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Resurne. A few examples of simply connected complex projective

threefolds with trivial canonical bundle (that is, Calabi-Yau

manifolds) are constructed, which are elliptic fibrations over

certain rational surfaces. They are obtained as embedded bundles of

cubic curves in lP
2

or their degenerations admitting aresolution of

singularities with trivial canonical bundle. Two examples with the

Euler characteristic zero and h
ll

=ll and 18 are obtained.
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A few thousand examples of Calabi-Yau manifolds are known at

present. They are mostly obtained by simple projective

constructions, such as taking complete intersections in products of

weighted projective spaces, or ramified coverings of Fano

threefolds, and so on. There is also aseries of examples which can

be represented as families of cubic curves given by the Weierstrass

,normal ..equation

o
b E H (S, O( - 6K

S
))' where S is a rational surface, K

S
the

canonical divisor on S, and it is supposed that 0S( - 4K
S

) and

0S( - 6K
S

) have sufficiently many sections to provide a non-singular

family (see, e.g., [1], or [2] for K3 surfaces with elliptic

pencilL By Miranda's criterion of smoothness of the elliptic

fibration [3] and the Bertini theorem [4], it is sufficient that the

linear systems 1-4K
S

land 1-6K
S

I have no common base points. So, one

can easily see that over any DeI Pezzo surface, and over the

Hirzebruch surface f
2

there always exists a smooth elliptic

fibration in the Weierstrass normal form which is a Calabi-Yau

2
manifold. The case of S =. lP was studied in detail by A.Albano [5];

for the corresponding elliptic Calabi-Yau manifold we have the

following invariants: x(X) = - 540, h
ll = 4 , h

21 = 274. The

computation of Hodge numbers is not as easy as for other

constructions mentioned above, because the elliptic threefold X is

not an ample divisor in the corresponding projective bundle (that is

We are going to provide a few more examples of elliptic

Calabi-Yau manifolds over certain rarional surfaces using more
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general families of elliptic curves as weIl as their degenerations

and crepant (= retaining the triviality of the canonical bundle)

resolutions of singularities.

1. Definitions and basic constructions

1.1. Definition. A Calabi -Yau manifold (CYM) is a simply

connected complex projective threefold X with KX=O.

1.2. Definition. An elliptic Calabi-Yau manifold (ECYM) is a

flat projective morphism f: V ~ S, such that: (i) S is a

manifold, .M any line bundle on S,

and

non-singular projective surface; (ii) V is a CYM.

By adjunction formula, a generic fiber of an ECYM is an

elliptic curve.

1.3. Weierstrass normal form (WNF). Let S be a projective

o -4 0-6
a E H (S,.M ), b E H (S,.M ).

Let lP = lP(g) be the projectivization of the split vector bundle g =

:t = 0lP/S(l) the tautological Grothendieck line

bundle. For any line bundle N on Sand the bundle map N C---7 g there

is a natural homomorphism of sheaves - 2Tl N ~ !l, where Tl : lP --7 lP

is the natural projection. The latter homomorphism defines a section

of Tl-N-1®:t. Thus, for the natural inclusions of direct summands 0,

2 3 - -2 --3.M ,.M into g we obtain three sections of :t, !l®Tl .M , :t®Tl.M , which

expression

will be denoted by

s = y 2
Z

Z, X, Y respectively. In this notation, the

X
3

- aXZ
2

- bZ
3

defines a section of the line

bundle 3 - -6!l ®Tl.M .

1.4. Definition. When we say that V is defined by the equation
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0.1)

in the WNF, this means that V is the scheme of zeros in lP of the

section s E HO(lP, f 3
®Tl-M-6 ) ([6], 9.7.9.1):

1.5.Proposition. Adopt the notation Of 1.3, 1.4. Then we have:

(i) The. Grothendieck dualizing sheaf Wv is trivial if and only

if M ~ Ws = 0S(K
S

)' the canonical sheaf of S.

(ii) V is a smooth manifold for generic a and b, if the base

loci of linear systems I M-
4

1 and IM-6
1 have no common points. In

this case f = Tli V is flat, and all the fibers of f are reduced

irreducible cubic curves in lP
2

. We have:

----I a cuspidal cubic,. if a(P) = b(P) = 0
f-1(p) a nodal cubic, if Li(P) = 0, a(P);j; 0

a non-singular cubic, if Li(P) ;j; 0

where Li = 4a
3

+ 27b
2

is the discriminant.

Proof. (i) is proved by standard adjunction technique and in

using the Euler exact sequence for projectivized vector bundles.

See, e.g. [5]. (ii) easily follows from Proposition (2.1) of [3] and

the Bertini theorem [4].

1.6. Corollary. The equation (1.1) with generic a,b and 'M ~. Ws

defines an ECYM over every surface S from the following list: lP
2

;

lP
1
xlP

1
; Hirzebruch surfaces IFd. for d = 1, 2; DeI Pezzo surfaces

Sd(d = 1, ... ,7) obtained from lP
2

by blowing up k = 9 - d points

satisfying certain conditions of generic position. The Euler number

of these ECYM's is given in Table 1.
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T9-ble 1

S [p2 [p1 x[p1 lF
l

lF
2 SI S2 S3 S4 S5 S6 S7

A:(V) -540 -480 -480 -480 -60 -120 -180 -240 -300 -360 -420

Proof. For generic a.b the discriminant curve C = {~=O} in S

has ordinary cusps at points of intersection of the curves Cl =

{a=O} and C
2

={b=0}. and no other singularities. So. we have the

picture plotted on Fig. 1. Hence. by additivity of A:.

A:(V) = A:(S,\C)A:(E) + A:(C,\{C
1
()C

2
})A:(nodal cubic) +

#{C
1
()C

2
}· A:(cuspidal cubic) = - 60K

S
2

1.7. Generalization of the WNF construction. Let f% = 0 e
[p2

o (-mJeO (-n) (O~m~n). [p=[p(f%). and !i. 1[ be as above. Choose fiber
[p2 [p2

homogeneous coordinates X. Y. Z on [p as canonical sections of !i•

•!i@1[ 0 (n) corresponding to the embeddings of line
[p2

summands of f% into itseif. Then we define:

s = i j k 0 3L a ..kX Y ZEH ([P. !i ®O (m+n+3».
~ . [p2i+j+k=3

i.j.k~O

where o •a ..
k

E H ([P. 1[ 0 ((i-1)n+(j-1)(n-m)+3».
~ [p2

1.8. Proposition. The scheme V of zeros of the section s is a

smooth ECYM for generic coefficients

(m.n) occurs in the following list:

a ..
k

if and only if the pair
IJ

(2.3). (2.5). (3.3). (3.6). (4.7). (5.8). (6.9).

In this case A:(V) = -162-6(m2-mn+n2 ).

Proof. By the Bertini theorem. singularities may occur only in
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3 •the base locus of the linear system M = l!i ®1l 0 (m+n+3) I. Since the
lP

2

lineartheirinmovecoefficientsnon-zerotheofdivisors a
ijk

systems without base points, the base locus of M projects to the

whole of lP2 via 1l. So, it must be the union of some "coordinate

axes" X=O, Y=O, Z=O, or their intersections (which are

cross-sections of 1l over lP
2

).

Denote d ..
k

= (i-l)n+(j-l)(n-m)+3, where (ijk) is the exponent
IJ

of a monomial Xiyjzk. We have d..k?;O for the monomials X3 , X2Y, X
2

Z,
IJ

Xy2, XYZ independently of the values of m,n. So, these monomials

always occur in a generic s with a non-zero coefficient. They all

are divisible by X, and thence, for the generic fiber of 1l to be

irreducible, we should impose the condition that d ..k?;O for at least
IJ

one monomial non-divisible by X. As d030?;d02l?;dOl2?;d003' the

. weakest condition of such kind is d
030

?;0.

If this condition is satisfied, then the monomials X
3

and y3

have non-zero c'oefficients, and for the generic fiber to be

non-singular, at least one of the monomials Z3, XZ2, YZ2 must have a

non-zero coefficient.

3
If Z does, then M is base point free, and hence the generic V

is non-singular. This happens when d003=-2n+m+3?;O (as d030?;d003' the

inequality d
030

?;0 is automatically satisfied), that is when the pair

(m,n) is an element of the set

2
TI

l
= { (m,n) E 71. 1 O~m~n, -2n+m+3?;O} .

If XZ2 has a non-zero coefficient, then we have d
l02

=m-n+3?;O,

and d
030

=n-2m+3?;0 (the latter inequality guarantees the existence of

a monomial non-divisible by X with a non-zero coefficientL Under

these conditions, the generic fiber of 1l is non-singular, but the
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non-singularity of V at the points of the base locus {X=Y=O} is to

be verified.

The equations defining the singular locus of V are

8s = 0 (i = 0, 1, 2), 8s 8s 8s 0,-- - = =
8u. 8X 8Y 8Z

1

(1.2)

where (u
O

' u
1
' u

2
) are homogeneous coordinates on the 1P

2
which is

the image of TL Taking into account that singular points may occur

only in the cross-section X=Y=O, we see, that (1.2) is equivalent to

So, for V to be non-singular, one of the two coefficients a
102

or

a
012

must be nowhere vanishing, that is a constant section of the

trivial line bundle over 1P
2

. Denote

2TI
2

= {(m,n) E 7l. I O~m~n, n-2m+3~0, n-m+3=0}

'and

2
TI

3
= {(m,n) E 7l. I O~m~n, d

OI2
=-n+3=0}

We have shown, that the non-singularity of the generic V holds only

when (m,n) E TI! uTI
2

uTI
3

. This is exactly the set listed in the

statement of the Proposition.

The formula for X is proved via Gauss - Bonnet Theorem xCV) =

1.9. Remark. For ECYM's of Proposition 1.8, we have

-540~X~-162, where -540 is attained by the WNF, and -162 by the

'hypersürface of bidegree (3,3)iIi 1P2x1P2 , (m=n=O).
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2. Crepant resolution of singularities

2.1. Definition. Let Y be a complex projective variety with

only Gorenstein singularities, and f V ---7 Y abirational

morphism such that V is non-singular. The variety V (or the morphism

,n will be called a crepant resolution of singularities of V, if the

following isomorphism holds:

are canonieal sheaves of V, Y respectively. The

resolution f is called small if the codimension of its exceptional

locus in V is greater than one. It is small over a poont P E Sing Y,

-1
if this holds locally near f (P).

It is obvious, that a small resolution of a Gorenstein

singularity is crepant.

2.2 Definition. A Du Val (or an ADE-singularity) is a surface

singularity which is analytically isomorphie to the germ at the

origin of one of the following hypersurfaces in a:?:

X2+y2+Zn+1= 0 (A , n~l)
n

X2+y2Z+Zn- 1= 0 (D , n~4)
n

X
2+y3+Z4= 0 (E

6
)

X
2+y3+YZ3= 0 (E

7
)

X
2+y3+Z5= 0 (ES)

2.3. Proposition ([7]). A singular surface Y admits a crepant

resolution if and only if it has only Du Val singularities.
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2.4. Definition. A eompound Du Val (eDV) singularity is a germ

of a singular three-dimensional eomplex spaee analytieally

isomorphie to the germ at the origin of the hypersurfaee in (C4

defined by an equation of the form

f(X, Y, Z) + TgCX, Y, Z, T) = 0,

where f is one of the above ADE-polynomials, and g is an. arbitrary

polynomial.

In other words, a eDV singularity is analytieally equivalent to

a hypersurfaee singularity, sueh that its generic hyperplane seetion

through the origin is a Du Val singularity. If the generic

hyperplane seetion has the singularity of type A , D , resp. E ,
n n n

then the three-dimensional singularity is

eD , resp. eE .
n n

said to be of type eA
n

2.5. Proposition. Let Y be a three-dimensional projeetive

variety admitting a erepant resolution

,following assertions hold:

f : V --7 Y . Then the

0) Y is normal, and at a generic point of eaeh one-dimensional

eomponent of Sing Y the singularity is analytically isomorphie to

1
IA x{Du Val singularity}.

(ii) If' P E Sing Y is an isolated eDV singular point, then f

is small over P, and f-l(p) d is a ehain of smooth rational eurves
re

with possible triple points of embedding eodimension 2. Furthermore,

in this ease algebraic and analytie divisor dass groups of the germ

(Y,P) are non-trivial and isomorphie.

For proofs, see [8, 9, 10].

2.6. Basic example. Any isolated singularity is

analytically equivalent to the sin.gularity of the form X
2

+ y
2

+ Z2+
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Tk= 0 (k~2). The latter admits a small resolution if and only if k

is even, and in this case the divisor dass group is 7L and generated

by the dass of a smooth surface H = {X+HY = Z+HT
k

/
2

= O}. The

222
surface H is a Weil divisor in the hypersurface Q = {X + Y + Z + ~=

O}. The small resolution is obtained by blowing up H. Such blow up

is an isomorphism over Q\{O}, that is in all the points in which H

is locally Cartier, and f-l(O) == !pI. Thus, f is indeed small.

A projective threefold with the cA
l

singularity admits a small

resolution if and only if the property of the existence of a smooth

surface H passing through the singular point P E Y holds not only

'local-analytically, but also in the algebraic category.

3. Constructions of ECYM's involving a crepant resolution of

singularities

3.1. Resolving singularities of generic V's in the base locus

X=Y=O. We adopt here the notation of 1. 7 and 1.8. It may turn out,

that for some pairs (m,n) the generic V is not smooth, but acquires

certain cDV singularities.

The first possible case is when d
l02

)O, d
012

)O, and d
003

<0.

Then there are k=d
l02

d 0 12 ordinary double points defined by

,al02(ul=a012(u)=0, x=y=o. The surface H = {X=Y=O} is a .smooth Weil

divisor passing through all the singular points. So, according to

2.6, the blow up of H is a small, and hence crepant resolution of

singularities. There is the only one such case: m=O, n=2. Then

d
l02

=1, d
012

=1, so there is one singular point.

The second possible case is when d
l02

)O, d
012

<0, but d030~O.
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Then we have a singular cA
1
-curve X=Y=O, a

10Z
(u)=0.

Putting together the above cases, we come to the following

statement:

3.2. Proposition. In the notation of Proposition 1.8, the

following pairs of integers (m,n) give rise to singular generic

'varietie's V = ZIP(s) admitting a crepant resolution, which is an

ECYM:

(O,Z), (Z,4), (3,4), (3,5), (4,5), (4,6), (5,7).

Proof. For (O,Z), see the above discussion. All the remaining

pairs form exactly the set singled out by the enequalities d030~0,

d
01Z

<0, d
10Z

>0. Under these conditions, the equation of V has the

form

As we are interested in the singularities occuring in the

neighbourhood of the cross-section X=Y=O, we pass to the

inhomogeneous coordinates by setting Z=l, and rewrite the equation

(3.1) in the following form:

So, we have a cDV singularity along the curve x=y=a
1ÖZ

=0. There are

the following two possibilities:

3.2.1. a OZ1;l:0 (dOZ1~0). Then either d
OZ1

=0, and then a
OZl

is

a constant section of the trivial line bundle, so that (3.Z) defines

a locally trivial family of Al singularities, or dOZl>O,' and then

the local triviality fails at the dOZldlOZ

lZ

dissident points



(M.Reid's term) in which a
021

vanishes.

In the first case, it follows from Proposition 2.3 that the

blow up of the smooth curve C = {x=y=a =O} gives a crepant
102

resolution of singularities, say f : V -----7 V. In the second case

this holds generically. We have to check, what happens near

dissident points.

Let P be one of them. As a
102

and a
021

are generic polynomials

on [p2 of corresponding degrees, we can use them as apart of local

coordinate system near P (upon passing to inhomogeneous coordinates

in [p2). So, the following functions form a local coordinate system

near P:

- - -2/3 - - - 1/3
v = a

021
(a

030
) ,x = x, y = y(a

030
) ,

the bar over a indicating that the corresponding polynomials are,

taken in inhomogeneous coordinates obtained' by setting one of the u.
1

equal to 1. In these coordinates, the local equation of V has the

form:

2 - 3
xu + vy + y O.

It is easily checked that the blow up of C resolves this cA
2

'singularity, so in this case V 'is also' non-singular. Since f : V -----7

V is crepant over the generic point of C, it is crepant everywhere,

and we are done.

3.2.2. a
021

=0 (d
021

<0). Then either d
030

=0, and (3.2) defines a

locally trivial family of A
2

singularities, or d
030

>0, and there are

d030d102 dissident points in which a030=0 and the local triviality

fails. Similar to 3.2.1, we can choose local coordinates near a
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dissident point P in such a way, that the local equation of V

will have the form

3
xu + vy = 0 .

Let us blow up the curve C = {x=y=O}. In the coordinate patch U =

{ u
1
= ~ ' u2= y, u

3
= ~ } we get the ordinary double singularity

This singularity is resolved by blowing up the smooth Weil divisor

u
1
=u

2
=0, which is globally defined as the interseetion of the proper

transform of the "coordinate axis" x=O and the exceptional divisor.

So, the composition of the crepant blow up f 1 : V1 ~ V of C and

the small resolution f 2 : V~ VI of the d030d102 singular points

of VI 'via blow ups of smooth' surfaces passing through 'these points

gives a crepant resolution f = f 2 of1 : V ~ V of singularities of

V.

This finishes the proof of Proposition 3.2.

we

3.3 Crepant resolution cf non-generic V's

3.3.1. An example of an ECYM over [p2with 9 points blown up and

X=o , h
11

= 11. The first case (m,n)=(O,O) of Proposition 1.8 is the

of a generic hypersurface of bidegree (3,3) in [p2x [p2. Ifcase

take a special bidegree (3,3) hypersurface V defined by the equation

where gi' f i are generic cubic polynomials, then the projection

'1[ : V ~ [p2 onto the first factor is not a flat morphism, and V is

singular. It has 81 ordinary double singular points f 1=f2=gl=g2=0,

which all He in 9 projective planes 1[-l(P
i
) 0=1, ... ,9), where {PI'

... , P9} = {gl=g2=0} is the set of points in which the two cubic
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curves gl=O and g2=O meet. All the singularities of V are resolved

by a small resolution. consisting in blowing up the ideal (gI· g2)

in V. The pulls back to the blow
---2

of the ideal inmap Tl up [Pg same

[P2 giving rise to a flat elliptic fibration --- V ----7~.Tl

The base of --- is itself fibration of cubic (pI.Tl a curves over

Over any cubic of this fibration. the restriction of n is a trivial

fibration. Indeed. if C' {gl: g2=A:I-l} is the fiber of
",2

= [Pg over
A.I-l

the point (A.I-l) E (pI. then Tl-1(C~ ) - C' xC" where C" =
.I-l A.I-l -1-l.A K.V

As the cubic polynomials g .• f. have been chosen to be generic.
1 1

one of the two curves. eitper C'
A'.I-l

or is always

-1
non-singular. and hence ~(Tl (C~ )) = o. This proves that ~(V)=O.

•I-l

The Picard group of V is generated by those 2 Cartier divisors

which come from V (they are pull backs of the hyperplane sections

via projections to both factors of [P2x[P2 ). plus 9 Weil divisors on

V which become Cartier on V • hence. in total 11 generators. This

11'
proves the assertion about h .

There is another way .to see that ~=O in looking at. V as a

result of surgery applied to the smoothening V of V.
c

V is a
c

non-singular (3;3) hypersurface in [P2x[P2 • and hence ~(V )=-162. as
c

follows from the formula of Proposition 1.8. The degeneration of V
c

to V with, subsequent small resolution can be represented

topologically as the replacement of 81 Milnor fibers S3xD
3

in V
c

near singular points of V by the neighbourhoods of the exceptional

(pI of a small blow up of a non-degenerate quadratic singular point•

which
. 24 33 24

is topologlcally S xD. As S xD and S xD have the same

boundary. namely S3xS2. we can cut out the Milnor fibers and paste
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in S2x04 instead of them along the common boundary. This will

increase the Euler number by the quantity 8l(~(S2x04)_~(S3x03))=162,

which proves that ~(V)=O.

3.3.2. The extension of 3.3.1 to WNF (~=O, h 11=18). Consider

the hypersurface V in lP
2

xlP
2

defined by a generic equation of the

form

2 3 2 3 2 3
f 1(Y Z-X -oXZ -oZ ) + f 2(aXZ +ßZ ) = 0,

where f
i
=f

i
(u

O
'uI'u

2
) are cubic forms, a,ß,o,o are complex numbers,

2
and denote by Tl the projection to the first factor lP( ).u

O
,u

1
,u

2

Fibers of Tl are singular over the discriminant curve C={Li=O}, where

3 2
b. = 4(flo-f

2
0:) + 27f

l
(f

l
o-f

2
ß) , and over the curve Cl={fl=O}. Over

Cl ' V is singular' along the curve f l=Z=X=O. Local calculations show

that it is a locally trivial cA
6

singularity. It can be resolved by

'three subsequent blow ups with centers in non-singular curves, so

that the fiber over each cA
6

singular point will be the chain of six

smooth rational curves. Blowing up further 9 planes f
1
=f2=0 and the

flatthewill ,getwelP
2
(uO' ul ' u2 )

~ with "'V a smooth ECYM.

corresponding 9 ,points in

elliptic fibration n V-----7

'"Now, let us investigate the structure of the fibration TC in

the whole. The equation of C can be written in the factorized form

where {K.} is a generic set of complex constants depending
1

",2
algebraicallyon a,ß,o,o. The proper transform of this curve in lP9

",2
is the union of three disjoint elliptic curves EI' E2 , E

3
in lP9 '

and over every point of these curves the fiber of n is a nodal cubic

curve. The proper transform of the elliptic curve Cl (which will be
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'denoted' by the same letter) is·· disjoint from E., and over each point
1

of Cl the fiber of Tl is Kodaira's fiber III. . Thus the structure of

the fibration is described by Fig. 2.

As ~(Ei )=~(Cl )=~(E)=O, we obtain the Euler number ~(V)=O. The

generators of the Picard group are the same as in 3.3.1, plus any 7

11
of 8 ruled surfaces over Cl; so, h =11+7=18.

3.3.3. Degenerate WNF in non-trivial projective bundles.

Again, adopt the notation of 1. 7, and take m=4, n=6. Consider a

generic equation of the form

2 3 2 3 2 3
u

l
(Y Z-X -oXZ -oZ ) + u

2
(o:XZ +ßZ ) = 0, (3.3)

2
.whereu

l
, u

2
are coordinate linear forms in IP( ) ., and 0:,0. Eu

O
,u

l
,u

2

HO(1P2 , 0(8)), ß,o E HO(1P2 , 0(2)). The left hand side of (3.3) is a

3 •(non-generic) section of the line bundle f @Tl 0 2(3) over IP. The
IP

are non-singularTl : V ~ 1P
2
(uO,ul ' u2 )

over the complement of the two curves Cl={ u
l
=O} and C={Li=O}, where 6.

3 . 2
= 4(u

l o-u
2

0:) + 27u
l
(u

l
o-u

2ß ) is the discriminant. Over Cl' V has

fibers of the projection

singularities along the curve X=Z=u
l
=0 which are generically locally

trivial cA
6

' but there are also 8 dissident cA
7

points in which 0:

points are resolved similar to the above, byvanishes. The cA
6

three subsequent blow ups, but the result of these blow ups has 8

isolated ordinary double points over dissidents, lying in one of the

two exceptional ruled surfaces which were pasted in by the last blow

up. Blowing up this exceptional surface yields a small resolution of

the eight singular points.

Next thing to do is to blow up the proper transform uf the

plane u
l
=u

2
=0, which is a smooth Weil divisor in V passing through

17



a nodal cubic, if P E C\S

= 1

the 9 singular points

This blow up is a small resolution of the 9 singular points, and the

resulting ECYM V admits a flat projection Tr to the projective plane

",,2
lP 1 with one point {u

1
=u

2
=O} blown up.

The following properties are easily verified:

(i) Define Sl= {P E C I P is a cusp of C, P E Cl}' S2= Cr\C
1
, S=

SluS2 . Then

a cuspida 1 cubic, i f P E SI

(H) S2 consists of 8 points in which C osculates Cl up to the

third order, defined by the equations u
1
=a=O, and one triple point

of C in which three smooth branches meet,at u
1
=u

2
=O. The latter

point gives rise to three. distinct points on the proper transform

C c ~ ' forming the set .5
2

' and the former 8 are those, over which

dissidents sit, forming the set 52 .

""(Hi) The fiber of 7[ over any non-dissident point of the proper
I

transform Cl of Cl in Wi is Kodaira's 111. Ot is shown on Fig. 2),

and over every dissident point, the stucture of the fiber is shown

on Fig. 3.

This type is not present in Kodaira's list, because there is no

smooth surface in V containing this fiber. If we take a singular

one, and resolve the singularity, we will introduce one more

component, and the fiber will turn to Kodaira's 11•.

Putting all together, we can compute the Euler characteristic

of the ECYM V. We have:
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2 .
= ~(IP '\( CUC

1
))~(E) + ~(C'\S)~(nodal cubic) +

I I

8
#S1 . ~(cuspidal cubic) + #$2· ~(nodal cubic) + #S2· ~(II~) +

A similar investigation in the case when m=2, n=3 for the

equation

2 3 2 3 2 3
f 1(Y Z-X -oXZ -oZ ) + f 2(aXZ +ßZ ) = 0,

where f 1 and f 2 are quadratic forms of variables uO' u
1
, u2 ' yields

an ECYM V fibered over the blow up ~ of ~ in 4 points f 1=f2=0.

Its Euler number is ~(V)=-104.
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Fig. 1. The structure of fibration f. The generic fiber E is a

smooth elliptic curve. Fibers over smooth points of the discriminant

curve C are nodal cubics, and those over cusps of C are cuspidal

ones.
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"Fig. 2. The structur~ 6f fibiation i. The generic fiber is E, ä~

smooth eIIiptic curve. The numbers near components of the fiber 111.

indicate their mul tiplici ty in the scheme-theoretic inverse image

,-y-l
Tl (P).
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Fig.3. The dissident fiber II~ . It is an incompleted Kodaira's

fiber 11•.
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