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Abstract. This is a survey of higher-dimensional Kleinian groups, i.e., discrete
isometry groups of the hyperbolic n-space Hn for n ≥ 4. Our main emphasis is on
the topological and geometric aspects of higher-dimensional Kleinian groups and
their contrast with the discrete groups of isometry of H

3.

To the memory of Sasha Reznikov

1. Introduction

The goal of this survey is to give an overview (mainly from the topological prospec-
tive) of the theory of Kleinian groups in higher dimensions. The survey grew out of
a series of lectures which I gave in the University of Maryland in Fall of 1991. An
early version of this paper appeared as the preprint [107]. In this survey I collected
well-known facts as well as less-known and new results. Hopefully, this will make
the survey interesting to both non-experts and experts. We also refer the reader to
Tukia’s short survey of higher-dimensional Kleinian groups, [201].

There is a vast variety of Kleinian groups in higher dimensions: It appears that
there is no hope for a comprehensive structure theory similar to the theory of discrete
groups of isometries of H3. I do not know a good guiding principle for taxonomy of the
higher-dimensional Kleinian groups. In this paper the higher-dimensional Kleinian
groups are organized according to the topological complexity of their limit sets. In
this setting, one of the key questions that I will address is the interaction between the
geometry and topology of the limit set and the algebraic and topological properties
of the Kleinian group.

This paper is organized as follows. In Section 2 we consider the most basic concepts
of the theory of Kleinian groups, e.g. domain of discontinuity, limit set, geometric
finiteness, etc. In Section 3 we discuss various ways to construct Kleinian groups and
list the tools of the theory of Kleinian groups in higher dimensions. In Section 4 we
review the homological algebra used in the paper. In Section 5 we discuss various
notions of equivalence between Kleinian groups: From the weakest (isomorphism) to
the strongest (conjugacy).

In Section 6 we consider groups with zero-dimensional limit sets; such groups are
relatively well-understood. Convex-cocompact groups with 1-dimensional limit sets
are discussed in Section 7. Although the topology of the limit sets of such groups
is well-understood, their group-theoretic structure is a mystery. We know very little
about Kleinian groups with higher-dimensional limit sets, thus we restrict the dis-
cussion to Kleinian groups whose limit sets are topological spheres (Section 8). We
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then discuss Ahlfors finiteness theorem and its failure in higher dimensions (Section
9). We then consider the representation varieties of Kleinian groups (Section 10).
Lastly we discuss algebraic and topological constrains on Kleinian groups in higher
dimensions (Section 11).

Acknowledgements. During this work I was partially supported by various NSF
grants, especially DMS-8902619 at the University of Maryland and DMS-04-05180 at
UC Davis. Most of this work was done when I was visiting the Max Plank Institute for
Mathematics in Bonn. I am also grateful to C. McMullen, T. Delzant, A. Nabutovsky
and J. Souto for several suggestions.

Contents

1. Introduction 1

2. Basic definitions 3

3. Ways and means of Kleinian groups 6

3.1. Ways: Sources of Kleinian groups 6

3.2. Means: Tools of the theory of Kleinian groups in higher dimensions 8

4. A bit of homological algebra 9

5. Notions of equivalence for Kleinian groups 11

6. Groups with zero-dimensional limit sets 15

7. Groups with one-dimensional limit sets 20

8. Groups whose limit sets are topological spheres 22

8.1. Topological rigidity 24

8.2. Quasifuchsian groups of codimension 1 24

8.3. 1-quasifuchsian subgroups of Mob(S3) 27

9. Ahlfors finiteness theorem in higher dimensions:
Quest for the holy grail 29

9.1. The holy grail 29

9.2. Groups with small limit sets 32

10. Representation varieties of Kleinian groups 35

10.1. Local theory 36

10.2. Stability theorem 42

10.3. Space of discrete and faithful representations 44

10.4. Why is it so difficult to construct higher-dimensional geometrically
infinite Kleinian groups? 47

11. Algebraic and topological constrains on Kleinian groups 49

11.1. Algebraic constrains 49

11.2. Topological constrains 51

References 53
2



2. Basic definitions

Moebius transformations. For the lack of space, our discussion of the basics of
Kleinian groups below is somewhat sketchy. For the detailed treatment we refer the
reader to [130, 16, 35, 173, 113]. We let Bn+1 denote the closed ball Hn+1 ∪ Sn; its
boundary Sn is identified via the stereographic projection with Rn = Rn ∪ {∞}. Let
Mob(Sn) denote the group of all Moebius transformations of the n-sphere Sn, i.e.,
compositions of inversions in Sn. The group Mob(Sn) admits an extension to the
hyperbolic space Hn+1, so that Mob(Sn) = Isom(Hn+1), the isometry group of Hn+1.

For elements γ ∈Mob(Sn) define the displacement function

dγ(x) := d(x, γ(x)), x ∈ H
n+1.

The elements γ of Mob(Sn) are classified as:

1. Hyperbolic: The function dγ is bounded away from zero. Its minimum is attained
on a geodesic Aγ ⊂ Hn+1 invariant under γ. The ideal end-points of Aγ are the fixed
points of γ in Sn.

2. Parabolic: The function dγ is positive but has zero infimum on Hn+1; such
elements have precisely one fixed point in S

n.

3. Elliptic: γ fixes a point in Hn+1.

The group Mob(Sn) is isomorphic to an index 2 subgroup in the Lorentz group
O(n + 1, 1), see e.g. [173]. In particular, Mob(Sn) is a matrix group. Selberg’s
lemma (see [186]) implies that every finitely generated group of matrices contains a
finite index subgroup which is torsion-free. This, of course, applies to the finitely
generated subgroups of Mob(Sn) as well.

A group Γ is said to virtually satisfy a property X if it contains a finite index
subgroup Γ′ ⊂ Γ, such that Γ′ satisfies X. Therefore, every finitely generated group
of matrices is virtually torsion-free.

Definition 2.1. A discrete subgroup Γ ⊂Mob(Sn) is called a Kleinian group.

Dynamical notions. The discontinuity set Ω(Γ) of a group Γ ⊂ Mob(Sn), is
the largest open subset in Sn where Γ acts properly discontinuously. Its complement
Sn \Ω(Γ) is the limit set Λ(Γ) of the group Γ. Equivalently, the limit set of a Kleinian
group can be described as the accumulation set in the sphere Sn of an orbit Γ ·o. Here
o is an arbitrary point in H

n+1. A Kleinian group is called elementary if its limit set
is finite, i.e., is either empty, or consists of one or of two points.

We will use the notationMn(Γ) for the n-dimensional quotient Ω(Γ)/Γ and M̄n+1(Γ)
for the n+ 1-dimensional quotient (Hn+1 ∪ Ω(Γ))/Γ.

For a closed subset Λ ⊂ Sn, let Hull(Λ) denote its convex hull in Hn, i.e., the
smallest closed convex subset H of H

n such that

clBn+1(H) ∩ S
n = Λ.

Clearly, if Λ is a point, then Hull(Λ) does not exist. Otherwise, Hull(Λ) exists and
is unique. We declare Hull(Λ) to be empty in the case when Λ is a single point.

One way to visualize the convex hull Hull(Λ) is to consider the projective model of
the hyperbolic space, where the geodesic lines are straight line segments contained in
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the interior of Bn+1. Therefore, the Euclidean notion of convexity coincides with the
hyperbolic notion. Hence the convex hull in this model can be described as follows:
Hull(Λ) is the intersection of the Euclidean convex hull of Λ with the interior of Bn+1.

Suppose that Λ = Λ(Γ) is the limit set of a Kleinian group Γ ⊂ Mob(Sn). The
quotient Hull(Λ)/Γ is called the convex core of the orbifold N = Hn+1/Γ. It is
characterized by the property that it is the smallest closed convex subset in N , whose
inclusion toN is a homotopy-equivalence. For ε > 0 consider the open ε-neighborhood
Hullε(Λ) of Hull(Λ) in H

n+1. Since Hullε(Λ) is Γ-invariant, we can form the quotient
Hullε(Λ)/Γ. Then Hullε(Λ)/Γ is the ε-neighborhood of the convex core.

Geometric finiteness. We now arrive to one of the key notions in the theory of
Kleinian groups:

Definition 2.2. A Kleinian group Γ ⊂Mob(Sn) is called geometrically finite if:

(1) Γ is finitely generated,

and

(2) vol(Hullε(Λ(Γ))/Γ) <∞.

In a number of important special cases, e.g. when Γ is torision-free, or n = 2, or
when Λ(Γ) = Sn, the assumption (1) follows from (2), see [35]. However, E.Hamilton
[89] constructed an example of a Kleinian group Γ ⊂ Mob(S3) for which (2) holds
but (1) fails. This group contains finite order elements of arbitrarily high order; by
Selberg’s lemma, such groups cannot be finitely-generated.

A Kleinian group Γ ⊂ Mob(Sn) is called a lattice if Hn+1/Γ has finite volume.
Equivalently, Λ(Γ) = Sn and Γ is geometrically finite. A lattice is cocompact (or
uniform) if Hn+1/Γ is compact.

One can characterize geometrically finite groups in terms of their limit sets. Before
stating this theorem we need two more definitions.

Definition 2.3. A limit point ξ ∈ Λ(Γ) is called a conical limit point if there exists a
geodesic α ⊂ Hn asymptotic to ξ, a point o ∈ Hn, a number r < ∞, and a sequence
γi ∈ Γ so that

1. limi γi(o) = ξ.

2. d(γi(o), α) ≤ r.

The reason for this name comes from the shape of the r-neighborhood of the vertical
geodesic α in the upper half-space model of Hn+1: It is a Euclidean cone with the axis
α. Equivalently, one can describe the conical limit points of nonelementary groups
by the following (see [35]):

ξ ∈ Λ(Γ) is a conical limit point if and only if for every η ∈ Λ(Γ) \ {ξ} there exists
a point ψ and a sequence γi ∈ Γ such that:

1. limi γi(ζ) = ξ for every ζ ∈ Λ(Γ) \ {ψ}.
2. limi γ

−1
i (ξ) 6= limi γ

−1
i (η).

The set of conical limit points of a Kleinian group Γ is denoted Λc(Γ).

Definition 2.4. A point ξ ∈ Λ(Γ) is called a bounded parabolic fixed point if it is the
fixed point of a parabolic subgroup Π ⊂ Γ and (Λ(Γ)− {ξ})/Π is compact.
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The following is one of the many characterizations of geometrically finite groups:

Theorem 2.5. (A. Beardon and B. Maskit [12], B. Bowditch [35]) A Kleinian group
Γ is geometrically finite if and only if each limit point ξ ∈ Λ(Γ) is either a conical
limit point or a bounded parabolic fixed point.

C.Bishop proved in [28] that one can drop the word bounded in the above theorem.

We refer the reader to [35] for other characterizations of geometric finiteness. For
instance, if Γ has no parabolic elements then geometric finiteness is equivalent to the
assumption that M̄n+1(Γ), or, equivalently, Hull(Λ(Γ))/Γ, is compact. In this case
the group Γ is called convex-cocompact. We will frequently use the fact that every
convex-cocompact Kleinian group is Gromov-hyperbolic (see e.g. [39]).

A sufficient, but not necessary, condition for geometric finiteness of Γ ⊂Mob(Sn)
is existence of a convex fundamental polyhedron Φ ⊂ Hn+1, which has only finitely
many faces.

If n = 1, then every finitely generated Kleinian group is geometrically finite. The
proof is rather elementary, see e.g. [48]. For n ≥ 2 this implication is no longer true.
The first (implicit) examples were given by L. Bers, they are singly-degenerate groups:

Definition 2.6. A finitely generated nonelementary Kleinian subgroup of Mob(S2)
is singly degenerate if its domain of discontinuity is simply-connected, i.e., homeo-
morphic to the 2-disk.

L. Bers [17] proved that singly degenerate Kleinian groups exist and are never
geometrically finite. The first explicit examples of finitely generated geometrically
infinite Kleinian subgroups Γ of Mob(S2) were given by T. Jorgensen [100]. In

Jorgensen’s examples Γ appears as a normal subgroup of a lattice Γ̂ ⊂ Mob(S2)

with Γ̂/Γ ∼= Z. Remarkably, all known examples of finitely-generated geometrically
infinite Kleinian subgroups of Mob(Sn) can be traced to the 2-dimensional examples
(i.e., contained in Mob(S2)), or quasiconformal deformations of such examples.

Problem 2.7. Construct examples of finitely-generated geometrically infinite sub-
groups of Mob(Sn), n ≥ 3, which do not have the 2-dimensional origin as above.

Assumption 2.8. From now on we will assume that all Kleinian groups are finitely
generated and torsion free, unless we state otherwise.

Note that the second part of this assumption is not very restrictive because of
Selberg’s lemma.

Cusps. Γ-conjugacy classes [Π] of maximal parabolic subgroups Π of a Kleinian
group Γ are called cusps of Γ. More geometrically, cusps of Γ can be described using
the thick-thin decomposition of the quotient manifold M = Hn+1/Γ. Given a positive
number ε > 0 let M(0,ε] denote the collection of points x in M such that there exists a
homotopically nontrivial loop α based at x, so that the length of α is at most ε. Then
M(ε,∞) is the complement of M(0,ε] in M . According to Kazhdan-Margulis lemma
[124], there exists a number µ = µn+1 > 0 such that for every Kleinian group Γ, every
component of M(0,µ] has virtually abelian fundamental group. The submanifold M(0,µ]

is called the thin part of M and its complement the thick part of M .
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Now, the cusps of Γ are in bijective correspondence with the noncompact compo-
nents of M(0,µ] (also called cusps):

For every cusp [Π] in Γ, there exists a noncompact component C ⊂M(0,µ], so that
Π = π1(C). Conversely, for each cusp C ⊂ M , there exists a maximal parabolic
subgroup Π ⊂ Γ such that Π = π1(C).

Taking the Γ-conjugacy class of Π reflects ambiguity in the choice of the base-point
needed to identify π1(M) and Γ.

Moebius structures. In this paper we shall also discuss the subject closely related
to the theory of Kleinian groups, namely Moebius structures. When M is a smooth
manifold of dimension ≥ 3, a Moebius (or flat conformal) structure K on a M is the
conformal class of a conformally-Euclidean Riemannian metric on M . Topologically,
K is a maximal Moebius atlas on M , i.e., an atlas with Moebius transition maps.
Thus, for each Kleinian group Γ and a Γ-invariant subset Ω ⊂ Ω(Γ), the standard
Moebius structure on Ω ⊂ Sn projects to a Moebius structure KΓ on the manifold
Ω/Γ. The Moebius structures of this type are called uniformizable.

Complex-hyperbolic Kleinian groups. Instead of considering the isometry
group of the hyperbolic n-space, one can consider other negatively curved symmetric
spaces, for instance, the complex–hyperbolic n-space CHn and its group of biholomor-
phic isometries PU(n, 1). From the analytical viewpoint, CHn is the unit ball in Cn

and PU(n, 1) is the group of biholomorphic automorphisms of this ball. The Bergman
metric on CHn is a Kähler metric of negative sectional curvature. The discrete sub-
groups of PU(n, 1) are complex–hyperbolic Kleinian groups. They share many prop-
erties with Kleinian groups. In fact, nearly all positive results stated in this survey
for Kleinian subgroups of Mob(Sn) (n ≥ 3) are also valid for the complex–hyperbolic
Kleinian groups! (One has to replace virtually abelian with virtually nilpotent in the
discussion of cusps.) There exists an isometric embedding Hn → CHn which induces
an embedding of the isometry groups. Therefore, complex–hyperbolic Kleinian groups
(n ≥ 4) also inherit the pathologies of the higher–dimensional Kleinian groups.

We refer the reader to [76, 77, 182] for the discussion of complex–hyperbolic Kleinian
groups.

3. Ways and means of Kleinian groups

3.1. Ways: Sources of Kleinian groups. The following is a list of ways to con-
struct Kleinian groups.

(a) Poincare fundamental polyhedron theorem (see e.g. [173] for the very
detailed discussion, as well as [146]). This source is, in principle, the most general.
The Poincare fundamental polyhedron theorem asserts that given a polyhedron Φ in
Hn+1 and a collection of elements γ1, γ2, ..., γk, ... of Mob(Sn), pairing the faces of
Φ, under certain condition on this data, the group Γ generated by γ1, γ2, ..., γk, ... is
Kleinian and Φ is a fundamental domain for the action of the group Γ on Hn+1.

Every Kleinian group has a convex fundamental polyhedron (for example, the
Dirichlet fundamental domain). However, in practice, Poincare fundamental poly-
hedron theorem is not always easy to use, especially if Φ has many faces and n is
large. This theorem was used, for instance, to construct non-arithmetic lattices in

6



Mob(Sn) (see [140, 141, 203]), as well as other interesting Kleinian groups, see e.g.
[55, 131, 108, 94, 174].

(b) Klein–Maskit Combination Theorems (see e.g. [146] and [130]). The
Combination Theorems provide conditions that guarantee that a group Γ ⊂Mob(Sn)
generated by two Kleinian subgroups Γ1,Γ2 ⊂Mob(Sn), is again Kleinian and alge-
braically splits as an amalgam of Γ1 and Γ2. (These theorems generalize the classical
“ping-pong” argument due to Schottky and Klein.) Combination Theorems also show
that the quotient manifold Mn(Γ) of the group Γ is obtained from Mn(Γ1), M

n(Γ2)
via some “cut-and-paste” operation. Moreover, Combination Theorems generalize
to graph of groups. There should be a generalization of Combination Theorems to
complexes of groups (see e.g. [39] for the definition); however, to the best of my
knowledge, nobody worked out the general result, see [114] for a special case.

(c) Arithmetic groups and their subgroups (see e.g. [204] and [139]). A
subgroup Γ ⊂ O(n, 1) is called arithmetic if there exists an embedding

ι : O(n, 1) ↪→ GL(N,R),

such that the image ι(Γ) is commensurable with the intersection

ι(O(n, 1)) ∩GL(N,Z).

Recall that two subgroups Γ1,Γ2 ⊂ G are called commensurable if Γ1 ∩ Γ2 has finite
index in both Γ1 and Γ2.

Below is a specific construction of arithmetic groups. Let f be a quadratic form of
signature (n, 1) in n+ 1 variables with coefficients in a totally real algebraic number
field K ⊂ R satisfying the following condition:

(*) For every nontrivial (i.e., different from the identity) embedding σ : K → R,
the quadratic form fσ is positive definite.

Without loss of generality one may assume that this quadratic form is diagonal.
For instance, take

f(x) = −
√

2x2
0 + x2

1 + ...+ x2
n.

We now define discrete subgroups of Isom(Hn) using the form f . Let A denote
the ring of integers of K. We define the group Γ := O(f, A) consisting of matrices
with entries in A preserving the form f . Then Γ is a discrete subgroup of O(f,R).
Moreover, it is a lattice: its index 2 subgroup

Γ′ = O′(f, A) := O(f, A) ∩O′(f,R)

acts on H
n so that H

n/Γ′ has finite volume. Such groups Γ (and subgroups of
Isom(Hn) commensurable to them) are called arithmetic subgroups of the simplest
type in O(n, 1), see [204].

Remark 3.1. If Γ ⊂ O(n, 1) is an arithmetic lattice so that either Γ is non-cocompact
or n is even, then it follows from the classification of rational structures on O(n, 1) that
Γ is commensurable to an arithmetic lattice of the simplest type. For odd n there
is another family of arithmetic lattices given as the groups of units of appropriate
skew-Hermitian forms over quaternionic algebras. Yet other families of arithmetic
lattices exist for n = 3 and n = 7. See e.g. [204].
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We refer the reader to [139] for the detailed treatment of geometry and topology of
arithmetic subgroups of Mob(S2).

(d) Small deformations of a given Kleinian group. We discuss this construc-
tion in details in Section 10.1. The idea is to take a Kleinian group Γ ⊂Mob(Sn) and
to “perturb it a little bit”, by modifying the generators slightly (within Mob(Sn))
and preserving the relators. The result is a new group Γ′ which may or may not
be Kleinian and even if it is, Γ′ is not necessarily isomorphic to Γ. However if Γ is
convex-cocompact, Γ′ is again a convex-cocompact group isomorphic to Γ, see Theo-
rem 10.14.

(e) Limits of sequences of Kleinian groups, see Section 10.3. Take a sequence
Γi of Kleinian subgroups of Mob(Sn) and assume that it has a limit Γ: It turns out
that there are two ways to make sense of this procedure (algebraic and geometric
limit). In any case, Γ is again a Kleinian group. Even if the (algebraic) limit does not
exist as a subgroup of Mob(Sn), there is a way to make sense of the limiting group
as a group of isometries of a metric tree. This logic turns out to be useful for proving
compactness theorems for sequences of Kleinian groups.

(f) Differential-geometric constructions of hyperbolic metrics. The only
(but spectacular) example where it has been used is Perelman’s work on Ricci flow
and proof of Thurston’s geometrization conjecture. However applicability of this tool
at the moment appears to be limited to 3-manifolds.

A beautiful example of application of (b) and (c) is the construction of M. Gromov
and I. Piatetski-Shapiro [84] of non-arithmetic lattices in Mob(Sn). Starting with two
arithmetic groups Γj (j = 1, 2) they first “cut these groups in half”, take “one half”
∆j ⊂ Γj of each, and then combine ∆j’s via Maskit Combination. The construction
of Kleinian groups in [85] (see also Section 8.2) is an application of (b), (c) and (d).
Thurston’s hyperbolic Dehn surgery theorem is an example of (e). One of the most
sophisticated constructions of Kleinian groups is given by Thurston’s hyperbolization
theorem (see e.g. [165], [166], [113]); still, it is essentially a combination (a very
complicated one!) of (b), (d) and (e).

Remark 3.2. There is potentially the sixth source of Kleinian groups in higher dimen-
sions: monodromy of linear ordinary differential equations. However, to the best of
my knowledge, the only example of its application relevant to Kleinian groups, is the
construction of lattices in PU(n, 1) (i.e., the isometry group of the complex-hyperbolic
n–space) by Deligne and Mostow, see [57].

3.2. Means: Tools of the theory of Kleinian groups in higher dimensions.
Several key tools of the “classical” theory of Kleinian subgroups of Mob(S2) (mainly,
the Beltrami equation and pleated hypersurfaces) are missing in higher dimensions.
Below is the list of main tools that are currently available.

(a) Dynamics, more specifically, the convergence property: Every sequence
of Moebius transformations γi ∈Mob(Sn) either contains a convergent subsequence
or contains a subsequence which converges to a constant map away from a point in
Sn. See e.g. [113].
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(b) Kazhdan-Margulis lemma and its corollaries.

It turns out that the lion share of the general results about higher-dimensional
Kleinian groups is a combination of (a) and (b), together with some hyperbolic ge-
ometry.

(c) Group actions on trees and Rips theory. This is a very potent tool for
proving compactness results for families of representations of Kleinian groups, see for
instance Theorem 10.18.

(d) Barycentric maps. These maps were originally introduced by A. Douady and
C. Earle [60] as a tool of the Teichmüller theory of Riemann surfaces. In the hands
of of G. Besson, S. Gallot and G. Courtois these maps became a powerful analytic
tool of the theory of Kleinian groups in higher dimensions, see e.g. [19, 20], as well
as Theorems 9.21 and 10.24 in this survey. In contrast, equivariant harmonic maps
which proved so useful in the study of, say, Kähler groups, seem at the moment to
be only of a very limited use in the theory of Kleinian groups in higher dimensions.

(e) Ergodic theory of the actions of Γ on its limit set and Patterson–
Sullivan measures. See for instance [191], [163] and the survey of P. Tukia [201].

(f) Conformal geometric analysis. This is a branch of (conformal) differential
geometry concerned with the analysis of the conformally-flat Riemannian metrics on
Mn(Γ) = Ω(Γ)/Γ. This tool tends to work rather well in the case when Mn(Γ)
is compact. The most interesting examples of this technique are due to R. Schoen
and S-T. Yau [181], S. Nayatani [162], A. Chang, J. Qing, J. and P. Yang, [49], and
H. Izeki [96, 97, 98].

(g) Infinite-dimensional representation theory of the group Mob(Sn). The
only (but rather striking) example of its application is Y. Shalom’s work [187].

(h) Topological rigidity theorems of Farrell and Jones: See Section 8.1.

4. A bit of homological algebra

(Co)homology of groups. Throughout this section we let R be a commutative
ring with a unit. The group ring RΓ of a group Γ consist of finite linear combinations
of the form ∑

γ∈Γ

rγγ,

with rγ ∈ R equal to zero for all but finitely many γ ∈ Γ. The examples that the
reader should have in mind are R = Z and R = R. Let V be a (left) RΓ-module.
Basic examples include V = R (with the trivial RΓ-module structure) and V = RΓ.
If R is a field, then V is nothing but a vector space over R equipped with a linear
action of the group Γ. The very useful (for the theory of Kleinian groups) example is
the following:

Let G = Mob(Sn), g be the Lie algebra of G. Then G acts on g via the adjoint
representation Ad = AdG. Therefore g becomes an RG-module. For every abstract
group Γ and a representation ρ : Γ→ G we obtain the RΓ-module

V = gAd(ρ)
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where the action of Γ is given by the composition Ad ◦ ρ. We will abbreviate this
module to Ad(ρ). From the theory of Kleinian groups viewpoint, the most important
example of this module is when Γ is a Kleinian subgroup of G and ρ is the identity
embedding.

Given an RΓ-module V , one defines the homology and cohomology groups

H∗(Γ, V ), H∗(Γ, V )

of Γ with coefficients in V ; we refer the reader to [26, 42] for the precise definitions
and discussion. Similarly, given a collection Π of conjugacy classes of subgroups of Γ,
one defines relative (co)homology H∗(Γ,Π;V ) and H∗(Γ,Π;V ). Whenever discussing
(co)homology with R = Z and Z as the trivial ZΓ-module, we will use the notation
H∗(Γ), H∗(Γ).

An example to keep in mind is the following. Suppose that M is a manifold, or,
more generally, a cell complex, which is an Eilenberg-MacLane space K(Γ, 1). Then
for the trivial Γ-module R we have

H∗(Γ, R) ∼= H∗(M,R), H∗(Γ, R) ∼= H∗(M,R).

The (co)homology of groups behave in a manner similar to the more familiar
(co)homology of cell complexes. For instance, if Γ admits an n-dimensional K(Γ, 1),
then H i(Γ, V ) = Hi(Γ, V ) = 0 for all i > n and all RΓ-modules.

(Co)homological dimension. For a group Γ let cdR(Γ) and hdR(Γ) denote the
cohomological and homological dimensions of Γ (over R):

cdR(Γ) = sup{n : ∃ an RΓ–module V so that Hn(Γ, V ) 6= 0},
hdR(Γ) = sup{n : ∃ an RΓ–module V so that Hn(Γ, V ) 6= 0}.

Using the relative (co)homology one defines the relative (co)homological dimension of
Γ with respect to a collection Π of the conjugacy classes of its subgroups, cdR(Γ,Π)
and hdR(Γ,Π). We will use this definition in the case when Γ is a Kleinian group and
Π is the set of its cusps. We will omit the subscript Z whenever R = Z.

If Γ admits a compact K(Γ, 1) then

hdR(Γ) = cdR(Γ), ∀ rings R,

see for instance [26]. In general,

hdR(Γ) ≤ cdR(Γ) ≤ hdR(Γ) + 1.

Example 4.1. Let Γ be a free group of finite rank k > 0. Then hdR(Γ) = cdR(Γ)
for all rings R. Indeed, Γ admits a finite K(Γ, 1) which is the bouquet B of k circles.
Since B is 1-dimensional,

hdR(Γ) = cdR(Γ) ≤ 1.

On the other hand, by taking the trivial RΓ-module V = R we obtain

H1(B,R) = Rk,

the direct sum of k copies of R, and hence is nontrivial.

It turns out that the converse to this example is also true, which is an application
of the famous theorem of J. Stallings on ends of groups:

10



Theorem 4.2. (J. Stallings, [188]) If Γ is a finitely generated group with cd(Γ) = 1,
then Γ is free.

This result was generalized by M. Dunwoody:

Theorem 4.3. (M.Dunwoody, [61]) Let R be an arbitrary commutative ring with a
unit.

1. If Γ is a finitely generated torsion-free group with cdR(Γ) = 1, then Γ is free.

2. If Γ is finitely-presented and cdR(Γ) = 1 then Γ is a free product of finite and
cyclic groups with amalgamation over finite subgroups. In particular, Γ is virtually
free.

Poincare duality groups. Poincare duality groups are homological generaliza-
tions of the fundamental groups of closed aspherical manifolds. We give the definition
under the assumption that Γ admits a compact K(Γ, 1).

Definition 4.4. The group Γ is an (oriented) n-dimensional Poincare duality group
over R (a PD(n)-group for short) if

H i(Γ, RΓ) ∼= R, for i = n and H i(Γ, RΓ) = 0, for i 6= n.

The basic examples are the fundamental groups of closed oriented aspherical n-
manifolds.

This definition generalizes to (possibly non-oriented) PD(n)-groups, where we have
to twist the module V = RΓ by an appropriate orientation character χ : RΓ → R.
The basic examples are the fundamental groups of closed aspherical n-manifolds M .
The character χ in this case corresponds to the orientation character π1(M)→ R.

The following is one of the major problems in higher-dimensional topology:

Problem 4.5. (C.T.C. Wall, see a very detailed discussion in [125].) Suppose that
Γ is an n-dimensional Poincare duality group over Z. Then there exits a closed n-
dimensional manifold M which is K(Γ, 1).

This problem is open for all n ≥ 3. The case n = 1 is an easy corollary of the
Stallings-Dunwoody theorem. In the case n = 2, the positive solution is due to
Eckmann, Linnel and Muller, see [63], [62]. This result was extended to the case of
fields R by B. Bowditch [36] and for general rings R by M. Kapovich and B. Kleiner
[118] and B. Kleiner [127].

Cannon’s conjecture below is a special case (after Perelman’s work) of Wall’s prob-
lem:

Conjecture 4.6. (J. Cannon) Suppose that Γ is a Gromov-hyperbolic group whose
ideal boundary is homeomorphic to S2. Then Γ admits a cocompact properly discon-
tinuous isometric action on H3.

5. Notions of equivalence for Kleinian groups

In this section we discuss various equivalence relations for Kleinian subgroups Γ1,Γ2

of Mob(Sn). We start with the weakest one and end with the strongest.

(0) Algebraic: Γ1 is isomorphic to Γ2 as an abstract group.
11



(1) Dynamical: there exists a homeomorphism f : Λ(Γ1) → Λ(Γ2) such that
fΓ1f

−1 = Γ2; i.e., the groups Γ1 and Γ2 have the same topological dynamics on their
limit sets. Thus, Γ1 is geometrically finite iff Γ2 is, since geometric finiteness can be
stated in terms of topological dynamics of a group on its limit set (Theorem 2.5).

(2) Topological conjugation: there exists a homeomorphism f : Sn → Sn such
that fΓ1f

−1 = Γ2. (One can relax this by assuming that f is defined only on the
domain of discontinuity.)

(3) Quasiconformal conjugation: in (2) one can find a quasiconformal homeo-
morphism. In the case n = 1 one should replace quasiconformal with quasisymmetric.

(4) Topological isotopy: in (2) there exists a continuous family of homeomor-
phisms ht : S

n → S
n such that: h0 = id, ∀t, htΓ1h

−1
t ⊂Mob(Sn) and h1Γ1h

−1
1 = Γ2.

(5) Quasiconformal isotopy: in (4) all homeomorphisms are quasiconformal
(quasisymmetric).

(6) Moebius conjugation: there is f ∈Mob(Sn) such that fΓ1f
−1 = Γ2.

We refer the reader to [90, 95] for the definitions of quasisymmetric and quasicon-
formal homeomorphisms.

Below is a collection of facts about the relation between different notions of equiv-
alence of Kleinian groups.

Suppose that both groups Γj are geometrically finite and ϕ : Γ1 → Γ2 is an iso-
morphism which preserves the type of elements, i.e., for γ ∈ Γ1, ϕ(γ) is hyperbolic if
and only if γ is hyperbolic. It is clear that the above assumptions are necessary for
getting the equivalence (1). The following theorem shows that these assumptions are
also sufficient.

Theorem 5.1. (P. Tukia [199]). Under the above assumptions, the isomorphism ϕ
can be realized by the equivalence (1), i.e., there exists a (quasisymmetric) homeo-
morphism f of the limit sets, so that fγf−1 = ϕ(γ) for all γ ∈ Γ1. Moreover, if
f : Ω(Γ1) → Ω(Γ2) is a ϕ-equivariant quasiconformal (quasisymmetric) homeomor-
phism, then f admits a ϕ-equivariant quasiconformal (quasisymmetric) extension to
the entire sphere.

Question 5.2. (Quasiconformal vs. topological.) Suppose that two Kleinian
groups Γ1,Γ2 ⊂Mob(Sn) are topologically conjugate by a homeomorphism f (defined
either on Ω(Γ1), or on Λ(Γ1), or on the entire Sn), which induces a type-preserving
isomorphism ϕ : Γ1 → Γ2. Does it imply that ϕ is induced by a quasiconformal
(quasisymmetric) homeomorphism with the same domain as f?

Note that, for every n, the above question actually consists of 3 subquestions,
depending on the domain of f . Here is what is currently known about these questions:

1. If n = 1 then all three questions have the affirmative answer and the proof is
rather elementary. It also follows for instance from Theorem 5.1.

2. If n = 2 then the answer to all three questions is again positive, but the proof is
highly nontrivial. The easiest case is when the homeomorphism f is defined on Ω(Γ1).
Then we get the induced homeomorphism f̄ of the quotient surfaces S1 → S2, where

12



Si = Ω(Γi)/Γi. The existence of a diffeomorphism S1 → S2 homotopic to f̄ follows
from the uniqueness of the smooth structure on surfaces. If S1 is compact, then
this diffeomorphism lifts to an equivariant quasiconformal homeomorphism Ω(Γ1)→
Ω(Γ2). Two noncompact surfaces can be diffeomorphic but not quasiconformally
homeomorphic: For instance, open disk is not quasiconformally equivalent to the
complex plane. However, since ϕ is type-preserving, Ahlfors Finiteness Theorem [4]
in conjunction with a lemma of Bers and Maskit (see e.g. [113, Corollary 4.85]),
implies the existence of a quasiconformal homeomorphism S1 → S2.

If f is defined on the limit set and Γ1,Γ2 are geometrically finite, then the positive
answer is a special case of Tukia’s theorem 5.1. However, if Γi’s are not geometrically
finite, the proof becomes very difficult and is a corollary of the solution of the Ending
Lamination Conjecture in the work of J. Brock, R. Canary and Y. Minsky in [156],
[155], [41], and M. Rees [176].

Combination of the Ahlfors’ Finiteness Theorem with the Ending Lamination Con-
jecture also gives the positive answer in the case when f is defined on S2.

3. If f is defined on Ω(Γ1) then the answer is positive provided that n 6= 4 and
Mn(Γ1) is compact. This is a consequence of the theorem of D. Sullivan [190], who
proved uniqueness of the quasiconformal structure on compact n-manifolds (n 6= 4):
Apply Sullivan’s theorem to the manifolds Mn(Γi), i = 1, 2 and lift the quasiconformal
homeomorphism to the domain of discontinuity.

Remark 5.3. An alternative proof of Sullivan’s theorem and its generalization was
given by J. Luukkainen in [138]. See also [202].

If n = 4, f is defined on Ω(Γ1), and M4(Γ1) is compact, then the situation is unclear
but one probably should expect the negative answer since the uniqueness of quasi-
conformal structures in dimension 4 was disproved by S. Donaldson and D. Sullivan,
[59].

Question 5.4. Is there a pair of Kleinian groups Γ1,Γ2 ⊂ Mob(Sn) so that the
manifolds Mn(Γ1),M

n(Γ2) are homeomorphic but not diffeomorphic?

Note that in view of the examples in [65], the positive answer to the above question
would not be too surprising.

If f is defined on Ω(Γ1) and we do not assume compactness of Mn(Γ1), then the
answer to Question 5.2 is negative in a variety of ways.

(a) For instance, take singly degenerate groups Γ1,Γ2 ⊂ Mob(S2), which are both
isomorphic to the fundamental group of a closed oriented surface S, contain no par-
abolic elements and have distinct ending laminations. Then Ω(Γi) ⊂ S2 are open
disks Di for both i. There exists an equivariant homeomorphism h : D1 → D2, which
induces an isomorphism ϕ : Γ1 → Γ2. However, since the ending laminations are
different, there is no equivariant homeomorphism Λ(Γ1)→ Λ(Γ2).

Now extend both groups to the 3-sphere, so that Γi ⊂ Mob(S3), i = 1, 2. Then
the 3-dimensional domains of discontinuity Bi of both groups are diffeomorphic to
the open 3-ball, i = 1, 2; the quotient manifolds are

M3(Γi) = Bi/Γi
∼= S × R, i = 1, 2.
13



Therefore there exists an equivariant diffeomorphism f : B1 → B2. We claim that
this map cannot be quasiconformal. Indeed, otherwise it would extend to an equi-
variant homeomorphism of the limit sets (which are planar subsets of R3). This is a
contradiction.

(b) One can construct geometrically finite examples as well. The reason is that
even though all (orientation-preserving) parabolic elements of Mob(S2) are quasi-
conformally conjugate, the analogous assertion is false for the parabolic elements of
Mob(S3). Suppose that τ is the translation in R3 by a nonzero vector v. Let Rθi

,
i = 1, 2, denote the rotations around v by the angles θ1, θ2 ∈ [0, π]. Then the skew
motions

γi = Rθi
◦ τi, i = 1, 2

are parabolic elements of Mob(S3). One can show that

Proposition 5.5. γ1 and γ2 are quasiconformally conjugate in S3 if and only if
θ1 = θ2.

The proof is based on a calculation of the extremal length of a certain family of
curves in R3 and we will not present it here.

Therefore the cyclic groups Γi = 〈γi〉 are geometrically finite, the isomorphism
ϕ : Γ1 → Γ2 sending γ1 ot γ2 is type-preserving. The quotient manifolds M 3(Γi) are
both diffeomorphic to R2×S1. Therefore there exists a ϕ-equivariant diffeomorphism
f : Ω(Γ1)→ Ω(Γ2) which, of course, extends to a homeomorphism S3 → S3. However
this homeomorphism cannot be made quasiconformal.

These examples do not resolve the following:

Question 5.6. Suppose that Γ1,Γ2 ⊂ Mob(Sn), n ≥ 3, are Kleinian groups and
f : Λ(Γ1) → Λ(Γ2) is a homeomorphism which induces an isomorphism Γ1 → Γ2.
Does it follow that f is quasisymmetric?

If n ≤ 2, then (in the list of equivalences between Kleinian groups) we have the
implication

(3)⇒ (5).

Indeed, consider a quasiconformal homeomorphism f conjugating Kleinian groups Γ1

and Γ2 and let µ denote the Beltrami differential of f . Then for t ∈ [0, 1] the solutions
of the Beltrami equation

∂ft

∂z̄
= tµ

∂f

∂z

also conjugate Γ1 to Kleinian subgroups of Mob(S2), see e.g. [18]. This gives the
required quasiconformal isotopy. Since (2) is equivalent to (3) for n ≤ 2, it follows
that for n ≤ 2 we have

(2) ⇐⇒ (3) ⇐⇒ (4) ⇐⇒ (5)

This argument however fails completely in higher dimensions, since the Beltrami
equation in Rn for n ≥ 3 is overdetermined.

14



Question 5.7. In the list of equivalences between Kleinian groups:

(a) Does (2) ⇒ (4) ?

(b) Does (3) ⇒ (5) ?

One can show (using quasiconformal stability, see Section 10.2, cf. [143, Theorem
7.2]) that for convex-cocompact groups parts (a) and (b) of the above question are
equivalent. In Theorem 10.13 we give examples of convex-cocompact Kleinian groups
in Mob(Sn), n ≥ 5, for which the answer to Question 5.7 is negative. The situation
in dimensions 3 and 4 at the moment is unclear, but we expect in these dimensions
the answer to be negative as well.

The implications (i)⇒(6) for i≤ 5 are, of course, extremely rare. The most cele-
brated example is provided by the Mostow rigidity theorem:

Theorem 5.8. Suppose that Γ1,Γ2 ⊂Mob(Sn) are lattices and n ≥ 2. Then (0)⇒(6)
for these groups.

See [161] for G. Mostow’s original proof or [116] for a more elementary argument
along the same lines which uses only the analytical properties of quasiconformal map-
pings. A completely different argument due to M. Gromov can be found in [16]. Yet
another proof is an application of the barycentric maps [19]. Note that, presently,
there are no proofs using equivariant harmonic maps.

Mostow’s ergodic arguments were greatly generalized by D. Sullivan in [191]:

Theorem 5.9. (D. Sullivan, [191]) Suppose that Γ1,Γ2 ⊂ Mob(Sn) are Kleinian
groups whose limit set is the entire S

n and so that the action of Γ1 on S
n is recurrent.

Then (3)⇒(6) for these groups.

The action of Γ ⊂Mob(Sn) on Sn is called recurrent if for every measurable subset
E ⊂ Sn of positive Lebesgue measure, the measure of the intersection γ(E) ∩ E is
positive for some γ ∈ Γ \ {1}.

6. Groups with zero-dimensional limit sets

In what follows, we let dim denote the covering dimension of topological spaces,
see for instance [92].

Suppose that Γ ⊂Mob(Sn) is a non-elementary Kleinian subgroup of Mob(Sn) and
dim(Λ(Γ)) = 0; hence Λ(Γ) is totally disconnected (its only connected components
are points). Recall that a discontinuum is a nonempty perfect totally disconnected
compact topological space, [6]. Hence Λ(Γ) is a discontinuum. It follows (see e.g. [6])
that Λ(Γ) is homeomorphic to the standard Cantor set K ⊂ [0, 1].

Below is a couple of examples of Kleinian groups whose limit sets are totally dis-
connected.

Example 6.1. (A Schottky group, see e.g. [130, 146].) Let n, k ≥ 1. Suppose that
we are given a collection of disjoint closed topological n-balls

B+
1 , . . . , B

+
k , B

−

1 , . . . , B
−

k ⊂ S
n
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and Moebius transformations γj ∈ Mob(Sn) so that γj(int(B+
j )) = ext(B−

j ). We

assume that for each pair B+
j , B

−

j there exists a diffeomorphism of Sn which carries

these balls to the round balls.1 Then

Φ := S
n −

k⋃

j=1

(B+
j ∪ int(B−

j ))

is a fundamental domain for the group Γ generated by γ1, . . . , γk. The group Γ is
called a Schottky group. It is isomorphic to a free group of rank k, and the limit set of
Γ is a discontinuum provided that k ≥ 2. Every nontrivial element of Γ is hyperbolic.

B+

2

B−

2

B+

1

B−

1

γ2

γ1

Figure 1. A Schottky group.

Before giving the next example we need a definition. Suppose that Γ ⊂ Mob(Sn)
is a nontrivial elementary subgroup. Then, after conjugating Γ if necessary, we can
assume that either:

1. Γ fixes 0,∞ ∈ Rn = Sn and therefore is generated by γ(x) = Ax, where A is the
product of a scalar c > 1 by an orthogonal matrix.

2. Or Γ acts on Rn ⊂ Sn by Euclidean isometries.

1By the smooth Schoenflies theorem, for n 6= 4 it suffices to assume that the balls B+

j have smooth

boundary.
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In the first case we take the fundamental domain Φ for the action of Γ on Sn to
be an annulus bounded by two disjoint round spheres. In the second case we take a
Dirichlet fundamental domain Φ ⊂ Rn for Γ.

We refer to the fundamental domains Φ as standard fundamental domains. A
fundamental domain for Γ is topologically standard if it is the image of a standard
fundamental domain of Γ under a diffeomorphism of Ω(Γ) commuting with Γ. For in-
stance, the fundamental domain for a rank 1 Schottky group is topologically standard.
Therefore, the fundamental domain Φ for the Schottky group satisfies the property
that it is the intersection of topologically standard fundamental domains

Φj = S
n − (B+

j ∪ int(B−

j ))

for the groups Γj = 〈γj〉.
Given a domain Φ ⊂ Sn, we let Φc ⊂ Sn denote the closure of the complement of

Φ. We are now ready for the second example which is a generalization of the first.

Example 6.2. (Schottky-type groups, see e.g. [130, 146].) Start with a col-
lection of elementary Kleinian groups Γi ⊂ Mob(Sn), i = 1, ..., k. Let Φi ⊂ Sn be
topologically standard fundamental domains for these groups. Assume that

Φc
i ∩ Φc

j = ∅
for all i 6= j. Let Γ ⊂Mob(Sn) be the group generated by Γ1, ...,Γk. Then:

1. As an abstract group, Γ is isomorphic to the free product Γ1 ∗ ... ∗ Γk.

2. Φ := Φ1 ∩ ... ∩ Φk is a fundamental domain for the group Γ.

3. The limit set of Γ is totally disconnected.

The groups Γ obtained in this fashion are called Schottky-type groups.

A Schottky-type group is called classical if it admits a fundamental domain Φ :=
Φ1 ∩ ... ∩ Φk, so that each Φi is geometrically standard. It is not difficult to see that
Schottky-type groups are geometrically finite. For instance, consider the case of a
Schottky group Γ of rank k, for n ≥ 2. We have the map

j : Z = Hn(Mn(Γ))→ Hn(M̄n+1(Γ))

induced by the inclusion of manifolds. Since the manifold M̄ = M̄n+1(Γ) is K(Γ, 1),
it follows that

Hn(M̄) = Hn(Γ) = Hn(B) = 0

where B is the bouquet of k circles. Therefore j = 0. Hence M̄ is compact and hence
Γ is convex-cocompact. A similar argument works for Schottky-type groups, provided
that one uses cohomology relative to the cusps.

The quotient manifolds of the Schottky-type groups Γ have rather simple topology,
as it follows from the explicit description of their fundamental domains. Namely, let
Mi = Mn(Γi), i = 1, ..., k. Then we get the smooth connected sum decomposition

Mn(Γ) = M1#...#Mk.

By combining this with Theorem 5.1 we obtain
17



γ1

α2

β2

Φc
1

Φc
1

Φc
2

Figure 2. A classical Schottky-type group. Is is isomorphic to Z ∗Z2

with Z = 〈γ1〉, Z
2 = 〈α2, β2〉.

Proposition 6.3. 1. Suppose that Γ,Γ′ are Schottky groups of the same rank. Then
there exists a quasiconformal homeomorphism f : Sn → Sn which conjugates Γ to Γ′:
fΓf−1 = Γ′.

2. Suppose that Γ,Γ′ are Schottky-type groups and ϕ : Γ → Γ′ is a type-preserving
isomorphism, so that for every free factor Γi in Γ, the restriction ϕ : Γi → Γ′

i ⊂ Γ′ is
induced by a quasiconformal homeomorphism of Sn. Then there exists a quasiconfor-
mal homeomorphism f : S

n → S
n which induces the isomorphism ϕ.

Question 6.4. Let n ≥ 3. Is there a quasiconformal isotopy between Γ and Γ′ in the
above theorem (either part 1 or part 2)?

In the case when Γ and Γ′ are both classical, the positive answer follows rather
easily. In the non-classical case the above question is open even if n = 3 and Γ is a
Schottky group.

According to B.Maskit [144], Schottky subgroups of Mob(S2) can be characterized
as follows:

Theorem 6.5. A Kleinian subgroup Γ ⊂Mob(S2) is a Schottky group if and only if
Γ is free, has nonempty domain of discontinuity in S2 and consists only of hyperbolic
elements.

This result was generalized by N.Gusevskii and N. Zindinova [88] as follows:
18



Theorem 6.6. Let Γ ⊂ Mob(S2) be a Kleinian subgroup, which has nonempty do-
main of discontinuity in S2 and is isomorphic to a Schottky-type group Γ′ via a type-
preserving isomorphism Γ→ Γ′. Then Γ is a Schottky-type group.

Both theorems are easy under the assumption that Γ is geometrically finite, the
key point here is that (in dimension 2) one can prove geometric finiteness under the
above mild assumptions.

If Γ is a Kleinian subgroup of Mob(S3), then the above results are not longer
true, moreover, Γ can be geometrically infinite. For instance, take a free finitely
generated purely hyperbolic discrete subgroup of PSL(2,C), whose limit set is the
2-sphere (the existence of such groups was first established by V.Chuckrow [51]). The
Moebius extension of this group to S3 has nonempty domain of discontinuity, but is
not geometrically finite.

Tameness of limit sets. Below we address the following:

Question 6.7. Suppose that Γ ⊂Mob(Sn) is a Kleinian group, whose limit set is a
discontinuum. What can be said about the embedding Λ(Γ) ⊂ Sn?

A discontinuum D ⊂ Sn is called tame if there exists a homeomorphism f : Sn → Sn

which carries D to the Cantor set K ⊂ [0, 1] and is called wild otherwise. It is a
classical (and easy) result that every discontinuum in S2 is tame, see e.g. [27].

The first example of a wild discontinuum was the Antoine’s necklace A ⊂ S
3:

The fundamental group π1(S
3 \ A) is nontrivial which explains why A is wild, see

[27]. D. DeGryse and R. Osborne [56] constructed for every n ≥ 3 examples of wild
discontinua Dn ⊂ Sn, such that

π1(S
n \Dn) = {1}.

See also [73] for infinitely many inequivalent 3-dimensional examples of this type.

Theorem 6.8. (R. Kulkarni, [133].) Suppose that a Kleinian group Γ ⊂ Mob(Sn)
has totally disconnected limit set. Then Γ is isomorphic to a Schottky-type group.

Theorem 6.9. (N.Gusevskii, [86].) Suppose that Γ is as in the above theorem. Then
Γ admits a fundamental domain Φ of the same shape as in Example 6.2, only the
fundamental domains Φi for Γi’s are not required to be topologically standard.

Corollary 6.10. Every Kleinian group with totally disconnected limit set is geomet-
rically finite.

Proof. Repeat the arguments which we used to establish geometric finiteness of Schot-
tky groups. �

The proof of Theorem 6.9 is based on the following

Theorem 6.11. (M.Brin, [40].) Let M̃ be a smooth oriented n-manifold of dimension
> 2, so that H1(M̃) = 0. Let Γ y M̃ is a smooth properly discontinuous free action.

Then, for every smooth oriented compact hypersurface Σ in M̃ and an open neigh-
borhood U of Γ · Σ, there exists a smooth compact connected oriented hypersurface
Σ∗ ⊂ U such that for every γ ∈ Γ either γΣ∗ ∩ Σ∗ = ∅ or γΣ∗ = Σ∗.

19



This theorem allows one to split (inductively) the Kleinian group Γ as a free product
in a “geometric fashion”: Start with a compact hypersurface in Ω(Γ) which separates
components of Λ(Γ). Find Σ∗ as in Brin’s theorem which still separates. Then cut
open the manifold Mn(Γ) along the projection of Σ∗. This decomposition yields a
free product decomposition Γ = Γ′ ∗Γ′′ so that Γ is a Klein combination of the groups
Γ′,Γ′′. Continue inductively. Finite generation of Γ implies that the decomposition
process will terminate and the terminal groups must be elementary. Note that if all
Σ∗ were spheres then this decomposition would be Schottky-type.

Problem 6.12. Suppose that Γ ⊂Mob(Sn) is such that Λ(Γ) is a tame discontinuum.
Does is follow that Γ is a Schottky-type group?

If n = 2 then the affirmative answer to this question follows for instance from
Maskit’s theorem. If n = 3 and π1(Ω(Γ)) = 1, then the answer is again affirmative:
The reason is that in this case π2(Ω(Γ)) is nontrivial and hence by the Sphere Theorem
(see e.g. [91]) we can find a smooth hypersurface Σ∗ as in Brin’s theorem, so that
Σ∗ is diffeomorphic to S2. This argument however fails for n ≥ 4, where the above
problem is still open.

On the other hand, there are Kleinian subgroups of Mob(S3) with wild discontinua
as limit sets. The first such example was given by M.Bestvina and D.Cooper:

Theorem 6.13. (M. Bestvina, D. Cooper [22].) There exists a (geometrically finite)
Kleinian group Γ ⊂Mob(S3) which contains parabolic elements and has totally dis-
connected limit set with non-simply connected complement in S3.

The proof that π1(Ω(Γ)) 6= 1 presented in [22] was incomplete; however the gap
was filled several years later by S.Matsumoto:

Theorem 6.14. (S.Matsumoto [147, 148], see also [87].) There are Kleinian groups
Γ in Mob(S3) without parabolic elements whose limit sets are wild discontinua.

7. Groups with one-dimensional limit sets

The simplest examples of 1-dimensional limit sets of Kleinian groups are topological
circles. For instance, the limit set of a lattice Γ ⊂ Isom(H2) is the round circle. Of
course, even if the limit set of Γ ⊂ Mob(Sn) is a topological circle, its embedding
in S

n can be complicated. We will discuss this issue later on. For now, we are only
interested in the topology of the limit set itself.

Given convex-cocompact Kleinian groups Γ1,Γ2 ⊂ Mob(Sn) with 1-dimensional
limit sets, one can use Klein-Maskit Combination theorems in order to get convex-
cocompact Kleinian groups Γ ⊂Mob(Sn) isomorphic to

Γ1 ∗∆ Γ2

where ∆ is either trivial or infinite cyclic. The limit sets of the resulting groups are
again 1-dimensional. For instance, if Λ(Γi) is a topological circle for i = 1, 2 then the
limit set of Γ = Γ1 ∗ Γ2 will be disconnected: The connected components of Λ(Γ) are
topological circles and points. Similarly, if ∆ = Z, then the limit set of Γ = Γ1 ∗∆ Γ2

will have cut pairs: The complement to the 2-point set Λ(∆) in Λ(Γ) is disconnected.
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Λ(Γ1)

Λ(Γ2)

Λ(∆)

Λ(∆)

Figure 3. Combination of two 1-quasifuchsian groups: Γ = Γ1 ∗Z Γ2.

These constructions are, of course, not very illuminating. Therefore we are inter-
ested in examples of 1-dimensional limit sets which are connected and which do not
contain cut-pairs. It turns out that there are only two such examples:

1. The Sierpinski carpet S. Start with the unit square S = I × I. Subdivide
this square into 9 squares of the size 1

3
× 1

3
and then remove from S the open middle

square (1
3
, 2

3
) × (1

3
, 2

3
). Repeat this for each of the remaining 1

3
× 1

3
subsquares in S

and continue inductively. After removing a countable collection of open squares we
are left with a compact subset S ⊂ R2, called the Sierpinski carpet.

2. The Menger curve M. Start with the unit cube Q = I × I × I. Each face
Fi of Q contains a copy of the Sierpinski carpet Si. Let pi : Q → Fi denote the
orthogonal projection. Then

M :=
⋂

i

p−1
i (Si)

is called the Menger curve.

Example 7.1. There exists a convex-cocompact subgroup G ⊂Mob(S2) whose limit
set is homeomorphic to the Sierpinski carpet S.

To construct such example start with a compact hyperbolic manifold M 3 with
nonempty totally-geodesic boundary. Thus we get an embedding of Γ = π1(M

3) into
Mob(S2) as a convex-cocompact Kleinian subgroup. The limit set of Γ is homeomor-
phic to the Sierpinski carpet. To see this note that the convex hull Hull(Λ(Γ)) in H

3

is obtained by removing from H3 a countable collection of disjoint open half-spaces
Hj ⊂ H3. The ideal boundary of each Hj is the open round disk Dj ⊂ S2. Thus

Λ(Γ) = S
2 \

⋃

j

int(Dj).
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Clearly, Dj ∩ Di = ∅, unless i = j; since Λ(Γ) has empty interior, we conclude
that Λ(Γ) is homeomorphic to S, see [52]. Moreover, it is easy to see that this
homeomorphism extends to the 2-sphere, since it sends the boundary circles of Λ(Γ)
to the boundary squares of S.

The construction of Kleinian groups whose limit sets are homeomorphic to M is
more complicated:

Example 7.2. (M. Bourdon, [33]; see also [114].) There exists a convex-cocompact
subgroup Γ ⊂Mob(S3) whose limit set is homeomorphic to the Menger curve M.

The following theorem is proved in [117] in the more general context of Gromov-
hyperbolic groups:

Theorem 7.3. (M. Kapovich, B. Kleiner, [117]) Suppose that Γ ⊂ Mob(Sn) is a
(torsion-free) nonelementary convex-cocompact subgroup such that: (a) Γ does not
split as a free product, (b) Γ does not split as an amalgam over Z, (c) dim(Λ(Γ)) = 1.
Then Λ(Γ) is either homeomorphic to the Sierpinski carpet or to the Menger curve.

Conjecture 7.4. (M.Kapovich, B.Kleiner, [117]) If Γ ⊂Mob(Sn) is a (torsion-free)
convex-cocompact Kleinian group whose limit set is homeomorphic to the Sierpinski
carpet, then Γ is isomorphic to a convex-cocompact subgroup in Mob(S2).

It was proved in [117] that this conjecture would follow either from the positive so-
lution of the 3-dimensional Wall’s problem (Problem 4.5) or from Cannon’s conjecture
(Conjecture 4.6).

Topology of the limit sets of geometrically infinite Kleinian groups can be more com-
plicated. A dendroid is a compact locally connected simply-connected 1-dimensional
topological space.

Theorem 7.5. (J. Cannon and W. Thurston [46], see also [1] and [53].) There exist
singly-degenerate Kleinian groups whose limit sets are dendroids.

Conjecturally, limit sets of all singly-degenerate Kleinian groups are dendroids and
the following problem is open even for n = 2:

Problem 7.6. Suppose that Γ ⊂ Mob(Sn) is a Kleinian group whose limit set is
connected and 1-dimensional. Is it true that Λ(Γ) is locally connected?

See [154] and [152] for partial results in dimension 2.

8. Groups whose limit sets are topological spheres

Definition 8.1. A Kleinian group Γ ⊂ Mob(Sn) is called i-fuchsian2 if Λ(Γ) is a
round i-dimensional sphere in Sn.

2Our definition is somewhat different from the classical: fuchsian subgroups of PSL(2, C) are
usually required to preserves a round disk in S2.
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To construct examples of i-fuchsian groups start with a lattice Γ ⊂Mob(Si). The
limit set of Γ is the round sphere Si. Define the canonical embedding

ι : Mob(Si) ↪→Mob(Sn)

induced by the embedding of the Lorentz groups

O(i+ 1, 1) ↪→ O(n+ 1, 1)

A 7→
[
A 0
0 I

]
,

where I is the identity matrix. Therefore we get the canonical embedding

ι : Γ ↪→Mob(Sn) .

One can modify this construction as follows. Note that the stabilizer of Si in Mob(Sn)
contains Mob(Si) × SO(n − i). Choose a homomorphism φ : Γ → SO(n − i).
For instance, being residually finite, the group Γ will have many epimorphisms to
finite groups, which then can be embedded in SO(n− i) if n− i is sufficiently large.
Alternatively, in many cases the group Γ will have infinite abelianization Γab. The
abelian group Γab admits many embeddings into SO(n− i) provided that n− i ≥ 2.
Then the image of

ρ = ι× φ : Γ→Mob(Si)× SO(n− i) ⊂Mob(Sn)

is also an i-fuchsian group, since ρ(Γ) preserves Si and the action of ρ(Γ) on Si is the
same as the action of Γ.

Definition 8.2. A Kleinian group Γ ⊂Mob(Sn) is called i-quasifuchsian if its limit
set is a topological i-dimensional sphere.

We will refer to the number n− i as the codimension of a (quasi)fuchsian group Γ.

Example 8.3. Suppose that Γ is an i-fuchsian subgroup of Mob(Sn) and Γ′ ⊂
Mob(Sn) is another group which is topologically conjugate to Γ (with a homeomor-
phism f defined on the entire n-sphere). Then Γ′ is i-quasifuchsian. However, as we
will see, there are i-quasifuchsian groups (for n ≥ 3) which cannot be obtained in this
fashion.

The (quasiconformal) homeomorphisms f as in the previous example exist in abun-
dance if i = 1, n = 2, due to solvability of the Beltrami equation. If i ≥ 2, the
situation is very different and it is not so easy to construct nontrivial examples of
i-quasifuchsian groups which are not fuchsian.

The following result was proved by M. Bestvina and G. Mess [25] in the context of
Gromov-hyperbolic groups:

Theorem 8.4. Each convex-cocompact i-quasifuchsian group is a Poincare duality
group (over Z) of dimension i+ 1.

Question 8.5. Is it true that each convex-cocompact quasifuchsian group is isomor-
phic to the fundamental group of a closed aspherical manifold?

This is, of course, a special case of Wall’s problem.

Question 8.6. Is there a convex-cocompact group Γ ⊂ Mob(Sn) whose limit set is
a homology sphere which is not homeomorphic to a sphere?
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8.1. Topological rigidity. The deepest (to this date) results on topology of higher-
dimensional Kleinian groups are the topological rigidity theorems of T. Farrell and
L. Jones and their corollaries:

Theorem 8.7. (T.Farrell and L.Jones, [66]) Suppose that Γ ⊂Mob(Sn) is a convex-
cocompact Kleinian group, n ≥ 4, N is a compact aspherical manifold (possibly with
nonempty boundary ∂N) and f : (M̄n+1(Γ),Mn(Γ)) → (N, ∂N) is a homotopy-
equivalence which is a homeomorphism on the boundary. Then f is homotopic to
a homeomorphism (rel. Mn(Γ)).

Theorem 8.8. (T. Farrell and L. Jones, [67, Theorem 0.1]) Suppose that X is a
nonpositively curved closed Riemannian manifold, Y is a closed aspherical manifold
of dimension ≥ 5 and f : X → Y is a homotopy-equivalence. Then f is homotopic
to a homeomorphism.

Theorem 8.9. (T. Farrell and L. Jones, [68, Proposition 0.10]) For each Kleinian
group Γ the Whitehead group Wh(Γ) is trivial.

By combining Theorem 8.9 with the s-cobordism theorem (see e.g. [169, 179, 129]),
one gets:

Corollary 8.10. Suppose that W n+1 is a topological (resp. PL, smooth) h-cobordism
so that n ≥ 5 and π1(W

n+1) is isomorphic to a Kleinian group. Then W is trivial in
the topological (resp. PL, smooth) category.

8.2. Quasifuchsian groups of codimension 1. The situation in the case of n = 2
is completely understood due to the following:

Theorem 8.11. (B. Maskit [145], see also [142].) Let Γ ⊂ Mob(S2) be a Kleinian
group whose domain of discontinuity Ω(Γ) consists of precisely two components. Then:

1. Γ is 1-quasifuchsian and geometrically finite.

2. Γ is quasiconformally conjugate to a 1-fuchsian group.

3. M̄3(Γ) = (H3 ∪ Ω(Γ))/Γ is homeomorphic to an interval bundle over a surface
S, which is 2-fold covered by Ω(Γ)/Γ.

Our goal is to compare the higher-dimensional situation with this theorem. Suppose
that Γ is a quasifuchsian group of codimension 1 in Mob(Sn). Then Ω(Γ) consists of
two components, Ω1,Ω2. After replacing Γ by an appropriate index 2 subgroup, we
can assume that each Ωi is Γ-invariant; hence Mn(Γ) = M1 ∪M2, where Mi := Ωi/Γ.
Then H∗(Ωi) ∼= H∗(point), i = 1, 2. Therefore, if Ωi is simply-connected, then Ωi is
contractible.

Theorem 8.12. Suppose that both Mi are compact and both Ωi are simply-connected.
Then M̄n+1(Γ) is diffeomorphic to M1 × [0, 1] provided that n ≥ 5.

Proof. Note that, for homological reasons, W = M̄n+1(Γ) is compact, hence Γ is
convex-cocompact. Since both Ω1,Ω2,H

n+1 are contractible, the inclusions

Mi ↪→ W, i = 1, 2
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are homotopy-equivalences. Therefore W defines a smooth h-cobordism between the
aspherical manifolds M1 and M2. According to Corollary 8.10, this h-cobordism is
smoothly trivial. �

Suppose that n = 3 and both Ω1,Ω2 are contractible. Then

π1(M1) ∼= π1(M2) ∼= Γ,

the manifolds M1 and M2 are irreducible and have infinite fundamental group. If Γ
were to contain a subgroup Π isomorphic to Z2, the subgroup Π would be parabolic.
This would contradict compactness ofW . Therefore, according to Perelman’s solution
of Thurston’s hyperbolization conjecture, there exists a closed hyperbolic 3-manifold
M0 which is homeomorphic to M1 and M2. The fundamental group of Γ0 = M0 acts
as a 2-fuchsian group on S3. Therefore, according to our discussion in Section 5, the
group Γ is quasiconformally conjugate to Γ0. It is not difficult to see that passage to
the index 2 subgroup which we used above does no harm and we obtain:

Proposition 8.13. Suppose that Γ is a codimension 1 quasifuchsian subgroup of
Mob(S3), so that both components of Ω(Γ) are simply-connected and M 3(Γ) is com-
pact. Then Γ is quasiconformally conjugate to a 2-fuchsian group Γ0 ⊂Mob(S3).

The situation is radically different for n ≥ 4:

Theorem 8.14. For each n ≥ 4 there are codimension 1 quasifuchsian subgroups Γ
in Mob(Sn) which are not isomorphic to fuchsian groups.

Sketch of the proof: Fix n ≥ 4. M. Gromov and W. Thurston in [85] construct
examples of negatively curved compact conformally-flat n-manifolds Mn, so that Mn

is not homotopy-equivalent to any closed hyperbolic n-manifold Nn. (See also [115]
for a review of the Gromov–Thurston examples and for a construction of a convex
projective structure on Mn.)

By choosing parameters in the construction of [85] more carefully, one can construct
an example of a uniformizable flat conformal manifold Mn with the same properties.
Moreover, Mn = Ω1/Γ, Γ ⊂ Mob(Sn) is convex-cocompact, and Ω(Γ) = Ω1 ∪ Ω2

is the union of two simply-connected components. Then Λ(Γ) is homeomorphic to
S

n−1, since the limit set of Γ is homeomorphic to the ideal boundary of the universal
cover of Mn. If Γ were isomorphic to an n − 1-fuchsian group Γ′, then Γ′ would be
isomorphic to the fundamental group of a closed hyperbolic n-manifold Nn, which is
a contradiction. �

The above examples have another interesting property. Let Ωn+1 denote the domain
of discontinuity of the group Γ (regarded as a subgroup of Mob(Sn+1)). Note that
Ωn+1 is connected and π1(Ω

n+1) ∼= Z. Since both Ω1,Ω2 are contractible, it follows
that

πi(Ω
n+1) = 0, i ≥ 2.

Set Mn+1 = Ωn+1/Γ. We have the short exact sequence

1→ Z = π1(Ω
n+1)→ π1(M

n+1)→ Γ→ 1.

The embedding M1 → Mn+1 determines a splitting of this sequence. Hence the
manifolds Mn+1 and S1 × Mn are homotopy-equivalent. Given the existence of a
metric of negative curvature on Mn, we obtain a metric of nonpositive curvature
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on S1 × Mn. Therefore, by Theorem 8.8, the manifolds Mn+1 and S1 × Mn are
homeomorphic.

Let kZ ⊂ Z ⊂ π1(M
n+1) be the index k subgroup in the center of π1(M

n+1). Then
we obtain the k-fold covering Xk → X1 = Mn+1, where

π1(Xk) = kZ× Γ ⊂ π1(X1).

Since the manifolds Xk have isomorphic fundamental groups and πi(Xk) = 0 for all
i ≥ 2, k ∈ N, these manifolds are all homeomorphic to the smooth manifold X1 by
Theorem 8.8. By [126, Essay IV], there only finitely many smooth structures on the
manifold X1. Therefore we obtain an infinite family of diffeomorphic manifolds

Mn+1
j := Xkj

, j ∈ N

and smooth covering maps pj : Mn+1
j →Mn+1.

The (n + 1)-manifold Mn+1 = Ωn+1/Γ has the flat conformal structure K1 uni-
formized by the group Γ. Let Kj denote the flat conformal structure on Mn+1, which
is the lift of K1 via pj.

3 We thus obtain an infinite family of diffeomorphic flat
conformal manifolds

(Mn+1
j , Kj), j = 1, 2, ...

Question 8.15. Suppose that M is a closed hyperbolic n-manifold. Is there a finite
cover f : M ′ → M such that the pull-back map f ∗ : H3(M,Z/2) → H3(M ′,Z/2)
is trivial? (Recall [126] that the group H3(M,Z/2) classifies PL structures on M if
n ≥ 5.)

We regard the structures Kj as elements of M(X), the moduli space of the flat
conformal structures on a fixed smooth manifold X. The proof of the following claim
is similar to [105], where it was proved in the context of 3-manifolds:

Claim 8.16. For different i, j the structures Ki, Kj lie in different connected compo-
nents of the moduli space M(X). Thus M(X) consists of infinitely many connected
components.

We note that K. Scannell in [180] constructed examples of hyperbolic 3-manifolds
X for which M(X) consists of infinitely many connected components.

To get the same phenomenon in dimension 4 consider one of the hyperbolic mani-
folds M3 obtained by Dehn surgery on a 2-bridge knot, so that the natural embedding

Γ = π1(M) ↪→Mob(S3)

is locally rigid (see Example 10.12). Then the natural embedding of Γ to Mob(S4) is
also locally rigid and hence the manifold M 4 = M4(Γ) ∼= M ×S1 has locally rigid flat
conformal structure. Taking k-fold covers of this manifold we obtain infinitely many
locally rigid flat conformal structures on M 4. By combining these results we obtain

Theorem 8.17. For every n ≥ 3 there exists a smooth compact n-manifold Xn such
that M(Xn) consists of infinitely many connected components.

3The structures Kj are obtained via grafting of (Mn+1, K1) along the hypersurface Mn.
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We now return to our discussion of Kleinian groups, restricting to n = 3. Suppose
that Γ is a convex-cocompact 2-quasifuchsian group, such that both components of
Ω(Γ) are simply-connected. Then, by proposition 8.13, the limit set of Γ is tame, i.e.,
there is a homeomorphism of S3 which maps Λ(Γ) to the round sphere.

Theorem 8.18. (B.Apanasov and A. Tetenov [9].) There exists a convex-cocompact
2-quasifuchsian group Γ ⊂ Mob(S3) whose limit set is a wild 2-sphere, i.e., there
is no homeomorphism of S3 which maps Λ(Γ) to the round sphere. Moreover, one
component of Ω(Γ) is simply-connected.

8.3. 1-quasifuchsian subgroups of Mob(S3). Given a Kleinian subgroup Γ ⊂
Mob(S3) whose limit set is a topological circle C, we would like to analyze the
embedding C ↪→ S3. It is clear that C could be an unknot in S3 (i.e., there exists
a homeomorphism of S3 which maps C to a round circle), take for instance any
1-fuchsian subgroup of Mob(S3).

A topological circle C in S3 is called tame if it is isotopic to a polygonal knot in S3;
if C is not tame, it is called wild.

Proposition 8.19. 1. If Γ is a 1-quasifuchsian subgroup of Mob(S3) then either
Λ(Γ) is an unknot or it is a wild knot K such that π1(S

3 \K) is infinitely generated.
2. Each 1-quasifuchsian group is geometrically finite.

Proof. Since Γ is a 1-quasifuchsian subgroup of Mob(S3), this group is nonelementary.
The fundamental group of M = M 3(Γ) is finitely generated (since Γ is) and we have
the exact sequence:

1→ π1(Ω(Γ))→ π1(M)→ Γ→ 1.

Suppose that π1(Ω(Γ)) is finitely generated. Then, according to Jaco-Hempel’s Theo-
rem [91], π1(Ω(Γ)) ∼= Z. This immediately excludes tame nontrivial knots (the result
proved by R. Kulkarni, [132]). It remains to exclude wild knots with

∆ := π1(Ω(Γ)) ∼= Z.

Without loss of generality (after passing to an index 2 subgroup in Γ), we can assume
that ∆ is contained in the center of π1(M). Note that M is a Seifert manifold (since
its fundamental group has infinite center and M is irreducible). Hence M admits an
S1-action. Lift this action to Ω(Γ) and then extend it to the entire 3-sphere (so that
the fixed point set is the limit set). Raymond’s classification [175] of topological S1

actions on S
3 implies that this S

1-action is topologically conjugate to the orthogonal
action, hence Λ(Γ) is an unknot. This proves (1).

To prove (2) note that the group Γ acts as a convergence group on S
1 = Λ(Γ) (see

[200]). Hence, according to [200], there exists a homeomorphism f : Λ(Γ)→ S1 such
that

fΓf−1 = Γ′ ⊂ PSL(2,R).

Since finitely generated discrete subgroups of PSL(2,R) are geometrically finite, it
follows that Γ′ is geometrically finite. Since geometric finiteness is an invariant of
topological dynamics on the limit set, the group Γ is geometrically finite as well. �
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Theorem 8.20. (M. Gromov, B. Lawson, W. Thurston, [83], N. Kuiper [131], and
M. Kapovich [104, 109].) There are 1-quasifuchsian groups Γ ⊂ Mob(S3) such that
Λ(Γ) are unknotted but Γ are not topologically conjugate to 1-fuchsian groups.

In the examples constructed in this theorem, the manifolds M 3(Γ) are nontrivial
oriented circle bundles over orientable surfaces. On the other hand, for every 1-
fuchsian group Γ ⊂Mob(S3), the manifold M3(Γ) is a 3-dimensional Seifert manifold
with the zero Euler number.

Bi

Figure 4

Theorem 8.21. (B. Apanasov [8], B. Maskit [146], see also [83].) There are 1-
quasifuchsian groups Γ ⊂Mob(S3) such that Λ(Γ) are wild knots.

Sketch of the proof: Start with a necklace of round balls

B0, B1, ..., Bm−1 ⊂ S
3,

so that Bi is tangent to Bj, if j = i + 1 ∈ Z/mZ and is disjoint otherwise. Assume
that this necklace is knotted, i.e., the polygonal knot obtained by connecting the
consecutive points of tangency is a nontrivial knot K ⊂ S3. See Figure 4.

Let γi ∈ Mob(S3) denote the inversion in the sphere ∂Bi, i = 0, 1, ..., m − 1. Let
Γ ⊂Mob(Sn) be the group generated by these inversions. By Poincare’s fundamental
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polyhedron theorem,

Φ = S
3 \

m−1⋃

i=0

Bi

is a fundamental domain for Γ. Tukia’s theorem 5.1 implies that Γ is 1-quasifuchsian.
By Seifert–Van-Kampen Theorem, π1(S

3\K) embeds in π1(Ω(Γ)). Therefore π1(Ω(Γ))
is not isomorphic to Z which implies that the limit set of Γ is a wild knot. �

By modifying the above construction, S. Hwang [93] proved

Theorem 8.22. (S. Hwang.) Let L be a polygonal link in S3. Then there exists
a (torsion-free) convex-cocompact Kleinian group Γ ⊂ Mob(S3) with a fundamental
domain Φ ⊂ S3 such that the complement S3 \Φ is isotopic to a regular neighborhood
of L.

The above theorem is the key for proving

Theorem 8.23. (S. Hwang [93].) Let M be a closed oriented 3-manifold. Then there
exists a closed oriented 3-manifold M ′ such that the connected sum M#M ′ admits a
Moebius structure.

Very little is known about quasifuchsian groups in Mob(Sn) whose limit sets have
dimension between 2 and n− 2. Perhaps the most interesting result here is obtained
by I. Belegradek [13] who used the construction from [83] to get

Theorem 8.24. There exist convex-cocompact 2-quasifuchsian subgroups Γ1,Γ2 ⊂
Mob(S4) so that:

1) Λ(Γ1) is a wild 2-sphere in S4.

2) Λ(Γ2) is tame but the group Γ2 is not topologically conjugate to a 2-fuchsian
group: M4(Γ2) is a nontrivial circle bundle over a hyperbolic 3-manifold.

Similar results probably hold for codimension 2 quasifuchsian subgroups in Mob(Sn),
n ≥ 5.

9. Ahlfors finiteness theorem in higher dimensions:

Quest for the holy grail

9.1. The holy grail. One of the most fundamental results of the theory of Kleinian
subgroups of Mob(S2) is the Ahlfors’ Finiteness Theorem (the “Holy Grail”), which
we state here together with its companions:

Theorem 9.1. Suppose that Γ ⊂ PSL(2,C) is a Kleinian group4 which may have
torsion. Then the following hold:

1. (L. Ahlfors [4], L. Greenberg [79]) The group Γ is analytically finite, i.e., the
quotient O := Ω(Γ)/Γ is a complex orbifold of finite conformal type5. In particular,
O is homotopy-equivalent to a finite CW complex.

4Recall that all Kleinian groups are assumed to be finitely generated.
5I.e., as a Riemann surface it biholomorphic to a compact Riemann surface with a finite subset

removed; as an orbifold it has only finitely many singular cone-points.
29



2. (D. Sullivan [192]) Γ has only finitely many cusps.

3. (M. Feighn and G. Mess [71]) Γ has only finitely many Γ-conjugacy classes of
finite order elements.

4. (P. Scott [184, 185]) Γ is finitely presentable and the orbifold H3/Γ is finitely
covered by a manifold H3/Γ′, which is homotopy-equivalent to a compact 3-manifold.

5. (L. Ahlfors) The action of Γ on Λ(Γ) is recurrent with respect to the Lebesgue
measure µ.

Corollary 9.2. If Γ is as above then:

a. For each component Ω0 of Ω(Γ), the limit set of the stabilizer of Ω0 in Γ equals
∂Ω0 (follows directly from Part 1 of Theorem 9.1). In particular, no component of
Ω(Γ) has trivial stabilizer.

b. Kleinian subgroups Γ of Mob(S2) are coherent, i.e., each finitely generated
subgroup of Γ is also finitely presented (follows from Part 4 of Theorem 9.1).

c. (W. Thurston, see [157]) If Γ ⊂ Mob(S2) is geometrically finite with Ω(Γ) 6= ∅
then each finitely generated subgroup ∆ ⊂ Γ is geometrically finite as well.

We also now fully understand the topology of the manifold (orbifold) H3/Γ:

Theorem 9.3. (Former tameness conjecture.) The quotient H3/Γ is tame, i.e., it is
homeomorphic to the interior of a manifold (orbifold) with boundary.

The above theorem was proved for freely indecomposable groups Γ by F. Bonahon
[30] and by I. Agol [2], D. Calegari and D. Gabai [44] in the general case.

The next theorem is a combination of a result by Thurston [196], who proved
ergodicity for tame Kleinian subgroups of Mob(S2), and the proof of the tameness
conjecture:

Theorem 9.4. If Γ is as above, then the action of Γ on Λ(Γ) is ergodic with respect
to the Lebesgue measure: each measurable Γ-invariant function on Λ(Γ) is constant
a.e..

Note, that the conglomerate of assertions presented above contains statements of
different nature: algebraic, topological, dynamical. For a while it was hoped that
a theorem analogous to Theorem 9.1 can be proved for Kleinian groups in higher
dimensions; an attempt to develop analytical technique to achieve this was made by
Ahlfors in [3] (see also [164]).

Nearly all algebraic and topological assertions of Theorem 9.1 and the Corollary
9.2 have been disproved in the case of Kleinian groups acting in higher dimensions
(M. Kapovich and L. Potyagailo, [122], [121], [111], [170], [171]):

Theorem 9.5. There exist Kleinian subgroups Γ1, ...,Γ5 ⊂Mob(S3) so that:

1. The group Γ1 is not finitely presentable.

2. For each i, the manifold M(Γi) = Ω(Γi)/Γi contains a component with infinitely
generated fundamental group.

3. Γ2 is free and has infinitely many cusps (of rank 1).
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4. Γ3 is not torsion-free and has infinitely many conjugacy classes of finite order
elements.

5. Γ4 is a normal subgroup of a convex-cocompact group Γ̂4 ⊂Mob(S3) and satisfies
(1), (2) and (4).

6. (B. Bowditch, G. Mess [37]) The group Γ5 satisfies (1) and (2) and is contained

in a cocompact lattice Γ̂5 ⊂Mob(S3).

7. Groups Γi, i = 1, ..., 4 are normal subgroups of geometrically finite groups Γ̂i so

that Γ̂i/Γi
∼= Z.

Remark 9.6. By modifying Γ3 one can also construct an example Γ6 ⊂Mob(S3) such
that Ω(Γ6)/Γ6 has infinitely many connected components.

At the time when the above examples were constructed, they were regarded as a
“rare pathology”. It appears however that such examples are rather common:

Conjecture 9.7. (M. Kapovich, L. Potyagailo, E. Vinberg, see [123].) Suppose that
Γ ⊂ Mob(Sn) is an arithmetic lattice, where n ≥ 3. Then Γ is noncoherent, i.e., it
contains a finitely generated subgroup ∆ which is not finitely presentable.

This conjecture was proved in [123] in a number of special cases, e.g. for all non-
cocompact arithmetic lattices provided that n ≥ 5.

All the examples Γi in the above theorem are based upon existence of hyperbolic
3-manifolds M3 of finite volume which fiber over the circle: the groups Γi are obtained
by manipulating with the normal surface subgroups in π1(M

3).

Problem 9.8. Find examples similar to Γi’s without using hyperbolic 3-manifolds
fibering over the circle.

Problem 9.9. Construct a finitely generated Kleinian subgroup Γ ⊂ Mob(Sn) such
that Part (a) of Corollary 9.2 fails for Γ.

Problem 9.10. (G. Mess.) Construct a finitely-presented Kleinian subgroup of
Mob(Sn) (n ≥ 3) which contains no parabolic elements and for which any of the
assertions of Theorem 9.1 fail. (In Part (a) one would need to replace analytical
finiteness with finiteness of the homotopy type.)

Problem 9.11. Construct a finitely generated Kleinian subgroup Γ ⊂Mob(S3) such
that Ω(Γ) contains a contractible component Ω0 so that:

The stabilizer Γ0 of Ω0 in Γ is finitely-generated, but the manifold Ω0/Γ0 is not
tame.

Note however that although algebra and topology fail, the assertions of dynamical
nature (Theorem 9.1, part 5, Corollary 9.2, part (b) and Theorem 9.4) remain open in
higher dimensions. Moreover, an attempt to construct a higher-dimensional counter-
example to Theorem 9.1 (part 5) along the lines of the examples Γi, is doomed to
failure:
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Theorem 9.12. (K. Matsuzaki, [149]) Let Γ̂ be a geometrically finite subgroup6 in

Mob(Sn). Suppose that Γ ⊂ Γ̂ is a normal subgroup (which does not have to be
finitely generated). Then the action of Γ on its limit set is recurrent.

Ergodicity fails however for discrete subgroups of PU(2, 1) (it probably also fails for
Kleinian groups in higher dimensions but an example would be difficult to construct):

Theorem 9.13. There exists a finitely generated (but not finitely presentable!) dis-
crete group Γ of isometries of complex-hyperbolic 2-plane CH2 so that the limit set of
Γ is the 3-sphere and the action of Γ on S

3 is not ergodic.

Proof. There are examples (the first was constructed by R. Livne in his thesis [136],

see also [57]) of cocompact torsion-free discrete subgroups Γ̂ ⊂ PU(2, 1) such that the

complex 2-manifold M = CH2/Γ̂ admits a nonconstant holomorphic map f : M → S
to a Riemann surface S of genus ≥ 2. The fundamental group of the generic fiber

of f maps onto a normal subgroup Γ in Γ̂, so that Γ is finitely generated but is not
finitely presentable [112]. By lifting f to the universal covers we get a nonconstant
holomorphic function

f̃ : CH
2 → H

2

which is Γ-invariant. Then the bounded harmonic function Re(f̃) is Γ-invariant and
nonconstant. This harmonic function admits a measurable extension h to S3, the
boundary of the complex ball CH

2, so that h is Γ-invariant and not a.e. constant. �

9.2. Groups with small limit sets. So far, our quest for the holy grail mostly
resembled Monty Python’s: We are not sure what to look for in higher dimensions.
Nevertheless, there is a glimmer of hope.

Recall that the Hausdorff dimension dimH of a subset E ⊂ Rn is defined as follows.
For each α > 0 consider the α-Hausdorff measure of E:

mesα(E) = lim
ρ→0

inf{
∑

i

rα
i : ri ≤ ρ, E is contained in the union of ri-balls}.

The Hausdorff dimension of E is

dimH(E) = inf
α
{α : mesα(E) = 0}.

According to [92], for every bounded subset E ⊂ Rn one has the inequality

dim(E) ≤ dimH(E)

between topological and Hausdorff dimensions. In particular, if Γ is a Kleinian group
with dimH(Λ(Γ)) < 1 then Γ is geometrically finite and is isomorphic to a Schottky-
type group, see Theorem 6.9.

Conjecture 9.14. If dimH(Λ(Γ)) < 1, then Γ is a Schottky-type group. Moreover, Γ
is classical.

6Actually, the proof also works for subgroups of any rank 1 Lie group.
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The critical exponent of a Kleinian group Γ ⊂Mob(Sn) is

δ(Γ) := inf{s > 0 :
∑

γ∈Γ

e−sd(x,γx) <∞},

where d is the hyperbolic metric in Hn+1. The following theorem is the result of
combined efforts of a large number of mathematicians, including P. Tukia, D. Sullivan
and P. Nicholls, we refer to [163], [29] for the proofs:

Theorem 9.15. For every Kleinian subgroup Γ ⊂Mob(Sn),

δ(Γ) = dimH(Λc(Γ)).

Recall that Λc(Γ) is the conical limit set of Γ.

The critical exponent relates to λ0, the bottom of the spectrum of Laplacian on the
hyperbolic manifold Hn+1/Γ, by the following

Theorem 9.16. (D. Sullivan [194])

λ0 =
(n

2

)2

, if 0 ≤ δ(Γ) ≤ n

2
,

λ0 = δ(Γ)(n− δ(Γ)), if
n

2
< δ(Γ) ≤ n.

The expectation is that Kleinian groups in Mob(Sn) with small limit sets behave
analogously to the Kleinian subgroups of Mob(S2).

Conjecture 9.17. Suppose that Γ is a (finitely generated) subgroup of Mob(Sn) so
that Λ(Γ) has Hausdorff dimension < 2. Then Γ is geometrically finite.

For n = 2, this conjecture is a theorem of C. Bishop and P. Jones [29]. A partial
generalization of [29] was proved by A. Chang, J. Qing, J. and P. Yang, in [49]:

Theorem 9.18. Suppose that Γ is a (finitely generated) conformally finite7 subgroup
of Mob(Sn) such that dimH(Λ(Γ)) < n. Then Γ is geometrically finite.

The converse to the above theorem was proved earlier by P. Tukia in [198].

Theorem 9.19. (Y. Shalom [187]) Suppose that Γ is a geometrically finite subgroup
of Mob(Sn) such that dimH(Λ(Γ)) < 2 and ∆ ⊂ Γ is a finitely generated normal
subgroup. Then ∆ has finite index in Γ. In particular, ∆ is geometrically finite as
well.

Thus, attempts to construct geometrically infinite groups using normal subgrooups
in geometrically finite Kleinian groups with small limit sets, are doomed to failure. On
the other hand, the assumption that δ(Γ) is small should impose strong restrictions
on the algebraic properties of the group Γ.

Conjecture 9.20. Suppose that Γ is a Kleinian group in Mob(Sn) which does not
contain parabolic elements. Then:

1. cd(Γ)− 1 ≤ δ(Γ).

2. In the case of equality, Γ is an i-fuchsian convex-cocompact group, i = δ(Γ).

7I.e., Mn(Γ) = Ω(Γ)/Γ is compact modulo cusps.
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Recall that cd and hd stand for the cohomological and homological dimensions of
a group. A partial confirmation of Part 1 of this conjecture is obtained in

Theorem 9.21. (M. Kapovich [103]) Suppose that Γ is a Kleinian group in Mob(Sn).
Then for every ring R,

hdR(Γ,Π)− 1 ≤ δ(Γ)

where Π ⊂ Γ is the set of rank ≥ 2 abelian subgroups of Γ and hdR(Γ,Π) is the relative
homological dimension.

We refer the reader to the series of papers by H. Izeki [96, 97, 98] for the related
results.

Corollary 9.22. Suppose that Γ is finitely-presented and δ(Γ) < 1. Then Γ is free.

Proof. Since δ(Γ) < 1, it follows that Γ contains no rank 2 abelian subgroups. Then
we have the inequalities

cd(Γ) ≤ 1 + hd(Γ) ≤ δ(Γ) + 2 < 3.

Combined with finite presentability of Γ, the inequality cd(Γ) ≤ 2 implies that Γ
admits a finite K(Γ, 1); therefore

cd(Γ) = hd(Γ) ≤ δ(Γ) + 1 < 2.

Hence Γ is free by Stallings’ theorem. �

An inequality similar to Conjecture 9.20 was proved by A. Reznikov: For a (finitely-
generated) group Γ define

α(Γ) := inf{p ∈ [1,∞] : `pH
1(Γ) 6= 0}.

Here `pH
1 is the 1-st `p-cohomology of the group Γ, see [34] for the precise definition.

Then

Theorem 9.23. (A. Reznikov, [177], see also [34] for the detailed proof in the case
of isometries of CAT (−1) spaces.) For every Kleinian group Γ ⊂Mob(Sn),

α(Γ) ≤ max(δ(Γ), 1).

Question 9.24. What can be said about Γ in the case of equality in Reznikov’s
theorem?

In the case of geometrically finite groups, Part 2 of Conjecture 9.20 holds:

Theorem 9.25. (Chenbo Yue, [209], see also [31] and [20].) Suppose that Γ is convex-
cocompact and i = δ(Γ) = cd(Γ)− 1. Then Γ is i-fuchsian.

Remark 9.26. Chenbo Yue states his theorem in the context of i-quasifuchsian groups,
but his proof actually does not need this assumption.

Chenbo Yue’s theorem is generalized in [103] to all geometrically finite groups.

Conjecture 9.27. Suppose that Γ is a Kleinian group in Mob(Sn) whose limit set
is not totally disconnected and has Hausdorff dimension 1. Then Γ is 1-fuchsian.

This conjecture is known to be true for n = 2, see [45].
34



Problem 9.28. (The gap problem, L. Bowen, cf. [189].) 1. Is there a number dn < n
such that for every Schottky subgroup Γ ⊂Mob(Sn), n ≥ 3, we have:

δ(Γ) < dn.

2. More generally, consider a sequence Γj ⊂Mob(Sn) of convex-cocompact groups
isomorphic to a fixed group Γ so that: Λ(Γj) 6= Sn for each j. Is it true that

lim sup
j→∞

δ(Γj) < n ?

By the work of Phillips and Sarnak [168], the answer to the above question is
positive in the class of classical Schottky groups.

10. Representation varieties of Kleinian groups

For a finitely-generated Γ consider the representation variety of Γ:

Rn(Γ) := Hom(Γ,Mob(Sn)).

If Γ has the presentation

Γ = 〈x1, ..., xm|r1, ..., rk, ...〉,

the representation variety is given by

{(g1, ..., gm) ∈ (Mob(Sn))m : r1(g1, ..., gm) = 1, ...rk(g1, ..., gm) = 1, ....}.

The group Mob(Sn) acts on Rn(Γ) via conjugation:

θ · ρ(γ) = θρ(γ)θ−1, θ ∈Mob(Sn) .

Given this action, one can form the quotient variety

Xn(Γ) := Rn(Γ)//Mob(Sn),

called the character variety. Roughly speaking, the elements of Xn(Γ) are represented
by conjugacy classes of representations ρ : Γ → Mob(Sn). This is literally true for
“most” representations, the ones for which ρ(Γ) does not contain a normal parabolic
subgroup, see [99]. In general, the representations ρ1, ρ2 project to the same point in
Xn(Γ) iff the closures of their Mob(Sn)-orbits have nonempty intersection. We let
[ρ] denote the projection of ρ ∈ Rn(Γ) to Xn(Γ).

A trivial deformation of a representation ρ0 ∈ Rn(Γ) is a curve ρt ∈ Rn(Γ) which
projects to a point in Xn(Γ). A representation ρ0 is called locally rigid if it admits no
nontrivial deformations.

We will be mostly interested in representations ρ ∈ Rn(Γ) which have discrete,
nonelementary image, however much of our discussion is more general.
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10.1. Local theory. We start by considering the local structure of Xn(Γ). Given an
abstract group Γ and a representation ρ ∈ Rn(Γ), we have the adjoint action of ρ(Γ)
on the Lie algebra g of Mob(Sn) and the associated 1-st cohomology group

H1(Γ, Ad(ρ)) = Z1(Γ, Ad(ρ))/B1(Γ, Ad(ρ)),

see Section 4. It was first observed by A. Weil [207] (in the general context of repre-
sentations to Lie groups) that if Xn(Γ) is smooth at [ρ] ∈ Xn(Γ) then H1(Γ, Ad(ρ))
is isomorphic to the tangent space to Xn(Γ) at [ρ]. Moreover, Weil proved that if
H1(Γ, Ad(ρ)) = 0 then [ρ] is an isolated point on Xn(Γ), i.e., ρ is locally rigid.

Therefore, the elements of H1(Γ, Ad(ρ)) can be regarded as infinitesimal deforma-
tions of the representation ρ. An infinitesimal deformation [ξ] ∈ H1(Γ, Ad(ρ)) is called
integrable if it is tangent to a smooth curve in Xn(Γ). The obstructions to integra-
bility are cohomological in nature, they are certain elements of H2(Γ, Ad(ρ)), called
Massey products. However, in practice, these cohomology classes are very difficult to
compute. The first such obstruction is the cup-product:

φ([ξ]) = [ξ] ∪ [ξ] ∈ H2(Γ, Ad(ρ)),

see for instance [78]. Here φ([ξ]) is represented by the 2-cocycle

τ(x, y) = [ξ(x), Ad ◦ ρ(x)ξ(y)]
where [, ] is the Lie bracket on the Lie algebra g. If the first obstruction vanishes and
Γ is the fundamental group of a surface, then Xn(Γ) is smooth at ρ, see [78], where
a much more general result is proved.

We will be mostly interested in the case where ρ : Γ ↪→ Mob(Sn) is a discrete
embedding, whose image we will identify with Γ. Then, by abusing the terminology,
we will talk of small deformations of ρ in Rn(Γ) as small deformations of Γ itself.

10.1.1. Small deformations of 1-quasifuchsian groups. Recall that the group Mob(Sn)
has dimension d = (n+ 2)(n + 1)/2. Suppose that Γ ⊂Mob(Sn) is 1-quasifuchsian;
in this subsection we allow Γ to have nontrivial finite order elements. We assume
however that Γ contains no elements fixing the circle C = Λ(Γ) pointwise. Therefore
we obtain the injective map

Γ→ Isom(H2)

given by the restriction of the elements of Γ to the round circle C. To simplify the
discussion we assume that Γ preserves the orientation on C. Then Γ embeds as a
lattice in PSL(2,R).

If Γ contains no parabolic elements then it has the presentation:

〈a1, b1, ...., aq, bq, c1, ..., ck|[a1, b1] · ...[aq, bq] · c1 · ... · ck = 1, c
rj

j = 1, j = 1, ..., k〉.
For a representation ρ : Γ→Mob(Sn) we let

ej := d− dim{ξ ∈ g : Ad ◦ ρ(cj)(ξ) = ξ};
in other words, ej is the codimension of the centralizer of ρ(cj) in Mob(Sn). Let s
denote the dimension of centralizer of ρ(Γ) in Mob(Sn).
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Theorem 10.1. (A. Weil [207])

(10.2) h = dimH1(Γ, Ad(ρ)) = (2q − 2)d+ 2s+ e1 + ... + ek.

Moreover, if s = 0 then Xn(Γ) near [ρ] is a smooth h-dimensional manifold.

For instance, if n = 1, Γ ⊂ PSL(2,R) ⊂Mob(S1); therefore d = 3, we get ei = 1
for each i = 1, ..., k, s = 0. Hence

h = 6q − 6 + k,

which is the familiar formula for the dimension of the Teichmüller space of the orbifold
O = H2/Γ. If n = 2, we, of course, obtain h = 2(6q − 6 + k) which is the (real)
dimension of the space of the quasifuchsian deformations of Γ in PSL(2,C).

To better understand the difficulties which one encounters in the case of i-fuchsian
groups for i ≥ 2, we consider the hyperbolic triangle groups Γ. The reason for consid-
ering these groups is that they are rigid in PSL(2,R) (similarly to rigidity of lattices
in Mob(Sn), n ≥ 2).

The triangle groups are the 1-fuchsian groups with q = 0, k = 3; every such Γ has
the presentation

〈c1, c2, c3|c1 · c2 · c3 = 1, c
rj

j = 1, j = 1, 2, 3〉,
where r−1

1 + r−1
2 + r−1

3 < 1. Such group embeds discretely into PSL(2,R) and we will
denote the image of this embedding by ∆ = ∆(r1, r2, r3)

As a subgroup of Mob(S2), the group ∆ is locally rigid (which follows from van-
ishing of H1). Moreover, triangle groups are “strongly rigid” in Mob(S2), i.e., every
discrete embedding of Γ into Mob(S2) is induced by conjugation of the identity em-
bedding, see [80] for the complete description of X2(Γ).

The situation changes somewhat if we consider representations into Mob(S3). First,
let ρ0 : ∆→ Γ′ ⊂Mob(S3) be the embedding obtained as the composition

∆ ⊂Mob(S1) ↪→Mob(S2) ↪→Mob(S3).

of natural embeddings. For ρ0 we get: d = 10, s = 1, ej = 6 (j = 1, 2, 3). Thus (10.2)
tells us that ρ0 is still locally rigid in Mob(S3). However, instead of ρ0 we can take
a twisted extension. Suppose that we can find numbers mj ∈ Z, 1 < |mj| < rj − 1
(j = 1, 2, 3) such that:

m−1
1 +m−1

2 +m−1
3 = 0, and ∀j, mj divides rj.

(This is satisfied for instance by m1 = m2 = 4, m3 = −2 and rj = 8 for all j.)

Define a homomorphism θ : ∆ → SO(2) by sending ci to the rotation by 2π/mi.
Then define ρ : ∆→Mob(S1)× SO(2) ⊂Mob(S3) by twisting ρ0 via θ:

ρ(γ) = ρ0(γ)× θ(γ), γ ∈ ∆.

It is clear that ρ(∆) is again a 1-fuchsian subgroup in Mob(S3). If rj > 3 for
each j, then ej = 8, s = 1 and the formula (10.2) gives the dimension h = 6 for
H1(∆, Ad(ρ)). I do not know if any of these infinitesimal deformations is integrable.
To decide this one has to analyze the quadratic form

φ : H1(∆, Ad(ρ))→ H2(∆, Ad(ρ)) = R,
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given by the cup-product. According to [78], the quadratic cone {φ = 0} is analyti-
cally isomorphic to a neighborhood of [ρ] inX3(∆); hence it suffices to find a nontrivial
1-cocycle ξ for which φ([ξ]) = 0 to get nontrivial deformations of the representation
ρ.

On the other hand, one can use (10.2) to show that every representation ρ of the
group ∆ = ∆(2, 3, r3) into Mob(S3) has zero cohomology H1(∆, Ad(ρ)). Therefore
X3(∆) is a zero-dimensional algebraic variety and, hence, is a finite set.

This situation is somewhat typical for representations of lattices in Mob(Sn) (n ≥
2) into Mob(Sn+1): In a number of cases we can prove local rigidity by making co-
homological computations; in some cases we can only conclude that H1 is nonzero,
without being able to make a definitive conclusion about existence of nontrivial de-
formations.

10.1.2. Small deformations of i-quasifuchsian groups for i ≥ 2. In the case of (n−1)-
quasifuchsian groups Γ (n ≥ 2), the existence of nontrivial deformations of Γ in
Mob(Sn) is not at all clear. Suppose that Γ ⊂ Isom(Hn) is a cocompact lattice. We
have the identity embedding

ι : Γ ↪→ Isom(Hn),

which is locally rigid by Mostow’s theorem.

Remark 10.3. Actually, local rigidity of ι was known prior to the work of Mostow; it
was first established by E. Calabi [43], whose proof was later generalized by A. Weil
[205, 206]. These arguments were based on proving that H1(Γ, Ad(ι)) = 0.

Consider now the composition of ι with the natural embedding:

ρ : Γ→ Isom(Hn) ↪→ Isom(Hn+1).

Then
H1(Γ, Ad(ι)) ∼= H1(Γ, Vn),

where Vn = Rn,1 and Γ acts on the Lorentz space Rn,1 via the usual embedding
Γ ↪→ O(n, 1).

It turns out that ρ may or may not be locally rigid, even if Γ is torsion-free: Rigidity
depends on the lattice Γ. One has the following list ((a) through (e)) of constructions
of deformations and infinitesimal deformations of [ρ] in Xn(Γ):

(a) Bending, see [99], [128]. Given a connected properly embedded totally-geodesic
hypersurface S ⊂ M = Hn/Γ, one associates with S a smooth curve through [ρ] in
Xn(Γ), called the bending deformation of [ρ]. More generally, given a disjoint collec-
tions of such hypersurfaces S1, ..., Sk, one obtains a k-dimensional smooth submanifold
in Xn(Γ) containing [ρ]. This construction is completely analogous to bending defor-
mations of 1-fuchsian subgroups in Mob(S2) defined by Thurston in [196]. We let
[ξS] denote the element of H1(Γ, Ad(ρ)) corresponding to a connected totally-geodesic
hypersurface S ⊂M .

There are numerous group Γ satisfying assumptions of the bending construction.
Namely, start with an arithmetic group O′(f, A) of the simplest type (see Section 2),
where

f = a0x
2
0 + a1x

2
1 + ... + anx

2
n,
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and a0 < 0, ai > 0, i = 1, ..., n. Identify Hn with a component of the hyperboloid
{f(x) = −1}. Then the stabilizer of the hyperplane P = {xn = 0} in O′(f, A) is
an arithmetic lattice in Isom(Hn−1). The intersection H = P ∩ Hn is a hyperplane
in Hn. After passing to an appropriate finite-index subgroup Γ in O′(f, A), one
obtains a totally-geodesic embedding of the hypersurface S = H/Γ′ into H/Γ, where
Γ′ = Γ ∩O′(f, A). We refer the reader to [153] for the details.

Problem 10.4 (I. Rivin). Construct examples of hyperbolic n-manifolds M of finite
volume (n ≥ 4) such that M contains a separating properly embedded totally-geodesic
hypersurface S ⊂ M . Note that the main objective of [153] was to construct nonsep-
arating hypersurfaces.

The idea of bending deformations of representations is quite simple and has nothing
to do with the hyperbolic space. Below is a general description of bending as defined
by D. Johnson and J. Millson in [99]. Suppose that we are given a graph of groups G
with the vertex groups Γv and the edge groups Γe. Let Γ = π1(G) be the fundamental
group of G. For instance, the amalgam

(10.5) Γ = Γv1
∗Γe

Γv2

is the fundamental group of a graph of groups which is a single edge e with two
vertices v1, v2. Let ρ0 : Γ→ G be a representation of Γ to a Lie group G. A bending
deformation of ρ0 is a curve of representations ρt : Γ → G, t ∈ [−1, 1], such that for
each vertex group Γv, we have

ρt|Γv = gv,t(ρ0|Γv)g
−1
v,t ,

for some curve gv,t of elements of G. Therefore, the restriction of ρt to each vertex
group determines a trivial deformation of the representation of this group. The trick is
that the deformation of the representation of the entire group Γ may be still nontrivial.
For instance, in the case of the amalgam (10.5), let gt ∈ G, g0 = 1, be a curve of
elements centralizing ρ(Γe) but not ρ(Γv1

), ρ(Γv2
). Define the family of representations

ρt : Γ→ G, ρt|Γv1
= ρ0|Γv1

, ρt|Γv2
= gt(ρ0|Γv1

)g−1
t .

This is a nontrivial deformation of the representation ρ0. In the case of the bending
of π1(M) in Mob(Sn) as above, the point is that:

1. The centralizer of each π1(Si) in Mob(Sn) is 1-dimensional (the group of elliptic
rotations around the limit set of π1(Si)).

2. The centralizer in Mob(Sn) of the fundamental group of each component of
M \ (S1 ∪ ... ∪ Sk) is zero-dimensional.

Therefore one obtains nontrivial bending deformations ρt of the identity embedding
of ρ : Γ ↪→Mob(Sn). The set of bending parameters t = (t1, ..., tk) can be identified
with (S1)k, as the centralizer of each π1(Si) in Mob(Sn) is the circle SO(2).

For each n ≥ 4, D. Johnson and J. Millson [99] constructed a lattice Γ ⊂ Isom(Hn)
and intersecting hypersurfaces S1, S2 ⊂ Hn/Γ, so that

[ξS1
] ∪ [ξS2

] ∈ H2(Γ, Ad(ρ)) 6= 0.

In particular, Xn(Γ) is not smooth at [ρ]. In contrast with this result, the character
varieties X2(Γ) tend to be smooth:
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Theorem 10.6. (See [113].) Let Γ ⊂ Mob(S2) be a discrete subgroup. Then the
identity embedding ι : Γ→Mob(S2) determines a smooth point on X2(Γ).

On the other hand, there are cocompact lattices Γ ⊂ Mob(S2) and (nondiscrete)
representations ρ : Γ → Mob(S2) for which X2(Γ) has nonquadratic singularity at
[ρ], see [120].

(b) Generalized bending associated with a collection of compact totally-geodesic
submanifolds with boundary in Mn, see [10]8, [119], [150], [11].

The idea of the generalized bending is that instead of considering fundamental
groups of graphs of groups, one looks at the more general complexes of groups. The
only examples which had been worked out are 2-dimensional complexes of groups.
Let X be such a complex with the vertex groups Γv. Let π1(X ) = Γ and ρ0 : Γ→ G
be a representation to a Lie group. Then, as in the definition of bending, a generalized
bending of ρ0 is a curve of representations ρt : Γ → G, t ∈ [−1, 1], whose restrictions
to each vertex subgroup Γv are trivial deformations of ρ0|Γv.

(c) Suppose that a lattice Γ ⊂ Isom(Hn) is a reflection group, i.e., it is generated
by reflections in the faces of a convex acute polyhedron Φ ⊂ Hn of finite volume (the
fundamental domain of Γ). If f is the number of facets of Φ, then one can show that

dimH1(Γ, Ad(ρ)) = f − n− 1,

see [110]. The facets of Φ correspond to vectors spanning H1. If n ≥ 4, it is unclear
which (if any) of these infinitesimal deformations are integrable. Of course, in some
examples some of these infinitesimal deformations are integrable, since they appear
as infinitesimal bending deformations. If n = 3, then X3(Γ) is smooth near [ρ] and
has dimension f − 4, see [110].

And that’s all for n ≥ 3.

Problem 10.7 (P. Storm). Let M be a compact hyperbolic (n+1)-dimensional man-
ifold with nonempty totally-geodesic boundary, n ≥ 3. Let Γ := π1(M) ⊂ Mob(Sn).
Is it true that Γ is locally rigid in Mob(Sn)?

Note that (by Mostow rigidity) local rigidity of Γ would follow if we knew that
for each component S of ∂M , the fundamental group ΓS := π1(S) is locally rigid in
Mob(Sn). At the moment, we do not have results in either direction of this problem:

1. It is unclear if any of the locally rigid hyperbolic 3-manifolds, or their disjoint
union (see Example 10.12), bounds a compact hyperbolic 4-manifold.

2. Even if some ΓS is not locally rigid, it is unclear if its deformations extend to
deformations of Γ.

Remark 10.8. Consider the 120-cell D4 ⊂ H4 which appears in [55]. Pick a facet
F ⊂ D4. Let Γ ⊂ Mob(S3) be the Kleinian group generated by reflections in all
facets of D4 except for F . Then Γ is the fundamental group of a right-angled 4-
dimensional reflection orbifold O with boundary (the boundary S = ∂O corresponds
to the facet F ). The group ΓS := π1(S) is the Coxeter group generated by reflections
in the facets of the regular right-angled hyperbolic dodecahedron. In particular, X3(Γ)

8Some of the theorems stated in this paper are probably incorrect since they do not take into
account the restrictions on the angles between the totally-geodesic submanifolds.
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is a smooth 8-dimensional manifold near [ι], where ι : ΓS ↪→ Mob(S2) ↪→ Mob(S3)
is the identity embedding.

One can show however that Γ is locally rigid in Mob(S3).

Assume now that n = 3.

(d) The first obstruction to integrability of infinitesimal deformations is always zero,
see [120].

Question 10.9. Suppose that Γ ⊂ Mob(S2) is a cocompact lattice. It it true that
the character variety X3(Γ) is smooth at the point [ρ]?

(e) Finally, there are several constructions which work for specific examples of
lattices Γ ⊂Mob(S2), e.g. stumping deformations [7], generalized in [195].

We recall the following

Conjecture 10.10. Suppose that Γ ⊂ Mob(Sn) is a lattice. Then Γ contains a
finite-index subgroup Γ′ such that Γ′ has infinite abelianization, i.e., H1(Γ′,R) 6= 0.

We refer the reader to [153, 135, 172, 137, 183] for various results towards this
conjecture in the case of arithmetic lattices in Isom(Hn). The methods used in these
papers for proving virtual nonvanishing of the first cohomology group usually also
apply to the cohomology groups H1(Γ, Ad(ρ)), where ρ : Γ → Isom(Hn+1) is the
natural embedding. On the other hand, the proofs of special cases of Conjecture
10.10 for hyperbolic 3-manifolds which use the methods of 3-dimensional topology
(see e.g. [134]), usually provide no information about local rigidity of Γ in Isom(H4).

Conjecture 10.11. Suppose that Γ ⊂ Isom(Hn) is a lattice. Then there exists a
finite-index subgroup Γ′ ⊂ Γ so that H1(Γ′, Ad(ρ)) 6= 0.

On the other hand, some uniform torsion-free lattices in Mob(S2) are locally rigid
in Mob(S3):

Example 10.12. In [110] we constructed examples of (torsion-free) cocompact lat-
tices Γ in Mob(S2) for which H1(Γ, Ad(ρ)) = 0, where ρ : Γ → Mob(S3) is the
natural embedding. The quotient manifolds H

3/Γ in these examples are non-Haken.
K. Scannell [180] constructed analogous examples with Haken quotients H3/Γ.

More specifically, it was proved in [110] that for every hyperbolic 2-bridge knot
K ⊂ S3, there are infinitely many (hyperbolic) Dehn surgeries on K, so that for the
resulting manifolds Mj, j ∈ N, we have

H1(Γj, Ad(ρ)) = 0, where Γj = π1(Mj).

10.1.3. Failure of quasiconformal isotopy.

Theorem 10.13. There exists a pair of convex-cocompact Kleinian groups ∆1,∆2 ⊂
Mob(S5) and a quasiconformal homeomorphism f : S5 → S5 conjugating ∆1 to ∆2,
which is not isotopic to the identity through homeomorphisms ht : S

5 → S
5 such that

ht∆1h
−1
t ⊂Mob(S5) .
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Proof. We begin with a lattice Γ = π1(N), where N = Mj is as in the discussion of
Example 10.12 and K ⊂ S3 is the figure 8 knot. Consider the representation

ρ1 : Γ ↪→Mob(S2) ↪→Mob(S5)

obtained by the composition of natural embeddings. Then

H1(Γ, Ad(ρ1)) = H1(Γ, V3 ⊕ V3 ⊕ V3 ⊕ R
3),

where V3 = R
3,1 and R

3 is the trivial 3-dimensional RΓ-module. Since H1(Γ, V3) = 0
by [110] and H1(Γ,R3) = 0 since N is a rational homology sphere, we obtain

H1(Γ, Ad(ρ1)) = 0.

Therefore ρ1 is locally rigid. If N is an integer homology 3-sphere, then nonvanishing
of the Casson invariant of K implies that Γ admits a nontrivial homomorphism

θ : Γ→ SO(3)

which lifts to SU(2), see [5]. If Mj is not an integer homology sphere, then Γ has
nontrivial abelianization and hence we also obtain a nontrivial homomorphism θ :
Γ→ SO(3) with cyclic image. In any case, we twist the representation ρ1 by θ:

ρ2 = ρ1 × θ : Γ→Mob(S2)×SO(3) ⊂Mob(S5) .

It is clear that [ρ1], [ρ2] are distinct points of X5(Γ). The images of ρ1 and ρ2 are 2-
fuchsian, convex-cocompact groups ∆1,∆2 ⊂Mob(S5). We obtain the isomorphism

ρ := ρ2 ◦ ρ−1
1 : ∆1 → ∆2

Clearly,

M5(∆1) = N × S
2,

while M5(∆2) is the 2-sphere bundle over N associated with θ. It is easy to see that
the latter bundle is (smoothly) trivial. Therefore we obtain a diffeomorphism

h : M5(∆1)→M5(∆2)

which lifts to a ρ-equivariant diffeomorphism f : Ω(∆1)→ Ω(∆2). The latter extends
to a quasiconformal homeomorphism f : S5 → S5 by Theorem 5.1. If there was a
continuous family of homomorphisms ρt connecting ρ to the identity embedding ∆1 →
∆2, then the representation ρ1 would not be locally rigid in X5(Γ). Contradiction. �

By embedding naturally the groups ∆1,∆2 to Mob(Sn) for n ≥ 6 one obtains
higher-dimensional examples.

10.2. Stability theorem. Let Γ ⊂ Mob(Sn) be a geometrically finite Kleinian
group. Consider the set of cusps in Γ:

[Π1], ..., [Πm],

where Πi are maximal parabolic subgroups of Γ. We define the (topologically) relative
representation variety

Rtop
n (Γ) = {ρ : Γ→Mob(Sn) : ρ(Πi) is topologically conjugate to Πi in S

n, ∀i}
and the (quasiconformally) relative representation variety

Rqc
n (Γ) = {ρ : Γ→Mob(Sn) : ρ(Πi) is quasiconformally conjugate to Πi in S

n, ∀i}.
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Let Homeo(Sn) and QC(Sn) be the groups of homeomorphisms and quasiconformal
homeomorphisms of Sn with the topology of uniform convergence. LetX top

n (Γ), Xqc
n (Γ)

be the projections of Rtop
n (Γ), Rqc

n (Γ) to Xn(Γ). Let ι : Γ→Mob(Sn) be the identity
embedding. Then the Stability Theorem for geometrically finite groups states that
every homomorphism ρ of Γ sufficiently close to ι is induced by a (quasiconformal)
homeomorphism hρ close to the identity and depending continuously on ρ. More
precisely:

Theorem 10.14. (Stability theorem, see [142], [64] [193], [75], [105].) There exist
neighborhoods U top, U qc of ι in Rtop

n (Γ), Rqc
n (Γ) respectively, and continuous maps

Ltop : U top → Homeo(Sn), Lqc : U qc → QC(Sn)

so that

Ltop(ι) = Lqc(ι) = Id,

and for every ρ ∈ U top, resp. ρ ∈ U qc, the homeomorphism Ltop(ρ), resp. Lqc(ρ) is
ρ-equivariant.

This theorem was first proved by A. Marden in [142] in the case n = 3. Marden
was using convex finitely-sided fundamental domains with simplicial links of vertices:
Such polyhedra are generic among the Dirichlet fundamental domains, see [102]. Mar-
den then argued that a small perturbation of such fundamental domain is again a
fundamental domain (by Poincare’s fundamental polyhedron theorem). Moreover,
the simplicial assumption implies that the combinatorics of the fundamental domain
does not change under a small perturbation. This allowed Marden to construct an
equivariant quasiconformal homeomorphism close to the identity. This argument does
not readily generalize to higher dimensions, mainly because finiteness of the number
of faces is not equivalent to geometric finiteness. (Otherwise, the same argument goes
through.)

D. Sullivan [193] considered the case of general n, but assumed that Γ is convex-
cocompact. Then he proved the existence of a homeomorphism hρ defined on the
limit set of Γ and the fact that it depends continuously on ρ. The fact that

hρ : Λ(Γ)→ Λ(ρ(Γ))

is necessarily quasi-symmetric then follows from Tukia’s theorem 5.1. One then has
to show existence of a ρ-equivariant diffeomorphism of the domains of discontinuity

fρ : Ω(Γ)→ Ω(ρ(Γ))

smoothly depending on ρ. This is achieved by appealing to Thurston’s holonomy
theorem (see [64, 75]) for the Moebius structures on the manifold Mn(Γ), as it is done
in [105], [97]. The homeomorphisms hρ and fρ yield a ρ-equivariant quasiconformal
homeomorphism of the n-sphere by Theorem 5.1.

The proof in [64] is a good alternative to the above argument; it is also sufficiently
flexible to hande the case of geometrically finite Kleinian groups with cusps. Namely,
instead of working with the n-dimensional manifold Mn(Γ) one works with the convex
hyperbolic (n+ 1)-manifold

H(Γ) := Hullε(Λ(Γ))/Γ.
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An analogue of Thurston’s holonomy theorem for manifolds with boundary applies
in this case. Thus, for ρ ∈ U top, there exists a hyperbolic structure s(ρ) (with the
holonomy ρ) on the thick part

H(Γ)[µ,∞)

of the manifold H(Γ). Moreover, convexity of the boundary for the new hyperbolic
structures (away from the cusps) persists under small perturbations of the hyperbolic
structure. Therefore, if Γ is convex-cocompact, Γ′ := ρ(Γ) is again convex-cocompact
and ρ : Γ → Γ′ is an isomorphism. If Γ is merely geometrically finite, because ρ
belongs to the relative representation variety, it follows that the hyperbolic structure
s(ρ) extends to a convex complete hyperbolic structure on the cusps. This argument
also yields a ρ-equivariant diffeomorphism

Hullε(Λ(Γ))→ Hullε(Λ(Γ′))

depending continuously on ρ. To get from the convex hulls to the domain of dis-
continuity one uses the existence of the canonical equivariant diffeomorphisms (“the
nearest-point projections”)

Ω(Γ)→ ∂Hullε(Λ(Γ)), Ω(Γ′)→ ∂Hullε(Λ(Γ′)).

We refer the reader to [64] for the details.

Sullivan also had a converse to the Stability Theorem for (finitely-generated) sub-
groups on Mob(S2):

Theorem 10.15. (D. Sullivan, [193, Theorem A′]) If a (finitely-generated) Kleinian
subgroup of Mob(S2) is stable in the sense of Theorem 10.14, then it is geometrically
finite or its identity embedding in Mob(S2) is locally rigid in X2(Γ).

It was proved in [113] that every locally rigid Γ in the above theorem has to be
geometrically finite. Now it, of course, follows from the positive solution of the Bers–
Thurston density conjecture (geometrically finite groups are dense among Kleinian
subgroups of Mob(S2)).

Question 10.16. Does Theorem 10.15 hold for subgroups of Mob(Sn), n ≥ 3?

We expect the answer to be negative.

10.3. Space of discrete and faithful representations. Let Dn(Γ) ⊂ Xn(Γ) de-
note the subset corresponding to discrete, injective and nonelementary representations
of Γ.

Theorem 10.17 (Chuckrow–Jørgensen–Wielenberg). Dn(Γ) ⊂ Xn(Γ) is closed. See
for instance [208, 143].

It turns out that there exists another way to construct limits of sequences of
Kleinian groups, by regarding them as closed subsets of Mob(Sn). This leads to
the topology of geometric convergence of Kleinian groups. With few exceptions, the
space of Kleinian groups is again closed in this topology (see e.g. [197, 113]). In
general, Dn(Γ) is not compact. Nevertheless, this space can be compactified by pro-
jective classes of nontrivial Γ-actions on real trees. This compactification generalizes
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Thurston’s compactification of the Teichmüller space. The compactification by ac-
tions on trees was first defined by J. Morgan and P. Shalen [159] and J. Morgan [158]
using algebraic geometry. More flexible, geometric, definitions of this compactifica-
tion were introduced by M. Bestvina [21] and F. Paulin [167]. See also [113] for the
construction of this compactification using ultralimits of metric spaces.

This viewpoint provides a powerful tool for proving compactness of Dn(Γ) for cer-
tain classes of groups: If Dn(Γ) is non-compact then Γ admits nontrivial action on a
certain R-tree. One then proves that such action cannot exist. The tools for proving
such non-existence theorems are originally due to Morgan and Shalen (but limited to
the fundamental groups of 3-manifolds, see [159]); much more general method is due
to E. Rips (Rips theory).

Theorem 10.18 (Rips–Thurston Compactness theorem). Suppose that Γ is a finitely-
presented group which does not split as an amalgam over a virtually abelian group.
Then Dn(Γ) is compact.

For Γ isomorphic to the fundamental groups of 3-manifolds this theorem is due to
J. Morgan and P. Shalen [159]. For more general groups, this theorem is a corollary
of the Rips theory of groups acting on trees [24], see [113].

Unfortunately, none of the known proofs of this theorem gives explicit bounds on
the “size” of D(Γ).

Problem 10.19. Find a “constructive” proof of Theorem 10.18. More precisely,
consider a group Γ with a finite presentation 〈g1, .., gk|R1, .., Rm〉. Given [ρ] ∈ Dn−1(Γ)
define

Bn−1([ρ]) := inf
x∈Hn

max
i=1,...,k

d(x, ρ(gi)(x)).

Find an explicit constant C, which depends on n, k,m and the lengths of the words
Ri, so that the function Bn−1 : Dn−1(Γ)→ R is bounded from above by C.

Theorem 10.18 suggests that one should also look for geometric bounds on [ρ] ∈ Dn(Γ):
Even if Dn(Γ) is noncompact (or its “size” is unknown), one can still try to find some
natural functionals on Dn(Γ) and obtain explicit bounds (from below and from above)
on these functionals.

Definition 10.20 (Diameter of a representation). Given a discrete embedding ρ :
Γ→ Γ′ = ρ(Γ) ⊂Mob(Sn), consider the set S of connected subgraphs σ ⊂ Hn+1/Γ′

with the property: The map π1(σ)→ π1(M) is surjective.

Then the diameter of ρ is

diam(ρ) := inf{length(σ) : σ ∈ S}.
Problem 10.21. Given a group Γ as in Theorem 10.18, find explicit bounds on
diam(ρ) (in terms of the presentation of Γ) for representations [ρ] ∈ Dn(Γ).

Note that the positive lower bound on diam(ρ) is an easy corollary of Kazhdan-
Margulis lemma.

Definition 10.22. (Volumes of a representation) Fix a homology class [ζ] ∈ Zp(Γ),
2 ≤ p ≤ cd(Γ). For a representation ρ ∈ Dn(Γ) consider the quotient manifold
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M = Hn/ρ(Γ). Define the set E(ζ) of singular p-cycles ζ ′ ∈ Zp(M) which represent
the homology class [ζ] under the isomorphism

Hp(Γ)→ Hp(M)

induced by the isomorphism ρ : Γ→ π1(M). Lastly, define the ρ-volume of the class
[ζ] by

V olρ(ζ) := inf{V ol(ζ ′) : ζ ′ ∈ E(ζ)}.

Let ||ζ|| denote the Gromov-norm of the class [ζ] and let cp denote the volume of
the regular ideal geodesic p-simplex in Hp. Then an easy application of Thurston’s
“chain-straightening” is the inequality

V olρ(ζ) ≤ cp||ζ||
for all ρ, [ζ] and p ≥ 2. However good lower bounds on the volume are considerably
more difficult to get.

Given a hyperbolic manifold M define Hcusp
p (M) to be the image in Hp(M) of the

p-th homology group of the union of all cusps of M . Then for every cuspidal class [ζ]
and every ρ, we clearly have

V olρ(ζ) = 0.

However there exists a positive constant ε = ε(p, n) such that for every p > 0, every
non-cuspidal class [ζ] and every ρ, we obtain

V olρ(ζ) ≥ ε,

see [103]. Below are some nontrivial lower bounds on the volume:

Theorem 10.23. (Follows directly from [82, Theorem 5.38]9). Let Γ be isomorphic
to the fundamental group of a compact aspherical k-manifold N and [ζ] = [N ] be the
fundamental class of M . Then there exists a universal (explicit) constant c(p, n) > 0
depending only on p and n, such that

V olρ(ζ) ≥ c(p, n)||N ||.

One gets better estimates using the work of Besson, Courtois and Gallot [19] 10:

Theorem 10.24. Fix a representation [φ] ∈ Dn(Γ). Then for every [ρ] ∈ Dn(Γ) and
p ≥ 3 we obtain ( p

n

)p+1

V olφ(ζ) ≤ V olρ(ζ).

For instance, if Γ′ := φ(Γ) happens to be a uniform lattice in Isom(Hp), we obtain

Corollary 10.25. For every [ρ] ∈ Dn(Γ) and p ≥ 3 we have
( p
n

)p+1

V ol(M ′) ≤ V olρ(ζ),

where M ′ = Hp/Γ′ and [ζ] is the fundamental class.

9I am grateful to A. Nabutovsky for this reference.
10I am grateful to J. Souto for pointing this out.
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10.4. Why is it so difficult to construct higher-dimensional geometrically
infinite Kleinian groups? (i). The oldest trick for proving existence of geometri-
cally infinite groups is due to L. Bers [17]:

Start with (say) a convex-cocompact subgroup Γ ⊂ Mob(Sn). Let Q(Γ) ⊂ Dn(Γ)
be the (open) subset of representations induced by quasiconformal conjugation. Let
Q0(Γ) denote the component of Q(Γ) containing the (conjugacy class of) identity
representation [ρ0]. We assume that the closure of Q0(Γ) is not open in Xn(Γ).
Then there exists a curve [ρt] ∈ Xn(Γ), t ∈ [0, 1], so that ρ1 is either nondiscrete or
non-injective. Since Dn(Γ) is closed, it follows that there exists s ∈ (0, 1) such that
[ρs(Γ)] belongs to Dn(Γ) but ρs(Γ) is not convex-cocompact. If Γ′ = ρs(Γ) contains no
parabolic elements, it would follow that Γ′ is isomorphic to Γ and is not geometrically
finite. However it could happen that the frontier ofQ0(Γ) consist entirely of the classes
[ρ] for which ρ(Γ) contains parabolic elements.

The latter cannot occur if n = 2 for the dimension reasons: The set of parabolic
elements of PSL(2,C) has real codimension 2. However for all n 6= 2, the set of
parabolic elements has real codimension 1 and this argument is inconclusive.

One can try to apply the above argument in the case of a codimension 1 fuchsian
group Γ ⊂Mob(Sn) which acts as a cocompact lattice on H

n ⊂ H
n+1. Suppose that

M = Hn/Γ contains a totally-geodesic compact hypersurface S. Then we have the
circle S1 worth of bending deformations ρt along S. As t = π, the image of ρt is
again contained in Mob(Sn−1). Therefore ρπ is either nondiscrete or non-injective.
However, conceivably, in all such cases, for [ρs] ∈ ∂Q0(Γ) the representation ρs is
geometrically finite (because its image may contain parabolic elements). It happens,
for instance, if Γ is a reflection group.

Note that even when n = 2 and we are bending a 1-fuchsian group Γ, it is hard to
predict which simple closed geodesics α ⊂ H2/Γ yield geometrically infinite groups
(via bending along α).

(ii). One can try to construct explicit examples of fundamental domains, following,
say, T. Jorgensen [100] or A. Marden and T. Jorgensen [101].

The trouble is that constructing fundamental polyhedra with infinitely many faces
in H4 is quite a bit harder than in H3. One can try to find a lattice ∆ ⊂ Mob(S3)
which contains a nontrivial finitely-generated normal subgroup Γ of infinite index.11

This is, probably, the most promising approach, since it works for complex-hyperbolic
lattices in PU(2, 1), cf. [112]. One can try to imitate Livne’s examples, by construct-
ing Γ ⊂ ∆ such that ∆/Γ is isomorphic to a surface group. This would require
coming up with a specific compact convex polyhedron in H4 such that the associated
4-manifold appears as a (singular) fibration over a surface.

(iii). One can try to use the combinatorial group theory. Note that there are plenty
of examples of (mostly 2-dimensional) Gromov-hyperbolic groups ∆ each of which
contains a nontrivial finitely-generated normal subgroup Γ of infinite index. See e.g.
[178, 23, 160, 38] for the examples which are not 3-manifold groups. However embed-
ding a given hyperbolic group ∆ in Mob(Sn) is a nontrivial task, cf. [33, 114] and

11If ∆ is a Kleinian group containing a nontrivial normal subgroup Γ of infinite index, then Γ is
necessarily geometrically infinite.
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discussion in Section 11. The groups considered in [114], probably provide the best
opportunity here since most of them do not pass the perimeter test of J. McCammond
and D. Wise [151].

(iv). What would geometrically infinite examples look like? Let Γ ⊂Mob(S2) be a
singly-degenerate group; assume for simplicity that the injectivity radius of H3/Γ is
bounded away from zero. Let S denote the boundary of

Hull(Λ(Γ))/Γ

and λ ⊂ S be the ending lamination of Γ. Then every leaf of λ lifts to an exponentially
distorted curve κ in H3: Given points x, y ∈ κ, their extrinsic distance d(x, y) in H3

is roughly the logarithm of their intrinsic distance along κ.

One would like to imitate this behavior in dimension 4. Let M be a closed hyper-
bolic 3-manifold containing an embedded compact totally-geodesic surface S ⊂ M .
Let λ ⊂ S be an ending lamination from the above example. One would like to con-
struct a complete hyperbolic 4-manifold N homotopy-equivalent to M , so that under
the (smooth) homotopy-equivalence f : M → N we have:

For every leaf L of λ, f(L) lifts to an exponentially distorted curve in H4.

Then π1(N) will necessarily be a geometrically infinite subgroup Γ of Mob(S4). At
the moment it is not even clear how to make this work with a hyperbolic metric on N
replaced by a complete Riemannian metric of negatively pinched sectional curvature,
although constructing a Gromov-hyperbolic metric with this behavior is not that
difficult. (Recall that a Riemannian metric is said to be negatively pinched if its
sectional curvature varies between two negative numbers.) An example Γ of this type
is likely to have two components of Ω(Γ): One contractible and one not.

More ambitiously, one can try to get a singly degenerate group Γ ⊂ Mob(S3) (so
that Ω(Γ) is contractible and M 3(Γ) is compact). How such example would look
like? One can imagine taking a 1-dimensional quasi-geodesic foliation λ of the 3-
manifold M as above and then requiring that for every leaf L ⊂ λ, the curve f(L)
lifts to an exponentially distorted curve in H

4. At the moment I do not see even a
Gromov-hyperbolic model of this behavior. Another option would be to work with
2-dimensional laminations ν (with simply-connected leaves) in M and require every
leaf L ⊂ ν to correspond to an exponentially distorted surface in H4 (or a negatively-
curved simply-connected 4-manifold), which limits to a single point in S3.

Problem 10.26. Construct a complete negatively pinched 4-dimensional Riemannian
manifold N homotopy-equivalent to a hyperbolic 3-manifoldM , so that the convex core
of N either has exactly one boundary component or equals N itself.

Question 10.27. Is there a geometrically infinite Kleinian subgroup of Mob(Sn)
whose limit is homeomorphic to the Menger curve? Is there a geometrically infinite
Kleinian subgroup of Mob(Sn) which is isomorphic to the fundamental group of a
closed aspherical manifold of dimension ≥ 3? Are there examples of such groups
acting isometrically on complete negatively pinched manifolds? Are there examples
of hyperbolic (or even negatively curved) 4-manifolds M such that π1(M) = Γ fits
into a short exact sequence

1→ π1(S)→ Γ→ π1(F )→ 1,
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where S, F are closed hyperbolic surfaces? Note that there are no complex-hyperbolic
examples of this type, see [112].

11. Algebraic and topological constrains on Kleinian groups

Sadly, there are only few known algebraic and topological restrictions on Kleinian
subgroups in Mob(Sn) that do not follow from the elementary restrictions, which
come from the restrictions on geometry of complete negatively curved Riemannian
manifolds. Examples of the elementary restrictions on a Kleinian group Γ are:

1. Every solvable subgroup of a Kleinian group is virtually abelian.

2. The normalizer (in Γ) of an infinite cyclic subgroup of Γ is virtually abelian.

3. If Π ∈ Γ is an infinite elementary subgroup and α ∈ Γ is such that the groups

αΠα−1, Π

are commensurable, then α belongs to the normalizer of Π in Γ.

4. Every Kleinian group has finite (virtual) cohomological dimension.

11.1. Algebraic constrains.

Definition 11.1. An abstract Kleinian group is a group Γ which admits a discrete
embedding in Mob(Sn) for some n. Such a group is called nonelementary if it is not
virtually abelian.

In order to eliminate trivial restrictions on abstract Kleinian groups one can restrict
attention to Gromov-hyperbolic Kleinian groups. Below is the list of known algebraic
constrains on Kleinian groups under this extra assumption:

1. Kleinian groups are residually finite and virtually torsion-free.12 (This, of course,
holds for all finitely generated matrix groups.)

2. Kleinian groups satisfy the Haagerup property, in particular, infinite Kleinian
groups do not satisfy property (T), see [50].

3. If a Kleinian group Γ is Kähler, then Γ is virtually isomorphic to the fundamental
group of a compact surface. This is a deep theorem of J. Carlson and D. Toledo [47]
who proved that every homomorphism of a Kähler group to Mob(Sn) either factors
through a virtually surface group, or its image fixes a point in Bn+1.

Recall that a topological group G is said to satisfy the Haagerup property if it
admits a (metrically) proper continuous isometric action on a Hilbert space H. An
action of a metrizable topological group G on H is metrically proper if for every
bounded subset B ⊂ H, the set

{g ∈ G : g(B) ∩ B 6= ∅}
is a bounded subset of G. Since Mob(Sn) satisfies the Haagerup property for every
n (see e.g. [50]), all Kleinian groups also do.

12It is widely believed that there are Gromov-hyperbolic groups which are not residually finite.
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A group π is called Kähler if it is isomorphic to the fundamental group of a compact
Kähler manifold. For instance, every uniform lattice in CHn is Kähler; therefore it
cannot be an abstract Kleinian group unless n = 1.

Remark 11.2. A (finitely-generated) group satisfies the Haagerup property if and
only if it admits an isometric (metrically) properly discontinuous action on the in-
finite dimensional hyperbolic space H∞, see [81, 7.A.III]. The result of Carlson and
Toledo shows that (for Gromov-hyperbolic groups) there are nontrivial obstructions
to replacing these infinite-dimensional actions with finite-dimensional ones.

Observation 11.3. All currently known nontrivial restrictions on abstract Kleinian
groups can be traced to 1, 2 or 3.

Problem 11.4. Find other restrictions on abstract Kleinian groups.

Potentially, some new restrictions would follow from Rips-Thurston compactness
theorem. The difficulty comes from the following. Let Γ is a Gromov-hyperbolic
group which admits no nontrivial isometric actions on R-trees. Then (see [113]) there
exists C <∞ such that for every sequence [ρj] ∈ Dn(Γ), we obtain a uniform bound

(11.5) Bn([ρj]) ≤ C

where Bn : Dn(Γ) → R is the minimax function defined in Problem 10.19. If n was
fixed, then (ρj) would subconverge to a representation to Mob(Sn) (for some choice of
representations ρj in the classes [ρj]). However, since we are not fixing the dimension
of the hyperbolic space on which our Γ is supposed to act, the inequality (11.5) does
not seem to yield any useful information. By taking an ultralimit of ρj’s we will get
an action of Γ on an infinite-dimensional hyperbolic space. This action, however, may
have a fixed point, since

lim
n→∞

µn = 0,

where µn is the Margulis constant for Hn.

Example 11.6. Let M 3 be a closed non-Haken hyperbolic 3-manifold, so that Π :=
π1(M) contains a maximal 1-fuchsian subgroup F . For each automorphism φ : F → F
we define the HNN extension

Γφ := Π∗F∼=φF = 〈Π, t|tgt−1 = φ(g), ∀g ∈ F 〉.
Then Γφ is Gromov-hyperbolic for all pseudo-Anosov automorphisms φ, see [24]. It
is a direct corollary of Theorem 10.18 that for every n, only finitely many of the
groups Γφ embed in Mob(Sn) as Kleinian subgroups. Is it true that there exists a
pseudo-Anosov automorphism φ such that Γφ is not an abstract Kleinian group?

Infinite finitely-generated Gromov-hyperbolic Coxeter groups are all linear, satisfy
the Haagerup property and are not Kähler (except for the virtually surface groups).

Problem 11.7. Is it true that every finitely-generated Gromov-hyperbolic Coxeter
group Γ is an abstract Kleinian group?

Note that there are Gromov-hyperbolic Coxeter groups Γ which do not admit dis-
crete embeddings ρ : Γ →Mob(Sn) (for any n), so that the Coxeter generators of Γ
act as reflections in the faces of a fundamental domain of ρ(Γ), see [72].
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The answer to the next question is probably negative, but the examples would be
tricky to construct:

Question 11.8. Is it true that a group weakly commensurable to a Kleinian group
is also a Kleinian group? Even more ambitiously: Is the property of being Kleinian
a quasi-isometry invariant of a group?

Recall that two groups Γ and Γ′ are called weakly commensurable if there exists a
chain of groups and homomorphisms

Γ = Γ0 → Γ1 ← Γ2 → Γ3....← Γk−1 → Γk = Γ′

where each arrow Γi → Γi±1 is a homomorphism whose kernel and cokernel are finite.

There are few more known algebraic restictions on geometrically finite Kleinian
groups. All such groups are relatively hyperbolic. T. Delzant and L. Potyagailo
[58] obtained a characterization of geometrically finite Kleinian groups which are
cohopfian.

Question 11.9. Is the isomorphism problem solvable within the class of all finitely-
presented Kleinian groups? Note that the work of F. Dahmani and D. Groves [54]
implies solvability of the isomorphism problem in the category of geometrically finite
Kleinian groups.

It was proved by M. Bonk and O. Schramm [32] that every Gromov-hyperbolic
group Γ embeds quasi-isometrically in the usual hyperbolic space Hn for some n =
n(Γ). A natural question is if one can prove an equivariant version of this result.
Note that there are many Gromov-hyperbolic groups which are not Kleinian, e.g.
groups with property (T) and Gromov-hyperbolic Kähler groups. Therefore one has
to relax the isometric assumption. The natural category for this is the uniformly
quasiconformal actions. Such action is an embedding

ρ : Γ ↪→ QC(Sn)

whose image consists of K-quasiconformal homeomorphisms with K depending only
on ρ.

Problem 11.10. Let Γ be a Gromov-hyperbolic group. Does Γ admit a uniformly
quasiconformal discrete action on S

n for some n? For instance, is there such an
action if Γ is a uniform lattice in PU(n, 1) or satisfies the property (T)?

T. Farrell and J. Lafont [69] proved the topological counterpart of this problem has
positive solution. A corollary of their work is that every Gromov-hyperbolic group Γ
admits a convergence action ρ on the closed n-ball, so that the limit set of Γ′ = ρ(Γ)
is equivariantly homeomorphic to the ideal boundary of Γ and Ω(Γ′)/Γ′ is compact
and connected. We refer the reader to [74] for the definition of a convergence action.

11.2. Topological constrains. The basic problem here is to find topological restric-
tions on the hyperbolic manifold Hn+1/Γ and the conformally-flat manifold Mn(Γ) =
Ω(Γ)/Γ, which do not follow from the algebraic restrictions on the group Γ and
from the general algebraic topology restrictions (e.g. vanishing of the characteristic
classes). There are only few nontrivial results in this direction.

For n = 3 we have:
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Theorem 11.11. (M. Kapovich [106]) There exists a function c(χ) with the following
property. Let S be a closed hyperbolic surface. Suppose that M 4 is a complete hyper-
bolic 4-manifold which is homeomorphic to the total space of an R2-bundle ξ : E → S
with the Euler number e(ξ). Then

|e(ξ)| ≤ c(χ(S)).

More generally,

Theorem 11.12. (M. Kapovich [106]) There exists a function C(χ1, χ2) with the
following property. Suppose that M 4 is a complete oriented hyperbolic 4-manifold.
Let σj : Σj → M4 (j = 1, 2) be π1-injective maps of closed oriented surfaces Σj.
Then

|〈σ1, σ2〉| ≤ C(χ(Σ1), χ(Σ2)).

Here 〈, 〉 is the intersection pairing on H2(M
4). The bounds appearing in these

theorems are explicit but astronomically high. The expected bounds are linear in
χ(S) and χ(Si), i = 1, 2, cf. [83].

Other known restrictions are applications of the compactness theorem 10.18 and
therefore explicit bounds in the following theorems are unknown.

Theorem 11.13. (M. Kapovich, [108].) Given a closed hyperbolic n-manifold B
(n ≥ 3) there exists a number c(B) so that the following is true. Suppose that M 2n

a complete hyperbolic 2n-manifold which is homeomorphic to the total space of an
Rn-bundle ξ : E → B with the Euler number e(ξ). Then

|e(ξ)| ≤ c(B).

I. Belegradek greatly improved this result:

Theorem 11.14. (I. Belegradek, [14].) Given a closed hyperbolic n-manifold B (n ≥
3) there exists a number C(B, k) so that the number of inequivalent Rk-bundles ξ :
E → B whose total space admits a complete hyperbolic metric, is at most C(B, k).

Given a group π, letMπ,n denote the set of n-manifolds, whose fundamental group
is isomorphic to π and which admit complete hyperbolic metrics.

Theorem 11.15. (I. Belegradek, [15].) Suppose that π is a finitely-presented group
with finite Betti numbers. Assume that π does not split as an amalgam over a virtually
abelian subgroup. The set Mπ,n breaks into finitely many intersection preserving
homotopy types.
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[204] È. B. Vinberg and O. V. Shvartsman, Discrete groups of motions of spaces of constant

curvature, in Geometry, II, vol. 29 of Encyclopaedia Math. Sci., Springer, 1993, pp. 139–248.
[205] A. Weil, Discrete subgroups of Lie groups, I, Ann. of Math., 72 (1960), pp. 69–384.
[206] , Discrete subgroups of Lie groups, II, Ann. of Math., 75 (1962), pp. 578–602.
[207] , Remarks on the cohomology of groups, Ann. of Math., 80 (1964), pp. 149–157.
[208] N. Wielenberg, Discrete Moebius groups: fundamental polyhedra and convergence, Amer.

Journ. Math., 99 (1977), pp. 861–878.
[209] C. Yue, Dimension and rigidity of quasifuchsian representations, Ann. of Math. (2), 143

(1996), pp. 331–355.

Department of Mathematics, University of California, Davis, CA 95616

E-mail address : kapovich@math.ucdavis.edu

60


