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§1. Introduction

Let X be a smooth projective variety defined over a number field K. Let L be a
finite extension of K and denote by Z;(X;L) the free abelian group generated by
codimension j subvarieties of X which are defined over L. There is a cycle class
map _

Z;(X; L) ® Qe — Hy’ (X)(5) 9D,

A conjecture of Tate asserts that this map is surjective. It has been shown to hold
for many varieties. Let us denote by

Tae(X;L) = Hy (X)(5) YD
the space of Tate cycles on X defined over L and by

Tae(X) = UgTae(X; L)

the space of all Tate cycles on X. The aim of this paper is to describe all the Tate
cycles on the product of two Hilbert modular surfaces, however we are unable to
say if these Tate cycles come from algebraic cycles.

Let F be a real quadratic field and let § denote a Hilbert modular surface
corresponding to this field. Thus, § = Sk is a surface defined over @ which is
the smooth compactification of an open surface S° which satisfies

5°(C) = GQ\G(A) /Ko K
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where G = Rp/oGLosr, K is a compact open subgroup of G(Ay) and Ko =
K& Z where KZ is the connected component of the identity of a maximal compact
subgroup of GL2(F ® R),

K, = S0,(R) x SO2(R),
and Z is the center of GL,(F ® R).

Let F; and F; be two real quadratic fields and let S; and S; denote corresponding
Hilbert modular surfaces with respect to Ky and K3 (respectively). In this paper we
show that Tag(S; x S3) is spanned by Tag(S1) ® Ta.(S2) and certain codimension
2 cycles which we shall construct. Since Tate cycles on a Hilbert modular surface
are known to be algebraic ((HLR], [MR], [K]), the Tate conjecture for Sy x Sy is
therefore equivalent to proving the algebraicity of these cycles.

§2. Preliminaries on the tensor product of two dimensional representa-
tions

In this section we prove several results about the tensor product of two 2 di-
mensional representations. All the results proved are of a rather elementary nature
and are surely well-known but for lack of suitable reference, we have included all
the proofs. The results of this section are for abstract representations of a general

group.

Theorem 2.1. The tensor product of two 2 dimensional irreducible representations
is reducible only if either both the representations are dihedral, or they are a twist
of each other by a character.

The proof of this theorem will be completed in several steps which we break
in the following lemmas and propositions. Some of. these will be of independent
interest to us in later sections.

Lemma 2.2. Let my and my be two representations of a group into O(V,C) (or,
GO(V,C)) which become equivalent in GL(V,C). Then if m; (and therefore m3)
leaves tnvariant up to scaling a quadratic form unique up to scaling, my is equivalent

to woy in O(V,C) (or, GO(V,QC)).
Proof: We omit the totally straightforward proof.

Lemma 2.3. Let V be a 4-dimensional representation of a group G such that for a
choice of a quadratic form unique up to scalars, the representation of G lands inside
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GO(V). Then if V=2V, ® Vs, and also V = W1 @ W,, then there exists a character
x of G and i € {1,2} such that Vi 2 W; @ x and Vo & W, @ x~ ! for j # 1.

Proof: We have the exact sequence
0-C - GL(2,C) x GL(2,C) - GSO(4,C) - 0

which is obtained by taking the external tensor product of the standard 2 dimen-
sional representation of GL(2,C) with itself. It follows that if the representation of
G inside GSO(V, C) is written as V1 ® V2 and also as W, @ W, then these correspond
to two ways of lifting the representation of G into GSO(V,C) to GL(2,C)xGL(2,C).
Since the kernel of the mapping of GL(2,C) x GL(2,C) to GSO(V,C) is central,
the ambiguity in such a lifting is by a character into C*. By the previous lemma,
the representation V is well defined up to conjugacy inside GO(V,C), and that
concludes the proof of this lemma.

Remark. That the previous lemma is not true without some hypothesis is shown
by the following example. Let G = {1, +%,+j,+k} be the quaternion group of
order 8. It has a unique irreducible representation p of dimension 2. Then it is easy
to see that p®p = {1} ®{1® S}, where @ and S are any two distinct non-trivial
characters of G.

Lemma 2.4. Let o be en irreducible 2-dimensional representation of a group G. If
for a non-trivial character x of G, 0 &£ 0 @ x, then x is of order 2 and o is induced
from a character on the kernel of x.

Proof: Since det(c ® x) = det(o)x? = det(o), x? = 1. Let H be the kernel of x.
Let A € Homg(o,0 ®x) be a non-zero element. Since x? = 1, A? is an intertwining
operator from o to itself. After scaling A, we can therefore assume that A? = 1.
Since x # 1, A is not the identity map. (We think of A as an endomorphism of the
vector space underlying ¢.) This implies that the eigenspaces of A with eigenvalues
41 are non-zero, and invariant under H. The action of H on these define two

characters of H either of which induce to give the representation ¢ of G. '

Remark. The same proof as above can be used when dim{s) = 3 to prove that if
o =2 o ® x for a non-trivial character y, then y is of order 3, and ¢ is induced from
a character of a subgroup of index 3 defined by y.

Corollary 2.5. If the tensor product o; ® o2 of two 2-dimensional irreducible
representations of a group,G contains two characters then both o; and o3 are
induced from a subgroup H of G of index 2.
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Proof: Write 01 ® 02 = x1 ® x2 ® 7. By Schur’s lemma, x; # x2, and we have
o1 = 05 ®x1, and 01 = 0] ® x2 for distinct characters x; and x3. This implies that
o1 and o2 are dihedral.

Corollary 2.6. Sym?(c) is reducible if and only if ¢ is dihedral.

Proof : Since o0 ® ¢ = Sym?2(c) & A%(0), if Sym?(c) is reducible, ¢ ® o must
contain two characters of GG, and we are done by the previous corollary.

Lemma 2.7. Let GG be a group, N a subgroup of index 2, and H a subgroup of index
2 of N. Let o be a 2-dimensional irreducible representation of G which is a sum of
2 characters when restricted to H. Then the representation o of G is dihedral.

Proof :Before we begin the proof we note the following elementary fact which will
be used many times in the proof without explicit mention. The fact is that if we
have a character of a normal subgroup with cyclic quotient which is invariant under
the whole group, then the character extends to the group. Now, let o|g = x1 ® x2.

Case 1: H is normal in G. In this case all the conjugates of x; under the inner
conjugation action of G on H occurs in the restriction of ¢ to H. Therefore there
is an index 2 subgroup of G leaving x; stable. x1 will extend to a character of this
index 2 subgroup, and ¢ will be induced from such an extended character.

Case 2: H is not normal in G. In this case there is a unique subgroup H’ # H
in N of index 2 which is a conjugate of H under the action of G. Therefore H N H’
is a normal subgroup of G. Since H and H' are conjugate in G, o restricted to
H' is also the sum of two characters. If x; # x2 on H N H', then the eigenspaces
of H N H' corresponding to x; and x2 are unique lines on which the actions of
H and H' must extend, therefore N will also leave stable these two lines, and o
will be induced from the character of N on one of these two lines. If x; = x2 on
H N H', then G operates trivially on i restricted to H N H’. Let H” be the index
2 subgroup of N containing H N H' but distinct from H and H'. Then H" is a
normal subgroup of G of index 4 to which x; will extend to, and we are done as in
case 1.

Proposition 2.8. Let oy, and og be two 2-dimensional irreducible representations of
a group G. Then if o1 @04 is a sum of two 2-dimensional irreducible representations
then both o1 and oy are dihedral representations.

Proof: Suppose that 01 ® 09 = 11 & 79 with both 7 and 7 irreducible. Since
both o1 and o4 are two dimensional representations, o, and o5 preserve alternating
forms up to scaling on a two dimensional vector space. Taking the tensor product
of the alternating forms, we get a quadratic form on the vector space underlying
01 ® o2 which 0, ® o9 preserves up to scaling.
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Define the nullity of a quadratic space to be the dimension of the maximal sub-
space which is perpendicular to the whole space under the bilinear form. The
maximal null space is invariant under the similitude group. Since 73 and 7 are
irreducible representations, the nullity of the quadratic spaces underlying 7 and
7o must be either 0 or 2. If the nullity of the vector space underlying 7, is 2, i.c.,
the quadratic form on 7 is identically zcro, the bilinear form on 71 X 7 — k& must
be non-degenerate. This implies that as representations of G, 75 £ 1, ® x for a
character x of G. Therefore 7 7o = 71 @ [1® (det 71)~1x~1]. If 71 is not a dihedral
representation, then there is up to scaling a unique quadratic form on 7 @ 75 which
is left invariant up to scaling by G. This implies by Lemma 2.3 that one of oy or
o9 is reducible, contrary to our assumption. Therefore 7 and 7 must be dihedral.
This is also the case when both 71 and 73 are non-degenerate subspaces. Therefore
in all cases if 61 ® 09 = 71 @ 72 with both 7 and 7 irreducible, the representations
corresponding to 71 and 72 land inside GO(2). Since GSO(2) is of index 2 inside
GO(2), the representations 7 and 7, define subgroups H; and Hy of G of index 2.
However H, = H; as the representation o1 ® 02 = 71 @ 77 is inside GSO(4). Since
GSO(2) is abelian, we find from Corollary 2.5 combined with Lemma 2.7 that the
representations oq and o3 are dihedral.

This completes the proof of the theorem at the beginning of the section. We next
note the following lemma.

Lemma 2.9. For 2 dimensional trreducible non-dihedral representations o, and
oq of a group G, Sym2o; & Sym20y if and only if 01 & 09 ® x for a quadratic
character x of G.

Proof : Taking the determinant of Sym?co; and Sym?2ay, we have that deto} =
det o3. Now the vector space underlying Sym?o, has a quadratic form on it for
which the similitude factor is (det o1)2. Therefore from the isomorphism of Sym?2o;
with Sym2oq, (deto1)? = (detoz)?. Combining this with the carlier identity
(det 01)® = (detoz)®, we get that deto; = detoy. Therefore det o7 Sym20; =
det 05 ' Sym20y. Or, Ad(c1) = Ad(o;). Therefore o) = oy @ x for a character x of
G of order 2.

Remark 2.10. More generally, exactly the same argument as above yields that if
Sym?o, = Sym20y @ i for a character p of G, then o1 2 g9 ® x for a character y
of G with u = x2.

§3. Tensor Induction

From the work of many mathematicians culminating in the work of R.Taylor,
one knows that to a cohomological automorphic form 7 on GL(2) of a totally real
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number field k, there is a 2-dimensional £-adic representation o, of Gal(Q/k) with
the same L-function as 7. If the degree of k over Q is d, then the automorphic
representation 7 contributes a 2¢ dimensional f-adic representation of Gal(Q/Q)
to the dth cohomology of the corresponding Hilbert modular variety. The process
of going from a 2-dimensional representation of Gal(Q/k) to the 2%-dimensional
representation of Gal(Q/Q) is a general one which we review now.

Given any finite dimensional representation V of dimension n of a subgroup H
of any group G there is a representation of G denoted by M (V) of dimension n¢
which is called tensor induction or multiplicative induction. We will not recall the
definition of M (V) here but refer the rcader to [C-R]. However we note that if A is
a normal subgroup of G' then the representation M (V) of G when restricted to H
is the tensor product of the various conjugates of V' under the action of G/H. The
representation M (V) has the following properties.

(1) M(V1 ® Vo) = M (V1) @ M(Vs).
(2) M(V)* = M(V*)

(3) M(x) for a character x of H is the transfer of x to G, i.e., it is the composite
of x under the transfer map G/[G,G] - H/[H, H].

We also recall that the transfer map from the Weil group Wy to the subgroup
Wi is given by the inclusion of the idele group of k£ into that of K.

The tensor induction has the property that if H is a normal subgroup of G, then

M(V) = M(VY)
for the conjugation by any element g of G on any representation V of H.

Finally, for our purposes, if H is a subgroup of G of index 2 and V is a represen-
tation of G, then
M(V|g) =2 Sym*(V) @ wg,u A2V

where wg, g is the non-trivial character of G trivial on H.
§4. Cohomology of a Hilbert modular surface

Let S be a Hilbert modular surface associated to a real quadratic field F. We
have the decomposition

Hy(S) = ITH{(S) ® H7(S%)

where S is the Baily-Borel compactification of S°, TH denotes intersection coho-
mology and S* denotes the divisor at the cusps such that S = §°US%°. The action
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of the Hecke algebra induces a decomposition of Gal(Q/Q) modules
IH}(S) = ®H(r).

The automorphic representations m of GL(2) over F' which appear in the above
decomposition have the component at infinity 7 to be the lowest discrete series of
PGL(2, F ® R); in particular, the central character at infinity of such = is trivial.

For representations m as above, there is a representation o, of Gal(Q/F) of
dimension 2 with the property that

L(oy,s) = L(m, s)

where the L function on the right is the standard L-function associated to w. Au-
tomorphic representations « for which there exists a GGalois representation o, with
the above equality of L-functions are called automorphic representations with asso-
ciated Galois representations.

We have HZ(m) = M(o,) as Gal(Q/Q) representations where M(o,) is the 4
dimensional representation of Gal(Q/Q) obtained from the representation o, of
Gai(@/F) by the process of tensor induction of last section. In particular, the

representation HZ(w) restricted to Gal(Q/F) is o, ® o where 7 is the non-trivial
element of the Galois group of F' over Q operating by conjugation on o,.

The work of Harder, Langlands, Rapoport describes the Tate classes in the 2nd
cohomology of a Hilbert modular surface. We review some of their work here. We
begin with the following curious lemma.

Lemma 4.1. Suppose that w is a cuspidal, non-CM automorphic representation of
GL(2) over a number field K which has associated to it a Galois representation.
Suppose K 1s a quadratic extension k with 7 as the Galots automorphism of K over

k. If 77 &2 7 ® x for a Grissencharacter x¥ of K, then x is trivial when restricted
to the ideles of k.

Proof : Let o be the two dimensional representation of the Galois group Gal{(Q/K)
of K associated to the automorphic representation m of GL(2) of K, and let M(o,)
be the 4-dimensional representation of the Galois group Gal(Q/k) of k which is
obtained from o, by the process of tensor induction from Gal(Q/K) to Gal(Q/k).
The restriction of M (o) to Gal(Q/K) is isomorphic to o, @ a%. Therefore since o,
is irreducible and is non-CM, o, ® o contains atmost 1 one-dimensional represen-
tation of Gal(Q/K). Therefore under the condition ¢7 & o, ® x, M(0,) contains
exactly 1 one-dimensional character of Gal(Q/k). So, M(0,) = A & 1, where A
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is a 3 dimensional irreducible representation of Gal(Q/k) and g is a character of
Gal(Q/k). Now we have the isomorphisms

M(Uvr) = M(U;) = M(or ® x) g]."4—(091')@)(‘.7;;'

This implies that
ADp= (A0 pn) ®xls,-

Comparing the 1-dimensional components, we find that x restricted to the idele
class group of £ is trivial.

Lemma 4.2, Let my and w2 be two cuspidal representations of GL{2) over a number
field k which have associated Galois representations. If w1 and my are both non-CM
and are twists of each other by a Grossencharacter over an extension of k, then m;
and mo are twists of each other over k itself.

Proof : Let o, and o, be the two dimensional representations of Gal(Q/k)
associated to m, and my respectively. Since m; are non-CM, o, remain irreducible
and non-dihedral over any number field by the method of Ribet, cf [HLR]. Since
o, and o,, are twists of each other over an extension which we can assume to
be Galois over k, we find that or, ® o, contains a 1-dimensional representation
when restricted to a normal extension of k. However, by the non-CM hypothesis and
Corollary 2.5, o5, ®c;, cannot contain more than one 1-dimensional representation.
This implies that the corresponding vector in oy, ® o, must be invariant under

Gal(Q/k), i.e., o, and o, are twists of each other over .

Remark 4.3. Since the proofs of Lemma 4.1 and 4.2 use existence of Galois rep-
resentations, we are able to prove the above lemmas only for such automorphic
representations (though the statement of the lemmas makes sense more generally).
Indeed a very recent preprint of E. Lapid and J. Rogawski [L-R], received by the
authors after this paper was written, uses trace formula to prove Lemma 4.1 in
general. Since we use only cohomological automorphic representations, Lemmas
4.1 and 4.2 suffice for our purposes. We have abused notation to use x for both a
Grossencharacter and the associated {-adic representation. Such an abuse of nota-
tion is done at many other places in the paper.

Proposition 4.4. Suppose that m is a cuspidal, non-CM automorphic represen-
tation of GL(2) over a real quadratic field F' which has associated to it a Galois
representation. Then, for a number field k, the representation M (o) of Gal(Q/Q)
contains a vector on which Gal(Q/k) acts trivially if and only if there exists a
representation o of GL(2) over Q such that

m = BC(’JT()) & X
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with wr, - Wr/g - X|lgr = 1 on the image of the ideles of k inside the ideles of Q
under the normn mapping, and where wy, is the central character of my, wpg 1s the
character of the ideles of Q associated by class field theory to the quadratic estension
F.

Proof : If M(o,) has a vector on which Gal(Q/k) acts trivially, then in particular
or ® o has a vector on which Gal(Q/kF) acts trivially. This implies that the
representations o, and o7 are twists of each other over £F', and therefore by Lemma
4.2 over F'. This implies that

Or =20, R

for some Grossencharacter @ of Gal{(Q/F) which is trivial on the ideles of Q by
Lemma 4.1. Therefore & can be written as o = x" /x. So,

(or®x ) Zor@x .

Therefore o, ®x~! can be written as a base change, i.e., there exists 7y automorphic
on GL(2) over Q without CM with o, ® X! = 0|, or 7 = BC(70) ® ¥.

Therefore,
Mo,) = M(Jﬂ'o‘Gal(@/F)) ® XlJQ'

So,
M(or) = (Sym®or, ® wr, - Wr/Q) © Xl Jo-

It follows that M (o, ) contains a vector on which Gal(Q/k) operates trivially if and
only if wr, - wr/g - Xlsg = 1 on the image of the ideles of k inside the ideles of Q
under the norm mapping.

Remark 4.5. The f-adic character « of Gal(Q/F) which appears in the above
proof (and also in the proof of Lemma 4.2) has been identified to a Grossencharacter
of F. This seems to need some argument as not all Z-adic characters come from
Grossencharacters. Since both the f-adic representations o, and ¢ come from
cohomology of algebraic varieties, so does the character a of Gal(Q/K) with o7 =
or ® . Now, it can be shown [cf. B1] that f-adic characters which appear in
cohomology of algebraic varieties come from Grossencharacters. We note that two
cuspidal automorphic representations of GL(n),n > 3 with the same adjoint L-
function (of degree n?) are not necessarily twists of each other by a Gréssencharacter
because of examples of Blasius in [B2}.

Question 4.6. Suppose that m; and 7, are two cuspidal automorphic represen-
tations of GL(n) with associated Galois representations o; and o3. Suppose that
there is an Z-adic character x of the Galois group such that 61 = g9 - x. Then is x
associated to a Grossencharacter?
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The next theorem due to Harder, Langlands and Rapaport, and which is a con-
sequence of Proposition 4.4, gives a complete parametrization of Tate classes on a
Hilbert Modular surface coming from non-CM automorphic forms.

Theorem 4.7. Suppose that 7 is a cuspidal non-CM automorphic representation
of GL(2) over a real quadratic field F'. Assume that m contributes to the 2nd coho-
mology of the corresponding Hilbert modular surface. Then this contribution of 7
to the 2nd cohomology of the Hilbert modular surface contains a Tate class if and
only if 1 & BC(m) ® x for an automorphic representation my of GL(2) over Q,
and a Grossencharacter x of F such that wxy - wp/q - X|Jq - ™' s of finite order (v
is the norm character on the ideles). This finite order character defines an abelian
extension of Q which is the field of definition of the corresponding Tate class.

§5. Tate classes on the product in the non-CM case

Since the first cohomology of a Hilbert modular surface vanishes, we need only
consider the Tate cycles which are contained in H;(S; X S2). Moreover, the essential
component of this is

H(81) ® H{ (S3).

Decomposing this Gal(Q/Q)-module according to the action of the Hecke algebra,
we are reduced to considering

Hi(m) ® Hi(m2)
for certain cuspidal automorphic forms m; on GL(2, F}).
Theorem 5.1. Assume that my and 7wy are cuspidal, non-CM automorphic forms
on GL(2) over Fy and Fy respectively. Then HE (m)® H}(m2) has a Tate class over

a number field k which does not come as a product of Tate classes from individual
factors if and only if either

(i) F\ = F,, and ) and wy are lwists of each other, say my = w2 ® x with the
property that

(waX)lJQ @ v?

18 a finite order character of the idele class group of Q which is trivial on the image
of Jx inside Jo under the norm mapping;

or,

(1) w1 and w3 are up to twist by characters base change from Q to Fy and Fy
respectively of the same cuspidal representation on Q, say

™ = BC(H) & 11
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7y & BC(IT*) ® vy,

for a cuspidal representation I1 on GL(2) over Q, and Grissencharacters 1, and i,
of Fy and Iy respectively, with the property that

(v1v2)|s ® v72

18 a finite order character of the idele class group of Q which is trivial on the image
of Ji inside Jo under the norm mapping.

Proof : Assume that there is a Tate class in H?(m) ® H2(n2) defined over k; then
in particular, H}(m1) ® H#(m3) has a one-dimensional subspace invariant under
Gal(Q/kFLF,). By hypothesis 7; arc non-CM and therefore o, remain irreducible,
non-dihedral over any number field. Let 6; be an clement of Gal(Q/Q) which
restricts to the non-trivial automorphism of Fy, and if Fy # Fy, it restricts to
the trivial automorphism of Fs; define 82 similarly. From section 2 we know that
on, ®0% restricted to kFy F; is either irreducible, or is the sum of a onc dimensional
representation and an irreducible 3 dimensional representation. If o, ®agj contains
a 1 dimensional representation when restricted to kFyFy, it follows from Lemma
4.2 that af,: = o, ® xi over F; for certain characters x; of Fi. By Lemnma 4.1, x;
are trivial on the ideles of @, and therefore n; = BC(II;) ® p;. Here BC is base
change to F for my, and base change to Fy for my.

On the other hand if o, ® of,*‘l_ is irreducible for 4 = 1,2, then under the hy-

pothesis that H7(m) ® H?(m2) has a Tate cycle over k, we have the isomorphism
of Gal(Q/kF1 Fy) modules

O, ® T X (0, @ 022 ) @ V2,
Here v is the norm character of the ideles of @ which comes up because a Tate cycle
in dimension 2n carries a twisting by the n-th power of the cyclotomic character.
By Lemmas 2.3 and 4.2, we assume without loss of generality that there is an
isomorphism of Gal(Q/FyF3)-modules

On, 20, @ X

for some Grossencharacter x of FyFy.

Assume that F} # F,. Since #; operates trivially on Fs, it operates trivially
on the representation o, restricted to Gal(Q/F,Fz). Therefore applying 0; to the
isomorphism oy, = 0., ® X, we find that oy, and o' are twists of each other
when restricted to Fy Fy, and therefore o,, and orf,‘l are twists of each other over F)
contradicting the irreducibility of o, ® o&:.
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It follows that if H?(m) ® H2(m3) has a Tate cycle over a number field & and
either Fy # Fy, or if F; = F3, w1 and my are not twists of each other, then there are
automorphic forms ITy and I, for GL(2) over @, and Grossencharacters pq and o
of Fy and Fj, respectively, such that

m = BC(I1) ® 11

T & BC(Hg) ® pg.

Hi(m) = M(ox,) = (Sym®on, ® deton, - wr,jq) ® i1l

Hi(ma) = M(ox,) 2 (SymPon, ® deton, - wr, jg) ® f2|Jq-
Therefore, H}(m) ® H}(w2) contains a Tate cycle over k which is not a product
of Tate cycles on individual factors if there is an isomorphism of Gal(Q/k) modules

t1 ® ._C;’jr,r:rn,zo'n1 = (o ® Symzanz)* ® V2.

From remark 2.10, if the symmetric squares of two non-dihedral representations
differ by a character, then the representations themselves differ by a character. So,
we can assume that there is cusp form IT on GL(2) of Q, and Grossencharacters vy
and v, of Fy and F3 respectively, such that

™ = BC(H) ® 131

7 & BC(IT*) @ vs.

Now the condition above for the existence of a Tate class in HZ(m1) ® HZ(m2) over
k translates into the condition that the character

(r1v2)sq ® V™2

of the idele class group of Q is trivial on the image of Ji in Jg under the norm
mapping.

Finally, if F; = F,, and m = 73 ® x, then
M(Jﬂl) @ M(o-ffz) = M(X * W, d X Sym20W2)'
This contains a Tate class if and only if the character (wx, - X)|so ® ¥~2 of the idele

class group of Q is trivial on the image of Jy, in Jg under the norm mapping, proving
the theorem.
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Corollary 5.2. All the Tate cycles arising out of non-CM forms on a product of
two Hilbert modular surfaces are defined over abelian extensions of Q.

The Tate cycles constructed in case (ii) of the previous theorem will be called
special Tate cycles, and as mentioned in the introduction, we have not been able to
find algebraic cycles corresponding to them.

Definition 5.3. Let IT be a cusp form on GL(2) over Q, jiq, j1o Grossencharacters
on Fy, and F; respectively, and m; = BC(II) ® 4, and 7 = BC(IT*) ® ua be cusp
forms on GL(2) over Fy and F; respectively. Assume that (p1p2)|sqr~? is a finite
order character. Then in H?(m1) ® HZ (m2) there is a Tate cycle, called special Tate
Cycle. 1t is defined over an abelian extension of @ corresponding to this finite order
character.

Remark 5.4. Assume that the cuspidal automorphic representations m; of GL(2)
over F; are base change of cuspidal automorphic representations II; on GL(2) over
@. The special classes occur in

H(m) @ H*(mp) ~ H(I1;)%% ® H(I1,)®?

where II; and II; contribute to the cohomology of Abelian varieties A; and A,
(say). These Abelian varieties belong to a family for which one knows that all
Tate cycles are algebraic. Indeed, A; has multiplication by a field F; satisfying
dim A; = [E; : Q. In [M1] it was proved that for such Abelian varieties which do
not have complex multiplication, the ring of Tate cycles is algebraic and generated
by the classes of divisors. If A; has complex multiplication, by a result of Shimura,
it is isogenous over Q to a power of an elliptic curve. It is easy to show that if
one of the A; has complex multiplication, then so does the other. Hence, over @,
A; x Aj is isogenous to a product of elliptic curves. It is well-known that for such
an Abelian variety, all Tate cycles are algebraic. (See [M2], for a proof.) Therefore
if the isomorphism H?(m;) ~ H'(I1;)®? is induced from an algebraic cycle, the Tate
cycles that we construct will be algebraic.

Remark 5.5. Our construction of special cycles is very general and seems to be yet
another example of a modular construction of Tate cycles which has no apparent
geometric realization. An example of a modular construction (unrelated to ours)
which has been proved algebraic can be found in [EG].

§6. Tate classes in the CM-case

Suppose that m; is of CM-type. Then over a sufficiently large field, HZ(m;)
decomposes as a sum of four one-dimensional representations. From this it is easy
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to see that if there is a Tate class in H}(m) ® H?(m) which is not the product of
Tate classes on individual factors, then 7o must also be a CM form.

Hence we assume in this section that my and my are CM cuspidal automorphic
representations on GL(2) over Fy and F3 respectively. Let us write m; = Ind(¢;)
for Grossencharacters 1; of an imaginary quadratic extension M; of F;. We denote
by Ve(4;) the £-adic representation of Gal(Q/M;) associated to ;. The f-adic
representation o, is equal to Indf;‘_ Ve(4:), and thercfore the restriction of o, to M;
is Ve(1;) ® Vo (1;) where 9; is the complex conjugate of 1;. If §; denotes an clement
of Gal(Q/Q) which is non-trivial when restricted to Fj, then afr: is induced from
a Grossencharacter 9 on M! (M] = 6;(M;)) obtained from the Grossencharacter
¥; on M; by “transport de structure”. Over the field My = MM, we have the
decomposition

H(my) = (Ve(ih1) © Ve(ih1)) @ (Ve(¥)) @ Va(91)),
~ Ve(r9}) @ Ve(19) @ Ve(¥1p)) @ Va(vr9)).

We note that the restriction of a Grossencharacter to a field extension corresponds
to composition with the norm mapping. So, in the above decomposition over Mj,
we have abused notation to denote vy, ], for instance, for the Grdssencharacter on
M 1 which is the product of two Grossencharacters on M1 which are obtained from
11 on My and ¥ on M] via composition with the norm mapping.

For a number field F with normal closure F, set G = Gal(F/Q) and H =
Gal(F/F). We note that the infinity type of a Grossencharacter on F' is the same
as an integer valued function on G/H (as G/H can be identified to the set of
embeddings of F' into C). The advantage of this notation for us is that the infinity
type of a Grossencharacter ¢ on F' thought of as a function on G/H when thought
of as a function on G gives the infinity type of the Gréssencharacter on F obtained
from 1 by composing with the norm mapping from F to F. We also recall that if a
Grossencharacter x of a CM extension K of a totally real field F' contributes to the
cohomology of the corresponding Hilbert modular varicty, then the infinity type of
x is a set of embeddings of K in C whose restriction to F' is precisely the set of
embeddings of F' into C. .

We will use the following lemma several times in the proof of the next proposition.

Lemma 6.1.

(1) Let fi, f2 be two functions on a group G right invariant under subgroups
Hy,Hy of G. If the function fi1 + fo on G is invariant under the right
action of the subgroup H generated by Hy and Hy inside G, then fi and fy
are also invariant under the right action of H.
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(2) Let fy, fa, f3 be three functions on a group G right invariant under subgroups
H,, Hy, Hy of G. Assume that fi + fo = f3. If the inner conjugation action
of Hy leaves Hy and Hjy invariant, and if Hy is a finite group which is
contained in the subgroup generated by Ho and Hj, then fu is invariant
under the subgroup generated by Hy and H,.

Proof : We only prove part (2) as part (1) is rather trivial. We have for any g € G,
and h € H,

f1g) + f2(9) = f3(g),

filgh) + f2(gh) = fa(gh).
Therefore for any g € G and h € H; we have,

fz(g) — fa(gh) = fa(g) — falgh).

Since H; leaves Hy and Hj invariant under the inner conjugation action, this implies
that the function fa(g) — f2(gh) is invariant under H, and Hj, and therefore under
H,. Since H, is a finite group, this implies that this function must be identically
zero, 1.¢., fa(g) is invariant under H.

Proposition 6.2. If H}(m)®HZ(m2) supports a Tate class which does not come as
the tensor product of Tate classes on individual factors, then the M; are biquadratic
extensions of Q with My N My = M, a quadratic imaginary estension of Q. More-
over, the infinity type of the Grissencharacters ¥y and v are invariant under the
Galois automorphism of My over M and of My over M.

Proof : The field M; is either Galois over Q, or its normal closure M; is of degree
8 over Q with Galois group the dihedral group Dg = {z* = 1,9% = = Lyzy~ =

71}, We know that H2(m;) is a sum of 4 Grossencharacters on M;. There-
fore HZ(m) ® H}(ms) is a sum of 16 Grdssencharacters on MiM,. If this is to
contain a Tate cycle, then the product of a Grossencharacter x; appearing in
HZ(m) and a Grossencharacter xo appearing in H7(m;) must have the constant
infinity type on M M,. By Lemma 6.1(1) applied to G = Gal(M,M;/Q), H; =
Gal(MlMg/Ml) Hy, = Gal(MlMg/Mg) f1 the infinity type x1, fo the infinity type
of x2, we find that the infinity type of the Grdssencharacter x; is invariant under
Gal(M;/M) N My). If My N M, = @, then x; and x themselve correspond to
Tate classes, and we need not consider this case. If My N My # Q, we will need to
consider several cases depending on this intersection. The Grossencharacter y; is
itself the product of two characters t; and v} (or, 1, and ¥} etc.). We will apply
Lemma 6.1(2) to this situation to deduce some properties of 1; and 3, which will
complete the proof. We will prove the proposition assuming Fy # F».
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If MyN M, = M, a quadratic extension of @, then if M; = Ml, and M, = Mg,
both M; and M, are biquadratic extensions M, = Fi1 M, and M, = FyM, and since
M; are CM extensions of F;, M is a quadratic imaginary field. By Lemma 6.1(1),
the infinity type of the Grossencharacters y; on M; and x» on M, are the pull back
of the infinity type of Grossencharacters on M. From this it is easy to see that the
infinity type.of the Grossencharacters ¥, and 1, are pull back of Grossencharacters
on M.

If M, # M, and MiNM, = M a quadratic extension of Q, let M be the image of
M, under an element of Gal(Q/Q) such that M! # M. Let o (resp. 7) be the non-
trivial element of Gal(M,/Q) stabilising M (resp. M}). We claim that o does not
act trivially on M, because otherwise 7 which is a conjugate of o will also act trivially
on M. This would imply that M is contained in Fy which is not possible. By Lemma
6.1(2) applied to G = Gal(M,/Q), Hy =< ¢ >, Hy =< 7 >, Hy = Gal(M, /M), and
f1 = infinity type of 31, fo = infinity type of ¥}, f3 = infinity type of x;, we find
that the infinity type of 91 is the pull back of an infinity type from F;. Such infinity
types do not correspond to cohomological representations.

If MiNM, = M is of degree 4 over Q, then neither M; nor M, is Galois over @,
and M must be the biquadratic field ;1 F,. An application of Lemina 6.1(1) implies
that the infinity type of the Grossencharacter y; on M, is pullback from an infinity
type on M. Application now of Lemma 6.1(2) to G = Gal(M:/Q),H, =< ¢ >
,Hy =< 1 >, Hy = Gal(My/M), and the same functions as in the last paragraph,
implies that the infinity type of the Grossencharacter ¢, restricted to AZfl, and
therefore the infinity type of 4, is pull back from F;. Again this is not allowed as
we are considering cohomological representations only. This completes the proof of
the proposition.

Since any two Grassencharacters with the same infinity type differ by a finite
order character, and since we can construct a Grossencharacter of a number field
with a given infinity type (with obvious constraints arising out of Dirichlet Unit
theorem), the previous proposition implies the following theorem.

Theorem 6.3. If 71 and w2 are CM forms on GL(2) over Fy and Fy respectively
such that H}(m1)® H}(wy) contains a Tate cycle which does not come as the product
of Tate cycles from individual factors, then m and w9 come from Griossencharacters
Y1 and Py on bigquadratic fields My = M Fy) and My = M F, where M is an imag-
inary quadratic extension of Q. Moreover the Grissencharacters v, and 1), are
obtained up to finite order characters on the idele class group of M| and My re-
spectively, from Grissencharacters ¢y and ¢o of M via the norm mapping, where
¢$1 corresponds to an embedding of M into C, and ¢y also corresponds to an em-
bedding of M into C. Conwversely, such a construction gives rise to a Tate cycle.
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The dimension of the Tate cycles in H}(m) ® H}(m2) is 6 of which a 4 dimensional
subspace is spanned by the tensor product of Tate cycles on individual factors.

Remark 6.4. The automorphic form m (resp. w2) of GL(2) over Fy (resp. F»)
in the above theorem is not in general the base change of an automorphic form on
GL(2) over Q even after twisting by a Gréssencharacter on Fy (resp. F3) unlike in
the non-CM case earlier. The Tate cycles in this theorem are not in general defined
over abelian extensions of @@ again unlike the non-CM case.
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