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Introduction 

Let G be a connected reductive group over a local field 
F. The set of all equivalence classes of (algebraicaly) irreducible 
admissible representations of G is denoted by G. The set of 
all equivalence classes of topologlcaly irreducible unitary 
representations (on Hilbert spaces) is denoted by 

A 

A 
G, and called 

a unitary dual of G. The unitary dual G is in a natural bi-
jection with the subset of all unitarizable classes in G. In this 

A 
way we shall identify G with the subset of all unitarizable 
classes in G. Thus, a description of the unitary dual can be 
done in two steps. The first step is to parametrize G, and 
the second one is to identify all unitarizable classes in G. 
The first step is called the problem of non-unitary dual, and 
the second one is called the unitarizability problem. 

In this paper we give a solution of the unitarizability 
problem for the groups GL(n) over a local non-archimedean field 
F. More precisely, Zelevinsky parameters and La~glands parameters 
of all unitarizable classes in GL(n,F) are determined. More­
over,an expl~cit formula connecting Zelevinsky and Langlands 
parameters of GL(n,F~A is proved. We prove also the Bern-

stein conjecture on complementary series from [1]. 

This paper finishes a study of unitary dual of GL(n,F), 
started in ~18]. The results of this paper were conjectured in 
[18], and proved for some n's. Note that the problem of non-unitary 
dual is not solved for reductive groups over non-archimedean fields, 
not even for GL(n). This problem is solved for real reductive 
groups. 

I.M. Gelfand and M.I. Graev solved in 1963 the unitarizability 
problem for SL(2,F) ([5]). The similar ideas led to a solu't1on of 
the unitarizability problem for closely related rank one groups. 
Before [18), those were the only cases of reductive groups over 
non-archimedean fields for which the unitarizability problem was 
solved (known to this author). There exist also two papers on the 
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problem of unitarizability in the non-archimedean case. In 

[11],G.I. Olshansky constructed some complementary series for 

GL(n} over division algebras. J.N. Bernstein obtained in [1) 

some important general facts about GL(n,F)A . Our work on 

unitarizability for GL(n,F} is founded on a nice theory of 

non-unitary dual of GL(n,F). This theory was created by 

A.V. Zelevinsky. It is a continuation of research of J.N. Bernstein 

and A.V. Zelevinsky, and also of I.tl. Gelfand and 

D.A. Kazhdan. 

We shall now describe more detaily the results of this 

paper. Let F be a local non-archimedean field. Let Irr be 

the set of all equivalence classes of irreducible smooth 

admissible representations of GL(n,F), with any n. The subset 

of all unitarizable classes in Irr is denoted by Irru • 

Set \i (g) :: Idet glp , g E GL(n,F). Let DU be the set of all 

square integrable classes in Irru • For a smooth representation 

o of GL(n,F) .and T of GL(m,F}, let cr x T be the represen­

tation of GL(m + n,F) induced by 0 Q T, in a standard way. 

Let n be a pcsi tive integer I and let 0 E D
U

• The represen­

tation 

n-1 
v2"" 0 

n-1 -1 
x v 2 0 )( ••• x 

n-1 --y-
v ~ 

has a unique irreducible quotient which is denoted by u(o,n). 

In the classification of unitary dual of GL(~~F) the role of 

the representations u(o/n) is crutial. It follows from the 

following: 

THEOREM A: Let B
t 

be the set of all 

a -0. 
u(o,n), v u(o,n) x v u(o,n) 
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where n is a positive integer, IS ED u and 0 < a < 1/2. 

i) 

ii) 

If 1T 1 ""/1Tr E Bt , then 1T1 x ••• x 'lTrE Irru • 
u If (J E Irr , then there exist 'IT 1" •• 11TS E Bt 

so that (J = 1T 1 x ••• x 'IT s' The elements 1T l' ••. ,'IT S 

are unique up to a permutation. 

This theorem. describes the Langlands parameters of 

We also describe Zelevinsky parameters of Irru (see 

Theorems 3.1. and 3.3.). 

u Irr • 

Note that for GL(n) over archimedean fields, irreaucible 
square integrable representations exist only for 

x x 
GL(1,1C} ~ CC ,GL(1,:R) = lR and GL ( 2 , JR) of' 

If Q is an irreducible square integrable representation of 

GL(1,~) or GL(1,CC), i.e. a unitary character of or ~ 
then 

u ( Q ,n): g -+ 0 (de t g) 

is an one-dimensional unitary representation of GL(n,l<) or 

GL(n,CC). If 0 is an irreducible square integrable representation 
of GL (2,:R) than u (0, n) were studied by B. Speh ([ 1 ~d ) • 

In the non-archimedean case we have much more square integrable 

representations. Therefore we have much more repr~sentations 
u(o,n) • 

At this point it could be interesting to compare I.M. Gelfand 

and M.A. Neumark list of representations of SL{n,CC) constructed 

in 1950 ([6]) with Theorem A, and to mention representations 

constructed by E.M. Stein ([17}). 
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In this paper we prove the Bernstein conjecture on com­

plementary series from [ 1 ]. For 1T E Irr let 1T + be the 

Hermitian contragradient of 1T. Rigid representations are 

defined in the third section. 

THEOREM B (Bernstein conjecture on complementary series): 

i} Suppose that is irreducible and 

unitarizable for all aE (-1/2,1/2) .• · Then a is 

a unitarizable rigid representation. 

ii) Suppose that a is a rigid representation such 

. that . vao ·x v-ao'+ is an irreducible unita-

rizable representation for some a E (OJ 1 /2). Then 
u 

there exist O'"O' 2 E Irr so that 

-1/2 
a=O' 1

x v 0'2' 

t;ow 'vie shall ciesc=ibu connectiurt betwuo:l c::lausif'ic41tions 

of Zelevinsky and ~anglands. Let C be the sot ot all cuspidal 

reprosentatio11s in I.rr. TIle set of all seg:m.ents in C is do­

noted by S(C), and the set of all finite multisets in S(C} is 

denoted by M(S(C» (see section 1). Then Zelevinsky classification 

is a mapping 

a -+ Z(a) 

which is a bijection of M(S(C» onto Irr. We have also the 

bijection 

a-+ L(a) ,M(S(e» -+ Irr, 

which is described in section 1. This is another parametrization 

of Irr, and it is equivalent to the standard Langlands classifi­

cation. The classification a -+ L(a) was introduced, in this 

form, by F. Rodier in [12]. 
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We consider a mapping 

t:Z(a)+L(a), aEM(S(C» 

introduced by F. Rodier in [121 which is a bijection on Irr. 

This mapping is identical to the restriction to Irr of the 

involution on the algebra of representations of all GL(n,F) 

introduced by A.V. Zelevinsky in [241. The mapping t contains 

complete information about connection, between Zelevinsky and 

Langlands classifications. That means that the mapping t deter­

mines for a € M(S (C) ) an element bE]'1 (S (e) ) so that 

Z(a) = L(b). 

In [25J, A.V. Zelevinsky formulated a conjecture, in terms of in­

volution on orbits of algebrc.~,c groups, which enables one to 

check if Zeal = L(b) or Z(a} * L(b). 

In [19J, it is proved that 

u u 
Z(a) € Irr ~L{a) € Irr I a€ H(S(C). 

It means that the unitarizable problem has the same solution 

in both classification. The above equivalence is equivalent to 

(this was a conjecture of J.N. Bernstein in (1]). Since in 
[19]'we proved t(Irru ) := Irru, here we obtain an explicit 

formula for the mapping 

This implies an explicit formula expr'~sBing bE M(S (C) ) by 

a 6:M(S (e) ) such that 

Z (a) := L(b), 
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when Z(a) is unitarizable. 

Set eU = e n Irru . For a positive integer nand p E eU
, 

the representation 

has a unique irreducible· quotient which is denoted by o(p,n). 

The mapping 

(p,n) -+o(p,n) 

is a parametrization of nU. This is a result of J.N. Bernstein 

Theorem C: The mapping 

is an involutivehomomorphism.ofthe multiplicative semigroup 
u The semigroup Irr is a free abelian semigroup over all 

(* ) 
0. -0. u(o,n) I v u(o,n) x v u(o,n) I 

u Irr • 

where n is a positive integer, 0 E nU, 0 < 0. < 1/2. The homomorphism 

t is described on the basis (*) by 

t(u(a(p,m) ,n» = u{o(p,n) ,m) I 

0. -0. v u(a (Pin) ,m) x v u(eS (p,n) ,m). 

For another formulation of Theorem e one can consult 
Theorem 3.3. 
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Together with Theorem 3.8. of [18], the above theorem 

proves Zelevinsky conjecture on the involution t for re­

presentations u(o,n) (see Remark 3.3). 

In the third section of this paper we are using a result 

of J.N. Bernstein for which this author does not know a re­

ference for a written proof. We shall describe the role of this 

result in our paper. First we describe the result. 

Let R be the free abelian group over basis Irr. The 

induction functor induces a structure of commutative associative 
ring on R. A.V. Zelevinsky showed that R is a polynomial ring 

over Z (A) Ib. E S tC). Thus I the mapping 

Z(t1)-+L(t1),t1 €S(C) 

has a unique extension to a 'ring homomorphism on R. 

homomorphism is denoted by 

t t t 
:iT -+ iT I :R -+ R 

A.V. Zelevinsky proved that iT is an involutive 

of R and he conjectured that 

(Irr)t ~ Irr. 

Bernstein proof of this conjecture was announced i.n [24} (s~e 

also r 1], [25] and [12]). This result will be denoted ) • 

J.N. Bernstein used (B) in [1] to formulate the conjecture 

A.V. Zelevinksy used (B) to formulate in [25] a conjecture 

NOW we shall describe some equivalent formulatJ.cms ~ . 

The mapping t: Irr -+ Irr which we have introduced can 

t 
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uniquely extended to an additive homomorphism 

t:R-+R. 

Let us denote by (M) the statement that t is a multiplicative 

mapping (i.e. a ring homomorphism). F. Rodier showed in [12] 

that (B) implies t = t. From this, one obtains directly equivalences 

(B) ..... t = t .... (M). 

A.V. Zelevinsky introduced in § 9 of [24J the involution t 

which he needed in § 10 of [241 to compare his classfication of 

irreducible representations of GL(n,F) and n-dimensional semi-

simple representations of Weil-Deligne group of F. As classifi­

cation Z did not suit directly for that purpose, and he was 

not considering classification L, ~sing t and (B), he ob­

tained t: 1rr -+Irr which indir~~tly define classification L 

a -+ Z (a) -+ Z (a) t = L (a) 

and connection between classifications Z and L. 

Therefore, it seems more natural to introduce the connection 

between two classifications directly 

t:lrr -+Irr, Zeal -+ L(a), 

instead of indirect definition of Zelevinsky in terms of algebra 

R which needs also (B). 

When we introduce t: Irr -+ Irr as the connection between two 

classification, then (B) is equivalent to multiplicativity of 

t (more precise, multiplicativity of t lifted to R) I i.e. 

(B) is just multiplicativity of the connection between classifi­

cations.This is a very usefull result, but even without this 

rnultiplicativity, connection t is important as we can see in the 
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fourth section of this paper. 

The preceding discussion suggested us to introduce in this 

paper t directly as connection between two classifications, 

as in [12]. Note that in this way one can formulate Zelevinsky 

conjecture describing t without assuming (B) (and also prove 

it for representations uta (p,n) ,m) if char F :::: 0, vJithout 

assuming (~) and to formulate the Bernstein conjecture 

(and p~ove it without using (B), in the characteristic zero case) • 

In the sections one and two o~ this paper We are using 

neither (B) nor the results depending on (B). We used (B) 

in the third section where Thc0rems A.,B. and C. are proved. 

In fact, (B) is used to prove the unitar izabili'cy of re-
presentations u(o,n). Here we use the result 

As there is no reference for the proof of ). 'l:lS fJ.dded 

Apendix in which Theorems A.,B. and C. are proved 

assuming (B), when char F ;:: O. Therefm:e we ar:a no'" the 

result of [19] in this section. USing t.he 1.3 

[15], we prove the unitarizability of l1{o,n} 

Note that we show that t: Irru 
-+ Irru is ID111t.i.pl1cative 

involutive. We also obtain a new proof of the Bernstein conjecture 

that t (Irru) .= Irru 
1 which does not usa (B), In ['19] is an­

other proof. For the restriction of characteristic in Apendix, 

one can apply similar observation to that of [10] there is the 

same restriction of characteristic. 

From the point of view of real reductive groupes, it 

interesting to have a proof of Theorelil ,Pi. in terms of I,anglanas 

classification only. In the characte:cisd.c ze:ra case, is 

possible to prove Theorems A. 
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and B. dealing only with classification L, without assuming (B), 

as it is outlined in [22]. In order to do that, we need to obtain 

the description of composition fact~Jrs of generalized principal 

series, without using (B). Using ~heory of intertwining operators 

developed in [14], we can reduce description to gene~alized rank 

one case, in the same manner as it was done for real reductive 

groups by B. Speh and D. Vogan (§ 3 of [16]). The Zelevinsky 

results in § 9 of [24J imply directly description for generalized 

rank one case. 

The content of this paper is following. In the first section 

we introduce the notation used in this paper and recall of same 

basic results related to this notation. The exposition and results 

do not depend on (B). In the second section we prove without using 

(B), some technical statements nee i . .ssary for proving the main 

results. In the third section, the main results are proved assuming 

(B) and only the local methods are used • In Apendix we prove 

the main results without assuming (B) when char F =. O. In 

order to do that, at the beginning of Apendix we prove some necessary 

results on the classification L without assuming (B). We are 

not using the result of [19] here as we do in the third section. 

The notation which we are using in this paper is the same 

as that of [18] (or [24]), with two exceptions. In this paper 

we are dealing with t instead of t (that was discussed before). 

This new pOint of view demanded introducing of Langlands classifi­

cation, and sy.mmetric notation for classifications of Langlands 

and Zelevinsky. Therefore we accepted the notation [12J where 

that was realized. 

Now we introduce some basic notation. The field of real 

numbers is denoted by :R, the subring of integers is denoted by 

:Tt, the subset of non-negative integers is denoted by Z+ and the 

subset of positive integers is denoted by N. 
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The following paper of this author considers the unitary 

dual of GL(n) over archimedean fields (i.e. over the real and 

the complex numbers) • 

A 
Let us paint out that G is in a natural way a topological 

space. In the case of reductive groups over a local field this 

topology has been found only for a few rank one groups. We have 

in preparation a paper dealing with the topology of GL(n,F)A 

in terms of the parametrization of Theorem A" and describing this 

topology for, at least, n~ 17. Roughly speaking the construction 
of unitarizable irreducible representation in [18J is based on 

identification of some limits in GL(n,F)A. 

Some of the results of the present paper were announced in 
[22]. 

At the end I want to thank the Max-Planck-Institut fUr 

Mathematik for their hospitality during the academic year 

1984/85 which enabled me to finish this paper. 
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10 Preliminaries 

In this section we introduce notation and facts related 

to the non-unitary dual of GL(n) over a non-archimedean field. 

For more details and also proofs, one may consult [24] and [12]. 

Let F be a locally compact non-archimedean field. Set 

Gn = GL(n,F)o The category of all smooth representatons of Gn 
of finite length is denoted by Alg Gno 

Let 1" i E Alg Gn . , i = 1,2. Let P be the standard parabolic 
~ 

subgroup of Gn1 +n2 whose Levi factor is naturally isomorphic to 

Gn1 x Gn2 . Denote by 1" 1 x T 2 the representation of Gn1 +n2 induced 

from P by 1"1Q!2 (induction is normalized) • 

Let Rn be the Grothendieck ~roup of the category AlgGn " 

There is a natural projection 

Set R = n~O Rn' The mapping 

(T,a) -+- 1" x Of 

induces a bilinear mapping 

R xR -+-R n m n+m 

which we shall denote by the same symbol. This bilinear mapping 

induces on R the structure of a graded commutative associative 

ring. Therefore, we have the notion of a homoqenious elements 

in R, and the notion of a degree of elements of R .. 
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Let Gn be the set of all equivalence classes of 
1\ 

irreducible smooth representations of Gno By Gn we de-

note the subset of all unitarizable classes in Gn 0 We 
v 

identify Gn with the subset of Rn in a natural way. Then 

Gn is a basis of a free abelian group Rn" Let C{Gn , be 
the subset of all classes of cuspidal representations in Gn ' 
i. e. the subset of all represcni:.:.tions in G whose matrix 

n 
coefficients are compactly supported modulo the center of G • n 
S.et 

00 
AI 

Irr = nMO G n 

u 00 A Irr = U G n=O n 

00 

C = U C(Gn ), n=1 

= 

Now Irr is a basis of free abelian group R. 

If X i&a set, then the additive semigroup of all 
functions from X into the non-negative integers I sdth finite 

support, is denoted by M(X)" Elemen'ts of N(X} are called 

finite multi.sets in X" If {x1 ' •.• ,xn } is the support 

f € M(X) I then we shall write f also as 

f = x
2 

I ••• I x
2 

I ••• I X,, •• , x. ) n .1 '---..-' __ '~ ' ___ 0_,, ____ -' 

We shall identify the set of all subsets of X wit.h the subset 

of M (X), in a natural way 0 Als~) I "lb~ il'1r)ntify }~ \>~ith t.he t 

of 14 (X). The number 

I f(x) 
xEX 

is called the cardinal number of f denoted card f. 
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Let I IF be the natural absolute value on F. 

The representation g -+ I detg I F of Gn is denoted by v. 

For p E C and a positive integer n set 

A[n](P)= {,,-(n-1)/2 ,,1-(n-1}/2 (n-1)/2 } u v p,v p, ••• ,v p. 

Then ~[n](P) is called a segment in C. The set of all seg­

ments in C is denoted by SeC). 

Let a = (~1'." ,6n ) E M(S (e) ). As 6 i c e, we may consider 

6 i E M(e). Define supp a by 

supp a = 6 1+ ... + 6n E M(e) • 

Two segments 6[n.](Pi) i = 1,2, 
~ 

are called linked if 

6[n ]{P1} 
1 

U A[n ] (p 2 ) 
2 

is again a segment, and 

Let 6[n.] (Pi) I i = 1,2, 
~ 

exists a E:R so that Pi 

that 6[n
1

](P1} precedes 

be linked segments. Then there 

= v ap

1
" If a > 0 then we' say 

A[n
2

] P2) and write 

Let n-1 fl={p,vp, ••• ,v p}ES(e) and a E :R • Set 

"a A = {a a+1 CI.+n-1 } 
v U V p,v p, ••• ,v p. 

Let a = (fl" ••• ,fln) E M(S (e» and a E lEt. Put 

CI. (al. ,a) v a = v u 1 ' • " • , v lln • 
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'" For a representation 'If E Alg Gn , 'If denotes the contra-
-gradient of 'If, and 'If the conjugated representation of 'If. 

The representation 

'If and denoted by 

ijii 

+ 
'If 

is called the Hermitian contragradient of 

For n-1 ll={p,vp, ••• ,'J p}ES{C) set: 

.....,... '" n-1,..., 
ll={p,{vp) I.'.'(V p) }ES(C), 

- - - n-l ll={p,(\)p), ••• ,(v p)}ES(C), 

+ -...., + + n-1 + 
ll=(ll) ={p ,(vp) ".,,(V p) }ES(C). 

If a = (lll I ••• , lln) , then we set 

'" (t;'" ••• ,An ) a -

- ('K1, ... ,lln) a = 

+ + + a = (ll1'· •• ,L\n) • 

Note that 

(ll [n] (P»'" = L\[n] (p) 

(ll [n] (P» = 6[n](P), 

(l 

= 6[n] (v p) 

For 11 i E Alg G i' i :; 1,2 I we have 



-16-

{ m-1 } Let l:l..= P, vp, ••• , v p € S (C). Then the representation 

n-1 p x vp X ••• xv p 

possesses 

noted by 

denoted by 

the unique irreducible sub-representation which is de­

Z(~), and the unique irreducible quotient which is 

L (~) • 

Let a = (~1".' ,fln ) € M (S (C) ). Choose such permutation 

a of {1, •.• ,n}, so that holds: 

~a(i) + fla(j) =9 ali»~ a(j) I 1 ~i,j:;;n 

The representation 

does not depend on the choice of a (up to an isomorphism), but 

only on a. (Proposition 6.4. of [241). \,le denote this represen­

tation by· 

r;;. (a) • 

Now r;;(a} has a unique irreduc~ble subrepresentation which is 

denoted by Z(a). 

The representation 

does not depend on a as above. This can be proved in the same 

way like Proposition 6.4 of [24], using Theorem 9.7., (a) of [24]. 

We denote this representation by A(a). The representation X(a) 

has a unique irreducible quotient, which is denoted by L(a). 

By Theorem 6.1 of [24], the mapping 
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a + Z (a) 

M(S (e)} + Irr 

is a bijection. This mapping parametrizes Irr. This is called 

Zelevinsky classification (see [24]). 

The mapping 

a + L (a) 

M(S(e» + Irr 

is a bijection. This is another parametrization of Irr and 

it is a version of Langlands classification of Irr. As pre­

sented here, this classification was presented by P. Rodier 

in [12 J (see also [9]). 

Let DU denote the set of all classes of square-integrable 

representations in U Irr • Set 

{ au } D = V 7T ; 7T ED, aE:R • 

Elements of D are called essentially square-integrable represen­

tations. For <5::: va. 7T E D, 1T E OU, (l € R we define Sll and 

e(o) by 

and e(o) :: a.. 

By Theorem 9.3. of [241, 

h + L(h), S(e) + D 

is a bijection. Denote this bijection by <p. This bijection lifts 

to the bijection of MCS(e)} and MiD) which is again denoted 

by <p. Now 

d + L(tP- 1 (d}) 

M(D) .. Irr 
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is a bijection which will be again denote by L. This· is a 

parametrization of Irr and can be described directly, 

without gOint to M(S(C», as follows. Let d::: (o" •.• ,On) E M(D). 

Suppose that the ordering of 0i satisfies 

Then A(d)::: o,x ... xon possess a unique irreducible quotient, 

and it is equal to L (d). This classification d + L(d) I M(D) + Irr . 

is directly related to the Langlands classification of [9] in a 

simple manner. 

For d::: (0" ••• 'On) I M{D) fa E :R, set, as before: 

d ::: (6.i", ••• ,on) 

+ + = (15
1 , ••• ,15 1. n 

Let 0 ED, 0 ::: ve (0) 0 U and a E JR. Now 

6 = v -e (<5) (0 u) ,.., i.e. e (6) 

6" = ve(O)(eu ) i.e. e (c) 

0+= V -e (15,) 6u i.e. e (6+) 

== -e (0) and 

::: e (c) and 

= -e(o} and 

(~)u = (15u ) .... 

(6) U = (au) ; 

(0 +) u= eU , 

; 

vao = va+e(o)oU i.e. e(vcto) ::: a+e(o) and (Vao)u ::: cU, 

for ct E :R. 
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Now we shall recall some very well known facts about 
classifications 

1.1. Proposition: For ex EJR, aE:f).l(S(C)) and d EM(D) we have: 

vo,Z;(d) '" l;; (vo,d) " (d) ~ I; (d) • 

( ii) vo.Z(a) = Z(vo.a), Z(a) = Z (a) ; 

vo.L{a) = L(vo,a), L(a) = L(a) ; 

vaL (d) = L (vo.d) , L(d) ,- L(d} • 

(iii) + = Z(a ); 

+ = L(a ); 

Proof: For (i) one constructs desired isomorphisms directly. 

Clearly (i) implies (ii). By Theorem 7.10. of [24], z(a)~::: Z(a}, 

and now (ii) implies Z(a)+::: Z(a+). 

The relation L{d)"" ::: L{O) is arlother expression of the re-

la tion (3.3.13) of [9]. Now. (11) iw?lies 

tain L{a}~ = L(a) from the previous case 

Proposition 9.5. of [24] which states that 

+ + Ltd) = LCd ). We ob-
'" "" Ltd) ::: Ltd) and 
"" "'" L (A) ::: L tLl ). 

Let TIE Irr. Take a,bEM{S(C}) such t.hat 

1i ::: Z(a) I .1i ::; L(b). 
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Then supp a ::: supp b (Proposition 1.10 of [24J). Define 

supp n ::: supp a = supp b. 

Consider supp n as an element of M(S(C» in a natural 

way. Then the set of all representations in Irr whose support 

is equal to supp TI is just the set of all composition factors 

of 

~(supp TI) ::: A(SUPP n). 

Suppose that TI
1

,TI
2 

E Irr and a is a composition factor 

of n 1 x TI 2 I then 

s upp a::: supp n 1 + supp 'IT 2 • 

We introduce, like in [12j, an additive homorphism t of 

R defined by 

t(Z{a» ::: L(a), aE14(S(C»). 

There exists a unique mapping 

t:14(S{C» -t- 14(S (C) 

such that 

t(Z(a)) ::: Z(t(a», aEM(S(C», 

i.e. 

L(a) ::: Z (t(a». 

This implies 

t(L(a» ::: L(t(a», aEM(S{C». 
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Formally, we have 

t-1 (L(a» ::: Z (a) , 

-1 
L(t- 1 (a» t (L(a» ::: 

t- 1 (Z (a) ) ::: 
-1 Z(t (a». 

The homorphism t contains all informations about 

connection of Zelevinsky and Langlands classification. 

We have 

supp ten) ::: supp n, n E Irr. 

A.V. Zelevinsky proved: 

1.2. Proposition: The ring R is a ~-polynomial algebra 
over {Z (A) ;A E s (e)} • 

We formulate the preceding proposi'tion in another way 

which suits better to Langlands classification(and also to 

the case of archimedean fields). 

1.3. Proposition: The ring R is a Z-polynomial algebra over 

D 1. e • over {L ( A) i A E S (C) }. 

This proposition is a consequence of Langlands classifi­

cation (see, in particular, Lemma A. 4. f. of [2J) and Jacquet 
result stating that induced representation of Gm by square­

integrabe one, is irreducible ([7]). This proof applies to the 

case of GL(n) over any local field. 

Formally, we obtain this proposition from the preceding 

one in the following way. By proposition 1.2. 
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Z ell) -+ L tll), II E S (e) , 

extends uniquely to a morphism of the ring R 

t 
:R -+ R. 

A.V. Zelevinsky showed that t is an involutive automorphism 

of R. This implies directly Proposition 1.3. 

A. V. Zelevins.ky conjectured (Irr) t s: Irr. A proof of 

this was announced by J.N. Bernstein (see [24],[25],[12] 

and [1]), but unfortunately, there is no written proof of this 

result known to this author. 
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2. Some lemmas 

For n , d E Hand p E C set 

n-1 n-1 n-1 
a (n, d) (p) = ( v --2-td d) (P), 1-2 ,H d] (P L .. I v-2- II [ d] (p) ) • 

This is a multisegment in C. 

Denote by (tfi) 

(Um): if n,dEmI and 

(nd) degp::;; m 

the following statement 

p E eU such that 

then Z(a(n,d) (p» is unitarizable. 

Note that (Um) is not the same statement as the statement 
in 3.6. of [18J. 

(D ) 
m 

Recall that Irru is a multiplicatively closed subset of R. 

The following lemma is contained implicitely in the fourth section 
of (18). For C1 € Irr and ex E:R set 

2 1 L L t > 1 S th t (Um- 1) hol'ds. Let •• emma: em... uppose a 

Then: 

(i) If 

X
m

-
1 

== { Z (a (n, d) (p) ), 'If (Z (a ( n ,d) (p) } I a.) ; 

n,dElIr,p E eU
, (nd) degp ~ m - '1, 0 < a < 1/2} • 

ekE Irrll. In parti.cular I if 

A 

V1 ;-: ••• '<Ok: E. Gm• 
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(ii) Set 

A 

If 11" E I (Gm' I then there exist 

'IT = 01 x ••• x 0i • 

." 
°1,···,o.EX 1 

~ m- such that 

Representations 01'."'O' i are determined uniquely up 

to a permutation. 

Proof: By (Um- 1 ) and Proposition 2.9. of [18], Xm- 1 ~ Irru • 
u Now (i) is a consquence of the fact that Irr is multiplicatively 

closed. 

The uniqueness of a presenta~ion of 11" in (ii) is a direct 

consequence of Proposition 3.18. of (18) (it can be obtained also 

without use of that proposition, but then argument should be longer). 

We shall prove existence of a presentation of 'IT in (ii) 

by induction. For m = 1 there is nothing to prove. 

A 
Let m ~ 2. Take 'IT E I (Gm). We can decompose 

such that 

o ~ <l1 $ 1/2 

U 
TiE Irr , 

so that 

and such that there exists 

i = 1, ••• ,k (4 .. 1 of (18]). If the presentation 'IT = 't 1
x ••• x 'tk 

is non-trivial, then the inductive assumption and (Um- 1 ) implies 

existence of the presentation. 

Thus, we may suppose that 
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nan -a supp nEM ({ v (v p), v ( v p) i n E Z}) • 

Let n= Z(a), aEl>1(S(C». 

We proceed now in the same way as in the proof of Lemma 

4 • 11. of [ 18 J • 

We shall consider first the case a i E {O,1/2}. Since 

the h"ighest shifted derivative 'IT J of 'IT is irreducible and 

unitarizable,we obtain by inductive assumption, considering the 

support of TI, that 

This implies that 

where 

Thus Z(a(n.,d~) (p}) EX 1. Since 
~ ~ m-

and thus 

where Pi € Z+. Now 

7i is unitary we have .". -H -
+ 

'IT , 

TI x Z(ld2P1 + 2a·· ll(p»x ••• XZ(~[2pj + 2a -1](p) ;: 

;: « d*) (p) ) Z ( ~ *) (p) ) Z a n
1

, 1 . x • •. x, a nk , d k x 



where A[s](P)=!iJ if s$ O. Proposition 3.18. of [18] 

implies that ~ is a subproduct of the right hand side 

anu this implies existance of the presentation. 

Suppose that 0 < (l < 1/2. Using Lemma 4.10 of [18], we obtain 

a presentation in the similar way as in the preceding case. In 

fact, the proof of Lemma 4.11. contains a proof of this case. 

2.2. I.emma: Let m~ 1. Suppose that (Um- 1 ) holds. Let n,dfMl, 

p € eU such that 

(nd) deg P = n and n ~ d. 

Then Z(a(n,d) (p» is unitarizabie. 

Proof: If n = 1, then Z(a(1,d) (P» = Z(b[d) (p» and this 

is unitarizable by [18] (see also [1]). Suppose n ~ 2. By (Um- 1 ) 

Z(a(n - 1,d) (P}) 

is unitarizable. proposition 2.9. of [18] implies that all compo­

sition factors of 

v 1/ 2Z(a(n - 1,d)(P)}x v-1/ 2Z(a(n - 1,d)(P») 

are unitarizable. Thus 

1/2 (p) -1/2 (p) 
Z(v a( n-1,d) + v a(n - l,d) ) = 

=Z (a (n/d) (p) + a (n - 2,d) (p) ) 
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is unitarizable. Now Lemma 3.11 of [18) implies that 

Z (a(n,d) (p» x Z (a{n - 2,d) (p» 

is irreducible, since 

Z(a{n,d - 1) (p)} x Z(a(n - 2,d - 1) (P») 

is irreducible. By (ii) of Theorem 2.5. in [18] Z(a(n,d) (p» 

is unitarizable. 

2 • 3 • Lemma: Let n , d E Rand n < d. Then 

t(Z(a(n,d){P») =1= Z(a(n,d)(P» , P ( C, 

i.e. 

L(a(n,d) (p» =1= Z (a{n,d) (p» • 

Proof: Let pEe (Gm), i.e. deg p = m. Suppose that 

L(a(n,d) (P») = Z(a{n,d) (P». 

o 

Thus A(a(n,d) (P» and 

factor, by the definition of 

s(a(n,d) (p» have a common composition 

L(a(n,d) (p» and Z(a{n,d) (P»). 

Let Po (resp. P 1 ) 

GL(mdn,F) whose Levi 

to GL(m,F)dn (resp. 

of Pi,i = 0,1. 

be the unique standard parabolic subgroup of 

factor MO(resp. M1 ) is naturally isomorphic 

GL(md,p)n). Let Ni be the unipotent radical 

In the rest of the proof we tihull u~e freely notation Qf § 1 
of [24]. 



-28-

First of all, note that there is no standard parabolic subgroup 

of GL(mnd,F) associated to Po different from PO' . Since 

~(~n,d) (p}) is a composition factor of an induced representation 

from Po by a cuspidal irreducible representation of MO' by 
§ 6 of [3] 

r (z ( . ((I) ) (m/m, ••. m) I (nmd) (a n/d) };J! 0 

Now Z (a(n,d) (p) =If(a(n,d) (p» implies that representations 

r (m, •.•• ,m), (nmd) (r;(a(n,d) (p))) 

and 

r . (~) 
(m, ••. mm) I (nmd) ( A (a(n,d) » 

have a common non-trival irreaucible composition factor. 

Let a(n/d) (p) = (ho1' ••• ,hon) where 

Choose a E C (Gm) so that 

d-1 ho 1 = [a,v aJ, 
_ d 

ho 2 - [va,v a] , 

•• 4' \ 

hom = [vn-la,vn-l+d-l0] . 

Now 

(*) d-l d n-1 n-1+d ... l 
(a 0 vcr 0 ••• 0 v a-) 0 (V00 ••• 0V a) 0 ••• Q9 (v o® •• • 0V 0) 

is a composition factor of (p) 
r (m, ••• ,m) I (mnd) U; (a (n/d) ) ) 

and each other irreducible compostion factor is obtained from (*) 

after a permutation of factors of (*) with a permutation which 

preserves the order of elements of each bracket (see (3) of Proof 

of Proposition 6.9 of [24]). 
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In the similar way 

(**) 

is a composition factor of r ( ) ( d) (A (a (n,d) (p) » and 
m"", I nm 

each other irreducible composit.ion factor is obtained from (**) 

after a permutation of (**) with a permutation which preserves 

the order of elements of each bracket. 

Let T be an irreducible factor of 

( ( ( d) (P))} a 1 amnd Th r (m, .•• ,m) , (nmd) l; a n I • Let T = \J 0 0 ••• 0\J 0 • en 
there exist 1 ~ P1 < ••• < Pd ~ mnd so that 

(***) a. = i-1, i= 1 / ••• , d. 
P1 

Let w be an irreducible cO::90sition factor of 

rem ) ( d){A(a(n,d)(P}}). Let w=vB100 ••• 0VSmnda. , ••• ,m , nrn 
Now simple combinatorial observation implies that if 

Sg < Sg < ••• <f3 ,for some 1 ~ g1 < g2<".< g ~ mnd, then 
1 2 gr r 

r ~ n • 

Therefore r (m, •• , , m), (nmd) (i.; (a(n,d) (p») and 

'\ d (p) r(rn, ••• ,rn),(nrndfA(a(n,) ») can not have a common non-trival 
composition factor. 

We obtained a contradiction. This proves the lemma. 
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3. Main results 

The following theorem completly solves the unitarizability 

problem for GL(n) over non-archimedean field, and also presents 

explicit connection between Zelevinsky and Langlands classifications 

in the unitary case. The Bernstein Conjecture 8.10 of [1] was 

stating that t(Irr
u

) ~ Irru • The following theorem d~scribes com­

pletly t:lrru ~ Irru • 

3.1 Theorem: Let 

B = {Z(a(n,d) (P», 1T(Z(a(n,d) (p),a) i 

n,dEH, u 
P E C , 0 < a < 1/2} • 

Fix mE mI. Then 

(i) 

then 

(ii) 

Such 

(iii) 

If 0 1 ' ••• ,ok E B" such that 

1\ 

If 1T E Gm, then there exists 1: 1 ' ••• ,1: j € B so 
that 

"1T = 1: 1 x ••• x L j . 

L1 , ••• ,Lj are unique up to a permutation and 

deg L., + , I . . . + deg L. = rn • 
J 

The following formula holds 

t(Z{a(n,d)(P»)= Z(a(d,n)(P» 

t('I1'(Z(a(n,d) (p» ,a» = 1T(Z(a(d,n) (p»,a) 
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for elements of B. 

3.2. Remark: Note that by (i), B ~ Irru • The statement 

(iii), together with (i) and (ii) describes explicitly 

t(Z(a» in terms of Zelevinsky classificati6n, when Zeal 

is unitarizable. The same description is valid for Langlands 

classification. 

Proof: We shall prove (i), (ii) and (iii) by induction on 

m(in (iii), m = (nd) deg p). Define X m-1 as in Lemma 2.1. 

Suppose that 

the only possibly 

m = 1. Then (i) ,(1i) and (iii) holds.Here 

Z (a (n, d) (p) ) is for n = d = 1 and p 

a unitary character of G1 I t is here identity. 

Suppose that (i), (ii) and (iii) holds for k ~ m - 1. 

Then (Um- 1) holds «Um- 1 , is defined in the beginning of 

the second section). Now Lemma 2.2. implies that Z(a(n,d} (p») 

is unitarizable, for n;;l d and (nd) deg p = m. By [19], 

t(Z(a(n,d){P}» is unitarizable, i.e. 

t(Z(a(n,d} (P}» E a 
m 

From the inductive assumption one sees that 

t {Z (a (n I d) (p) ) ) ~ I (~m) 1 

A 
where I (Gm) is defined in (ii) of Lemma 2.1. (by 

the inductive assumption and Lemma 2.1. we know how t acts 
A 

on I (Gm». One can obtain that also from Proposition 3 .18 of [18] 

(t(Z(a(n,d) (P») is a prime element of R since it is an image 

of the prime element under the automorphism of R, and elements 

in I (Gm) are composite by Lej(~nta 2.1). 

The above discussion and Lemma 2.1 implies 
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P
1

ECU
, (n

1
d

1
) deg P1 = m}. 

Thus 
(p) (P1) 

t(Z(a{n,d) }) = z(a(n1 ,d1 ) ) 

as above. The fact 

supp a(n,d} (p) 

implies 

(support of a(n,d) (p) is computed ~n the proof of Theorem 3:8 

of [18]). Therefore, 

t(Z(a(n,d} (p»)( {Z(a(n,d) (p}),Z(a(d,n) (p»} • 

If n = d then 

t(Z(a(n,n)(P») = Z(a(n,n)(Pl). 

If n < d, then Lemma 2.3. implies 

t(Z(a(n,d) (p») = Z{a{d,n)(P». 

Thus Z(a(d,n) (P) is unitarizable. This means that Xm S Irru • 

Since t is an involution, we have that 

t(Z(a(d,n)(P») = Z(a{n,d)(P)}. 

Thus, (iii) holds. Clearly (i) holds because if 0'1'."'O'k€B 

cmd deg °1+.,.+ O'k = m, then °1"., ,ok E Xm" Lemma 2.1. implies (ii). 
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The above theorem can be expressed in the following form: 

3. 3. THEOREM: Let 

Let X (B) be the ac1ditive subsemigroup of :t-1(S (C) ) generated by 

Then 

a ..... Z {a} 

and 

a ..... L (a) 

are bijections from X(B) onto u Irr • 

The mapping 

t : S ..... B, 

t: a(n,d) (p) ..... a(d,n)(P); 

( va a (n , d) (p) +. \) - a a (n , d) (p) ) ..... (\) a a ( d,n) (p) + \) - a a ( d , n) (p) ) 

extends uniquely to a morphism of semi groups 
Now 

Z (a) = L (t (a) ) 

and. 

t(Z(a») = Z(t(a»). 
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3.4. Remark: It could be interesting to point out that since 

we have proved that 

t(Z(a(n,d) (p}» = Z(a(d,n) (p» , 

Theorem 3.B. of [18] implies that Conjecture 4.5. in [25] of 

Zelevinsky holds for representati.ons, 

Z (a(ntd) (p» 

(in fact, one should say; for a(n,d». 

This is a part of proof of the Zelevinsky conjecture in the 

unitary case. For the whole proof, one need to consider represen­

tations 

(or a(n1 ,d1)+ ••• + a(nk,dk». One could expect that this case 

can be obtained by similar calculation like in the proof of 

Theorem 3.8. of [18J. 

Now we shall give one more consequence of Theorem 3.1. The 

following theorem describes the unitary dual of GL(n) in terms 

of Langlands classification. 

For <5 € Ou and n € II set 

n-1 1- n-1 
u(<5,n) = L(V-~O,v ~o I 

n-1 
2 ,v 0). 

We can characterize u(o,n) as the unique irreducible quotient of 

n-1 n-1 -1 
v-2-o x v~ 0 x 

Clearly L(a(n,d) (P» = 
{L(a(n,d) (P»;n,dE:1I1,pE: Cu } = 

u (L(A[d] (p),n) and this implies 

{u(6,n);oEOu , nElII}. 
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3.S. THEOREM: Let 

( i) 

(ii) 

u 
If if1 f··· fUr E Bt , then if1 x ••• x'lTr E. Irr . 

Let 0 € Irru . Then there exist if l' ••• , if r E 1\ 

so that (} = 'f!1 X ••• x 'IT r • Multiset ('IT
1

, ••• t'IT r ) 

is uniquely determined by o. 

In [18] we introduced the notion of a rigid representation. Recall 

tnat for a representation 11 E 11'1' VJl~ ~ay that it is rigid if there 

::~::r:~ E ~:al :~~ x ():P~; ~~~~ ,~::~~,,:I;~t · is a composition 
3.6. THEOREM: Let 0 € Irr. 

ex. -a. + i) Suppose that 11 (0 !i:t) ::: V G x \i 0 is irreducible and 

unitarizable for all u E (-1/2,1/2). tl'hen c is a 

unitarizable rigid repres~ntation. 

ii) Suppose that 0 is a rIgid representation such that 

n(o,o.} is Dn irreducible and unitarizable 

representation for some (,E (0,1/2). ',i'hun there exist 

unitarizable representation.::; ~)1 and u 2 so thHt 

-1/2 
(} :: 0 1 x 'V 02 • 

Proof: The theorem is a consequenc,,:c uf 'l'heurclIli .:1. 11. o£ (18) 

and 'l'heorem 2.1. 

3.7. Remark: (i) This theorem proves also Bernstein Conjecture 

8.6. in [1] on complementary series and it proves conjectures 
(Cl) and (CH) of [18J. 

(ii) The set Bt defined in T!(i; n:em :; :3. is equal to the 

set B defined in Theorem 3.1. 
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Appendix 

In thisappendix we shall prove all the statements of 

the third section without using the Bernstein unpublished 

result that (Irr)t ~ Irr, if characteristic of F is zero. 

This means that we shall not use the result of [19]. 

We consider here the additive homomorphism 

t:R -+ R 

defined by t(Z(a» = L(a), aE M(S(C». This is all we assume in 

this section about t (we do not assume that t is involutive, 

and also that t is multiplicative). 

We shall first prove one resD'~ about classification L 

(without use of the Bernstein uqmblished result) . 

A.1. ProEosition: 

Suppose that Ai 

Then: 

Let a = (A 1 ' ••• I An) I b = (r 1 I ••• I r m) E M (S (C) ) • 

and r j are not linked for all 1:i i::i n , 1::i j::i m. 

(i) Z;(a) x Z; (b) ;-;; l;; (a + b), >.. (a) x A (b) ;; A (a + b) • 

(ii) Z (a) x Z (b) = Z (a + b) • 

Proof: The definition of z; and A implies (i). Proposition 8.5. 

of [ 2 4] give s Z (a) x Z (b) = Z (a + b) • 

A.2. Remark: One can obtain that L(a) x L(b} = L(a+b) when 

a,b are as in the above proposition, using multiplicity one of 

the Langlands representation in A (a + b). For our purposes, the 

following irreduciblity result will be sufficient. 

A.3. Corollary: Let 

Suppose that 

r i = (p~/'.'P~) EM(C), i = 1,2. 
~ 

(*) e(p~)- e(p2) ~ {-1,1} 
p q 
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for 1 ~p ~ n 1 , 1 ~q ~ n2" Let a,b E M.(S(C» so that 

supp a = r 1 and supp b = r 2 • 

Then L (a) x L (b) and Z (al x Z (b) are irreducible and 

L(a) x L(b} = L(a + b) , 

Z (a) x Z (b) = Z (a + b) • 

Proof: The assumption (*) implies that a and b are as 

in Proposition A.1.,and (ii) of Proposition A.1. implies our 

statement for Zelevinsky classification. 

Choose a*,b* so that 

L(a) = Z(a*) an~ L(b) = Z(b*). 

Now supp a = supp a* and supp b = supp b*. The first part 

of our proof implies that 

L{a) x L(b) = Z (a*) x Z(b*) 

is irreducible. 

Now. L(a) KL(b) is an irreducible quotient of 

A(a) x A(b). By (i) of Proposition A.1. we have 

A (a) x A (b) ~ A (a + b) 

since a and b satisfies the assumption of Proposition A.1. 

The representation A (a + b) has a uni.que irreducible quotient 

which is L (a + b). Thus L Cl.) x L (b) = L (a + b) • 

A .. 4. Proposition: (i) Suppose that a,b E M(S(C). Then L{a+ b) is 

a composition factor of L(a) L(b). In parti~ular, if 
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(ii) If c,d E M(D) I then L(C + d) is a composition, factor 

of L(c) x L(d) • 

Proof: First of all, note that it is enough to prove the pro­

position for M(SeC)}. 

Let a,b E. M(S (C) ). Set 

supp a = (P1'···'Pu)' supp b = (a 1 ,···,av )· 

Let €: be the minimum of all 

11 + (e (p . ) - e(a.» I with 1 + (e(p
i

) - e(a j » * 0, 
~ J 

11 - (e (p i) - e(Oj» v!~.th 1 - (e (p i) - e(Oj» * 0, 

when 1;S; i !i u, 1;S; j $ v. Then €: > O. Let 0 < 0. < £. By the 

choice of 0., a and (vo.b) satisfy the assumption of 

Corollary A.3. Thus L(a) x L(vo.b) is irreducible and equals 

to L(a + vo.b). Proposition A.1. implies A (a) x A (vo.b) l$ A (a + v<lb) . 

Suppose that a consists of n segments and b of 

m segments. We can denote that segments in the following way 

with 

such that 

b = (f1 j (1), ••• ,f1 j (m»' j(1) < ••• < j{m) 

{i(1), ••• ,i(n)}U{j(1), ••• ,j(m)};:: {1,2, ••• ,n+m}, 

~f1 -v<u. v 

For 0 S <l < e: set 
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Now 

By construction 

for 0 ~ a < E. The representation A (a + \J a. b) possess the 

unique irreducible quotient, which is equal to 
L(a+ \Jab} = L(a)x VaL(b) for 0 < a. < E , and L(a+ b) for 
a:: o. 

Suppose that L(a + b) is a 
Let H(Gp ) be the Heeke algebra 

representation TI of Gp ' ch 
TI 

representation of a group Gp • 

of Gp ' For an admissible smooth 
will denote the character of TI. 

With a fl."xed f E BeG) p 

is a continuous funotion. One can see this from the formula for 

the character of an induced representation in [23] (see also 
~emma 2.1. of [20]). 

Let (a.n ) be a sequence of real numbers converging to 0 

such that 0< a < E for all n n. Suppose that we have proved 
that there exist a .quotient ·rr of A (a + b) and a subsequence 

ea n (k) ) of (an) such that 

(** ) I ~m chL (a + va.n (k) b) (f) = ch (f) 
'IT 

for all 

Now L(a + b) is the unique irreducible quotient of 

A (a + b) I so it is a (unique irreducible) quotient of TI. 

The relations (*) and (**) impli.9s 
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= chL(a) x L(b) (f) = ch1f (f) 

for all f E H (Gp ). Since L (a + b) is a subquotient of 1f , 

the last equality implies that L (a + b) is the quotient of 
L(a)xL(b). 

Thus, for a proof of the proposition we need to contruct 

1f as above. 

Roughly speaking, such 1f is contructed as follows. 

One can realize all representations 

on the same vector space (by restriction to the standard maximal 

compact subgroup). In this way one obtains a continuous family 

of representations on the same vector space (for a precise 
formulation of flcontinuous family" see Lemma 3.5. of [21]). Now 
using the compactness of the Grassmanian manifold of a finite 

dimensional vector space, and the diagonal procedure (several 

times), one constructs a subsequence (an(k» and 1f as above. 

For a formal proof,to avoid the whole construction,we pass 

to the contragradient representations. Now 
a "'" ,... -a "" L(a+v nb) = L(a) xv nL(b) is a subrepresentation of 

a '" a L(A 1 ) x ••• x L(bn+m)""', and we can as in the proof of Lemma 3.6 

of [21J, construct a subsequence (an(k» of (an) and a 
subrepresentation nO of L{A 1)"'X ••• xL(An +m)"'" such that 

ch'IT (f) 
o 

for all f€ H(Gp )' Lemma 3.6. of [21] deals with induced re­
presentations by cuspidals, but the fact that inducing is by 
cuspidals,is not used in the part of the proof of the lemma 
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that we need (this fact is used at the end of the proof to 

reduce the lemma to the case of subrepresentations). Now 

nO is in a natural way a quotient of 

L(t.
1

) x ••• x L(t. ). 
n+m 

Using the fact that 

ch",,(f) = ch (f) 
(J a 

where f is defined by f(g) ,= f(g-1), one obtains that 

lim chL ( + <Y.n(k)b) (fl ::: ch'" (f) 
k a v nO 

for all f E H (Gp )' Thus I we can take n::: 7f O. This finishes the proof. 

For another possible prooi of the preceding proposition 

see (iii) of A.12. 
A.5. Remark: Since the multiplicity of the Langlands re­

presentation in A(a+ b) is one, then L{c+ d) is a com­

position factor of L (c) x L (d) whose multiplicity is one. 

A.6. Corollary: (i) Let 

irreducible, then 

c,dE M(D). If L(c) x L(d) is 

L(c) x L(d) ::: L{c + d). 

(ii) Let a,b E M(S (C». If L(a) x L{b) is irreducible then 

L(a)XL(b) ::: L(a+b). 

Corollary 8.2., a) of [1J implies: 

A. 7. Corollary: (i) Let c,d E M(D). Suppose that L ~c) and L (d) 

are unitarizable. Then L(c + d) is unitarizable and 
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L(c + d) = L(c) x L(d) • 

(ii) Let a,b € M (S (C) ). If L (a) and L (b) are unitarizable, then 

L(a+ b) = L(a) x L(b). 

Statement (ii) of the above Corollary remains true if one 

consider classification Z instead of L. 

In the rest of this section we suppose that the characteristic c 
the field F is zero. 

Let o€ GL(m,F)~ be a square-integrable representation and 
n E 111. Then the induced representation 

n-1 \ (n-1) ( n-l \ (v-2- 0) x vy - 1 0 x ••• X v--2- 0) 

has a unique irreducible quotient. This quotient was denoted 

by u(o,n). 

A.S. THEOREM: Suppose that char P ::;; O. Let 0 E Irr be a 

square-integrable representation and let n E ml. 

Then 

u(o,n) 

is a unitarizable representation. 
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Proof: ri'he first part of the proof uses a result of [13] or [2] , 

and the secona part uses a result of [8J. 

Let 6 E Gm= GL(m,F)'" be a square Jntegrable representation 

and n€ N. 

There exist a divison algebra 
2 H central over F with dimepsion In over F . We choose I 

like in § 5 of [1~, a number field k, a place w of k, and a 

group G defined by a division algebra Dover: k such that: 

F is isomorphic to the completion kw of k at w, the group 

G{kw> of kw-rational points of G is isomot"lJhic to the multi­

plicative group of H,G satisfies assumptions of § 5 of [13]. 

Let So be the set of all places v such that G(kv ) is rami­

fied. Clearly wE SO' Let A be thC! Adele ring of k. 

Since 6 is an irreducib~e square-integrable representation 

of GL(m,F) - GL(m,kw)' the proof of Proposition 5.15. of [13] 

implies that there exist an irreducible cuspidal automorphic re­

presentation a of GL(m,A) such that, in tho factorisation 

which corresponds to the factorisation of CL(m,A) into the 

restricted product of all GL(m,kv ) (see (4]) I we have 

Let zm be the center of the algebraic group GL{rn). 

Then Zm is isomorphic to GL(1). Now ZIl1(A) is nat.urally 

isomorphic to the restricted product of Zm(k}. Let zm m v ~ 
be the group of all Z = (zv' f. z (1\) such that Zv = 1 for 

all finite places, and Zv is a positive real number inde­

pendent of v infinite. 
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Let n be the central character of the cuspidal auto­

morphic representation 0. Suppose that 1\ is trivial on 
Zm 

+ • 

Let P 

Levi factor 

elements of 

be the standard parabolic subgroup of GL{nm} whose 

M is naturally isomorphic to GL(m)l1. We identify 

M(R;\.) with n-triplel:) (g" .•. ,g), g. € GL(m,lt..). 
In 1. 

Let n be the representation 

Let n:.. e1fv be the decomposition of II into the restrict product 

of representations of M(k). The iuc.1uGl.!d representation from v 
P (A) to GL (n 

is denoted by 

m/A) (resp. P(kv ) LO GL(nm,kv » by If (resp. 'lTv) 

Ind(1f) (resp. Ind (If ». v 

Since the center of GL(n/m) 

like a character of 

is isomorphic to GL(1}, 
Zllln (A) • Set III = nm. we may consider n 

Let L2 (w,GL(mn,A» 

GL {mn ,A) such that 

be the space of (clasl:)es of) functions on 

f(yzg) = w(z)f(g) 

for all y € GL(mn,k), z € Zmn(A), 9 € GL(lnn,A) i and Ifl2 is inte­

grable function on 

GL{mn,k) ~mn(A)"GL(mn/A) 

with respect to a non-trivial right-invariant measure. ActionofGL(mn,l&}·c 

L2 (w,GL(mn,A» by right shifts defines a unitary representation 
of GL (mn ,A) • 

In § 2 of [8] it is proved that there exists an intertwin­

ing operator 
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2 E:Ind(1T) .... L (w,GL(mn,4\) 

whose image is an irreducible representation. Let T be the 

image of E. Decompose T into restricted tensor'product 

T = 0T v' 

Since Ind ( 'IT) ;;; 0 Ind (n ) v v we have the epimorphism 

E:® Ind('IT ) -+ 0T • 
V V V V 

Now QJ! Ind(nv ) is, like a representation of GL(mn,kw)' isomorphic 

to a direct sum of copies of Ind ('lI w) (we need to fix a basis 

in each Ind ('lTv)' V::j:: w, and use the fact that thB local Hecke 

algebras are idempotented algebras). Since ~T is also a direct v 
sum of copies of T

W
' by the "3ame reasons, we obtain directly 

that there exist a surjective intertwining op~rator 

Now 

n-1 n-1 
Ind{'li

w
) ;; ("~Q)X ••• x(v--2 6). 

Thus 

Since T is a subrepresentation of r.. 2 (w,GL(mn,A», 'fw is 

unitarizable and therefore u(o/n) l~ unituri"du.tu. 

It remains to consider the gen~ral case (without 

assumption n I z~.= 1). This case r~dUt::es to the case of 

n I z~ = 1 by twisting 0 with a sui taLl(~ character. 
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The following theorem is a direct consequence of the 

preceding theorem. 

A. 9. Theorem: Representations 

L (a ( n I d) (p) ) dE"''' P E ell , n, sr.., 

are unitarizable. 

A. 10 .Theorem: Let char F = O. Set 

B = {Z(a(n,d)(P»,n(Z(a(n,d)(P»,a); 

n , dEli, pEe ll, 0 < a < 1 /2} • 

Fix m (: "Ii. Then 

(i) If °1"", ,ok E B such that 

then 

A 
(ii) If 1T E: Gm, then there exist so that 

1T=T. x ••• x T •• 
J J 

(iii) If n,e. E X,p (c
u so that n6.(deg p) !i r.l, then 

Z(a(n,d) (p}) = L(a(d,n)(P). 

(iv) Let n i ,d i 1 m. ,e). E JII, P.,o. E CU
, 0 < a. < 1/2 

J I J J 
where p,q € Xi-' Suppose that 

for 

p 

I (n.d.) deg p. + 2 ! (m.e).) deg oJ' = m. 
i=1 1 1 1 j=1 J 

Then 
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L ( ~ a (n d) (p i ) + q [ a J' ( ) (cr J' ) -a. . (a . ) L .,. I v a m.,e. +\1 Ja(m. e.) J]} 
i=1 ~ ~ j = 1 J J J' J 

p 
:= Z ( L 

i=1 

( (p.) ] [nq 
(a·) 1 = Z(a d.,n.) 1.} x 1T(Z(a(e.,m.) J ),0..) 

. 1. 1. j=1 J J J ~ 

Proof: We shall prove (i),(ii),(iii) and (iv) by induction on m. 

The proof is similar with the proof of Theorem 3.1. 

For m = 1 there is nothi:1y to prove. Let m ~ 2. Suppose 

that the theorem holds for k:S m - 1. Let X 1 be defined as in m-
Lemma 2.1. B . d t' t' (Um- 1) h ld ((Urn) . your 1.n uc 1.ve assump 1.on 0 s 1.S 

defined at the second section). Thus we can apply Lemma 2.1. Each 
A A 

element of I(Gm) is some product of elements of Xm- 1 (I(Gm) is 

defined in (ii) of Lemma 2.1.}. By definition 

and 

A 

Let 1: E I (Gm). Then 

l' = Tr Z (a (n i I f i) (p i ) ) x IT 1T (Z (a (m
J
" , e .) (a j ) ) , a. " ) 

i=1 . j=1 J J 

for some ni,d.EDIf,P.,O.ECU,O<o..< 1/2,p,qEZ+ ,by Lemma 2.1. 
1. ~ J J 

By inductive assumption, we have 

Z(a(n.,d.) (Pi), = L{a(d.,n.) (Pi». 
1. 1. 1. 1. 
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(0 . ) 
n(L{a(ej,mj ) J ),a j ) = 

= vajL(a(ej,m
j

) (OJ}) xv-aj L(a(eJ'm
j

} (OJ)) 

(p .) 
= n(Z{a(m.,e.) J ),<1.). 

J J J 

(0 . ) 
Thus n(L{a(ej,m j ) J ,a

j
) is unitarizable. Using Corollary 

A. 7. we obtain 

p q 
(p) • (a.) 

T = TT L(a(d.,n.) i)x TT n(L(a(e.,m.) ] ,a.). 
i= 1 1. 1. j = 1 J J J 

1\ 
This implies that (iv) holds for representations in I (Gm) • 

Let now n,dEH,p ECu so that 

(nd) deg p = m. 

Now L(a(n,d) (p» is unitarizable, by Theorem A.9 • By the 

preceding considerations 

L(a(n,d) (p)~ I(~m). 

Thus 

L(a(n,d) (p» € {Z(a(u,v) (a» ;u,vEN,o €CU and 

(uv) deg 0= m} • 

Therefore, L(a(n,d) (P» = Z(a(u,v) (a» for some u,v 

and 0 as above. The fact 

supp a(n,d) (p) = supp a(u,v) (a) 
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implies 

L(a(n,d) (P}) € {Z(a(n,d) (p» ,Z(a(d,n) (P»} • 

By Lemma 2.3. 

L(a(n,d) (p» = Z(a(d,n) (p}) • 

Thus Z(a(d,n) (p» is unitarizable. This implies (i) ,(ii), 

(iii) and the rest of (iv). 

Let RU be the additive subgroup of 

Irru • Then Irru is a Z-basis of RU
, and 

of r. 

[J 

R generated by 

RU is a subring 

The following theorem is a direct consequence of the 

preceding one. 

A.11. Theorem: (i) Let a EM(S(C». The representation Zeal 

is unitarizable if and only if 

t (Z (al) = L (al 

is unitarizable. 

(ii) The mapping 

Z (a) . -+ L(a), Z (a) € Irru , 

is an involutive automorphism of the multiplicative semigroup 
u Irr • 

(iii) The homomorphism in (ii) satisfies 
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t (Z (a (n , d) (p)} = Z (a ( d , n). (p) ) I 

thdZ(a(n,d) (P}) ,a» = n(Z(a(d,n) (p)} ,a) I 

u n,dElIJ,pEC,0<a<1/2. 

(iv) The mapping t\Ru is an involutive ring automorphism. 

A.12. Remark: (i) Lemma 2.3. can not be omitted in our proof 

of Theorem 3.1., while we can prove (i) and (ii) of Theorem 
A.10., and also (i),(ii) , (iv) of Theorem A.11. without using 

Lemma 2.3. 
(ii) The statement (i) of the preceding theorem is a new proof 

of Conjecture 8.10. of [1] stated by J.N. Bernstein (in the 

zero characteristic case). 

(iii) Now we shall give an outline '"Ji another possible proof 

of Proposition A. 4. If dE M{D) then we have in R 

t d d d 
A (d) = iI lllx L(x), IIlx E Z+ ,rod = " 

xEM(D) 

L(d) = r m(d,X)A(X), m{d,x) E Z,m(d,d) = ,. 
x€M(D) 

Take d
1 

,d2 € M(D). In the ring R we have 

+ 

or 

= A(d, +d2 ) 4: E~m(d"x1}m(d2,x2}A(X, +X2 ) = 
X1¢Q1' 

r (m(d1,x1)m(d2 ,x2) 

x,¢d, , 
x

2
¢d

2 

or x2¢d2 
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For a proof of Proposition A.4 it is enough to show that if 

where 
using 

when 

Xl ;!!d1 or x 2 ;:C d2 , then y;:c d 1 + d 2 • This can be obtained 

relation which exist between a and b when ~ ~ 0 (i.a. 

L(b) is a composition factor of A(a). For this relation one 

can consult A.4. f. of [2]. 
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