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Introduction

et G be a connected reductive group over a local field
F. The set of all equivalence classes of (algebraicaly) irreducible
admissible representations of G is denoted by €. The set of
all equivalence classes of topologicaly irreducible unitary
representations (on Hilbert spaces) is denoted by 8, and called
a unitary dual of G. The unitary dual & is in a natural bi-
jection with the subset of all unitarizable classes in G. In this
way we shall identify 8 with the subset of all unitarizable
classes in G. Thus, a description of the unitary dual can be
done in two steps. The first step is to parametrize G, and
the second one is to identify all unitarizable classes in G.
The first step is called the problem of non-unitary dual, and
the second one is called the unitarizability problem.

In this paper we give a solution of the unitarizability
problem for the groups GL(n) overa local non-archimedean field
F. More precisely, Zelevinsky parameters and Langlands parameters
of all unitarizable classes in GL(n,F) are determined. More-
over,an explicit formula connecting Zelevinsky and Langlands
parameters of GL(n,F}A is proved. We prove also the Bern-
stein conjecture on complementary series from [1].

This paper finishes a study of unitary dual of GL(n,F),
started in 718]. The results of this paper were conjectured in
- [18], and proved for some n's. Note that the problem of non-unitary
dual is not solved for reductive groups over non-archimedean fields,
not even for GL(n). This problem is sclved for real reductive
groups.

I.M. Gelfand and M.I. Graev solved in 1963 the unitarizability
problem for SL(2,F)([5]). The similar ideas led to a solution of
the unitarizability problem for closely related rank one groups.
Before [18], those were the only cases of reductive groups over
non-archimedean fields for which the unitarizability problem was
solved (known to this author). There exist also two papers on the



problem of unitarizability in the non~archimedean case. In
[11],G.I. Olshansky constructed some complementary series for

GL(n) over division algebras. J.N. Bernstein obtainéd in [1]

some important general facts about GL(n,F)? . Our work on
unitarizability for GL(n,F) is founded on a nice theory of
non-unitary dual of GL(n,F). This theory was created by

A.V. Zelevinsky. It is a continuation of research of J.N. Bernstein
and A.V. Zelevinsky, and also of I.M. Gelfand and

D.A. Kazhdan.

We shall now describe more detaily the results of this
paper. Let F be a local non-archimedean field. Let Irr be
the set of all equivalence classes of irreducible smooth
admissible representations of GL(n,F), with any n. The subset
of all unitarizable classes in Irr is denoted by Irr”.
Set vlg) = |det g]F , g€ GL(n,F). Let D" be the set of all
square integrable classes in Irr®. For a smooth representation
v of GL{n,F) .and T of GL{m,F), let o x t be the represen-
tation of GL{(m + n,F) induced by o¢ ® 1, in a standard way.

Let n be a positive integer,and let &€ pY. The represen-

tation

has a unique irreducible quotient which is denoted by u(é,n).
In the classification of unitaryv dual of €GL{n,F)} the role of
the representations u(é,n) is crutial. It follows from the
following:

THEOREM A: Let Bt be the set of all

u(s,n), v*u(s,n) x v %u(é,n)



. u ,
where n is a positive integer, 8§ €D and 0<ao<1/2.

\ u

i) If ﬂ1,...,ﬂr€ Bt’ then n1x cea X ﬂre Irxr™.

ii) If o¢€ Irru, then there exist n1,...,ws€ Bt
so that o= Ty X ceoX ws. The elements n1,...,vs

are unique up to a permutation.

u
This theorem describes the Langlands parameters of Irr .

u

We also describe Zelevinsky parameters of Irr (sece

Theorems 3.1. and 3.3..

Note that for GL(n) over archimedean fields, irreducible
square integrable representations exist only for

GL(1,I) =& ,GL(i,R) = K  and GL(2,R)«

If § 1is an irreducible square integrable representation of
b *

GL(1,R) or GL(1,L), i.e. a unitary character of ® or € ,
then

u{d,n): g+ §(det qg)

is an one-dimensional unitary representation ¢f GL{n,R) or
GL(n,T). If & is an irreducible square integrable representation
of GL(2,R) than u(§,n) were studied by B. Speh ([1a1).

In the non~archimedean case we have much more square integrable
representations. Therefore we have much more reprzsentations
u(s,n).

At this point it could be interesting to compare I.M. Gelfand
and M.A. Neumark list of representations of 85L(n,T) constructed
in 1950 ({6]) with Theorem A, and to mention representations
constructed by E.M. Stein ([171]).



In this paper we prove the Bernstein conjecture on com-
plementary series from [1]. For wm€ Irr let = be the
Hermitian contragradient of w. Rigid representations are
defined in the third section.

THEOREM B (Bernstein conjecture on complementary series):

a -
i) Suppose that Vv ¢ * V 70

Gg* is irreducible and

unitarizable for all o€ (-1/2,1/2)... Then o0 is

a unitarizable rigid representation.

ii) Suppose that ¢ is a rigid representation such

- that \)a

o -x v-ogt is an irreducible unita-

rizable representation for some o€ (0,1/2) . Then

there exist 01,026 Irru so that

o=0

~1/2
1 X N 62.

Kow we shall describe connuction between classifications
of Zelevinsky and Langlands. Let C be the set of all cuspidal
representations in Irxr. The set of all segments inm € is de-

noted by S{C},

and the set of all finite multisets in S(C) is

denoted by M(S(C)) (see section 1). Then Zelevinsky classification

is a mapping

a + Z(a)

which is a bijection of M(S{(C)) onto Irr. We have also the

bijection

a-+ L(a),M{(S(C)) ~ Irxr,

which is described in section 1. This is another parametrization
of Irr, and it is equivalent to the standard Langlands classifi-
cation. The classification a - L{a) was introduced, in this
form, by F. Rodier in [12].



We consider a mapping
t:Z(a) rL{a), a€ M(S{(C))

introduced by F. Rodier in [12] which is a bijection on Irr.
This mapping is identical to the restriction to Irr of the
involution on the algebra of representations of all GL(n,F)
introduced by A.V. Zelevingky in [24]. The mapping t contains
complete information about connection. between Zelevinsky and
Langlands classifications. That means that the mapping t deter-
mines for a€ M(S{C})) an element b€ M{(S8(C)) so that

Z(a) = Li{b).

In [25], A.V. Zelevinsky formulated a conjecture, in terms of in=-
volution on orbits of algebraic groups, which enables one to
check if Z{a) = L{b) or z{a) + Lib).

In [19], it is proved that
u u
Z{a) € Irr e=L{a) € Irr , a€ M(S{C)).

It means that the unitarizable preoblem has the same solution

in both classification.The above equivalence is eqguivalent to
t(Irr?) = 1rr®

(this was a conjecture of J.N. Bernstein in [1]). Since in
[19] ‘'we proved t(Irr") = Irr"”, here we obtain an explicit
formula for the mapping

u

) u
ciXIrr” - Irx .

v

s

This implies an explicit formula expressing b€ M(S(C))
a €EM(S8(C)) such that

z{a) = L(b),



when %(a) is unitarizable.

Set Cu = Cf]Irru. For a positive integer n and p€ Cu,
the representation

(7 )« (F ) e ()
has a unique irreducible quotient which is denoted by d&(p,n).
The mapping

(pn) +6(p,n)
is a parametrization of p¥. This is a result of J.N. Bernstein
Theorem C: The mapping
u

t:Irr?+ Irr

is an involutive homomorphism ofthe multiplicative semigroup 1ret.
The semigroup Irr" is a free abelian semigroup over all

(*) uls,n), v:a(s,n) x v %*u(s,n),

where n is a positive integer, 6€'Du, 0<a<1/2. The homomorphism
t 1is described on the basis (*) by

t(u(d(p,m),n)) = u(d{p,n),m),
t (v*u(s(p,m),n) x v *u(s(p;m),n)) =
vau(d(p,n),m)x v %u(s(p,n),m).

For another formulation of Theorem C one can consult
Theorem 3.3.



Together with Theorem 3.8. of [18], the above theorem
proves Zelevinsky conjecture on the involution t  for re-
presentations u(d,n) (see Remark 3.3).

In the third section of this paper we are using a result
of J.N. Bernstein for which this author does not know a re-
ference for a written proof. We shall describe the role of this
result in our paper. First we describe the result.

Let R be the free abelian group over basis Irr. The
induction functor induces a structure of commutative asscciative
ring on R. A.V. Zelevinéky showed that R 1is a polynomial ring
over Z{A)},A€ S{(C). Thus, the mapping

Z(A) > L(A),A € S(C)

has a unigue extension to a ring homomorphism on R. This
homomorphism is denoted by
t
Mo ﬂt, Eir - R

A.V. Zelevinsky proved that « is an involutive authomorphism
of R and he conjectured that

(Trr)® < Irr.
Bernstein proof of this conjecture was announced in [24] {see
also [1},[25] and [12]). This result will be denoted by (B}.
J.N. Bernstein used (B) in [1] to formulate the conjecture
(Ire) ® < 1rrt.

A.V. Zelevinksy used (B) to formulate in [25] a conjecturs about

Now we shall describe some equivalent formulations of (B}.
The mapping t:Irr- Irr which we have introduced hefore can be



uniquely extended to an additive homomorphism.
t:R+R.

Let us denote by (M) the statement that t is a multiplicative
mapping (i.e. a ring homomorphism). F. Rodier showed in [12]
that (B) implies t = t. From this, one obtains directly equivalences
t
{(B) &= = t «=(M).

A.V. Zelevinsky introduced in § 9 of [24] the involution t

which he needed in § 10 of [24] to compare his classfication of
irreducible representations of GL{(n,F) and n-dimensional semi-
simple representations of Weil-Deligne group of F. As classifi-
cation Z did not suit directly for that purpose, and he was
not considering classification L, using t and (B), he ob-

t

tained :Irr »Irr which indirectly define classification L

a - Z(a) +Z(a)t = L{a)
and connection between classifications Z and L.

Therefore, it seems more natural to introduce the connection
between two classifications directly

t:Irr +Irxr, Z{a) » L{a),

instead of indirect definition of Zelevinsky in terms of algebra
R which needs also (B).

When we introduce +t:Irr+ Irr as the connection between two
classification, then (B) is equivalent to multiplicativity of
t (more precise, multiplicativity of t 1lifted to R), i.e.
{(B) is just multiplicativity of the connection between classifi-
cations. This is a very usefull result, but even without this
multiplicativity, connection t 1is important as we can see in the



fourth section of this paper.

The preceding discussion suggested us to introduce inthis
paper t directly as connection between twe classifications,
as in [12]. Note that in this way one can formulate Zelevinsky
conjecture describing t without assuming (B) (and also prove
it for representations ui{d(pg,n),m} if char ¥ = 0, without
assuming (B)) and to formulate the Beranstein ﬂénjectura

t(Irru) < Irru
(and prove it without using (B), in the characteristic zerc case).

In the sections one and two of this paper we are using
neither (B) nor the results dspending on (B). We used (B}
in the third section where Thiourems A.,B. and C. are proved.

o

In fact, (B) 1is used to prove the unitariszability of the re-
£
]

4
S
®

presentations u(8,n). Here we use the result of [1

o

As there is no reference for the proof of (B), we added
Apendix in which Theorems A.,B. and . are proved without
assuming (B}, when char F = 0. Therefore we are not using the
result of [19] in this section. Using the idesa of
[15], we prove the unitarizability of wuw{&,n} Dby

Note that we show that t:Irr“—Irr" is maltiplicative and
involutive. We also obtain a new proof of the Bernstein conjecture
that t(Irr%) [= Irru, which does not use (B). In [19] is an~-
other proof. For the restriction of characteristic in Apendix,

one can apply similar observation to that of {1@} there is the
same restriction of characteristic.

)

From the point of view of real reductive groupes, it is

7

interesting to have a proof of Theorem A. in terms of Langlands
classification only. In the characteristic zero case, it is
possible to prove Theorems A.
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and B. dealing only with classification L, without assuming (B},
as it is outlined in [22]. In order to do that, we need to obtain
the description of composition factors of generalized principal
series, without using (B). Using theory of intertwining operators
developed in [14], we can reduce description to genexalized rank
one case, in the same manner as it was done for real reductive
groups by B. Speh and D. Vogan (& 3 of {16]). The Zelevinsky
results in § 9 of [24] imply directly description for generalized

rank one case.

The content of this paper is following. In the first section
we introduce the notation used in this paper and recall of same
basic results related to this notation. The exposition and results
do not depend on (B). In the second section we prove without using
(B), some technical statements necrssary for proving the main
results. In the third section, the main results are proved assuming
(B) and only the local methods ars used . In Apendix we prove
the main results without assuming (B) when char F = 0. In
order to do that, at the beginning of Apendix we prove some necessary
results on the classification L without assuming (B). We are
not using the result of [19] here as we do in the third section.

The notation which we are using in this paper is the same
as that of [18] (or [24]), with two exceptions. In this paper
we are dealing with t instead of t (that was discussed before).
This new point of view demanded introducing of Langlands classifi-
cation, and symmetric notation for classifications of Langlands
and Zelevinsky. Therefore we accepted the notation [12] where
that was realized.

Now we introduce some basic notation. The field of real
numbers is denoted by R, the subring of integers is denoted by
Z, the subset of non~-negative integers is denoted by z, and the
subset of positive integers is denoted by N.
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The following paper of this author considers the unitary
dual of GL(n) over archimedean fields (i.e. over the real and
the complex numbers).

Let us point out that 6 is in a natural way a topological
space. In the case of reductive groups over a local field this
topology has been found only for a few rank one groups. We have
in preparation a paper dealing with the topoclogy of GL(n,F}A
in terms of the parametrization of Theorem A., and describing this
topology for, at least, n £ 17. Roughly speaking the construction
of unitarizable irreducible representation in [18] is based on
identification of some limits in GL(n,F)A.

Some of the results of the present paper were announced in
[22].

At the end I want to thank the Max~-Planck-Institut fiir
Mathematik for their hospitality during the academic year
1984/85 which enabled me to finish this paper.
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1. Preliminaries

In this section we introduce notation and facts related
to the non-unitary dual of GL(n) over a non-archimedean field.
For more details and also proofs, one may consult [24] and [12].

Let F Dbe a locally compact non—-archimedean field. Set
Gn = GL{n,F). The category of all smooth representatons of Gn
of finite length is denoted by Alg Gn.

Let TiE Alg G,, , i = 1,2. Let P be the standard parabolic
i
subgroup of Gn1+n2 whose Levi factor is naturally isomorphic to
Gn1 xan. Denote by T4 X Ty the representation of Gn1+n2 induced

from P by T 5&2 {induction is normalized) .

1

Let Rn be the Grothendieck yroup of the category Alan.
There is a natural projection

Alg G + R .

Set R = =20 R, - The mapping

(t,0) » 1 x g,

ManXMgGm+MgGmm

induces a bilinear mapping

Rp* Rm > Rn-bm
which we shall denote by the same symbol. This bilinear mapping .
induces on R the structure of a graded commutative associative
ring. Therefore, we have the notion of a homogenious elements

in R, and the notion of a degree of elements of R.



Let En be the set of all equivalence claises of
irreducible smooth representations of Gn' By Gn we de-
note the sg?set of all unitarizable classes in C_ . We
identify Gn with the subset of Rn in a natural way. Then
Gn is a basis of a free abelian group Rn‘ Let C(Gn) be
the subset of all classes of cuspidal representations in ﬁn ‘
i.e. the subset of all representations in 55 whose matrix
coefficients are compactly supported module the center of Gn‘

Set

o]

Irr = ngo Gn .
u _ T oA
Irxr = ngo Gn ’
<O

@]
]
O
oo}
—
&
L2

Now Irr is a basis of free abelian group R.

If X 4is-a set, then the additive semigroup of all
functions from X into the non-negative integers, with £
support, is denoted by M{X). Elements of MN{X) are called
finite multisets in X. If {xi,...gxn} is the support o
f€ M(X), then we shall write £ alsc as

= e e ) KagenasX gaee ¥ |}
£ (x»]l lx»ll X2: 1 X ’ n’ ’ n’
| S . B
f(xl)-times f(x2)~time$ f{xn}~times

We shall identify the set of all subsets of ¥ with the subset
of M(X), in a natural way. Also, we identify ¥ with the subset
of M(X). The number

Y £(x)
XEX

is called the cardinal number of f and denoted by card ¥
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Let l{F be the natural absolute value on F.

The representation g—*{detq]F of G, 4is denoted by v.
For p€C and a positive integer n set

(e (- (m=1)/2, 1=(n=1)/2 o172,

Aln

Prenes

Then Aln]'P! is called a segment in C. The set of all seg-
ments in C 1is denoted by S(C).

Let a = (A1,...,An)€IM(S(C)). As Ai < C, we may consider
AiEZM(C). Define supp a by

supp a = A,+ ... + AnEZM(C).

1
Two segments A[ni](pi) , i = 1,2, are called linked if
aln,1P1) y Afn,1¢P2!
1 2
is again a segment, and

aln 110 atn, 120 ¢ (4l 10°0) 80,1020

Let A[ni](pi) , 1 = 1,2, be linked segments. Then there

exists o€ R so that Py = vap If a>0 then we say

that A[n1](91) precedes A[nzl}éZ) and write
A[n1](91) > A[nzl(pz)

Let A=={p,vp,...,vn-1p}€ S(C) and o€ R . Set
via = (v v, L 0ty

Let a = (A1""’An)€ M{5(C})) and o€ R Put

via = (vaAl,.,l,vaAn).
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For a representation w € Alg Gn’ T denotes the contra-
gradient of 1w, and 7 the conjugated representation of 7.
The representation % is called the Hermitian contragradient

7 and denoted by at .

n-1

For A={p,vp,...,V p} € 8(CY set:

E=05, 90 ..., 0¥ 1) Yes(O),

E=00,00,-..6" p)tes(,

+

A= (K)~={p+l (\)p)+r «s ey (Vnﬂ‘]

mfresto).

If a = (A1,...,An), then we set

a = (B, ...,B0)
3 = By By
+ + +
a = (A,"ocolAn)'

Note that

(AIn1®H™ < A1 P

i

(A[n](p)) A[n}(ﬁ)'

(5In] Y = a1 @)

L1}

-

varal (P A[n](v“p>

For o4 € Alg Gi' i = 1,2, we have

1
(0, % 0y) 20y %0y,

va(c1><02)z(v“01V (vaoz).

of
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Let A={p,vD,...,vm'1p}€ S(C). Then the representation

0 x up X...xyP7 1,

possesses the unique irreducible sub-representation which is de-
noted by Z(4), and the unique irreducible quotient which is
denoted by L(4).

Let a = (AT,...,An)EIM(S(C)). Choose such permutation
¢ of {1,...,n}, so that holds:

A A _,., = ofi)> ol(3) , 1£i,3sn

a(i) ~ Ro(3)

The representation
X A X Xo (A

does not depend on the choice of ¢ (up to an isomorphism), but
only on a. (Proposition 6.4. of [24]). We denote this represen-
tation by -

g-(a).

Now r{a) has a unique irreducible subrepresentation which is
denoted by Z(a).

The representation

L{ ) x L(A xL(A

A (1) g(2)) % o(n)’

does not depend on ¢ as above. This can be proved in the same
way like Proposition 6.4 of [24], using Theorem 9.7., (a) of [24].
We denote this representation by A(a). The representation Ala)
has a unique irreducible quotient, which is denoted by L{a).

By Theorem 6.1 of [24], the mapping



a -+ Z(a)
M{(S{C}) » Irr

is a bijection. This mapping parametrizes Irr. This is called
Zelevinsky classification (see [241).

The mapping

a > L(a)
M{s(C)) -+ Irx

is a bijection. This is another parametrization of Irr and
it is a version of Langlands classification of Irr. As pre-
sented here, this classification was presented by F. Rodier
in [12] (see also [91).

Let D" denote the set of all classes of sgquare~integrable
representations in Irr". set

D= {vin;neD%, aER}.

Elements of D are called essentially square-integrable represen-
tations. For § = vVireD, ne D%, o€ R we define 3% and
e(d) by
§% = and e(6) = a.
By Theorem 9.3. of (241,
A+ L(A), S{C})» D
is a bijection. Denote this bijection by «. This bijection lifts
to the bijection of M(S(C)) and M{(U) which is again denoted

by . Now

a -~ Lig ' (d))
M{(D) -~ Irr
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is a bijection which will be again denote by L. This is a

parametrization of Irr and can be described directly,
without goint to M(S8(C)), as follows. Let d = (61""'6n)€ M(D).

Suppose that the ordering of

85

i<y = e(tSi) zef{di).

Then A{d)

satisfies

61X...x6n possess a unique irreducible quotient,

and it is equal to L{d). This classification d-+L(d), M(D) » Irr.

is directly related to the Langlands classification of [9] in a

simple manner.

For 4

ol

t

Let &€D,S

]

i}

H]

- ve(ﬁ) §Y

T =

8§ =

8

ves§ =

for o € R.

+_

1= H

(61,...,6n), M{D),0 € R, set, as before:

(‘glf‘°'l’3’ )I

n

PP

a o
(\) 6111-01\) 6n

and
v~e(5)(5u)~
ve (8) (41

y-e (8l su

Va+e(6)6u

4
(6T seee 0.

).

o€ R . Now

e®) = ~e(8) anda (Y =(sH)” ;

]

#

e(F) = e(8) and ()Y = (s%;
e(6%) = -e(8) and (85)%= &Y,

e(vadl = gt+e(d) and (\)ad)u = du,



Now we shall recall some very well known facts about
classifications

1.1. Proposition: For o €R, aEM(S(C)) and dEM(D) we have:

(1)  v¥z(a) =z (v%a),T(@) =z (a);

v*ata) =A%), T(a): A @) ;

it

v (d) = z(v*a), 7@ (@) .

i

(i) v%z(a) = z(v%a), 7 (a)

[N
p—
o
Nua#
]

29

v¥*L(a) = L(v*a), T(E) = L(3)

i)

g

it
i

VvOL(d) = L(v%d), T@E7 = 1@ .

(iii1) z(a)” = 2(3), z(a)" = z2(a*);

1]

i
i

L(a)” = L(3), L(a)” = n(a");

(d)” = (@, @t = n@h.

i}
i}

Proof: For (i) one constructs desired isomorphisms directly.
Clearly (i) implies (ii). By Theorem 7.10. of [24], Z{a)” = Z{(a},
and now (ii) implies 2(a)” = 2(a").

The relation L{d)" = L{(d) is another expression of the re-
lation (3.3.13) of [9]. Now (ii) implies L(d)" = L(d"). We ob~-
L{d) and
L{a™y.

i

tain L{a)” = L{3a) from the previous case L(d)
Proposition 9.5. of [24] which states that L(a)"

H

Let 7€ Irr. Take a,b€ M{8{C)) such that

7 = Z{a), .7 = Lib).
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Then supp a = supp b (Proposition 1.10 of [24]). Define

supp ® = sSupp a = supp b.
Consider supp w as an element of M(S(C)}) in a natural
way. Then the set of all representations in Irr whose support

is equal to supp 7 is just the set of all composition factors
of

t{supp 7) = A(supp 7u).

Suppose that ﬂ1,ﬂ2€ Irr and ¢ is a composition factor

of HTXWZ , then

SUpp 0 = Supp m, * SUPpP T,.

We introduce, like in [12}, an additive homorphism t of
R defined by

t(Z(a)) = L{a), a€ M(S{C}).
There exists a unigue mapping
£:M(S(C)) » M(S8(C))
such that
t(z(a)) = Z(t(a)), a€ M(S(C)),
L{a) = 2(t(a)).
This implies

t(L{a)) = Lit(a)), a€ M(S(C)).
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Formally, we have

t Vi) = z(a),
-1 -1
t ' (L{a)) = L(t™'(a))
t Vz(@)) = 2t ().

The homorphism t contains all informations about
connection of Zelevinsky and Langlands classification.

We have

supp t(n) = supp v , 1w € Irr.

A.V. Zelevinsky proved:

1.2. Proposition: The ring R is a Z-polynomial algebra
over {2(AY;AES(C)} .

We formulate the preceding proposition in another way
which suits better to Langlands classification{and also to

the case of archimedean fields).

1.3. Proposition: The ring R is a Z-polynomial algebra over
D i.e. over {L{A)Y;AE S(C) Y.

This proposition is a consequence of Langlands classifi-
cation (see, in particular, Lemma A. 4. £. of [2]) and Jacquet
result stating that induced representation of qu by sgquare-
integrabe one, is irreducible ({71). This proof applies to the
case of GL(n) over any local field.

Formally, we obtain this proposition from the preceding
one in the following way. By Proposition 1.2.
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Z{A) » L{A), AE S(C),
extends uniquely to a morphism of the ring R
t:R + R.

A.V. Zelevinsky showed that t is an involutive automorphism
of R. This implies directly Proposition 1.3.

A.V. Zelevinsky conjectured (Irr}t c Irr. A proof of
this was announced by J.N. Bernstein (see [24]1,[25],[12]
and [1]}, but unfortunately, there is no written proof of this
result known to this author.



2. Some lemmas

For n,déN and p€C set
n-1 1 n-—-1 n-1
2

atm,a) P = (v Zata®, 2@l 0 2 aral®).

This is a multisegment in C.

Denote by (Um) the following statement
(U™ : if n,d€m and pec? such that

{nd) degpsm
then Z(a(n,d)(p)) is unitarizable.

Note that (Um) is not the same statement as the statement (um)
in 3.6. of [18].

Recall that Irr" is a multiplicatively closed subset of R.
The following lemma is contained implicitely in the fourth section
of [18]. For oc€Irr and o€ R set

-0+
n(o,a)=vac X v ao .

2.1. Lemma: Let m2 1. Suppose that (Uqu) holds. Let

X _,= {z(an,a) P, r@z@ma

- ) ,ad;

n,dem,pecu, (nd) degpsm ~ 1, 0<a<1/2] .
Then:

(iy 1If U1""'°k€ X , then Uy X..@rakﬁ 1rrY. In particular, if

m~1

e
deg Gateoot degsk = m, then o %...%0, € G .
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(ii) Set
AL _ A (p) u -
I(G,) = Gm\{Z(a(n,d) ); n,dEMW,p€ C ,(nd)degp = m} .
A .
If 7¢ I(Gm), then there exist 01,...,GiEZXm_1 such that
M = O, Xeuwe XO,

Representations Oqre0+,0; are determined uniquely up
to a permutation.

Procf: By (Um—T}

and Proposition 2.9. of [181, X _, ¢ Irr".
Now (i) is a consquence of the fact that Irr? is multiplicatively

closed.
The uniqueness of a presentation of 7 in (ii) is a direct
consequence of Proposition 3.18. of [18] (it can be obtained also

without use of that proposition, but then argument should be longer).

We shall prove existence of a presentation of = in (ii)
by induction. For m = 1 there is nothing to prove.

A
Let mz22. Take 71 € I(Gm) . We can decompose
TS TyXe. XTy

such that TiE Irru, and such that there exists piezc“,

0 Sa,l £1/2 so that

supp TiEM({vn(vaipi),vn(v”aipi); neEx})
i=1,...,k (4.1 of [18]). If the presentation w= T XeeoX Ty
is non-trivial, then the inductive assumption and (Um"1) implies

existence of the presentation.

Thus, we may suppose that
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supp w€M({vn(vap),vn(v-ap);xzez}).
Let 7= Z(a), a€ M(S(C)).

We proceed now in the same way as in the proof of Lemma
4.11. of [18].

We shall consider first the case o€ {0,1/2}. Since
the highest shifted derivative #' of 7 is irreducible and
unitarizable,we obtain by inductive assumption, considering the
support of n, that

' = Z(a(n?,d?}(p)+...+ a(nk: k)(p) ).

This implies that

=3
{

= Z(a(n1,d1+1)§Q)+...+a(nk,dk+?)(m +)

)

where wE:M({vn(vup);nfiz}). The assumption € I(&m} implies
(nidz) degp < m.

Thus Z(a(ni,d;)(p))e mel‘ Since g1 is unitary we have T = 7
and thus

Q= {VP1+aptv“(P1+a)p"._iij+ap'V“(PJ+ﬂ}p}

where pi€ Z, . Now

=3

x Z(sl2pg + 20 - 11800y xz(Al2p4 + 24 -3y

i

Z(a(n1,d?)(ﬁ))x,_, xz(a(nk,d§}(ﬁ))x

xZ{A[2p, + 20+ 11PNy x, . % z(&{zpj + 2y + 33(@))'



W

where A{s}(p’= g if s50. Proposition 3.18. of [18]
implies that =w is a subproduct of the right hand side
ana this implies existance of the presentation.

Suppose that 0<a < 1/2. Using Lemma 4.10 of [{18], we obtain
a presentation in the similar way as in the preceding case. In
fact, the proof of Lemma 4.11. contains a proof of this case.

2.2, Lemma: Let m32 1. Suppose that (w1

pE Cu such that

holds. Let n,dem,

(nd) degp=n and n£ d.
Then Z(a(n,d)(p)) is unitarizabie.

Proof: If n =1, then z(a(1,4) )y = z(a1a1'®’)  ana this

m-1

is unitarizable by [18] (see also [1]). Suppose n:z2. By (U )

z(a(n ~ 1,d) )

is unitarizable. Proposition 2.9. of [18] implies that all compo-
sition factors of

w725 am - 1, P % v122 @0 - 1,9) P

are unitarizable. Thus

{p) -1/2

Z(v1/2a( n - 1,4) + v a{n - i,d)(p)) =

=z(a(n,d) P + am - 2,9) Py
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is unitarizable. Now Lemma 3.11 of [18] implies that
z(a(n,d) PV x z(am - 2,a) P

is irreducible, since
z(a(n,d - 1)y xz(a(n - 2,a - 1) P

is irreducible. By (ii) of Theorem 2.5. in [18] Z(a(n,d){p))
is unitarizable.

a

2.3. Lemma: Let n,d€EN and n< 4. Then

e(z(am,a) ) + z@am,a ™), pec,
i.e.

Lia(n,d) )y & z(am,a) Py,
Procf: Let p € C(Gm), i.e. degp = m. Suppose that

L(a(n,d) ) = z(am,a) ).
Thus A(a(n,d)(p)} and g(a(n,d){p)} have a common composition

factor, by the definition of L{a(n,d)(p)) and Z{a(n,d)(p)).

Let PO {resp. Pj) be the unique standard parabolic subgroup of
GL{mdn,F) whose Levi factor Mg(resp. M1) is naturally isomorphic
to GL(m,F)® (resp. GL(md,F)™). Let N, be the unipotent radical
of Pi,i = 0,1.

In the rest of the proof we shall use freely notation of § 1
of [24].
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First of all, note that there is no standard parabolic subgroup
of GL(mnd,F) associated to Po different from PO.‘Since
Z(a&n,d}(p)) is a composition factor of an induced representation

from P, by a cuspidal irreducible representation of My by
§ 6 of [3]

T (m,m, ...m), (nmd) Ealn,a) ) )=0

Now Z&ﬂn,d)(p)) =D1a(n,d){p)) implies that representations

{(p)

Y (myew.,m), (nma) (zlaln,d) M)

and

(m,...mm), (nmd) A(ain,d)(”5)

have a common non-trival irreducible composition factor.

Let a(n,q) ()= (Aq,...,8,) where A, D> > AL

Choose o€ C(Gm) so that

Ay = lo,v4 01,
Az = {vc,udﬁ} ‘
ceay
A, = {un~10’vn—1+d—10} .

Now

- - n-1+d-1
{(*) (covoe...» \)d 1<:<') ® (vcm...@vdc) ®...® (vn 10@...@\; e}

)

(p)

is a composition factor of )(;(a(n,d) })

r(m,...,m),(nmd
and each other irreducible compostion factor is obtained from (*)
after a permutation of factors of (*) with a permutation which
preserves the order of elements of each bracket (see (3) of Proof
of Proposition 6.9 of [24]),



(**) (v ooV

A T

In the similar way

d-1 a-2

d - - -
0@.-.@6) [} (\) 009-».@'#\3)02,,,%{\;” 1*(1 1 &.n 1

U®, . .% o)

{p)

d
r{m,...,),(nmd)(A(a(n'd) )} an
each other irreducible composition factor is obtained from (*%)
after a permutation of (**} with a permutation which preserves

is a composition factor of

the order of elements of each bracket.

Let T Dbe an irreducible factor of
{P) = % Gmnd
r(m,...,m),(nmd)(g(a(n'd) 1}, Tet T=v"1o® ...0V o. Then
there exist 1sp;<..< Pg & mnd so that

(***) o =i-1, i=1,...,4.
Pq
Let w be an irreducible congosition factor of
N = 81 Bmna
r(m,...,m),(nmd)(A(a(n’d) i}. et w=vilg ®@...0 V o.
Now simple combinatorial observation implies that if

Bg
r

<8g2<...<Bgr » for some 15g,<g,<...<g_smnd, then

7

n -

Therefore r( (Cia(n,d)(p))) and

Myos- .1?) ¢ (nmd)
) p) - 1%y
r(m,...,m),(nmdfk(a(n’d) )} can not have a common ncn-trival

composition factor.

We obtained a contradiction. This proves the lemma.
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3. Main results

The following theorem completly solves the unitarizability
problem for GL(n) over non-archimedean field, and also presents
explicit connection between Zelevinsky and Langlands classifications
in the unitary case. The Bernstein Conjecture 8.10 of [1] was
stating that t(Irr") c IrrY. The following theorem describes com-~

pletly t:Irr? » 1rrt.

3.1 Theorem: Let
B = {z(atn,d) "y, n(z(atn,a) P),a) ;
n,deEN, p ec”, 0 < a <1/2}

Fix m€ M. Then

(i) If 01,...,UkEIB_ such that
deg 01+...+ deg Op = m,
th G
en 01 X...xcke Gm.
, » A
(ii) If nEEGm, then there exists 11,...,TjE:B o]
that

‘n= x.'.x : -
T1 TJ

Such T1,...,Tj are unigue up to a permutation and
deg Tat eee deg Tj = n,
(iii) The following formula holds

tZ(an,d) 1)) = za(a,n 0

t(r(z(a(n,a) Py ,op = n(z(atd,n) ?)),q)
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for elements of B.

3.2. Remark: Note that by (i), B ¢ Irr’. The statement
(iii), together with (i) and (ii) describes explicitly
t(Z(a)) in terms of Zelevinsky classification, when 2Z(a)
is unitarizable. The same description is valid for Langlands
classification.

Proof: We shall prove (i), (ii) and (iii) by induction on

m{in (iii), m = {(nd) deg p). Define X as in Lemma 2.1.

m-1

Suppose that m = 1. Then (i).,(ii) and (iii) holds.Here
the only possibly Z(a(n,d)(p)) is for n=4d = 1 and P
a unitary character of G1 , £t is here identity.

Suppose that (i),(ii) and (iii) holds for k£m - 1.
Then (Um—1) holds ((Um*11
the second section). Now Lemma 2.2. implies that Z{a(n,d)(p))

is defined in the beginning of

is unitarizable, for n<d and (nd) deg p= m. By [19],
t(Z(a(n,d){p))) is unitarizable, i.e.

t(z(a(n,a) Py ed .

From the inductive assumption one sees that

(p) A
))& (G,

t(Z(a(n,d)
where I(gm) is defined in (ii) of Lemma 2.1. (by
the inguctive assumption and Lemma 2.1. we know how t acts
on x(sm)» One can obtain that also from Proposition 3.18 of [18]
(t(Z(a(n,d)(p))) is a prime element of R since it is an image
of the prime element under the automorphism of R, and elements
in I(Gm) are composite by Leima 2.1).

The above discussion and Lemma 2.1 implies
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t(z(atn,d) )y e {z(am,,a) 1) nj.a en

u -
pyECT, (n,d,) deg p m}
(p4)
Thus t(Z(a(n,d)(p))) = Z(a(nw,dT) 1
as above. The fact

) for some n1,d1101

supp a(n,d) ) = a(n,,d4,) (q)

implies
p = Py

(support of a(n,d)(p) is computed .n the proof of Theorem 3.8
of [181). Therefore,

ez (a(ma) P )ye (ziam,a) Py, z@@m Py
If n =4 then

t(z(ain,n) Py = z(am,n) Py,
If n<d, then Lemma 2.3. implies

t(z(a(n,d) Py = z(aa,n P,

Thus Z(a(d,n)(p)) is unitarizable. This means that X < Ire”.
Since t is an involution, we have that

t(z(a(d,n) ‘P)y)) = z(am,a) P,

Thus, (iii) holds. Clearly (i) holds because if Tareesr0y € B
and deg Oqfeest Op =m, then Oqreess0) € X . Lemma 2.1, implies (ii).
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The above theorem can be expressed in the following form:

3. 3. THEOREM: Let
B = { . a(n,d) (p) , W*a(n,d) {p)+ v~ %a(n,d) (p));
u .,
nd€mW, peEC ,0<a<1/2}.

Let X(B) be the additive subsemigroup of M(S(C)) generated by
Then

a-= 7(a)
and
a-+ L(a)
are bijections from X{(B) onto Irr".
The mapping
t:B~> B,
t: a(n,d)(9)+ a(d,n)(p);
(vaa(n,d}(p)tuwaa(n,d)(p))é-(vaa(d,n)(px+v*aa(d,n)(p))

extends uniquely to a morphism of semigroups t:X(B)* X(B).
Now

zZ{a) = Lit(a))

and.

t{Z(a)) = Z2(t(a)).
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3.4. Remark: It could be interesting to point out that since
we have proved that

t(z(atn, @) Plyy = z(a@,m Py,

Theorem 3.8. of [18] implies that Conjecture 4.5. in [25] of
Zelevinsky holds for representations,

z(a(n,d) P))
(in fact, one should say; for af(n,d)).

This is a part of proof of the Zelevinsky conjecture in the
unitary case. For the whole proof, one need to consider represen-
tations

Z(a(ng,d,) (P)y . .x Z (atny ,dy ) (e},

(or a(ni,d1)+ cee + a(nk,dk}). One could expect that this case
can be obtained by similar calculation like in the proof of
Theorem 3.8. of [18].

Now we shall give one more conseqguence of Theorem 3.1. The
following theorem describes the unitary dual of GL{n) in terms
of Langlands classification.

For SEDu and néEN set

n-1 n-1 n-1
., Ty wa
u({é,n) = Liv § ,v § 4 eee 4V 8) .

We can characterize u(é,n) as the unique irreducible quotient of

a (L(afal'®’y,n)  and this implies
{u(é,n); €%, nem}.

n

Clearly L(a(n;d)(p))
{L(a(n,d) Pn,dem,pec?y

]
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3.5 . THEOREM: Let

B. = {u(s,n) ,v*uls,mx v *uls,n); s€p¥nem, 0<a<1/2}.

. u
(i) If Wyresen €B., then m, > ...x7w € Irxr-.

(ii) Let o€ IrrY. Then there exist TyresssT € By
50 that o = ﬂqx S Mo Multiset (W1,...,ﬂr}
is uniquely determined by 0.

In [18] we introduced the notion of a rigid representation. Recall
that for a representation =€ Irr we say that it is rigidif there
exist p; € ¢! and o, € {(1/2)2 such that 2 1s a composition
factor .of (va1p1)X(va2p2)X... x{v“xﬂk)-

3.6. THEOREM: TILet o€ Irrx.
i) Suppose that w(c,u) =v¥gx v
unitarizable for ail «¢¢ {(~1/2,1/2). Then ¢ 1is a

85t is irreducible and

unitarizable rigid representation.

ii) Suppose that ¢ is a rigid representation such that
T{o,0) is an irreducible and unitarizable
representation for some € [0,1/2). %then there exist
unitarizable representatiocns v, and o, 50 that

-172
= % .
o] Oy %V u,
Proof: The theorem is a consequence of Theorem 4.11. of [18]
and Theorem 2.1.

3.7. Remark: (i) This theorem proves also Bernstein Conjecture
8.6. in [1] on complementary series and it proves conjectures
(CI) and (CH) of [18].

{ii) The set Bt defined in Tieorem 2 3. is equal to the
set B defined in Theorem 3.1.
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Appendix

In thisappendix we shall prove all the statements of
the third section without using the Bernstein unpublished
result that (Irr)t < Irr, if characteristic of F 1is zero.
This means that we shall not use the result of [19].

We consider here the additive homomorphism
t:R » R
defined by t(%Z(a)) = L(a), a€ M(S(C)). This is all we assume in
this section about t (we do notassume that t is involutive,

and also that t is multiplicative).

We shall first prove one resu’i. about classification L
(without use of the Bernstein urnpublished result).

A.1. Proposition: Let a = (Az""’An)’b = (T1r---:Pm)E:M(S(C)).
Suppose that Ai and Pj are notlinked for all 1<£isn, 15 jsm.
Then:

W

(1) z{a) x ¢(b) = g(a+b), A(a) xA(b) = Ala+b).

(1) Z(a) x z(b)

Z{a+ b).

Proof: The definition of ¢ and A implies (i). Proposition 8.5.
of [24] gives Z(a)x Z(b)= Z(a+b).

A.2. Remark: One can obtain that L{a} x L(b) = L{a+ Db) when
a,b are as in the above proposition, using multiplicity one of
the Langlands representation in A{a+ b). For our purposes, the
following irreduciblity result will be sufficient.

A.3. Corollary: Let r, = (p%,...,p;‘} eM(CYy, 1 = 1,2.
Suppose that *

(*) elp )~ e(,2 .
b pq) g {-1,1}



1§q§n2. Let a,b€M{S8(C)) so that

supp a = r, and supp b = Yoo
Then L(a)xL{b) and Z(a)x Z(b) are irreducible and

L{a) % L(b)

[

L{a+b) ,

Zz(a} x Z(Db)

il

Z(a+ b).
Proof: The assumption (*}) implies that a and b are as
in Proposition A.1.,and (ii) of Proposition A.1. implies our
statement for Zelevinsky classification.
Chooge a*,b* so that

L{a) = Z(a*) and L(b) = Z{(b¥).

Now supp a = supp a* and supp b = supp b*: The first part
of our proof implies that

L{a) x L{b) = Z{a*) x Z2(b*)
is irreducible.

Now. L{a) x»L(b) is an irreducible gquotient of
Ala)y x A(b}. By (i) of Proposition A.1. we have

Aa) x a(b) = x{a+Db)
since a and b satisfies the assumption of Proposition A.1.

The representation A{a+b) has a unigue irreducible quotient
which is L{a+ b). Thus L{a) *x L{b) = L{a+Db).

A.4. Proposition: (i) Suppose that a,b € M(S(C). Then Li{a+b) 1is
a composition factor of L(a) > L(b). In particular, if
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(ii} If ¢,d€ M(D), then L(c+d) is a composition factor
of L{c) x L{d).

Proof: First of all, note that it is enough to prove the pro-
position for M(S(C)).

Let a,b eM(5(C)). Set
supp a = (pi,...,pu), supp b = (GT,...,GV).
Let € be the minimum of all
[1 + (elpy) - e(oj))] with 1 + (e(p;) - elos)) * 0,
11 - (e(pi) - e(oj))l with 1 - (e(pi) - e(cj))* 0,
when 1£igu, 1£j<£v. Then £e>0. Let 0O<ao < e. By the
choice of a, a and (vab) satisfy the assumption of
Corollary A.3. Thus L(a) x L(vab) is irreducible and equals

to L(a+ vb). Proposition A.1. implies Ala) x A (v¥b) = a(a+ vib).

Suppose that a consists of n segments and b of
m segments. We can denote that segments in the following way

a = (Ai(Q)"“'Ai(n))' i{1) < ... <i(n),

b= (Aj(1)"."Aj(m))' j(1) < vews < Fim)

with (i ,eeimIvGM o3t = {1,2,..0,n+m} ,
such that

Au > Av » v<u .
For O0sa<eg set A?(k) = Ai(k) ’ A?(k) = vaAj(k) .
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a

o o
Now a+ vb ‘A1""'&n+m

)u
By construction

Gry o o o

Afa+ v b).-L(Aq)x*..XL(An+m)
for 0sSa<e. The representation A(ai-vixb) possess the
unique irreducible quotient, which is equal to
L{a+v¥*) = L(a)x v*L(b) for O<oa<e , and L{a+b) for
a=0.

Suppose that L{a+ b} is a representation of a group Gp.
Let H{Gp) be the Hecke algebra of Gp. For an admissible smooth
representation 1w of GP R ch]T will dencte the character of w.
With a fixed fEH(GP)

* £
(*) o ChL(a)xvaL{b)(‘)
is a continuous function. One can see this from the formula for

the character of an induced representation in [23] (see also
Lemma 2.1. of [20]).

Let (an) be a sequence of real numbers converging to 0
such that 0~<an<<a for all n. Suppose that we have proved
that there exist a gquotient 7w of A(a+b) and a subsequence
(an(k)) of (o)) such that

(**) lém ChL(ai-van(k)b)(f} = chﬁ{f)
for all £fE€ H(Gp) .

Now L{a+ b) is the unique irreducible quotient of
Ala+Db), so it is a (unique irreducible) guotient of 7.
The relations (*) and (**) implies

lim ch

im ehy a+ WO ik)p) (B) -
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11& ChL(a)Xv

i

an (k) y (£)

L(b

= ChL(a)x L(b)(f) = chﬂ(f)

for all fe€ H(Gp). Since L(a+b) 1is a subgquotient of =« ,
the last equality implies that L{(a+ b} is the quotient of
L(a) x L(b).

Thus, for a proof of the proposition we need to contruct
T as above.

Roughly speaking, such 7 1is contructed as follows.
One can realize all representations

L(AD) X ... x L(AD )
on the same vector space (by restriction to the standard maximal
compact subgroup). In this way one obtains a continuous family
of representations on the same vector space (for a precise
formulation of "continuous family" see Lemma 3.5. of [21]). Now
using the compactness of the Grassmanian manifold of a finite
dimensional vector space, and the diagonal procedure (several
times), one constructs a subsequence (an(k)) and 7w as above.

For a formal proof ,to avoid the whole construction,we pass
to the contragradient representations. Now
L{a+v™Mp)~ = L(a)"x v ®L(b)~ is a subrepresentation of
oy~ o
L(A1) XeooX L(An+m
of [21], construct a subsequence (an(k}) of (o)) and a

subrepresentation To of L(A1) X...xL(An+m) such that

)™, and we can as in the proof of Lemma 3.6

lim ch

. ~(f} = ch_ (f)

L{a+ vin(k)py 0

for all f¢ H(Gp). Lemma 3.6. of [21] deals with induced re-
presentations by cuspidals, but the fact that inducing is by
cuspidals ,is not used in the part of the proof of the lemma
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that we need (this fact is used at the end of the proof to
reduce the lemma to the case of subrepresentations). Now

~e

o is in a natural way a quotient of

L(A1)X eea X L(An+m}.

Using the fact that
Chg(f) = Chg(f)
where f is defined by Flg) = f(g—1), one obtains that

1}:i§.m Shy (a4 vOn(k)p) (£) = ch’;{'o(f)

for all fEEH(Gp). Thus, we can take 7w = n.. This finishes the proof.

0
For another possible prooi of the preceding proposition

see (1iij) of A.12.

A.5. Remark: Since the multiplicity of the Langlands re-

presentation in A{a+b) is one, then L{c+d) 1is a com~

position factor of L{c) x L{d) whose multiplicity is one.

A.6. Corollary: (i) Let c,de M{D). If L{c)xL{d) is
irreducible, then

L{c) x L{d) = L(c+d).

(ii) Let a,beM(S(C)). If ©L{a)x L(b) is irreducible then
L{a) *x L{b) = L(a+b).

Corollary 8.2., a) of [1] implies:

A.7. Corollary: (i) Let c,d€ M(D). Suppose that Lic) and L(d)
are unitarizable. Then L{c+ d) is unitarizable and
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L{c+ d) = L{c) x L{d).
{ii) Let a,b€ M{s(C)). If L{a) and L{(b) are unitarizable,then

L{a+b) = L{a) x L{b).

Statement (ii) of the above Corollary remains true if one

consider classification Z instead of L.

In the rest of this section we suppose that the characteristic ¢

the field F is zero.

Let 6€ GL(m,F)” be a Square-integrable representation and
neM. Then the induced representation

n-1 \ n--l__1 _n-1
(7o) (7T ) (U7 )

has a unique irreducible quotient. This quotient was denoted

by u(é,n).

A.8. THEOREM: Suppose that char F = 0, Let &€ Irr be a
square-integrable representation and let néeEn.
Then

u(é,n)

is a unitarizable representation.
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Proof : The first part of the proof uses a resultof [13]jor (2],
and the secona part uses a result of [8].

Let 6653m= GL(m,F)” be a square integrable representation
and neEwN.

There exist a divison algebra
H central over F with dimersion m over F . We choose,
like in § 5 of [13], a number field k, a place w of k, and a

group G defined by a division algebra D over k such that:
F is isomorphic to the completion kw of k at w, the group
G(kw) of kw—rational points of G is isomorphic to the multi-
plicative group of H,G satisfies assumptions of § 5 of [13].
Let S0 be the set of all places v such that G(kv) is rami-
fied. Clearly wE¢ SO' Let A be the Adele ring of k .

Since § is an irreducibie square-integrable representation
of GL(m,F) GL(m,kw), the proof of Proposition 5.15. of Q3]
implies that there exist an irreducible cuspidal automorphic re-

iR

presentation ¢ of GL{m,A) such that, in the factorisation

d

g = v

)
v
which corresponds to the factorisation of GL(m,A}) into the
restricted product of all GL(m,kV) {see [4]), we have

o z §.
v

Let 2" be the center of the algebraic group GL{m).

Then 2z" is isomorphic to GL(1). Now ™M@y is naturally

isomorphic to the restricted product of zm(kv). Let ZT
be the group of all z = (z.)¢€ z"(A) such that’ z,=1 for
all finite places, and =z is a positive real number inde~-

v
pendent of v infinite.
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Let n be the central character of the cuspidal auto-
morphic representation ¢. Suppose that n 1is trivial on
z".

+

Let P be the standard parabolic subgroup of GL({(nm) whose
Levi factor M is naturally isomorphic to GL(m)n. We identify
elements of MR} with n-triples (gi,...,gm), giE GL{(m, A} .
Let 7w be the representation

n-1 n--l__1 _n-1
2

(gv...,gn)-*c£g1)tdetg1l 2 ®glg,) ldetg,| 2 m".@dk%ﬂdet g,

Let = =0nv be the decomposition of 1 into the restrict product
of representations of M(kv). The ianduced representation from

P(A) to GL{n m,A}) (resp. P(kv) Lo GL(nm,kV)) by w({resp. nv)
is denoted by Ind(w) (resp. Ind (nv)).

Since the center Zmn of GL{n,m) is isomorphic to GL(1},
we may consider n like a character of Zmn(A). S5et w= ﬁ“
Let Lz(w,GL(mn,A)) be the space of (classes of) functions on

GL{mn,A} such that

flyzg) = w(z)f(g)

for all vy€GL{mn,k}), =z Ezmn(A), g € GL (an,A) ; and lflz is inte-
grable function on

GL{mn,k) 7™ (@&)N\GL (mn,A)

with respect toanon-trivial right-invariant measure. Action ofGL (mn,B)<

Lz(m,GL(mn,A)) by right shifts defines a unitary representation
of GL{mn,A).

In § 2 of [8] it is proved that there exists an intertwin-
ing operator
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E:Tnd(m) + L2 {(0,GL (mn,B) )

whose image is an irreducible representation. Let 1 be the

image of E. Decompose T into restricted tensor product

T=OT_ .
v

Since Ind(mw) = 3 Indﬁrv} we have the epimorphism
E:% Ind{ﬂv)-rgtv.

Now @ Ind(nv) is,like a representation of GL(mn,kw), isomorphic
to a direct sum of copies of 1Ind {nw) { we need to fix a basis
in each Ind (nv), v+ w, and use the fact that the local Hecke
algebras are idempotented algebras). Since T, is also a direct
sum of copies of Ty ! by the same reasons, we obtain directly
that there exist a surjective intertwining ope&rator

e:Ind(nw)-+Tw.
Now

Ind(ﬁw)

n
—
<

Thus
Tws'uié,n).

Since T 1is a subrepresentation of Lz{w,GL(mn,A)), L is
unitarizable and therefore ui{d,n) 1s unitarizable.

It remains to consider the general case {without
assumption n\zf»= 1). This case reduces to the case of
n]ZT = 1 by twisting & with a suitable character.
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The following theorem is a direct consequence of the

preceding theorem.
A. 9. Theorem: Representations
L(a(n,d) ?)) , n,aem, pect
are unitarizable.
A. 10 Theorem: Let char F = 0. Set
B = {z(a(n,a) Py, nz(am,a) ?),a;
n,d€E®,peCY, 0<a<1/2}.
Fix m€X. Then
(i) If 01"""0k€8 such that
deg 01+...+deg Op = M,

A

then 01 X...xokE Gm

A
(ii} If w¢ Gm’ then there exist 11,...,"cj€ B so that

{iii) If n,G€X,p €CY so that na{deg p) £n, then
)

z(a(n,a) Py - L@ P,

(iv) Let ni,cfii.‘m_J 5
where p,q€ z . Suppose that

P

) (n;d,) deg by * 25

{m.e.}) deg o. = m.
i=1 j=1 33

J

Then

.se. € o u
':e Hrpi,jEC,0<aj<1/2 for 1

<

isp,sl

S

-
-

1<
-

q
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p
{p3) o {o02)  o—n. .
L(iz1a(ni,di) i jg1iv J a(mj,ej) i L aJa(mj,ej)(OJ)])

q

{f% L(a(ng,d, )(pl)) } {TT ﬂ(L(a(m ey y © 3%,& ) } =
e j=1

i

9
(pi) |, (04) =
Ll‘ Z(é( di,ni) i ;} {gi1ﬂ(2(a(ej'mj) J ),aj) }

]

(v%ia (e.,m.)(cj)+ v *Jale. ,m )

(05)
1 3773 3 D

1t

z(
i

™M

a(di,ni)(pi)+
1 3

™0

Proof: We shall prove (i), (ii),(iii) and (iv) by induction on m.
The proof is similar with the proof of Theorem 3.1.

For m = 1 there is nothing to prove. Let m2 2. Suppose
that the theorem holds for k&m-1. Let X .1 ©De defined as in
1) holds (™ is
defined at the second section). Thus we can apply Lemma 2. 1. Each
element of I(G ) 1is some product of elements of Xm—1(I(Gm) is

defined in (ii) of Lemma 2.1.). By definition

Lemma 2.1. By our inductive assumption (U

A A
I(6,) € G,

and
A
Gm\\z(ém) c {z(a(n,d)®)), n,dem,p ec? and (nd)degp= m}.

A
Let 1€ I(Gm) . Then

T = ﬁ' Z(a(ny £, y (py) )xTT ™2 (a(mg ey y 95)y, ay)
i=1 - 3=1

u
for some ni,diem.pi,ojﬁc .0 <aj <1/2,p,4€Z,_ ,by Lemma 2.1.

By inductive assumption, we have

(ps), (ps)
Z(a(nirdi) i’y = L(a(di,ni} 1),
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Also

)

(o4 -
ﬂ(L(a(ej,mj) J ),aj)

)

O (o4) -0 (o4
viiL(ale,,my) TTI7) xv 73 Lia(ey; mg) T

)

(p5
ﬂ(Z£a(mj,ej) ] ),aj).

Thus n(L(a(ej,mj)(cj),aj) is unitarizable. Using Corollary
A.7. we obtain

P
- (pi) y (03)
T iII L{a(d ,n,) X gz1n(L(a(ej,mj) 37 e5) .

' A
This implies that (iv) holds for representations in I(Gm).
Let now n,d€N,p €c® so that
(nd) degp = m.

Now L(a(n,d)(p)) is unitarizable, by Theorem A.9 . By the
preceding considerations

A
L(a(n,d) Phe 1(G,).

Thus
L(.a(n,d) {p)) € {2(a(u,v) (0));u,v€N,o ecY and
(uv) deg o= m} .
Therefore, L(a(n,d)(p)) = Z{a(u,v) ‘0)) for some u,v

and ¢ as above. The fact

supp a(n,d) ?) = supp a(u,v) ¥’
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implies

Lia(n,d) *)) e (z(a(m,a Py, z(a(a,n) Py}
By Lemma 2.3.

L(a(n,d) Py = z¢a(a,m Py .

Thus Z(a(d,n)(p)) is unitarizable. This implies (i}, (ii),
{iii) and the rest of (iv).

Let R be the additive subgroup of R generated by
Irru. Then Irr® is a Z~basis of Ru, and R" is a subring
of r.

The following theorem is a direct consequence of the
preceding one. h

A.11. Theorem: (i) Let a €M(S(C)). The representation Z(a)
is unitarizable if and only if

t{Z(a)) = L(a)
is unitarizable.
(ii) The mapping
t:Irr" » Irr"
z(a) » L(a), 2z(a) € Irr",

is an involutive automorphism of the multiplicative semigroup
u
Irr~.

(iii) The homomorphism in (ii) satisfies
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t(z(aln,d) Pl = z(aw@,n) P,
tlp(z(aim,a) Ply,a)y = niziaia,n Py,
n,dem,peCY, 0<a<1/2.

(iv} The mapping thu is an involutive ring automorphism.

A.12. Remark: (i) Lemma 2.3. can not be omitted in our proof
of Theorem 3.1., while we can prove (i)} and (ii) of Theorem
A.10., and also (i), (ii),(iv) of Theorem A.11. without using
Lemma 2.3.

(ii) The statement (i) of the preceding theorem is a new proof
of Conjecture 8.10. of [1] stated by J.N. Bernstein (in the
zero characteristic case).

(iii) Now we shall give an outline <~f another possible proof
of Proposition A.4. If 4€ M(D) then we have in R

d d d
A{d) = L{x) €Z ,m. = 1
xE%(D) x R
L(d) = m{d,x)A({x), m(d,x) € Z2,m(d,d) = 1,
XEM(D)

Take d1,d2€IM(D). In the ring R we have

L(dy) % L(dy) = (E m(dy,xq) A (x,) )X (En(dy,%,) A (x,y))

]

k(d14-d2) +* L m(dT,x1)m(d2,x2)A(x1+-x2) =

x1¢d1,

or x2=d2

i

d,+d
L(d; +d,) + mid,,d,)m(d,,d,) ] m1 2L(Y
y*d,+d,
X1+Xy
+ ] (m(dT,x1)m(d2,x2) z By Li{y)).
x1¢d1, Y
or x2¢d2
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For a proof of Proposition A.4 it is enough to show that if

Xq17%,
m(d1x1)m(d2,x2)my 2 0

where x1:='d1 or x2¢ d2, then y=# d1+-d2. This can be obtained

using relation which exist between a and b when mg # 0 (i.a.
when L(b) is a composition factor of

Ala). FPor this relation one
can consult A.4. f. of [2].
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