Poincaré automorphisms for nondegenerate CR quadrics

Vladimir V. Ežhov *
Gerd Schmalz **

*

Oklahoma State University
Department of Mathmatics College of Arts and Sciences
Stillwater, Oklahoma 74078-0613

USA
**
Mathematisches Institut
der Universität Bonn
Wegelerstraße 10
53115 Bonn

Germany

Max-Planck-Institut für Mathematik
Gottfried-Claren-Straße 26
53225 Bonn

Germany

POINCARÉ AUTOMORPHISMS FOR NONDEGENERATE CR QUADRICS

VLADIMIR V. EŽOV AND GERD SCHMALZ

Abstract

In this paper we suggest a formula for holomorphic automorphisms of an arbitrary nondegenerate guadric CR manifold which comprises all of the formerly described automorphism groups for quadrics of codimension 2 and of RAQ quadrics. This formula is a generalization of the formula of H.Poincaré for Aut S^{3}.

1. Introduction

In 1907, Poincaré [9] proved that any germ of a holomorphic isotropic automorphism of the sphere $S^{3}=\left\{(z, w) \in \mathbb{C}^{2}: \operatorname{Im} w=\bar{z} z\right\}$ is a fractional linear transformation of the form:

$$
\begin{align*}
z^{*} & =\frac{c(z+a w)}{1-2 i \bar{a} z-(r+i \bar{a} a) w}, \tag{1}\\
w^{*} & =\frac{\rho w}{1-2 i \bar{a} z-(r+i \bar{a} a) w}
\end{align*}
$$

where $a, c \in \mathbb{C}, r \in \mathbb{R}$, and $\rho=|c|^{2}$.
In 1962, Tanaka [10] proved the analogous result for arbitrary nondegenerate hyperquadrics in $\mathbb{C}^{n+1}:\left\{(z, w) \in \mathbb{C}^{n} \times \mathbb{C}: \operatorname{Im} w=\langle z, z\rangle\right\}$, where $\langle\cdot, \cdot\rangle$ is a nondegenerate Hermitian form in \mathbb{C}^{n}.

Nondegenerate hyperquadrics serve as quadratic models of hypersurfaces in \mathbb{C}^{n+1} with nondegenerate Levi form.

Nondegenerate quadrics in \mathbb{C}^{n+k} are the quadratic models of surfaces with nondegenerate (in sense of Baouendi - Trèves - Beloshapka) vector-valued Levi form:

$$
\begin{equation*}
Q=\left\{(z, w) \in \mathbb{C}^{n} \times \mathbb{C}^{k}: \operatorname{Im} w=\langle z, z\rangle\right\} \tag{2}
\end{equation*}
$$

where $\langle z, z\rangle$ is a \mathbb{R}^{k}-valued Hermitian form in \mathbb{C}^{n} with the properties:
1991 Mathematics Subject Classification. 14J50, 32F25.
Research of the first author was supported by Max-Planck-Institut Bonn.
Research of the second author was supported by Deutsche Forschungsgemeinschaft.
i) $\langle z, b\rangle=0$, for all $z \in \mathbb{C}^{n}$, implies $b=0$,
ii) If $f(\langle z, z\rangle) \equiv 0$, for some linear functional $f \in\left(\mathbb{R}^{k}\right)^{\prime}$, then $f=0$.

Beloshapka proved that these properties are necessary and sufficient for having a finite dimensional automorphism group [1].

Any quadric Q (not necassarily nondegenerate) can be equipped with a canonical group structure. If $(z, w) \in Q$, and $(p, q) \in Q$, then $(z+p, w+q+2 i\langle z, p\rangle) \in Q$. The group Q will be called Heisenberg-group. Since this group operation is holomorphic with respect to the first argument, we obtain a transitive family of holomorphic automorphisms being parametrized by Q itself. Thus, Q is a homogeneous manifold. Therefore, it is sufficient to find the automorphisms which preserve a fixed point, say the origin. We denote the connected component of the unit of the group of local automorphisms of Q at 0 by $\mathrm{Aut}_{0} Q$.

Any automorphism $\Phi \in \mathrm{Aut}_{0} Q$ can be uniquely decomposed into a linear automorphism $\Phi_{C, \rho} \in$ Aut $_{l i n} Q: z \mapsto C z, w \mapsto \rho w$ (where $C \in \operatorname{GL}(n, \mathbb{C}), \rho \in \operatorname{GL}(k, \mathbb{R})$ with $\langle C z, C z\rangle=\rho\langle z, z\rangle$, for all z) and an automorphism $\Phi_{i d} \in \operatorname{Aut}_{0, \mathrm{id}} Q$ with the property that the restriction of $d \Phi_{i d}$ to the complex tangent space at 0 is the identical map.

Using the reflection principle, Henkin, and Tumanov [8] proved that the local automorphisms from Aut $_{0, i d} Q$ admit a birational extension to \mathbb{C}^{n+k}.

Beloshapka [2] obtained a description of the Lie algebra of the infinitesimal automorphisms of Q, and he proved also that the quadrics of codimension $k>2$ in general position are rigid, i.e., their isotropy groups consist of trivial automorphisms $z \mapsto c z, w \mapsto|c|^{2} w$, for some complex number c (see [3]).

Recently, Forstneric [7] formulated the problem about the description of $A u t_{0} Q$ once again.

The authors described the automorphisms in the case $k=2$ (see [5]), and defined, in the case $n=k$, a class of quadrics with large automorphism groups being called real associative quadrics (RAQ), and wrote the explicit formula for their automorphisms [6].

Generalizing these results, we prove in the present paper the following
Theorem 1. Let Q be a nondegenerate quadric in \mathbb{C}^{n+k} and $a: \mathbb{C}^{k} \longrightarrow \mathbb{C}^{n}$ be a linear operator, A be a \mathbb{C}^{n}-valued bilinear form on $\mathbb{C}^{n} \otimes \mathbb{C}^{n}, r$ be an \mathbb{R}^{k}-valued Hermitian form on \mathbb{C}^{k}, and B be a \mathbb{C}^{n}-valued bilinear form on $\mathbb{C}^{k} \otimes \mathbb{C}^{n}$ which are connected by the relations

$$
\begin{align*}
\langle A(z, \zeta), \xi\rangle & =\langle z, a\langle\xi, \zeta\rangle\rangle \tag{3}\\
\langle B(w, \zeta), \xi\rangle & =r(w,\langle\xi, \zeta\rangle) \tag{4}
\end{align*}
$$

for all $z, \zeta, \xi \in \mathbb{C}^{n}$.and $w \in \mathbb{C}^{k}$, then the map

$$
\begin{align*}
z^{*} & =(\mathrm{id}-2 i A(z, \cdot)-B(w, \cdot)-i A(a w, \cdot))^{-1}(z+a w) \tag{5}\\
w^{*} & =\left(\mathrm{id}-2 i\left\langle z, a^{-}\right\rangle-r(w, \cdot)-i\left\langle a w, a^{-} \cdot\right)^{-1} w\right.
\end{align*}
$$

is an automorphism from $\mathrm{Aut}_{0, \mathrm{id}} Q$.
We call the automorphisms which can be written by formula (5) Poincaré-automorphisms.

We emphasize that we do not know any example of non-Poincaré automorphisms.

2. Algebras Corresponding to quadrics

Let Q be a quadric in \mathbb{C}^{n+k} as above (not necessarily nondegenerate).
Consider the set \mathfrak{A} of pairs of matrices $(D, d) \in \mathfrak{g l}(n, \mathbb{C}) \times \mathfrak{g l}(k, \mathbb{C})$ with the property $\langle D z, \zeta\rangle=d\langle z, \zeta\rangle$, for all $z, \zeta \in \mathbb{C}^{n}$.
Proposition 1. The set \mathfrak{A} is an algebra with a unit.
Proof. It is clear that \mathfrak{A} is a linear space containing (id, id). Let $\left(D_{1}, d_{1}\right),\left(D_{2}, d_{2}\right) \in \mathfrak{A}$ then, obviously, $\left\langle D_{1} D_{2} z, \zeta\right\rangle=d_{1} d_{2}\langle z, \zeta\rangle$.
Proposition 2. If Q is nondegenerate, then a pair (D, d) is uniquely determined by d as well as by D.
Proof. Let $\left(D_{1}, d\right),\left(D_{2}, d\right) \in \mathfrak{A}$, then $\left\langle\left(D_{1}-D_{2}\right) z, \zeta\right\rangle=0$, for all z, ζ. By (i) of the nondegeneracy condition follows that $D_{1}-D_{2}=0$.

Since, by (ii) of the nondegeracy condition \mathbb{R}^{k} is spanned by vectors of the form $\langle z, z\rangle, D$ determines d.

Therefore, we can interprete \mathfrak{A} as a subalgebra of $\mathfrak{g l}(k, \mathbb{C})$, or of $\mathfrak{g l}(n, \mathbb{C})$.
Proposition 3. For any $d_{1}, d_{2} \in \mathfrak{A}$, we have $d_{1} \bar{d}_{2}=\bar{d}_{2} d_{1}$.
Proof. It follows from $\langle D z, \zeta\rangle=d\langle z, \zeta\rangle$, for all $z, \zeta \in \mathbb{C}^{n}$, that $\langle z, D \zeta\rangle=\bar{d}\langle z, \zeta\rangle$, for all $z, \zeta \in \mathbb{C}^{n}$. Then, $d_{1} \bar{d}_{2}\langle z, \zeta\rangle=\left\langle D_{1} z, D_{2}\right\rangle=\bar{d}_{2} d_{1}\langle z, \zeta\rangle$.

Remark. In general, $d \in \mathfrak{A}$ does not imply that $\bar{d} \in \mathfrak{A}$.
Definition 1. Two quadrics Q_{1} and Q_{2} are equivalent, if there exist matrices $C \in$ $\mathrm{GL}(n, \mathbb{C})$ and $\rho \in \mathrm{GL}(k, \mathbb{R})$ such that $\langle z, z\rangle_{2}=\rho^{-1}\langle C z, C z\rangle_{1}$.
Proposition 4. If two quadrics Q_{1} and Q_{2} are equivalent, then the corresponding algebras \mathfrak{A} are isomorphic.
Proof. If $\langle z, \zeta\rangle_{2}=\rho^{-1}\langle C z, C \zeta\rangle_{1}$ and $\langle D z, \zeta\rangle_{2}=d\langle z, \zeta\rangle_{2}$, then $\rho^{-1}\langle C D z, C \zeta\rangle_{1}=$ $\langle D z, \zeta\rangle_{2}=d\langle z, \zeta\rangle_{2}=d \rho^{-1}\langle C z, C \zeta\rangle_{1}$.

Hence, $\left(C D C^{-1}, \rho d \rho^{-1}\right) \in \mathfrak{A}_{1}$.

Proposition 5. A quadric Q of type (n, k) is the direct product of two quadrics $Q_{1} \times Q_{2}$ of type $\left(n_{1}, k_{1}\right)$ resp. $\left(n-n_{1}, k-k_{1}\right)$ if and only if the corresponding algebra \mathfrak{A} splits into $\mathfrak{A}_{1} \oplus \mathfrak{A}_{2}$.

Proof. It is clear that $Q=Q_{1} \times Q_{2}$ implies $\mathfrak{A}=\mathfrak{A}_{1} \oplus \mathfrak{A}_{2}$.
Now, let $\mathfrak{A}=\mathfrak{A}_{1} \oplus \mathfrak{A}_{2}$, and let $\left(E_{1}, e_{1}\right)$, and $\left(E_{2}, e_{2}\right)$ be the units in \mathfrak{A}_{1} resp. \mathfrak{A}_{2}. Then, $\left(E_{1} \oplus E_{2}, e_{1} \oplus e_{2}\right)$ is the unit in \mathfrak{A}, and $e_{i}=\bar{e}_{i}, e_{1} e_{2}=e_{2} e_{1}=0$. Set $z=z^{\prime}+z^{\prime \prime}$, $w=w^{\prime}+w^{\prime \prime}$, where $z^{\prime}=E_{1} z, z^{\prime \prime}=E_{2} z, w^{\prime}=e_{1} w, w^{\prime \prime}=e_{2} w$. Now, the equation of Q can be written

$$
\begin{aligned}
v^{\prime} & =\left\langle z^{\prime}, z^{\prime}\right\rangle \\
v^{\prime \prime} & =\left\langle z^{\prime \prime}, z^{\prime \prime}\right\rangle
\end{aligned}
$$

Thus, $Q=Q_{1} \times Q_{2}$.

It is easy to observe that $Q_{1} \times Q_{2}$ is nondegenerate, if and only if Q_{1} and Q_{2} are nondegenerate. Beloshapka [3] proved that $\mathrm{Aut}_{0}\left(Q_{1} \times Q_{2}\right)=\mathrm{Aut}_{0} Q_{1} \times \mathrm{Aut}_{0} Q_{2}$.

Let Q be nondegenerate, and \mathfrak{g} be the Lie algebra corresponding to the Lie group Aut $_{l i n} Q$. Then \mathfrak{g} can be identified with some real subalgebra of $\mathfrak{g l}(\mathbb{C}, n)$, since, for any $(X, s) \in g, s$ is uniquely determined by X.

Proposition 6. For nondegenerate quadrics, $\mathfrak{A}=\mathfrak{g} \cap i \mathfrak{g}$.

Proof. If (X, s), and $\left(i X, s^{\prime}\right) \in \mathfrak{g}$, then

$$
\begin{aligned}
\langle X \zeta, z\rangle+\langle\zeta, X z\rangle & =s\langle\zeta, z\rangle \\
\langle i X \zeta, z\rangle+\langle\zeta, i X z\rangle & =s^{\prime}\langle\zeta, z\rangle
\end{aligned}
$$

Hence, $\langle X \zeta, z\rangle=\frac{1}{2}\left(s-i s^{\prime}\right)\langle\zeta, z\rangle$.
If $D \in \mathfrak{A}$, then

$$
\begin{aligned}
\langle D \zeta, z\rangle+\langle\zeta, D z\rangle & =2 \operatorname{Re} d\langle\zeta, z\rangle \\
\langle i D \zeta, z\rangle+\langle\zeta, i D z\rangle & =-2 \operatorname{Im} d\langle\zeta, z\rangle .
\end{aligned}
$$

3. Poincaré automorphisms and chains

Using the terminology of the previous section, it is easy to prove Theorem 1:
Proof. (3), (4) imply that $\left(A(z, \cdot),\left\langle z, a^{-}\right\rangle\right)$and ($B(w, \cdot), r(w, \cdot \cdot)$ take values in the algebra \mathfrak{A}.
Representing the operators

$$
(\mathrm{id}-2 i A(z, \cdot)-B(w, \cdot)-i A(a w, \cdot))^{-1},\left(\mathrm{id}-2 i\left\langle z, a^{-}\right\rangle-r(w, \cdot \cdot)-i\left\langle a w, a^{-}\right\rangle\right)^{-1}
$$

as geometric progression, one proves that they also take values in \mathfrak{A}.
Using this, Proposition 3, and the Hermitian symmetry of r, one directly verifies that (5) is indeed an automorphism.

According to Chern-Moser [4], we introduce the notion of a chain.
Definition 2. A chain is a k-dimensional real submanifold of the quadric Q which can be mapped by an holomorphic automorphism to the plane $\{z=0, \operatorname{Im} w=0\}$.

We call a chain Poincaré chain if and only if it can be mapped to the plane $\{z=$ $0, \operatorname{Im} w=0\}$ by means of some Poincaré automorphism.

Corollary 1. Poincaré chains passing through the origin coincide with the intersections of Q with complex k-planes $\{z=a w\}$, where $a: \mathbb{C}^{k} \longrightarrow \mathbb{C}^{n}$ is a linear map satisfying (3), for some bilinear form A.

In the remaining part of the paper we give some arguments concerning the question whether any automorphism of a quadric is a Poincare automorphism.

We begin with a description of the group Aut $\mathrm{id}_{\mathrm{d}, 0}$ as Heisenberg group for some quadric.
Let \mathcal{A} be the complex vector space of linear maps $\hat{a}: \mathbb{C}^{k} \longrightarrow \mathbb{C}^{n}$ such that there exists a \mathbb{C}^{n}-valued quadratic form \hat{A} on \mathbb{C}^{n}, satisfying

$$
\begin{equation*}
\langle\hat{A}(z), z\rangle=\langle z, \hat{a}\langle z, z\rangle\rangle \tag{6}
\end{equation*}
$$

and, let \mathcal{R} be the real vector space of symmetric \mathbb{R}^{k}-valued bilinear forms \hat{r} on \mathbb{R}^{k} such that there exists a \mathbb{C}^{n}-valued bilinear form \hat{B} on $\mathbb{C}^{k} \otimes \mathbb{C}^{n}$, satisfying

$$
\begin{align*}
\operatorname{Re}\langle\hat{B}(u, z), z\rangle & =\hat{r}(u,\langle z, z\rangle), \tag{7}\\
\operatorname{Im}\langle\hat{B}(\langle z, z\rangle, z), z\rangle & =0 \tag{8}
\end{align*}
$$

Now, Beloshapka's uniqueness theorem can be reformulated as follows: The map $\mathrm{Aut}_{\mathrm{id}, 0} Q \longrightarrow \mathcal{A} \times \mathcal{R}$, being defined by

$$
\begin{equation*}
\Phi=(F, G) \mapsto\left(\left.\frac{\partial F}{\partial w}\right|_{0},\left.\frac{1}{2} \operatorname{Re} \frac{\partial^{2} G}{(\partial w)^{2}}\right|_{0}\right)=(\hat{a}, \hat{r}), \tag{9}
\end{equation*}
$$

is bijective. This bijection induces the following group structure on $\mathcal{A} \times \mathcal{R}$:

$$
\left(\hat{a}_{1}, \hat{r}_{1}\right) \circ\left(\hat{a}_{2}, \hat{r}_{2}\right)=\left(\hat{a}_{1}+\hat{a}_{2}, \hat{r}_{1}+\hat{r}_{2}-2 \operatorname{Im}\left\langle\hat{a}_{1} \cdot, \hat{a}_{2} \cdot\right\rangle\right)
$$

It follows that $\left\langle\hat{a}_{1} \cdot, \hat{a}_{2} \cdot\right\rangle$ takes values in $\mathcal{R} \otimes \mathbb{C}$.
Therefore, the equation

$$
\operatorname{Im} \hat{r}(u, u)=\langle\hat{a}(u), \hat{a}(u)\rangle,
$$

defines a quadric in $\mathcal{A} \times \mathcal{R} \otimes \mathbb{C}$. The group $\mathcal{A} \times \mathcal{R} \cong$ Aut $_{0, \mathrm{idl}} Q$ is then isomorphic to the Heisenberg group of this quadric via

$$
(\hat{a}, \hat{r}) \mapsto(\hat{a}, \hat{r}(u, u)+i\langle\hat{a}(u), \hat{a}(u)\rangle) .
$$

The parameters \hat{A} and \hat{B} have the following interpretation:

$$
\hat{A}=\left.\frac{1}{4 i} \frac{\partial^{2} F}{(\partial z)^{2}}\right|_{0}
$$

Using the isomorphism from above, we see that any $\Phi \in \operatorname{Aut}_{0, \text { id }} Q$, corresponding to (\hat{a}, \hat{r}), can be uniquely decomposed into $\Phi_{\hat{a}} \circ \Phi_{\hat{r}}$, corresponding to ($\hat{a}, 0$), resp. $(0, \hat{r})$. Then,

$$
\hat{B}:=\left.\frac{\partial^{2} F_{\dot{f}}}{\partial z \partial w}\right|_{0}
$$

satisfies the equations (7) and (8).
If Φ is a Poincare automorphism of Q, then we obtain, by direct computation, that $a=\hat{a}, B=\hat{B}, A(z, z)=\hat{A}(z, z)$, and $r(u, u)=\hat{r}(u, u)$.

We denote the subspaces of \mathcal{A} and \mathcal{R}, consisting of (a, r) which define Poincaré automorphisms, by \mathcal{A}_{P} and \mathcal{R}_{P}.

The example below shows that, on the contrary to \hat{A}, \hat{r}, the tensors A and r need not be symmetric:

Example 1. Let Q be the quadric in \mathbb{C}^{6} :

$$
\begin{aligned}
v^{1} & =\left|z^{1}\right|^{2} \\
v^{2} & =\left|z^{2}\right|^{2} \\
v^{3} & =\operatorname{Re} z^{1} \bar{z}^{2} \\
v^{4} & =\operatorname{Im} z^{1} \bar{z}^{2}
\end{aligned}
$$

The algebra \mathfrak{A} is isomorphic to $\mathfrak{g l}(2, \mathbb{C})$. We represent a vector $w \in \mathbb{C}^{4}$ as 2×2 matrix

$$
\Omega=\left(\begin{array}{ll}
\omega_{11} & \omega_{12} \\
\omega_{21} & \omega_{22}
\end{array}\right)=\left(\begin{array}{cc}
w^{1} & w^{3}+i w^{4} \\
w^{3}-i w^{4} & w^{2}
\end{array}\right)
$$

Set $\operatorname{Im} \Omega=\frac{1}{2 i}\left(\Omega-\Omega^{*}\right)$, where Ω^{*} is the transposed, conjugate matrix to Ω. Then the equation of Q takes the form

$$
\operatorname{Im} \Omega=\binom{z^{1}}{z^{2}}\left(\begin{array}{ll}
\bar{z}^{1} & \bar{z}^{2}
\end{array}\right)
$$

For any a $\in \mathbb{C}^{2}$, and any Hermitian 2×2-matrix Θ, we introduce a map $\Delta_{a, \Theta}$: $\mathbb{C}^{6} \longrightarrow \mathfrak{g l}(2, \mathbb{C})$,

$$
\Delta_{a, \Theta}(z, \Omega)=2 i\binom{z^{1}}{z^{2}}\left(\begin{array}{ll}
\bar{a}^{1} & \bar{a}^{2}
\end{array}\right)+\left(\begin{array}{ll}
\omega_{11} & \omega_{12} \\
\omega_{21} & \omega_{22}
\end{array}\right)\left(\left(\begin{array}{ll}
\theta_{11} & \theta_{12} \\
\theta_{21} & \theta_{22}
\end{array}\right)+i\binom{a^{1}}{a^{2}}\left(\begin{array}{ll}
\bar{a}^{1} & \bar{a}^{2}
\end{array}\right)\right)
$$

Then, any $\Phi \in \mathrm{Aut}_{0, \mathrm{id}} Q$ has the form

$$
\begin{aligned}
\tilde{z} & =\left(\mathrm{id}-\Delta_{a, \Theta}(z, \Omega)\right)^{-1}\left(z+\Omega\binom{a^{1}}{a^{2}}\right) \\
\tilde{\Omega} & =\left(\mathrm{id}-\Delta_{a, \Theta}(z, \Omega)\right)^{-1} \Omega
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& A(z, \zeta)=\binom{\bar{a}^{1} z^{1} \zeta^{1}+\bar{a}^{2} z^{1} \zeta^{2}}{\bar{a}^{1} z^{2} \zeta^{1}+\bar{a}^{2} z^{2} \zeta^{2}} \\
& r(w, \omega)=\left(\begin{array}{cc}
w^{1} & w^{3}+i w^{4} \\
w^{3}-i w^{4} & w^{2}
\end{array}\right)\left(\begin{array}{cc}
r^{1} & r^{3}+i r^{4} \\
r^{3}-i r^{4} & r^{2}
\end{array}\right)\left(\begin{array}{cc}
\bar{\omega}^{1} & \bar{\omega}^{3}+i \bar{\omega}^{4} \\
\bar{\omega}^{3}-i \bar{\omega}^{4} & \bar{\omega}^{2}
\end{array}\right)
\end{aligned}
$$

The linear automorphisms are

$$
\begin{aligned}
\tilde{z} & =C z \\
\tilde{\Omega} & =C \Omega C^{*}
\end{aligned}
$$

for $C \in \mathrm{GL}(2, \mathbb{C})$.
The existence of non-Poincare automorphisms is equivalent to the existence of solutions $(\hat{a}, \hat{r}, \hat{A}, \hat{B})$ of the system (6), (7), (8) such that the system (3) and (4) is unsolvable for $a=\hat{a}, B=\hat{B}$.

We will call a nondegenerate quadric $Q \subset \mathbb{C}^{n+k}$ regular if $\mathcal{A}=\mathcal{A}_{P}$, and $\mathcal{R}=\mathcal{R}_{P}$.
Corollary 2. If Q is regular, then any $\Phi \in \mathrm{Aut}_{\mathrm{id}, 0} Q$ is a Poincaré automorphism.

It follows that the real associative quadrics (RAQ), the quadrics of codimension ≤ 2, and of codimension n^{2} are regular.

4. Fractional linear automorphisms and reduced quadrics

We show that Poincaré automorphisms generalize fractional linear automorphisms.
Definition 3. We call a nondegenerate quadric Q strictly nondgenerate if, instead of the nondegeneracy condition i), the following stronger condition holds:
$\left.{ }^{i}\right)$ There exists a linear functional $f \in\left(\mathbb{R}^{k}\right)^{\prime}$ such that the scalar Hermitian form $f(\langle\cdot\rangle$,$) is nondegenerate.$

Otherwise, Q is called nullquadric.
Proposition 7. Let Q be a nondegenerate quadric and Φ :

$$
\begin{aligned}
z^{*} & =\frac{1}{1-\phi(z)-\psi(w)}(z+a w) \\
w^{*} & =\frac{1}{1-\phi(z)-\psi(w)} w
\end{aligned}
$$

a fractional linear automorphism of Q.
Then, Φ is a Poincaré automorphism.
If the codimension $k>1$, then $\psi=\frac{1}{2} \phi(a \cdot)$.
If $k>1$, and Q is strictly nondegenerate, then $\phi=\psi=0$.
Proof. Since, in the case $k=1$, the assertion follows from the explicit automorphism formula, we can restrict ourselves to the case $k>1$.

From $2 i(z, a\langle\xi, \zeta\rangle\rangle=\phi(z)\langle\zeta, \xi\rangle$, we obtain, that $A(z, \zeta):=\phi(z) \zeta$ is a solution of (3).

Set

$$
\psi^{\prime}(u)=\psi(u)-\frac{1}{2} \phi(a u) .
$$

Then, it follows that $r(\omega, w)=\psi^{\prime}(\omega) \bar{w}=\bar{\psi}^{\prime}(\bar{w}) \omega$. Since $k>1$, then $\psi^{\prime} \equiv 0$ and, hence, $r=0$.

It remains to prove that $\phi=0$, if Q is strictly nondegenerate.
Without loss of generality, we may assume that $\left(z^{\mu}\right),\left(w^{\kappa}\right)$ are coordinates such that

$$
v^{1}=\sum_{\mu=1}^{n} \epsilon_{\mu}\left|z^{\mu}\right|^{2}
$$

where $\epsilon_{\mu} \in\{-1,1\}$.
For any $z \in \mathbb{C}^{n}$, we define the $k \times n$ matrix Z, having the property $\langle z, \zeta\rangle=Z \bar{\zeta}$.

From $\phi(z) w \equiv 2 i\langle z, a \bar{w}\rangle$, we obtain $\phi(z)$ id $=2 i Z \bar{a}$. The first row of this matrix identity implies that all columns of a, except the first one, are zeroes.

If $k>1$, then the second row of this identity implies that $\phi(z) \equiv 0$.
Definition 4. We call a quadric Q reduced if the corresponding algebra $\mathfrak{A} \cong \mathbb{C}$.
Proposition 8. For a reduced quadric Q, any Poincaré automorphism is fractional linear, and, therefore, linear in the corresponding projective space.

Proof. Condition (3) implies that $\left\langle z, a^{-}\right\rangle$takes values in $\mathfrak{A} \cong \mathbb{C}$. Therefore, it equals $\phi(z)$ id, where ϕ is some linear functional. Analogously, we obtain $r\left(w,{ }^{-}\right)=\psi(w)$ id. Then Φ takes the form

$$
\begin{aligned}
z^{*} & =\frac{1}{1-2 i \phi(z)-\psi(w)-i \phi(a w)}(z+a w) \\
w^{*} & =\frac{1}{1-2 i \phi(z)-\psi(w)-i \phi(a w)} \\
& w .
\end{aligned}
$$

Corollary 3. Let Q be a reduced strictly nondegenerate quadric. Then, either Q is a hyperquadric $(k=1)$, or any Poincaré automorphism of Q is identical.

Proof. This follows from Propositions 7, and 8.

5. Sums of quadrics

For two quadrics Q_{1} in $\mathbb{C}^{n_{1}+k}$, and Q_{2} in $\mathbb{C}^{n_{2}+k}$, with the same codimension we define the sum $Q_{1}+Q_{2}$ by

$$
\begin{equation*}
Q_{1}+Q_{2}=\left\{(z, w) \in \mathbb{C}^{n_{1}+n_{2}} \times \mathbb{C}^{k}: \operatorname{Im} w=\langle z, z\rangle_{1}+\langle z, z\rangle_{2}\right\} . \tag{10}
\end{equation*}
$$

If Q_{1}, and Q_{2} both satisfy (i), and, at least one of them, satisfies (ii) of the nondegeneracy condition then $Q_{1}+Q_{2}$ is nondegenrate.

It is easy to verify that the algebra \mathfrak{A}, corresponding to $Q_{1}+Q_{2}$ equals $\mathfrak{A}_{1} \cap \mathfrak{A}_{2}$.
We consider now the following question: which automorphisms of Q_{1} can be lifted to automorphisms of the sum $Q_{1}+Q_{2}$.

Proposition 9. Let Q_{1} be a nondegerate quadric of codimension k, and Q_{2} be a quadric of the same codimension, satisfying (i) of the nondegeneracy condition. If $\mathfrak{A}_{1} \subset \mathfrak{A}_{2}$, then any Poincaré automorphism of Q_{1} can be lifted to a Poincaré automorphism of $Q_{1}+Q_{2}$.

Proof. Let $\left(a, r, A_{1}, B_{1}\right)$ be the parameters defining a Poincaré automorphism Φ_{1} of Q_{1}. Then the operators $\left\langle z, a^{-}\right\rangle$, and $r(w, \cdot)$ are contained in \mathfrak{A}_{1}, and, therefore, also in \mathfrak{A}_{2}. Hence, for any z, w there exist uniquely determined $A_{2}(z, \cdot), B_{2}(w, \cdot)$ from $\operatorname{GL}\left(n_{2}, \mathbb{C}\right)$. Thus, $\left(a, r, A_{1} \oplus A_{2}, B_{1} \oplus B_{2}\right)$ defines a Poincaré automorphism on $Q_{1}+Q_{2}$.
Corollary 4. Any fractional linear automorphism of Q_{1} can be lifted to $Q_{1}+Q_{2}$.
Now, let Q be a nondegenerate quadric. Considering the system (6)-(8) for $Q+Q$ we obtain that ($a \oplus a^{\prime}, r$) are the parameters of some automorphism if and only if (a, r) and $\left(a^{\prime}, r\right)$ define automorphisms of Q, and a has a solution A of (3). Thus, the Poincaré property (3) for a is necessary for lifting an automorphism to $Q+Q$.

We illustrate the introduced calculus in the case of codimension $k=1$.
If $k=1$, then always $\mathfrak{A} \cong \mathbb{C}$. Moreover, hyperquadrics are sums of spheres in \mathbb{C}^{2}. By these reasons automorphisms of hyperquadrics have a quite simple structure. They can be lifted from automorphisms (1) of S^{3}, by means of the described construction.

6. Some questions and conjectures

At the end of the paper we list some open problems and conjectures:

1. Is any nondegenerate quadric regular?

It would be also interesting to know the answer in the following special cases:
1'. Is any automorphism of a reduced quadric fractional linear?
1 ". Is any automorphism of a reduced, strictly nondegenerate quadric of codimension $k>1$ linear?

Conjecture 1. The questions 1,1 ', and 1 " have an affirmative answer.
One can give a rough estimate of $\operatorname{dim}_{\mathbb{C}} \mathcal{A}$ by $n k$, and of $\operatorname{dim}_{\mathbf{R}} \mathcal{R}$ by $k^{2} \frac{k+1}{2}$. However, in the cases when the explicit groups are known, the dimension of the first space does not exceed n and that of the second space does not exceed k.
2. Is always $\operatorname{dim}_{\mathcal{C}} \mathcal{A} \leq n$, and $\operatorname{dim}_{\mathbf{R}} \mathcal{R} \leq k$?

2'. Is $\operatorname{dim}_{\mathbb{C}} \mathcal{A}_{P} \leq n$, and $\operatorname{dim}_{\mathbb{R}} \mathcal{R}_{P} \leq k$?
Conjecture 2. The questions 2 and 2 ' have an affirmative answer.
Remark. If Q is reduced, then the answer to question 2' follows from Proposition 8.

We have showed above that, for any $a \in \mathcal{A}$, the quadratic form $\langle a u, a u\rangle \in \mathcal{R}$. In the cases of RAQ, as well as for quadrics of codimension ≤ 2, any $r \in \mathcal{R}$ is a linear combination of such forms.
3. Does there exist a nondegenerate quadric Q and some $r \in \mathcal{R}$ which cannot be represented as a linear combination of $\langle a u, a u\rangle \in \mathcal{R}$, where $a \in \mathcal{A}$?

References

1. V.K. Beloshapka, Finitc-dimensionality of the group of automorphisms of a real analytic surface, USSR Izvestiya 32 (1989), no. 2, 437-442.
2. \qquad , A uniqueness theorcm for automorphisms of a nondegenerate surface in a complex space, Math. Notes 47 (1990), 239-242.
3. , Automorphisms of real quadrics of high codimension and normal forms of CR manifolds (Russian), Ph.D. thesis, Steklov Mathematical Institute Moscow, 1991.
4. S.S. Chern and J.K. Moser, Real hypersurfaces in complex manifolds, Acta Math. 133 (1974), no. 3-4, 219-271.
5. V.V. Ežov and G. Schmalz, Holomorphic automorphisms of quadrics of codimension 2, preprint, Max-Planck-Institut fiir Mathematik Bonn, 1993.
6. , A matrix Poincaré formula for holomorphic automorphisms of real associative quadrics, preprint, Max-Planck-Institut, für Mathematik Bonn, 1993.
7. F. Forstneric̆, Mappings of quadric Cauchy-Riemann manifolds, Math. Ann. 292 (1992), 163180.
8. G.M. Henkin and A.E. Tumanov, Local characterization of holomorphic automorphisms of Siegel domains, Funkt. Analysis 17 (1983), no. 4, 49-61.
9. H. Poincaré, Les fonctions analytiques de deux variables et la représentation conforme, Rend. Circ. Math. Palermo (1907), 185-220.
10. N.J. Tanaka, On the pseudo-conformal geometry of hypersurfaces of the space of n complex variables, J.Math.Soc.Japan 14 (1962), 397-429.
(V.V. Ežov) Oklahoma State University, Department of Mathematics, College of Arts and Sciences, Stillwater, Oklahoma 74078-0613

E-mail address: ezhov@hardy.math.okstate.edu
(G. Schmalz) Mathematisches Institut der Universität Bonn, Wegelerstrasse 10, D-5300 Bonn-1

E-mail address: sclınalz@mpim-bom.mpg.de

