Poincaré automorphisms for nondegenerate CR quadrics

Vladimir V. Ežhov * Gerd Schmalz **

Oklahoma State University Department of Mathmatics College of Arts and Sciences Stillwater, Oklahoma 74078-0613

USA

*

**
Mathematisches Institut der Universität Bonn
Wegelerstraße 10
53115 Bonn

Germany

Max-Planck-Institut für Mathematik Gottfried-Claren-Straße 26 53225 Bonn

Germany

, .

·

POINCARÉ AUTOMORPHISMS FOR NONDEGENERATE CR QUADRICS

VLADIMIR V. EŽOV AND GERD SCHMALZ

ABSTRACT. In this paper we suggest a formula for holomorphic automorphisms of an arbitrary nondegenerate quadric CR manifold which comprises all of the formerly described automorphism groups for quadrics of codimension 2 and of RAQ quadrics. This formula is a generalization of the formula of H.Poincaré for Aut S^3 .

1. INTRODUCTION

In 1907, Poincaré [9] proved that any germ of a holomorphic isotropic automorphism of the sphere $S^3 = \{(z, w) \in \mathbb{C}^2 : \operatorname{Im} w = \overline{z}z\}$ is a fractional linear transformation of the form:

(1)
$$z^* = \frac{c(z+aw)}{1-2i\bar{a}z - (r+i\bar{a}a)w},$$
$$w^* = \frac{\rho w}{1-2i\bar{a}z - (r+i\bar{a}a)w},$$

where $a, c \in \mathbb{C}, r \in \mathbb{R}$, and $\rho = |c|^2$.

In 1962, Tanaka [10] proved the analogous result for arbitrary nondegenerate hyperquadrics in \mathbb{C}^{n+1} : $\{(z, w) \in \mathbb{C}^n \times \mathbb{C} : \text{Im } w = \langle z, z \rangle\}$, where $\langle \cdot, \cdot \rangle$ is a nondegenerate Hermitian form in \mathbb{C}^n .

Nondegenerate hyperquadrics serve as quadratic models of hypersurfaces in \mathbb{C}^{n+1} with nondegenerate Levi form.

Nondegenerate quadrics in \mathbb{C}^{n+k} are the quadratic models of surfaces with nondegenerate (in sense of Baouendi - Trèves - Beloshapka) vector-valued Levi form:

(2)
$$Q = \{(z, w) \in \mathbb{C}^n \times \mathbb{C}^k : \operatorname{Im} w = \langle z, z \rangle\},\$$

where (z, z) is a \mathbb{R}^k -valued Hermitian form in \mathbb{C}^n with the properties:

¹⁹⁹¹ Mathematics Subject Classification. 14J50, 32F25.

Research of the first author was supported by Max-Planck-Institut Bonn.

Research of the second author was supported by Deutsche Forschungsgemeinschaft.

i) $\langle z, b \rangle = 0$, for all $z \in \mathbb{C}^n$, implies b = 0,

ii) If $f(\langle z, z \rangle) \equiv 0$, for some linear functional $f \in (\mathbb{R}^k)'$, then f = 0.

Beloshapka proved that these properties are necessary and sufficient for having a finite dimensional automorphism group [1].

Any quadric Q (not necessarily nondegenerate) can be equipped with a canonical group structure. If $(z, w) \in Q$, and $(p, q) \in Q$, then $(z + p, w + q + 2i\langle z, p \rangle) \in Q$. The group Q will be called Heisenberg-group. Since this group operation is holomorphic with respect to the first argument, we obtain a transitive family of holomorphic automorphisms being parametrized by Q itself. Thus, Q is a homogeneous manifold. Therefore, it is sufficient to find the automorphisms which preserve a fixed point, say the origin. We denote the connected component of the unit of the group of local automorphisms of Q at 0 by Aut₀ Q.

Any automorphism $\Phi \in \operatorname{Aut}_0 Q$ can be uniquely decomposed into a linear automorphism $\Phi_{C,\rho} \in \operatorname{Aut}_{lin} Q : z \mapsto Cz, w \mapsto \rho w$ (where $C \in \operatorname{GL}(n,\mathbb{C}), \rho \in \operatorname{GL}(k,\mathbb{R})$ with $\langle Cz, Cz \rangle = \rho \langle z, z \rangle$, for all z) and an automorphism $\Phi_{id} \in \operatorname{Aut}_{0,id} Q$ with the property that the restriction of $d\Phi_{id}$ to the complex tangent space at 0 is the identical map.

Using the reflection principle, Henkin, and Tumanov [8] proved that the local automorphisms from $\operatorname{Aut}_{0,id} Q$ admit a birational extension to \mathbb{C}^{n+k} .

Beloshapka [2] obtained a description of the Lie algebra of the infinitesimal automorphisms of Q, and he proved also that the quadrics of codimension k > 2 in general position are rigid, i.e., their isotropy groups consist of trivial automorphisms $z \mapsto cz, w \mapsto |c|^2 w$, for some complex number c (see [3]).

Recently, Forstnerič [7] formulated the problem about the description of Aut_0Q once again.

The authors described the automorphisms in the case k = 2 (see [5]), and defined, in the case n = k, a class of quadrics with large automorphism groups being called real associative quadrics (RAQ), and wrote the explicit formula for their automorphisms [6].

Generalizing these results, we prove in the present paper the following

Theorem 1. Let Q be a nondegenerate quadric in \mathbb{C}^{n+k} and $a : \mathbb{C}^k \longrightarrow \mathbb{C}^n$ be a linear operator, A be a \mathbb{C}^n -valued bilinear form on $\mathbb{C}^n \otimes \mathbb{C}^n$, r be an \mathbb{R}^k -valued Hermitian form on \mathbb{C}^k , and B be a \mathbb{C}^n -valued bilinear form on $\mathbb{C}^k \otimes \mathbb{C}^n$ which are connected by the relations

(3)
$$\langle A(z,\zeta),\xi\rangle = \langle z,a\langle\xi,\zeta\rangle\rangle,$$

(4)
$$\langle B(w,\zeta),\xi\rangle = r(w,\langle\xi,\zeta\rangle),$$

for all $z, \zeta, \xi \in \mathbb{C}^n$ and $w \in \mathbb{C}^k$, then the map

(5)
$$z^* = (\operatorname{id} -2iA(z, \cdot) - B(w, \cdot) - iA(aw, \cdot))^{-1}(z + aw),$$
$$w^* = (\operatorname{id} -2i\langle z, a\overline{\cdot} \rangle - r(w, \overline{\cdot}) - i\langle aw, a\overline{\cdot} \rangle)^{-1}w,$$

is an automorphism from $\operatorname{Aut}_{0,id} Q$.

We call the automorphisms which can be written by formula (5) Poincaré-automorphisms.

We emphasize that we do not know any example of non-Poincaré automorphisms.

2. Algebras corresponding to quadrics

Let Q be a quadric in \mathbb{C}^{n+k} as above (not necessarily nondegenerate).

Consider the set \mathfrak{A} of pairs of matrices $(D,d) \in \mathfrak{gl}(n,\mathbb{C}) \times \mathfrak{gl}(k,\mathbb{C})$ with the property $\langle Dz,\zeta \rangle = d\langle z,\zeta \rangle$, for all $z,\zeta \in \mathbb{C}^n$.

Proposition 1. The set \mathfrak{A} is an algebra with a unit.

Proof. It is clear that \mathfrak{A} is a linear space containing (id, id). Let $(D_1, d_1), (D_2, d_2) \in \mathfrak{A}$ then, obviously, $\langle D_1 D_2 z, \zeta \rangle = d_1 d_2 \langle z, \zeta \rangle$. \Box

Proposition 2. If Q is nondegenerate, then a pair (D, d) is uniquely determined by d as well as by D.

Proof. Let (D_1, d) , $(D_2, d) \in \mathfrak{A}$, then $\langle (D_1 - D_2)z, \zeta \rangle = 0$, for all z, ζ . By (i) of the nondegeneracy condition follows that $D_1 - D_2 = 0$.

Since, by (ii) of the nondegeracy condition \mathbb{R}^k is spanned by vectors of the form $\langle z, z \rangle$, D determines d. \square

Therefore, we can interprete \mathfrak{A} as a subalgebra of $\mathfrak{gl}(k,\mathbb{C})$, or of $\mathfrak{gl}(n,\mathbb{C})$.

Proposition 3. For any $d_1, d_2 \in \mathfrak{A}$, we have $d_1\bar{d}_2 = \bar{d}_2d_1$.

Proof. It follows from $\langle Dz, \zeta \rangle = d\langle z, \zeta \rangle$, for all $z, \zeta \in \mathbb{C}^n$, that $\langle z, D\zeta \rangle = \overline{d}\langle z, \zeta \rangle$, for all $z, \zeta \in \mathbb{C}^n$. Then, $d_1 \overline{d_2} \langle z, \zeta \rangle = \langle D_1 z, D_2 \rangle = \overline{d_2} d_1 \langle z, \zeta \rangle$. \Box

Remark. In general, $d \in \mathfrak{A}$ does not imply that $\overline{d} \in \mathfrak{A}$.

Definition 1. Two quadrics Q_1 and Q_2 are equivalent, if there exist matrices $C \in GL(n, \mathbb{C})$ and $\rho \in GL(k, \mathbb{R})$ such that $\langle z, z \rangle_2 = \rho^{-1} \langle Cz, Cz \rangle_1$.

Proposition 4. If two quadrics Q_1 and Q_2 are equivalent, then the corresponding algebras \mathfrak{A} are isomorphic.

Proof. If $\langle z, \zeta \rangle_2 = \rho^{-1} \langle Cz, C\zeta \rangle_1$ and $\langle Dz, \zeta \rangle_2 = d \langle z, \zeta \rangle_2$, then $\rho^{-1} \langle CDz, C\zeta \rangle_1 = \langle Dz, \zeta \rangle_2 = d \langle z, \zeta \rangle_2 = d \rho^{-1} \langle Cz, C\zeta \rangle_1$. Hence, $(CDC^{-1}, \rho d \rho^{-1}) \in \mathfrak{A}_1$. **Proposition 5.** A quadric Q of type (n, k) is the direct product of two quadrics $Q_1 \times Q_2$ of type (n_1, k_1) resp. $(n - n_1, k - k_1)$ if and only if the corresponding algebra \mathfrak{A} splits into $\mathfrak{A}_1 \oplus \mathfrak{A}_2$.

Proof. It is clear that $Q = Q_1 \times Q_2$ implies $\mathfrak{A} = \mathfrak{A}_1 \oplus \mathfrak{A}_2$.

Now, let $\mathfrak{A} = \mathfrak{A}_1 \oplus \mathfrak{A}_2$, and let (E_1, e_1) , and (E_2, e_2) be the units in \mathfrak{A}_1 resp. \mathfrak{A}_2 . Then, $(E_1 \oplus E_2, e_1 \oplus e_2)$ is the unit in \mathfrak{A} , and $e_i = \overline{e}_i, e_1e_2 = e_2e_1 = 0$. Set z = z' + z'', w = w' + w'', where $z' = E_1z$, $z'' = E_2z$, $w' = e_1w$, $w'' = e_2w$. Now, the equation of Q can be written

$$v' = \langle z', z' \rangle,$$

 $v'' = \langle z'', z'' \rangle.$

Thus, $Q = Q_1 \times Q_2$. \Box

It is easy to observe that $Q_1 \times Q_2$ is nondegenerate, if and only if Q_1 and Q_2 are nondegenerate. Beloshapka [3] proved that $\operatorname{Aut}_0(Q_1 \times Q_2) = \operatorname{Aut}_0 Q_1 \times \operatorname{Aut}_0 Q_2$.

Let Q be nondegenerate, and \mathfrak{g} be the Lie algebra corresponding to the Lie group Aut_{lin} Q. Then \mathfrak{g} can be identified with some real subalgebra of $\mathfrak{gl}(\mathbb{C},n)$, since, for any $(X,s) \in \mathfrak{g}$, s is uniquely determined by X.

Proposition 6. For nondegenerate quadrics, $\mathfrak{A} = \mathfrak{g} \cap i\mathfrak{g}$.

Proof. If (X, s), and $(iX, s') \in \mathfrak{g}$, then

$$\langle X\zeta, z \rangle + \langle \zeta, Xz \rangle = s \langle \zeta, z \rangle, \langle iX\zeta, z \rangle + \langle \zeta, iXz \rangle = s' \langle \zeta, z \rangle.$$

Hence, $\langle X\zeta, z \rangle = \frac{1}{2}(s - is')\langle \zeta, z \rangle$. If $D \in \mathfrak{A}$, then

		-	ľ

3. POINCARÉ AUTOMORPHISMS AND CHAINS

Using the terminology of the previous section, it is easy to prove Theorem 1:

Proof. (3), (4) imply that $(A(z, \cdot), \langle z, a\overline{\cdot} \rangle)$ and $(B(w, \cdot), r(w, \overline{\cdot}))$ take values in the algebra \mathfrak{A} .

Representing the operators

$$(\operatorname{id} -2iA(z,\cdot) - B(w,\cdot) - iA(aw,\cdot))^{-1}, (\operatorname{id} -2i\langle z, a\overline{\cdot} \rangle - r(w,\overline{\cdot}) - i\langle aw, a\overline{\cdot} \rangle)^{-1}$$

as geometric progression, one proves that they also take values in \mathfrak{A} .

Using this, Proposition 3, and the Hermitian symmetry of r, one directly verifies that (5) is indeed an automorphism. \Box

According to Chern-Moser [4], we introduce the notion of a chain.

Definition 2. A chain is a k-dimensional real submanifold of the quadric Q which can be mapped by an holomorphic automorphism to the plane $\{z = 0, \text{Im } w = 0\}$.

We call a chain Poincaré chain if and only if it can be mapped to the plane $\{z = 0, \text{Im } w = 0\}$ by means of some Poincaré automorphism.

Corollary 1. Poincaré chains passing through the origin coincide with the intersections of Q with complex k-planes $\{z = aw\}$, where $a : \mathbb{C}^k \longrightarrow \mathbb{C}^n$ is a linear map satisfying (3), for some bilinear form A.

In the remaining part of the paper we give some arguments concerning the question whether any automorphism of a quadric is a Poincaré automorphism.

We begin with a description of the group $\operatorname{Aut}_{id,0}$ as Heisenberg group for some quadric.

Let \mathcal{A} be the complex vector space of linear maps $\hat{a} : \mathbb{C}^k \longrightarrow \mathbb{C}^n$ such that there exists a \mathbb{C}^n -valued quadratic form $\hat{\mathcal{A}}$ on \mathbb{C}^n , satisfying

(6)
$$\langle \hat{A}(z), z \rangle = \langle z, \hat{a} \langle z, z \rangle \rangle,$$

and, let \mathcal{R} be the real vector space of symmetric \mathbb{R}^k -valued bilinear forms \hat{r} on \mathbb{R}^k such that there exists a \mathbb{C}^n -valued bilinear form \hat{B} on $\mathbb{C}^k \otimes \mathbb{C}^n$, satisfying

(7)
$$\operatorname{Re}\langle \hat{B}(u,z),z\rangle = \hat{r}(u,\langle z,z\rangle),$$

(8)
$$\operatorname{Im}\langle \hat{B}(\langle z, z \rangle, z), z \rangle = 0.$$

Now, Beloshapka's uniqueness theorem can be reformulated as follows: The map $\operatorname{Aut}_{\operatorname{id},0} Q \longrightarrow \mathcal{A} \times \mathcal{R}$, being defined by

(9)
$$\Phi = (F,G) \mapsto \left(\frac{\partial F}{\partial w}\Big|_{0}, \frac{1}{2}\operatorname{Re}\frac{\partial^{2}G}{(\partial w)^{2}}\Big|_{0}\right) = (\hat{a},\hat{r}),$$

is bijective. This bijection induces the following group structure on $\mathcal{A} \times \mathcal{R}$:

$$(\hat{a}_1, \hat{r}_1) \circ (\hat{a}_2, \hat{r}_2) = (\hat{a}_1 + \hat{a}_2, \hat{r}_1 + \hat{r}_2 - 2 \operatorname{Im}\langle \hat{a}_1 \cdot, \hat{a}_2 \cdot \rangle).$$

It follows that $\langle \hat{a}_1 \cdot, \hat{a}_2 \cdot \rangle$ takes values in $\mathcal{R} \otimes \mathbb{C}$. Therefore, the equation

$$\operatorname{Im} \hat{r}(u, u) = \langle \hat{a}(u), \hat{a}(u) \rangle,$$

defines a quadric in $\mathcal{A} \times \mathcal{R} \otimes \mathbb{C}$. The group $\mathcal{A} \times \mathcal{R} \cong \operatorname{Aut}_{0,\operatorname{id}} Q$ is then isomorphic to the Heisenberg group of this quadric via

$$(\hat{a},\hat{r})\mapsto(\hat{a},\hat{r}(u,u)+i\langle\hat{a}(u),\hat{a}(u)\rangle).$$

The parameters \hat{A} and \hat{B} have the following interpretation:

$$\hat{A} = \frac{1}{4i} \frac{\partial^2 F}{(\partial z)^2} \bigg|_0$$

Using the isomorphism from above, we see that any $\Phi \in \operatorname{Aut}_{0,\operatorname{id}} Q$, corresponding to (\hat{a}, \hat{r}) , can be uniquely decomposed into $\Phi_{\hat{a}} \circ \Phi_{\hat{r}}$, corresponding to $(\hat{a}, 0)$, resp. $(0, \hat{r})$. Then,

$$\hat{B} := \frac{\partial^2 F_{\hat{r}}}{\partial z \partial w} \bigg|_0$$

satisfies the equations (7) and (8).

If Φ is a Poincaré automorphism of Q, then we obtain, by direct computation, that $a = \hat{a}, B = \hat{B}, A(z, z) = \hat{A}(z, z)$, and $r(u, u) = \hat{r}(u, u)$.

We denote the subspaces of \mathcal{A} and \mathcal{R} , consisting of (a, r) which define Poincaré automorphisms, by \mathcal{A}_P and \mathcal{R}_P .

The example below shows that, on the contrary to \hat{A}, \hat{r} , the tensors A and r need not be symmetric:

Example 1. Let Q be the quadric in \mathbb{C}^6 :

$$\begin{array}{rcl} v^1 &=& |z^1|^2, \\ v^2 &=& |z^2|^2, \\ v^3 &=& \operatorname{Re} z^1 \bar{z}^2, \\ v^4 &=& \operatorname{Im} z^1 \bar{z}^2. \end{array}$$

The algebra \mathfrak{A} is isomorphic to $\mathfrak{gl}(2,\mathbb{C})$. We represent a vector $w \in \mathbb{C}^4$ as 2×2 -matrix

$$\Omega = \begin{pmatrix} \omega_{11} & \omega_{12} \\ \omega_{21} & \omega_{22} \end{pmatrix} = \begin{pmatrix} w^1 & w^3 + iw^4 \\ w^3 - iw^4 & w^2 \end{pmatrix}.$$

Set Im $\Omega = \frac{1}{2i}(\Omega - \Omega^*)$, where Ω^* is the transposed, conjugate matrix to Ω . Then the equation of Q takes the form

$$\operatorname{Im} \Omega = \begin{pmatrix} z^1 \\ z^2 \end{pmatrix} \begin{pmatrix} \bar{z}^1 & \bar{z}^2 \end{pmatrix}.$$

For any $a \in \mathbb{C}^2$, and any Hermitian 2×2 -matrix Θ , we introduce a map $\Delta_{a,\Theta}$: $\mathbb{C}^6 \longrightarrow \mathfrak{gl}(2,\mathbb{C})$,

$$\Delta_{a,\Theta}(z,\Omega) = 2i \begin{pmatrix} z^1 \\ z^2 \end{pmatrix} \left(\bar{a}^1 \quad \bar{a}^2 \right) + \begin{pmatrix} \omega_{11} \quad \omega_{12} \\ \omega_{21} \quad \omega_{22} \end{pmatrix} \left(\begin{pmatrix} \theta_{11} \quad \theta_{12} \\ \theta_{21} \quad \theta_{22} \end{pmatrix} + i \begin{pmatrix} a^1 \\ a^2 \end{pmatrix} \left(\bar{a}^1 \quad \bar{a}^2 \right) \right).$$

Then, any $\Phi \in \operatorname{Aut}_{0,\operatorname{id}} Q$ has the form

$$\tilde{z} = (\mathrm{id} - \Delta_{a,\Theta}(z,\Omega))^{-1} \left(z + \Omega \begin{pmatrix} a^1 \\ a^2 \end{pmatrix} \right),$$

$$\tilde{\Omega} = (\mathrm{id} - \Delta_{a,\Theta}(z,\Omega))^{-1} \Omega.$$

Thus,

$$\begin{aligned} A(z,\zeta) &= \begin{pmatrix} \bar{a}^{1}z^{1}\zeta^{1} + \bar{a}^{2}z^{1}\zeta^{2} \\ \bar{a}^{1}z^{2}\zeta^{1} + \bar{a}^{2}z^{2}\zeta^{2} \end{pmatrix}, \\ r(w,\omega) &= \begin{pmatrix} w^{1} & w^{3} + iw^{4} \\ w^{3} - iw^{4} & w^{2} \end{pmatrix} \begin{pmatrix} r^{1} & r^{3} + ir^{4} \\ r^{3} - ir^{4} & r^{2} \end{pmatrix} \begin{pmatrix} \bar{\omega}^{1} & \bar{\omega}^{3} + i\bar{\omega}^{4} \\ \bar{\omega}^{3} - i\bar{\omega}^{4} & \bar{\omega}^{2} \end{pmatrix}. \end{aligned}$$

The linear automorphisms are

$$\tilde{z} = Cz,$$

 $\tilde{\Omega} = C\Omega C^*,$

for $C \in GL(2, \mathbb{C})$.

The existence of non-Poincaré automorphisms is equivalent to the existence of solutions $(\hat{a}, \hat{r}, \hat{A}, \hat{B})$ of the system (6), (7), (8) such that the system (3) and (4) is unsolvable for $a = \hat{a}, B = \hat{B}$.

We will call a nondegenerate quadric $Q \subset \mathbb{C}^{n+k}$ regular if $\mathcal{A} = \mathcal{A}_P$, and $\mathcal{R} = \mathcal{R}_P$. Corollary 2. If Q is regular, then any $\Phi \in \operatorname{Aut}_{\operatorname{id},0} Q$ is a Poincaré automorphism. It follows that the real associative quadrics (RAQ), the quadrics of codimension ≤ 2 , and of codimension n^2 are regular.

4. FRACTIONAL LINEAR AUTOMORPHISMS AND REDUCED QUADRICS

We show that Poincaré automorphisms generalize fractional linear automorphisms.

Definition 3. We call a nondegenerate quadric Q strictly nondgenerate if, instead of the nondegeneracy condition i), the following stronger condition holds:

i') There exists a linear functional $f \in (\mathbb{R}^k)'$ such that the scalar Hermitian form $f(\langle \cdot, \cdot \rangle)$ is nondegenerate.

Otherwise, Q is called nullquadric.

Proposition 7. Let Q be a nondegenerate quadric and Φ :

$$z^{*} = \frac{1}{1 - \phi(z) - \psi(w)} (z + aw),$$

$$w^{*} = \frac{1}{1 - \phi(z) - \psi(w)} w,$$

a fractional linear automorphism of Q.

Then, Φ is a Poincaré automorphism.

If the codimension k > 1, then $\psi = \frac{1}{2}\phi(a \cdot)$.

If k > 1, and Q is strictly nondegenerate, then $\phi = \psi = 0$.

Proof. Since, in the case k = 1, the assertion follows from the explicit automorphism formula, we can restrict ourselves to the case k > 1.

From $2i\langle z, a\langle \xi, \zeta \rangle \rangle = \phi(z)\langle \zeta, \xi \rangle$, we obtain, that $A(z, \zeta) := \phi(z)\zeta$ is a solution of (3).

Set

$$\psi'(u) = \psi(u) - \frac{1}{2}\phi(au).$$

Then, it follows that $r(\omega, w) = \psi'(\omega)\bar{w} = \bar{\psi}'(\bar{w})\omega$. Since k > 1, then $\psi' \equiv 0$ and, hence, r = 0.

It remains to prove that $\phi = 0$, if Q is strictly nondegenerate.

Without loss of generality, we may assume that (z^{μ}) , (w^{κ}) are coordinates such that

$$v^1 = \sum_{\mu=1}^n \epsilon_\mu |z^\mu|^2,$$

where $\epsilon_{\mu} \in \{-1, 1\}$.

For any $z \in \mathbb{C}^n$, we define the $k \times n$ matrix Z, having the property $\langle z, \zeta \rangle = Z\overline{\zeta}$.

From $\phi(z)w \equiv 2i\langle z, a\bar{w} \rangle$, we obtain $\phi(z)$ id $= 2iZ\bar{a}$. The first row of this matrix identity implies that all columns of a, except the first one, are zeroes.

If k > 1, then the second row of this identity implies that $\phi(z) \equiv 0$. \Box

Definition 4. We call a quadric Q reduced if the corresponding algebra $\mathfrak{A} \cong \mathbb{C}$.

Proposition 8. For a reduced quadric Q, any Poincaré automorphism is fractional linear, and, therefore, linear in the corresponding projective space.

Proof. Condition (3) implies that $\langle z, a^{\overline{\cdot}} \rangle$ takes values in $\mathfrak{A} \cong \mathbb{C}$. Therefore, it equals $\phi(z)$ id, where ϕ is some linear functional. Analogously, we obtain $r(w,\overline{\cdot}) = \psi(w)$ id. Then Φ takes the form

$$z^{*} = \frac{1}{1 - 2i\phi(z) - \psi(w) - i\phi(aw)}(z + aw)$$

$$w^{*} = \frac{1}{1 - 2i\phi(z) - \psi(w) - i\phi(aw)}w.$$

Corollary 3. Let Q be a reduced strictly nondegenerate quadric. Then, either Q is a hyperquadric (k = 1), or any Poincaré automorphism of Q is identical.

Proof. This follows from Propositions 7, and 8. \Box

5. SUMS OF QUADRICS

For two quadrics Q_1 in \mathbb{C}^{n_1+k} , and Q_2 in \mathbb{C}^{n_2+k} , with the same codimension we define the sum $Q_1 + Q_2$ by

(10)
$$Q_1 + Q_2 = \{(z, w) \in \mathbb{C}^{n_1 + n_2} \times \mathbb{C}^k : \operatorname{Im} w = \langle z, z \rangle_1 + \langle z, z \rangle_2 \}.$$

If Q_1 , and Q_2 both satisfy (i), and, at least one of them, satisfies (ii) of the nondegeneracy condition then $Q_1 + Q_2$ is nondegenrate.

It is easy to verify that the algebra \mathfrak{A} , corresponding to $Q_1 + Q_2$ equals $\mathfrak{A}_1 \cap \mathfrak{A}_2$.

We consider now the following question: which automorphisms of Q_1 can be lifted to automorphisms of the sum $Q_1 + Q_2$.

Proposition 9. Let Q_1 be a nondegerate quadric of codimension k, and Q_2 be a quadric of the same codimension, satisfying (i) of the nondegeneracy condition. If $\mathfrak{A}_1 \subset \mathfrak{A}_2$, then any Poincaré automorphism of Q_1 can be lifted to a Poincaré automorphism of $Q_1 + Q_2$.

Proof. Let (a, r, A_1, B_1) be the parameters defining a Poincaré automorphism Φ_1 of Q_1 . Then the operators $\langle z, a^{\overline{\cdot}} \rangle$, and $r(w, \overline{\cdot})$ are contained in \mathfrak{A}_1 , and, therefore, also in \mathfrak{A}_2 . Hence, for any z, w there exist uniquely determined $A_2(z, \cdot)$, $B_2(w, \cdot)$ from $\operatorname{GL}(n_2, \mathbb{C})$. Thus, $(a, r, A_1 \oplus A_2, B_1 \oplus B_2)$ defines a Poincaré automorphism on $Q_1 + Q_2$. \Box

Corollary 4. Any fractional linear automorphism of Q_1 can be lifted to $Q_1 + Q_2$.

Now, let Q be a nondegenerate quadric. Considering the system (6)-(8) for Q + Q we obtain that $(a \oplus a', r)$ are the parameters of some automorphism if and only if (a, r) and (a', r) define automorphisms of Q, and a has a solution A of (3). Thus, the Poincaré property (3) for a is necessary for lifting an automorphism to Q + Q.

We illustrate the introduced calculus in the case of codimension k = 1.

If k = 1, then always $\mathfrak{A} \cong \mathbb{C}$. Moreover, hyperquadrics are sums of spheres in \mathbb{C}^2 . By these reasons automorphisms of hyperquadrics have a quite simple structure. They can be lifted from automorphisms (1) of S^3 , by means of the described construction.

6. Some questions and conjectures

At the end of the paper we list some open problems and conjectures:

1. Is any nondegenerate quadric regular?

It would be also interesting to know the answer in the following special cases:

1'. Is any automorphism of a reduced quadric fractional linear?

1". Is any automorphism of a reduced, strictly nondegenerate quadric of codimension k > 1 linear?

Conjecture 1. The questions 1, 1', and 1" have an affirmative answer.

One can give a rough estimate of $\dim_{\mathbb{C}} \mathcal{A}$ by nk, and of $\dim_{\mathbb{R}} \mathcal{R}$ by $k^2 \frac{k+1}{2}$. However, in the cases when the explicit groups are known, the dimension of the first space does not exceed n and that of the second space does not exceed k.

2. Is always $\dim_{\mathbf{C}} \mathcal{A} \leq n$, and $\dim_{\mathbf{R}} \mathcal{R} \leq k$?

2'. Is $\dim_{\mathbb{C}} \mathcal{A}_P \leq n$, and $\dim_{\mathbb{R}} \mathcal{R}_P \leq k$?

Conjecture 2. The questions 2 and 2' have an affirmative answer.

Remark. If Q is reduced, then the answer to question 2' follows from Proposition 8.

We have showed above that, for any $a \in A$, the quadratic form $\langle au, au \rangle \in \mathcal{R}$. In the cases of RAQ, as well as for quadrics of codimension ≤ 2 , any $r \in \mathcal{R}$ is a linear combination of such forms.

3. Does there exist a nondegenerate quadric Q and some $r \in \mathcal{R}$ which cannot be represented as a linear combination of $(au, au) \in \mathcal{R}$, where $a \in \mathcal{A}$?

REFERENCES

- 1. V.K. Beloshapka, Finite-dimensionality of the group of automorphisms of a real analytic surface, USSR Izvestiya 32 (1989), no. 2, 437-442.
- 2. ____, A uniqueness theorem for automorphisms of a nondegenerate surface in a complex space, Math. Notes 47 (1990), 239-242.
- 3. _____, Automorphisms of real quadrics of high codimension and normal forms of CR manifolds (Russian), Ph.D. thesis, Steklov Mathematical Institute Moscow, 1991.
- 4. S.S. Chern and J.K. Moser, Real hypersurfaces in complex manifolds, Acta Math. 133 (1974), no. 3-4, 219-271.
- 5. V.V. Ežov and G. Schmalz, Holomorphic automorphisms of quadrics of codimension 2, preprint, Max-Planck-Institut für Mathematik Bonn, 1993.
- 6. _____, A matrix Poincaré formula for holomorphic automorphisms of real associative quadrics, preprint, Max-Planck-Institut für Mathematik Bonn, 1993.
- 7. F. Forstnerič, Mappings of quadric Cauchy-Riemann manifolds, Math. Ann. 292 (1992), 163-180.
- 8. G.M. Henkin and A.E. Tumanov, Local characterization of holomorphic automorphisms of Siegel domains, Funkt. Analysis 17 (1983), no. 4, 49-61.
- 9. H. Poincaré, Les fonctions analytiques de deux variables et la représentation conforme, Rend. Circ. Math. Palermo (1907), 185-220.
- 10. N.J. Tanaka, On the pseudo-conformal geometry of hypersurfaces of the space of n complex variables, J.Math.Soc.Japan 14 (1962), 397-429.

(V.V. Ežov) OKLAHOMA STATE UNIVERSITY, DEPARTMENT OF MATHEMATICS, COLLEGE OF ARTS AND SCIENCES, STILLWATER, OKLAHOMA 74078-0613 *E-mail address*: ezhov@hardy.math.okstate.edu

(G. Schmalz) MATHEMATISCHES INSTITUT DER UNIVERSITÄT BONN, WEGELERSTRASSE 10, D-5300 BONN-1

E-mail address: schmalz@mpim-bonn.mpg.de