 and
01

from the triangle inequality that

' o(BOrxy(6e ||y 2 <81 ([Ix

'o8(0) 2, @0

N

But § — ﬁ({) and { — yﬁ({,q) are uniformly bounded in ¢ with respect to the

teey,

Hi ’13 _R)—topology so that there exist positive constants ¢, and c,; such that

x4(6:¢7) g’oﬁ(f)" Ag2:p < ¢;,- Combining this with the fact that

Ag2,p S C10 20 I

‘I’E 1) is nondecreasing in relation (B.10) and ingerting then the resulting estimate into
u

relation (B.8) we obtain

goegon(€ )|} 5 CeiglH 2163 (8.11)

for some Cq eRt and every £,€'€ RY. But from the first part of the proof and the
definition of 2z we infer that ¢ — z(§) is locally Holder continuous on R*. Then the
same property holds true for ¢ — goz(¢). | -

It is now easy to complete the

Proof of Proposition B.1. It remains to prove that
t—F; A(ya(-,m)t) € 8(1)(IR+,H§ ’p/(IR)). We first infer from relation (B.6), the fact
] 0
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that s is locally Holder continuous on IR+, the second statement of Lemma B.1 and the
boundedness of the functions involved that ¢ A is locally Holder continuous on RY. Since

{W A (t)}t €rt 82 holomorphic semigroup, we then conclude that the convolution
A 0

13
t -—»I d§W,  (t=£)pa(€) is continuously differentiable on R™. This and relation (B.5)
0 V4

then lead to the desired conclusion. -

Remark. Similar arguments can be used to prove the ¥ (1)—regu.larity of the solutions
¥, (-m) in Theorem 3.1.
0,1

Appendix C. On the Global Holder—Lipschitz Continuity of the Fixed Point

Solution to Equation (2.71).

While the result of the preceding section implies that yﬁ( -,n) is8 locally Lipschitz
continuous on IR+, we prove in this appendix that the fixed point solution to equation
(2.71) is in fact globally Hélder continuous on every interval of R located at a positive

distance of the origin. The precise result is the following

Proposition C.1. Let 8 and g satisfy all of the hypotheses of Theorem 2.1. Let
b€ {4} f’(HO’ul) and let yA(+,7) be the fixed point solution to equation (2.71) for some

n€ /(2ﬁ -1, N Ran P, where ﬁo and € are as in Theorem 2.1. Then yﬁ(-,n) is

0)
globally Holder continuous on every interval of the form [r,m), for every 7€ RY.

Proof. Again we write

2

TULED) F; A4 Cm)(t) (C.1)
=0
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for every t € IR+, where the F.i ﬁ(yﬁ("")),s are given by relations (B.1), (B.2) and
(B.3). Since

t A
Fo 4G40 M) = eprOdns(n)gf(u(ﬂ))] W, /(t)ﬂ (C.2)

and since {W A J(t)}tem-{l)- is a holomorphic semigroup, it is clear that FO, A(ya(-,m) is

globally Lipschitz continuous on every interval of the form [7,m) where 7 € RT. The
same conclusion holds true for F, A(yA(-,n)), since the time derivative of the second
factor on the right—hand side of (B.4) is uniformly bounded on R¥ and since

1 2, . .
Fz,ﬁ(yﬁ( 1) € ol )(IR+,HA01,) _R). It remains to prove that Fl’ﬁ(yﬁ( -,n)) is

globally Holder continuous on every interval of the form [r,m) for 7 € RY. It is then
t

sufficient to prove that t—s J AEW, (t=€)}(€) is globally Holder continuous on
0

R, since F, a(ya(: ,7)) can be written as in (B.5) and (B.6). To this end we first
observe that A € Lq([R"',Hi’p 4R)) for every q € (1,»), since
u 0’

ep(3, 2 <00 Ratergtem[§ op

< 0(1){¢(2)[

q
y(eny 2]} Jracem]32z, <

< 0(1)exp[22,q¢] € L'®T RT)
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for such q’s, upon using successively relations (B.6), (2.52), estimate (2.31), the
monotomnicity of #(2) and relation (2.43). Since {W A (t)}tEIR"' is a contraction
/ .

semigroup, we then note that all of the estimates of the proof of Theorem 4.3.1 of [5]
remain virtually unchanged. We conclude that the convolution
t
t — J d{W, (t—f)pﬁ (€) is globally Holder continuous on [R+, and hence on every
0 A

interval of the form [r,0) with 7 € RY. The conclusion then follows from relation (Cl).m

The result of Proposition C.1 was used in the proof of Corollary 2.1 to show that the
classical solutions constructed there satisfy condition (C1) of Definition 2.1 for some

9 € (0,1).

A much stronger result holds true if in addition 5 € Dom(A ,). In fact, in this case we

have the following

Proposition C.2. Let 8 and g satisfy all of the hypotheses of Theorem 2.1. In addition,

assume that s be globally Holder continuous on RY. Let & € {ﬁ}?ze(u u, )
01

neE A (ﬁ -1 _NRanP N Dom (A ,) andlet yA(-,n) be the corresponding fixed point

0)
solution to equation (2.71). Then y 1.\1( -,n) is globally Lipschitz continuous on RY.

Proof. Since yﬁ( -,n) € S’(l)(ﬂl'l',Hi’pl(R)) by Appendix B, it is sufficient to prove
0)

that the derivative of yﬁ( »,1) is uniformly bounded on RY. Since yﬁ( mEY 5., and
1

gince 4 is uniformly bounded in t, the function t — s(t)g’ (ﬁ(t))yﬁ (t,n) is bounded in
the Hi P /(IR)-—tOpology for every t € R™. The same statement holds true for
0 )

t— 5(t)g A(t,yA(t, 7)), since
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m RQ(O)[

|

S(t)ﬁa(t,ya(t’ﬂ))”)to,z,p < "“

st

yﬁ(t’ﬂ)""osznp] S

<

; g (©3)

upon using estimate (2.29) and relation (2.43). It then follows from equation (2.65) that
t —y,(t,n) is bounded if, and only if, t — A /yﬁ(t,n) is bounded. In order to prove
u

this last statement we first project equation (2.65) onto the subspaces Ran P and Ran Q.
We obtain

Py’ A(t,n) = (& _y+s(t)g’ (8(t))PyA(t,m)+s(t)PRA(L.yA(t,1)) (C4)

and

Qy’ A(tm) = s(t)g’ (1()QyA(t,m)+s()QE Aty At ) (C5)

since & ,Q=QA ,=0 on Hj’,p(IR). From relation (C.5) and the above remarks it
follows that t — Qy{(t,n) is bounded on RY. According to relation (C.4) it then
u

remains to prove that t — 4 Py (t,7) is bounded on R*. In order to accomplish this
we start once again from the integral equation (2.71) which we project onto Ran P. We

obtain

t
Pya(t,n) = UA(t,0)7 + jo dEUA(LE(EPEA(ETA(ET) (C.6)

since 7 € Ran P and since PQ = QP = 0. From relation (C.6), (B.2), (B.5) and the
standard arguments of [3] and [5], we then get
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t
b 4Py4(en) = exp [ am(nle’ (Ben)]a 4wy (0n+

1 1 et
+ eprodns(n)g’(ﬁ(ﬂ))_ J a6 ¥y (-0)lop(e-op) +

t
+epr0dm(n)s'(ﬁ(n))] UNJCIHORING (c.7)

Since n € Dom(A J) and since {W A l(t)}tGIR"' is a contraction semigroup we have
0

s s 0 0 o
" VAW PRSIl | I SPULIE] PIC R Ve PR 3

uniformly in t € R 5o that the first term of (C.7) is bounded on R*. The same
conclusion holds true for the third term of (C.7) since ¢4 is bounded on RY, by relations
(B.6), (2.29) and (2.43). It remains to prove that the second term of (C.7) is bounded on

IR+, which is equivalent to proving that

t |
t—;jodea M (=OT04(8) - of(0} = 001

on RY. In order to accomplish this, we first notice that pA is globally Holder continuous
on RY. To see that we simply reiterate the argument given in the proof of Proposition
(C.1) to conclude that since 7 € Dom(A .A’)’ yA (+,m) is globally Holder continuous on R
(and not merely on [r,m) for every 7 € IR+); it then follows that §{ — ﬁﬁ({,yﬁ({,q)) is
globally Hoélder continuous on R through relation (B.11). This immediately implies the
global Holder continuity of pA through relation (B.6) and the global Holder continuity of
8 . We conclude the argument by observing that pA = Pgaﬁ € Ran P, which gives
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1
| S8 Wy (=0{e(O-pp(0)} =

t
= [ ges Wy (-0PLoy(Opy(0} ()

Invoking then the second estimate (2.15) of Lemma 2.2 and the global Hélder continuity of

ph, we obtain after a simple change of variables the estimate
"Itd A (t=E{wa( ()} <
§ W t=E){wa(€)—pa(t “ S

t
<o) | deenlr, 16" (C9)

for some 7 € (0,1). But the last integral in (C.9) is 0(1) on RY. Hence
t— A ,PyA(t,7) remains bounded on R™ by relation (C.7). -

Remark. Similar results can be proved for the fixed point solutions Yy (+,m) of
0,1

Section 3.
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