
Dedicated on the Occasion
of Professor Yu.I.Lyubich

60th birthday

On Some Properties of Graph Maps:
Spectral Decomposition, Misiurewicz

Conjecture
and Abstract Sets of Periods

A.M. Blokh .

Max-Planck-Institut fUr Mathematik

Gottfried-Oaren-Straße 26

0-5300 Bonn 3

Germany

MPI/91-35





On Some Properties of Graph Maps:
Spectral Decomposition, Misiurewicz Conjecture

and Abstract Sets of Periods

A.M.BLOKH

Abstract. We completely characterize sets of periods of cycles which arbitrary continuous
graph maps may have. We also verify the conjecture of M.Misiurewicz and prove that for
any graph X therc exists a number L=L(X) such that any continuous self-mapping of X with
cycles of periods l,2, ... ,L has in fact cycles of aU possible periods. In this studying we need
the spectral decomposition for graph maps [B3] which we describe brieAy in Section 1.

o. Introduction

Let us call one-dimensional branched manifolds graph~. We study properties of a set

P(f) of periods of cycles of a graph map f. One of the well-known and impressive results

on this topic is Sharkovskii theorem [SI] about the co-existence of periods of cycles for

maps of the realline. To fonnulate it let us introduce the following Sharkovskii ordering

for positive integers:

3 -< 5 -< 7 -< ... -< 2· 3 -< 2· 5 -< 2· 7 -< ... -< 8 -< 4 -< 2 -< 1

Denote by S(k) the set of all such integers m that k -< m or k = m and by S(2<X» the set

{1,2,4,8, ... }.

T heore In[SI] . Let 9 : R ---+ R be a continu DUS map. Tben either P (g) = 0 or there

exists such k E N U 2<X> that P(g) = S( k). Moreover for any such k there exists a map

9 : [0, 1] ~ [0, 1] witb P(g) = S( k) and there exists a map go : R -+ R with P(go) = 0.

Other information about sets of periods of cycles for one-dimensional maps is contained

in papers [AL,M] for maps of the circle, [ALM] for maps of the letter Y and [Ba] for maps

of the n-od.

Sharkovskii theorem implies that if a map f : R :-+ R has a cycle of period 3 then

it has cycles of all possible periods. The following conjecture, which was formulated by

M.Misiurewicz at the Problem Session at Czecho-Slovak Summer Mathematical School

near Bratislava in 1990, seems to be closely related to the mentioned property of maps of

the real lirre.
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Misiurewicz Conjecture. For a graph X there exists an integer L = L(X) such that

for a continuous map f : X -+ X inc1usion P(f) ::) {I, 2, ... , n} implies P(f) = N.

We verify Misiurewicz conjecture in Section 2. Clearly it implies that sets of periods of

cycles of graph maps have some general properties no matter what graph is considered.

Moving in this direction we describe in Section 3 sets A c N, for which there exists a

graph Y and a continuous map 9 : Y ----+ Y with P(g) = A. Namely, a set A C N is

called an ab"tract "et of periods (= ASP) iff there exist a graph X and a continuous map

f : X -+ X such that P(f) = A. A set B is called an O·ab"tract set of periods (= ASPo)

iff there exist a graph X and a continuous map 9 : X -+ X such that h(f) = 0, P(f) = B.

Set IZ = {li: i ~ I}, Q(n) ={2 i n : i ~ O}. The main theorem of Section 3 is the following

Theorem 3.1. 1) A set A C N is an ASP iff it almost coincides with a finite union of

some sets lZ or Q(n).

2) A set A C N is an ASPo iff it almost coincides with a finite union of some sets Q(n).

In what follows we need the "pectral decomposition for graph maps [B3] similar to that

for maps of the interval [Bl,B2]; the decomposition is briefly described in Section 1.

Notations

int Z is the interior of a set Z;

aZ is the boundary of Z;

Z is the closure of Z;

fn is the n-fold iterate of a map f;

orbx = {fnx}~=o is the orbit (trajectory) of Xj

w(x) is the limit set of orbx;

N ={I, 2,3, ... } is the set of natural numbers;

Per f is the set of all periodic points of a map f;

P(f) is the set of all periods of periodic points of a map f;

h(f) is a topological entropy of a map f.
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1. The Spectral Decomposition

In this section we briefly describe the spectral decomposition for one-dimensional maps

(for the proofs see [B3]). Let us begin with some historical remarks.

A. N. Sharkovskii constructed the decomposition of the set w(f) = Ux E I w(x) for con

tinuous interval maps f : I ~ I in [S2]. Then in [JR] Jonker and Rand constructed for

unimodal maps the decomposition which is in fact elose to that of Sharkovskiij however

they used completely different methods based on symbolic dynamics. In [H] the decom

position for piecewise-monotone maps with discontinuities was constructed by Hofbauer

and then Nitecki in [N] considered the decomposition for piecewise-monotone continuous

maps from more geometrical point of view. The author's papers [Bl,B2] were devoted to

the case of arbitrary continuous interval mapSj they contained the different approach to

the problem in question which allowed us to obtain some new corollaries (e.g. describing

generic properties of invariant measures for interval maps). The similar approach was used

in [B3] to construct the decomposition for graph maps and now we pass to the desription

of the results of the paper [B3].

Let X be a graph, f : X ~ X be a continuous map. We use terms edge, vertex,

endpoint in the usual sensej the numbers of edges and endpoints of X are denoted by

Edg(X), End(X). If necessary we add some "artificial" vertices to make all edges of a

graph homeomorphic to an interval. We construct the decomposition of the set w(f),

which is defined similar to that for interval maps. First we need some definitions. A

closed connected set Y C X is called subgraph. A subgraph Y is called periodic (0/ period

k) if Y, fY, . .. , f k- 1Y are pairwise disjoint and fky = Yj the union of all iterations of

Y is denoted by orb Y and called a cycle 0/ ~ubgraph~. Let Yo :> Yl :> ... be periodic

subgraphs of periods mo, ml," .; then mi+l is divided by mi (Vi). If mi ~ 00 then the

subgraphs Y i , i = 1,2, ... are said to be generating. We call any invariant closed set

Sc Q = n(orb Yi) a solenoidal ~et and denote the solenoidal set Qnw(f) by Sw(Q) (note

that w(f) is closed for graph lnaps, see [B3]).

One can use a transitive shift in an Abelian zero-dimensional infinite group as a model

for the map on a solenoidal set. Namely, let D = {nd be a sequence of integers, ni+l
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is divided by ni (Vi) and ni -+ 00. Let us consider a subgroup H(D) C Zno X Znl X ... ,

defined in the following way:

Denote by T the minimal shift in H(D) by the element (1,1, ... ).

Theorem 1.l[B3]. Suppose that {Yi} are generating subgraphs and that they have

periods {ffii}' Let Q = ni~O orb Yi, Then there exists a continuous surjective map

r.p : Q --+ H(D) with the following properties:

1) T 0 <p = r.p 0 1 (i.e.<p semiconjugates I1 Q to T );

2) tbere exists the unique set S C Q n Per I such that w(x) = S for any x E Q and iE

w(z) n Q f:. 0 then S C w(z) C Swj

3) for any l' E H(D) the set J = c.p-l (1') is a connected component of Q and c.pISw is at

most 2-to-l;

4) h(/IQ) = O.

Let us turn to another type of an infinite limit set. Let {Yi}~=l be a collection of

connected graphs, ]( = U~=l Yi, A continuous map 'lj; : [( --+ K which permutes these

graphs cyclically is called non-~trictly periodic or non·~trictly l-periodicj for example if Y is

a periodic subgraph then Ilorb Y is non-strictly periodic. In what follows we will consider

monotone semiconjugations between non-strictly periodic graph maps (a continuous map

9 : X --+ Y is monotone provided g-l (Y) is connected for any y E Y). We need the

following

Lenlma 1.1. Let X be a graph. Then there exists a numberr = reX) such that if M c X

is a cyc1e of su bgraphs and 9 : M --+ Y is monotone then the following property holds for

any y E M: card {8(g-1(y))} :s; reX) (\ly E M).

Lemma 1.1 makes natural the following definition. If c.p : [( --+ M is continuous, mono

tone, semiconjugates a non-strictly periodic map 1 : !( --+ [( to a non-strictly periodic

1nap 9 : M --+ M and there is a closed I-invariant set F c K such that <p(F) = M and

c.p-l(y) n F c 8(r.p-l(y)) (Vy E M) then we say that r.p almo~t conjugatej flF to g.
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Let Y be an n-periodic subgraph, orb Y = M. Denote by E(M, f) the following set:

E( M, f) ={x E M : for any open U 3 x, U C M we have orb U = M}

provided it is infinite. We call the set E(M,F) a ba3ic ~et and denote it by B(M, f) provided

Per (fIM) f:. 0; otherwise we denote E(M, f) by C(M, f) and call it a circle-like 3et.

Theorem 1.2[B3]. Let Y be an n-periodic subgraph, M = orb Y and E(M, f) f:. 0.

Then there exist a transitive non-strictly n-periodic map 9 : K -t K and a monotone

continuous surjection ep : M -t ]( which almost conjugates fIE(M, f) to g. Furthermore,

tbe following properties bold:

1) E(M, f) is a perfect set;

2) fIE(M, f) is transitive;

3) ifw(z) ::> E(M, f) then w(z) = E(M, f);

4) if E(M, f) = C(M, f) is a circle-like set then ]( is a union of n circ1es, 9 permutes

them, 9 n on any of them is an irrational rotation and h(g) = h(f IE (M l f)) = 0;

5) if E(M, f) = B(M, f) is a basic set tllen h(fIB(M, f)) > 0, B(M, f) C Per f and

tbere exist a nunlber k and a c10sed subset D C B(M, f) such that ep(D) is connected,

sets fi D n fj D anel ep(fi D) n ep(f) D) (0 ::; i < j < kn) are finite, fkn D = D,

U~;~l fi D = B(M, f) and jknlD, g k71 Ie.pD are topologica11y mixing.

A number kn from the statement 5) of Theorem 1.2 is callcd aperiod of B(M, j).

In Section 3 we will need some results which can be easily deduced from Theorem 1.2

and establish the connection between aperiod of B(M, f) and periods of cycles belonging

to M. One of theIn is Lemma 1.2; let us formulate here another one.

Assertion 1.1. Let M be a cyc1e of subgraphs, y E M be a periodic point with

period I, B(M, f) be the correspondent basic set of period m, D C B(M, f) and e.p have

the same sense as in Theorem 1.2. Then the following statements are true:

1) m ::; 1. reX), wbere r( ...Y) was denned in Lemma 1.1;

2) if 1 is not divided by m then ep(fiy) ~ int (epD) for any i.

To formulate the decomposition theorein denote by Z f the set of all cycles maximal by

inclusion among all limit sets of f.
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Theorem 1.3[B3]. Let I : X -+ )( be a continuous graph map. Then there exist a

finite number oE circle-like sets {C(I{i, In ~=1' an at most countable Eamily oE basic sets

{B( Lj, I)} and a Eamily oE solenoidal sets {Sw(Qo)} such that

k

w(/) = Z/ U(U C(I(i)) U (U B(L j )) U (U(Sw(Qo))'
i=l } 0

Moreover, tbere exist numbers ,(X) and v(X) such that k ~ ,(X), the only possible

intersections in the decomposition are between basic sets and at most v(X) basic sets can

intersect.

Theorem 1.3 shows that one can consider mixing graph maps as models for graph maps

on basic sets. The following thearern seems to be important in this connection; to formulate

it we need the definition of rp.aps with the specification property (see, for example, [DGS]).

Theorem 1.4[B3]. Let I : X -+ X be a cOlltinuous mixing graph map. Then Ebas the

speciHcation property.

It is well-known [DGS] that maps with the specification have nice properties concerning

the set of invariant measures. Using them and Theorems 1.1 - 1.4 we can describe generic

properties of invariant measures for graph maps. First we need some definitions. Let

T : X -+ X be a map of a compact metric space' into itself. The set of all T-invariant

Borel normalized measures is denoted by DT. A measure J.l. E Dr with supp J.l. containing

in one cycle is said to be a CO - measure. The set of all CO-measures concentrated on

cycles with minimal period p is denoted by Pr(p). Let V(x) be the set of accumulation

points of time-averages of iterations of the point x. A point x E X is said to have maximal

oscillation if VT( x) = DT.

Theorem 1.5(B3J. Let B be a basic set. Tben:

1) for any I the set Up~1 PflB(p) is dense in D/IB;

2) the set oE a11 ergodic non-atomic invariant measures J1 with supp J.L = B is a residual

subset oE D IIB;

3) iE V C D 1I B is a llon-empty c10sed connected set then tbe set oE a11 sucb points x tbat

V(x) = V is dense in X (in particular every measure J.L E D flB has a generic point);
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4) points with maximal oseillation are residual in B.

Theorem 1.6[B3]. Let J.l be an invariant Ineasure. Tben tbe following properties of J.l

are equivalent:

1) tbere exists sueh a poin t x that supp J-l C w (x);

2) J.l bas generie points;

3) J.l is eoneentrated on a eirc1e-like set or ean be approximated by CO-measures.

In partieular, CO-measures are dense in all ergodie neasures whieb are not concentrated

on eircle-like sets.

Let us introduce two notions. If n 2: 1 then set nZ == {in: i 2: I}, Q(n) ={2 i n : i 2: O}.

Then if A and B are such sets that A \ B and B \ A are finite then say that A almo8t

coincide8 with Band if B \ A is finite then say that Aalmost contain8 B and denote it by

A ::l B. In Lemma 1.2 we need the following easy property of maps with the specification.
a

Property 1.1. 1fT is a map with tbe speeification then peT) almost coincides with N.

Assertion 1.1, Property 1.1 and Theorem 1.2 easily imply the following

Lelnma 1.2. Let / : X ----+ ..Y. be a graph map, B be a basic set oE /, m be aperiod oE B.

Then P(/IE) almost coincides with mZ.

Lemma 1.2 show how sets mZ appear in abstract sets of periods; at the same time sets

Q(n) correspond roughly speaking to the invariant subgraphs on which a map has zero

entropy. Let us call a subset of a graph an interval if it is homeomorphic to the interval

[0,1] (we use for intervals standart notations [a, b], [a, b), (a, b], (a, b)). To conclude this

section let us formulate the following

Lemma 1.3[B3]. Suppose that Yn -t y, Yn E Per f and there exists an interval I with

an endpoint y such tbat Yn E I (Vn). Let

F = F({Yi}) - {z : orb Yn n U i= 0 tor any open U 3 z and infinitely many n}.

Then f F = F, F is a cyc1e or an infinite set and there exists such x tbat w(x) ::l F and

w(x) is not a circle-like set.
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2. Misiurewicz Conjecture

During the Problem Session at Czecho-Slovak Summer Mathematical School near

Bratislava in 1990 M.Misiurewicz formulated the following

Conjecture. For a graph X tbere exists an integer L = L(X) such that for a continuous

map f : X -+ X inc1usion P(f) ::> {1, 2, ... , n} implies P(f) = N.

We verify this conjecrure and give a sketch of the proof. First let us formulate the

following

Lemma 2.1. Let R be a positive integer. Then one can find such N = N(R) > R that

for any M 2: N there exist positive integers 0 = ao < al < a2 < ... < al = M witb the

following properties:

2) for any proper divisor 8 of M there exists j, 1 ~ j < 1 such that a j is divided by 8.

PROOF: Let M = p~l ... . p~k, where PI, .. . ,PI.: are prime integers. Set mi = M, 1 ~ i ~ k.
Pi

Clearly numbers {mi} have the required property 2). So it is sufficient to find numbers

ao = 1 < al < ... < al = M such that ai+l - ai 2: R, 0 ~ i < 1and for any j there exists

such i that ai is divided by nlj. To this end suppose that {ql < q2 < ... < qr} is the set

of all prime illtegers less that R + 1 and set a = mine _1_ - ~ )i:J , N = max( R, 3qr)'
qi+l qi a

. M M M M M
Now If 2:: R then - - -- > 2:: R . If < R then

PkPk-l Pi Pi+I - PkPk-I PkPk-l

PI,P2,'" < Pk-2 ~ R and so

mi - mi+ 1 = M - M ~ O'A1 ~ aN ;::: R (1 ~ i ~ k - 2).
Pi P i+l

Thus it remains to consider the differences~ - ~, M - ~ which is left to the
Pk-l Pk-2 Pli: Pk-l

reader. Clearly we may assume that N(R) i~creases with R. I

Now let us fix for the rest of this seetion a graph X and a continuous map f : X -+ X.
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Lemma 2.2. There exists a number m = m(X) sucb tbat iE a E X and [a, bI ], [a, b2 ], • •• ,

[a, bm + I ] are intervals then one oE them contains some oE others.

PROOF: Left to the reader. I

Suppose that there exist an edge 1= (a, b] C X and two periodic points, P E I of prime

period p > m(X) and Q E X of prime period q > m(x), p f:: q such that if [P, Q] c I then

(P, Q) n (orb Q U orb P) = 0 j fix them for Lemmas 2.3 - 2.7.

Lemma 2.3. We bave fp(q-I)m(X)[p, Q] :) orbQ, fq(p-I)m(X)[p, Q] :) orbP and so

jt[P, Q] :> orb Q U orbP for t 2: pqm(X) - min(p, q) . m(X).

PROOF: Consider all the intervals of type {Ti = [P, Ci]}~=l' where Ci E orh Q, containing

no points of orb Q hut Ci (some of points {cd may coincide with each other). Then

k :::; m(X) and we mayassurne Q = Cl, [P, Q] = Tl. On the other hand for any i there

exists j = j (i) such that fP Ti :> T j . Hence there exist such numbers I and n that I +n :::; k

and, say, fplTl :> T2 , f pnT2 :> T2 which implies that j pn j T2 :> {!pni C2 }{=o' But p, q are

prime numbers and n :::; m(X) < q; thus {!ipn C2 } 1::~ = orb Q and jpn(q-l)+lp[p, Q] :>

orb Q (recall that Tl = [P, Q]). It implies that jP(q-l)m(X)(p, Q] :> orb Q. Similarly

jq(p-l)m(X)[p, Q] :> orb P and we are done. I

Let us call subintervals of I with endpoints frOln orb Q or orb P basical intervals provided

their interiors contain 110 points from orb P or orb Q. In what follows basical interval will

be called P.interval, Q.interval or PQ-interval depending on periodic orbits containing

its endpoints. Furthermore, suppose that there are two intervals G c X and HeX and

a continuous map <p : X -+ X such that <p( G) :> Hand there is a subinterval K C G

such that cp(K) = Hj then say that G cp - covers H. Note the following property: if

G <p-covers Hand H ,p-covers M then G 'lj; 0 c.p-covers M.

Leluma 2.4. Let Z C X be an interval, Y = (0', ß] C X be an edge and 9 : X -+ X be

a continuous map; suppose tbat 0', ß E g(Z). Then there are points "EJ E Y such that

g(Z) n Y = (0', ,] U (8, ß] and Z g-covers [a,;] and [8, ß].

PROOF: Left to the reader. I
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Lemma 2.5. Let A be a. PQ-interval. Then for any i ~ pqm(X) trus interval fi-covers

a11 basical intervals except at most one.

PROOF: Follows from Lemmas 2.3 and 2.4. I

Lemma 2.6. Suppose that card (orb P n I) ~ 4, card (orb Q n I) ~ 4. Then the following

statements are true.

1) Either for any P-interval M there exists i < p2 such that fi M contains a PQ-interval

01' there exist two P-intervals Y and Z such that each of them fi-covers both of them

for i 2:: (p - 1)2.

2) Either for any Q-interval N there exists i < q2 such that fi N contains a PQ-interval

01' there exist two Q-intervals Y' and Z' such that eacb of them fi -covers both of them

for i ~ (p - 1)2.

P ROOF: We will prove only statement 1). Consider a P-interval [c, cl] which has a neigh

bouring PQ-interval, say, [d, e]. Let thc point c be doser to the point a than the point d

(recall that I = [a, b] ~ [c, d] U [d, eJ). Divide the proof by steps.

Step 1. H fi[c, cl] contains a PQ-intcrval then for any P-interval M there exists such

j ~ p - 1 + i tllat fi M contains a PQ-interval.

Indeed, for any P-interval lvI one can find such m < p that either fm M ~ [c, d] or

jm M ~ {d, e] which implies the required.

Step 2. Suppose tbere exists sudl i < (p - 1)2 tbat ji [c, d] contains a PQ-interval. Then

for any P-interval M there exists an integer j < (p - 1)2 + p such that ji M contains a

PQ-interval.

Step 2 easily follows from Step 1.

Denote by x the dosest to e point froln o1'b P lying to the other side of ethan dj clearly

x may not exist.
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Step 3. Suppose that fi[e, d] does not contain PQ-intervals for i < (p - 1)2. Then for

i 2: (p - 1)(p - 2) tbe interval [c, d] fi -covers [a, cl] (and [x, b] provided x exists).

Let I < P be such that f'c = d. Then f'[e, d] :> [e, d] and moreover [e, d] f'-covers [e, d).

But p is a prime integer which M in Lemma 2.3 implies that fi{e, d] :> orb P for every

i 2: l(p - 2). Since fi{c, d] does not contain [d, e] for l(p - 2) ::; i < l(p - 1) we have by

Lemma 2.4 that [e, d] fi-covers [a, d] (and [x, b] provided x exists). Hut [c, d] fi-covers

[e, d] which easily implies that for any i 2: l(p - 2) ~he interval [c, d] f'-covers [a, d] (and

[x, b] provided x exists).

Step 4. Suppose that fi [c, cl] does not contain PQ-intervals for i < (p - 1)2 + p. Then for

any P-interval M and i 2: (p - I? we have that M fi -covers [a, d] (and [x, b] provided x

exists).

Clearly there exists 1< P such that either M f'-covers [e, d] 01' M f'-covers [d, e]. Now

by Step 3 f(p-l)(P-2)[e, d] :> M; so if M f'-covers [d, e] then f(P-l)(P-2)+I[c, cl] :> [d, e]

which is a contradiction. Thus M f'-covers [c, d] and by Step 3 we get the requi1'ed.

Now suppose there exists a P-interval M such that fi M contains no PQ-intervals for

i < p2. Then by Step 1 fi [e, d] contains no PQ-intervals for i < p2 - (p - 1) = (p - 1)2 + p.

Applying Step 4 and using simple geometrical arguments we may assert that there exist

two P-intervals Y and Z such that Y n z = 0 and for any i 2: (p - 1)2 the interval

Y ji-covers intervals Y, Z and the interval Z fi-covers intervals Y, Z which completes

the proof of Lemma 2.6. I

Lemma 2.7. Suppose that card ( orb P n I) 2: 4, card (orb Q n I) 2: 4. Let

T =T(p, q) =N(pqm(X) - min(p, q) . m(X) + (max(p, q)]2)

(recall that function N(x) was defined in Lemma 2.1). Tben P(f) :> {i : i 2: T} and

h(f) > O.

PROOF: Let us make use of Lemmas 2.1 and 2.6 and consider all possible cases.
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Case A. There exist such P-intervals Y and Z that each of them fi-covers botb of them

for i 2: (p - 1)2.

Let k 2: N((p - 1)2) be an integer. By Lemma 2.1 one eau easily see that there exist

integers 1 = ao < al < ... < a, = k, ai+I - ai 2: (p - 1)2 such that for any proper

divisior S of k there exists ai whieh is divided by s. Properties of fi-covering imply that

there exists an interval ]( C Y such that fai J( C Z for auy 1 < i < 1 and fk]( = Y.

Hence there exists a point ( E Y such that fai ( E Z for 0 < i < 1 and fk ( = (; by the

properties of the numbers {ad it implies that k is the minimal period of the point ( and

so P (f) :> {i : i 2: N ((p - 1)2 )} :> {i : i ~ T}. Standart one-dimensional arguments show

also that h(f) > 0 (see, for example, [BGMY]).

Case B. There are such Q-intervals Y' and Z' that eacb of them li-covers both of them

for i 2: (q - 1)2.

Similarly to Case A we have P(/) :> {i : i 2: N((q - 1)2)} :> {i : i ;::: T} and h(/) > O.

Case C. For any basical interval M there 'exists a number s = seM) < [max(p, q)]Z such

that f~M contains a PQ-interval.

Let for definitness p > q. Then similarly to Lemma 2.5 we cau eonclude by Lemmas 2.3

and 2.4 that any basieal interval M li-covers all basieal intervals except at most one of

them for i 2:: H = pqm(X) - qm(X) +p2. Choose foul' basieal intervals {Mj}j=I whieh

are pairwise disjoint and show that for any k ;::: N(H) there exists a periodie point ( of

minirnal period k.

Let k 2: N(H). As in Case A choose integers 1 = ao < al < ... < a, = k with

the properties from Lemma 2.1. Let u = a, - a'-I. Then i t 1S easy to see that there

exists such basieal interval, say, MI, that at least two other basical intervals, say Mz and

M 3 , lU-cover MI' On the othcr hand one ean easily show that there are two numbers

i, j E {2, 3, 4} and two intervals ](i C MI and K j C MI such that for any 1 ~ v ~ 1- 2

we have fav(Kä) C Mr(v) and fav(](j) C Mt(v) where r(v), t(v) E {2,3,4} are appropriate

integers and moreover f al - 1 ](i = Mi, ja l _ 1 ](j = Mj. Clearly one of the numbers i, j

belongs to. the set {2, 3}; let, say, i = 2. Then ehoosing correspondent subintervals and

12



using simple properties of f-coverings one cau easily find an interval ]( C M 1 such that

fall ]( n MI = 0, 1 ~ v :::; 1- 1, and fk ]( = M1. Thus f has a periodic point of minimal

period k. Moreover, it is clear that h(f) > 0 which completes the proof. I

Theorem 2.1. Let X be a graph, s = Edg(X) +1 and {Pi}i=l be.s ordered prime integers

greater than 4Edg(X). Set L = L(X) = T(P.!I,P.!I-l)' Ha continuous map f : X ----+ X is

such that P(f) :> {1, 2, ... , L} tben P(f) = N and h(f) > o.

PROOF: Clearly in the situation of Theorem 2.1 one can find two periodic points with

properties from Lemma 2.7. It completes the proof. I

Remark 1[B4]. H X is a tree then one may set L(X) = 2(p - 1)End(X) where p is the

least prime integer greater than End(X).

The preliminary version of Sections 1,2 was a subject of the author's talk at the Confer

ence on Dynamical Systems and Ergodie Theory in the memory of Dr. Prof. H.Michel in

Güstrow, October 1990 (that version will probably appear in thc volume of Proceedings

of the Conference in Güstrow in Lecture Notes in Mathematics).

3. Abstract Sets of Periods for Graph Maps

One of the well-known rcsults about periods of cycles of graph maps is the famous

Sharkovskii theorem on the co-existence of periods of cycles for maps of the realline. To

formulate it let us introduce thc following Sharkov~kii ordering for positive integers:

3-< 5-< 7-< ... -<2·3-< 2·5-< 2·7-< ... -<8-<4-< 2-< 1

Denote by S( k) the set of all such integers m that k -< m or k = m and by 5(200
) the set

{1,2,4,8, ... }.

Theorem[Sl]. Let 9 : R ----+ R be a continuous map. Then either P(g) = 0 or there

exists sucb k E N U 200 that P(g) = S(k). Moreover for any such k there exists a map

9 : [0, 1] ----+ [0, 1] with P(g) = S( k) and there exists a map go : R ----+ R with P(go) = 0.

In what follows we need the following corollary of Sharkovskii theorem.

13



Corollary S. Suppose that I C J C R are closed intervals, I : I -+ J is a continuous map

onto and either 1= J or there is a periodic point y such that orby C I and endpoints of

I belong to orb y. Consider the set Per I oE all periodic points oE I with orbits belonging

to I. Then the set P(/) oE their periods is S( k) for some k E N U 2CO
•

P ROO F: It is sufficient to consider the case when I = [a, b] C [c, d] = J, a, b E orbf y. Define

9 : J -+ J as follows: gl [a, b] = I, gl [c, a] = I(a), gl[b, d] = I(b). Then P(g) = S(k) for

some k E Nu 2co . At the same time the only possible g-periodic but not I-periodic points

are those with orbits entering [c, a] U [b, d]; clearly it means that these points belang to

I-orbit of y and so Per f = Per 9 and P(/) = P(g) = S(k). I

Other information about sets of periods of cycles for one-dimensional maps is contained

in papers [AL,M] for maps of the circle, [ALM] for maps of the letter Y and [Ba] for maps

of the n-od.

We describe in Section 3 possible sets of periods of cycles for graph maps with uo

restrictions on a graph. Namely, a set A C N is called an abstract set 01 period~ (= ASP)

iff there exist a graph X and a continuous map 1 : X -+ X such that P(f) = A. A set B

is called an O-abstract set 0/ periods (= ASPo) iff there exist a graph X and a continuous

map g : X ~ X such that h(/) = 0, P(/) = B. Recall also that IZ = {li: i ;::: 1},

!!Q(n) ={2in: i ;::: O}. The main theorem of Section 3 is the following

Theorem 3.1. 1) A set A C N is an ASP iff it almost coincides with a finite union of

some sets IZ or Q(n).

2) A set A C N is an ASPo iff it almost coincides with a finite union of same sets Q(n).

A key role will play the following

Lemma 3.1. Let I : X --+ X be a continuous graph map, Yi be I-periodic points of

periods ni. Then taking a subsequence we may assume that one ofthe following possibilities

A) and B) holds.

A) There are a sequence of cyc1es oE subgraphs Mi :> orbYi and a number p such that

for any i tbere exists a basic set B(Mi , I) of period p and ni is divided by p.

14



B) There are a sequence of pairs oi intervals Ji :::> Ii and a number p such that fP Ii = Ji,

intervals f I i, . .. ,fP- 1 Ii, Ji are pairwise disjoint,

fP Ii = Ji or endpoints of Ii belong to orb Yi.

b Up-l fiIor Yi C j=O i (Vi) and either

PROOF: We mayassurne that ni /' 00, Yi -+ Y and there is an interval [a, yJ such that

[a, y) contains no vertices of X and Yi E [a, y) (Vi). Consider the set F = F( {yJ) (see

Lemma 1.3) using Theorems 1.1 - 1.3 and Lemma 1.3.

Case 1. The point Y belongs to a circ1e-like set.

This possibility is excluded (see Leluma 1.3).

Case 2. Tbe set F is not a cyc1e.

According to the spectral decornposition and Lemma 1.3 we need to consider two sub-

cases.

Subcase 2a. Tbe set F belongs to a solenoidal set.

In this case there exists a p-periodic interval I containing no vertices of X and such that

orb Yi C orb I for all sufficiently large i. Clearly it is enough to set Ii = Ji = I; then the

possibility B) of Lemma 3.1 holds.

Subcase 2b. The set F belongs to a basic set B = B(M, f).

Let p be aperiod of B. Furthermore, let 9 : K -+ I{ be a transitive non-strictly periodic

graph map and e.p : M -+ I{ be a monotone continuous surjection which almost conjugates

flB to 9 (such .a map cp exists by Theorem 1.2). Finally let the set D be the same as in

Theorem 1.2.5).

The fact that F is not a cycle and Lemma 1.3 imply that F is infinite and so (taking

if necessary a subsequence) we may assume that e.p(frYd Eint ('PD) for any i and some

r = r( i). By Assertion 1.1 it implies that ni is divided by p for any i, i.e. the possibility

A) of Lemma 3.1 holds.
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Case 3. The set F is a cyc1e (i. e. y E Per /, orb Yi -Jo orb y = F).

Let aperiod of y be k. Consider a map 'ljJ = fk. Clearly we mayassurne that there are

small intervals [y l Zl] = Tl, ... , [y, ZI] = T, such that n j > 1(Vj) and the following holds:

i) (y, zs) n (y, zt} = 0(s -j. t);

ii) the set U = U~=l [y, zr) is a neighbourhood of Yi

iii) Yi E Tl, card(orb Yi n Tl) > 1 and orbt/J Yi C U (Vi);

iv) there exists a neighbourhood V = U~=l R i of the point Y such that for any i we have

R i = [y, (d :> [y, Zi], V \ Y contains no vertices of X, 'ljJju c V for 0 ::;; j ::;; 1 and also

fev n fdV = 0(0 ::;; e < d < k).

Denote by yr(i) the sInallest subinterval of Tr containing {o7'bt/J Yi n Tr }; if yji) f:. 0 then

set yji) = [a~i), ß~i)] where ß~i) is doser to the point Y than a~i). Consider some subcases.

Subcase 3a. There is an infinite set C of such integers i that for any j ::; 1, r ::; 1 we have

Y ft 'ljJj(yr(i»).

Let i E C and Xl, X2 E orbYi belong to thc same interval, say, Tr . Then by iv) and

the hypothesis of Subcase 3a we may conclude that for any 0 ::;; m ::; 1 the set 'ljJffi[Xt, X2]

belongs to one of the intervals from the family {Rj}. So for every i E C there exists

a number 0 < Si ~ I such that 'ljJ8 i yl(i) C (y, (1] and moreover jdyl(i) n jeyl(i) = 0 for

o< d < e ::;; Sik. Taking a subsequence E c C we may assume that Si = S ::; I (Vi E E), so

the number p = ks , the intervals yl(i) =I i and 'ljJsyl(i) = jksyl(i) =Ji are those required

in possibility B) of Lemma 3.1.

Subcase 3b. For any sufliciently large i there exist such j = j(i) ::;; 1 and r = r(i) ::;; I

that y E ?jJj (Yr( i»).

To consider Subcase 3b we need thc following Assertion 3.1 which is more 01' less easy

and traditional for one-dimensional dynamics (cf. [BGMY]) so that we leave the proof to

the reader.
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Assertion 3.1. In the situation of Subcase 3b there exist intervals

and a numberti = t such tbat 'ljJtNi = 'ljJtL i = [Q'~~)i)'Y]' Moreover, there exists a 'ljJt_

invariant set Ei witl1 the following properties:

1) 'ljJtlE i is at most 2-to-1 semiconjugated to the full Bernoulli shift witb two states;

2) for every ( E Ei, every sma11 open interval W such that ( E W and every integer d

there exist an open interval U, ( E U C W and sucb integer s that 'ljJ~tdU = [Q'~~)i)' y] and

'ljJtmU C Ni U Li (0 :S m < sd);

3) tbere exists a point x such that Ei = w1/J(x) C wf(x),

Now consider a basic set Bi = B(Mi' f) ::> wf(x) ::> Ei. Then by the definition we have

lvIi ~ [a~~)i)' y]. By Assertion 1.1.1) we mayassume that all Bi have the same period, say,

p. Moreover, we mayassume that there is a number r :S I such that r(i) = r (Vi).

Let 9, '1', D i C Bi have the same meaning as in Theorem 1.2.5) and be chosen so that

(Ei n Di) is infinite. We will prove that 'P[Q'~i),y] C 'P(Dä}. Indeed, take such a point

z E Ei n Di that '1'( z) E int('PDä}, then (using Assertion 3.1) take a small neghbourhood

W, z E W and a number s such that 'PlV C int('PDi), 'ljJ~tpw = [Q'~i), y] .Clearly by prop

erties of 'I' we have 'P'ljJ~tp C 'PDi, so 'P[O'~i), y] C 'PDi. But ß~i) lies in [Q'~i)] between sets

Ni n Ei and Li n Ei belonging to Bi; together with the properties of 'I' it implies that

'Pß~i) E int('PDd.

Now by Assertion 1.1.2) the fact that 'Pß~i) E int('PDd implies that f-period ni of ß~i)

(which is equal to that of Yd is divided by p. So we get to the possibility A) of Lemma

3.1 which concludes the proof. I

Theorem 3.1. 1) A set A c N is an ASP Hf it almost coincides with a finite union oE

SOlne sets lZ or Q(n).

2) A set A C N is an ASPo iff it almost coincides with a finite union of some sets Q(n).

PROOF: Li) Let us prove first that if f : X -4 X is a continuous graph map then P(f)

has the required form. To this end let us introduce some notions.
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Consider the family A of aU sets T(d, n) ={di : i ~ n} belonging to P(f). Suppose

that for some number d there exists such number n that T(d, n) E Aj then d is called a

difference. Denote for any difference d by n(d) the minimal such integer that T(d, n(d) E A j

denote also the farnily of all sets T(d, n (d)) E A by R. Clearly, '~' is a partial ordering in
a

Rand if T(d, n) is a maximal element of R then d is not divided by any other difference.

Denote the family of all ~-maximal elements of R by R max and call minimal difJerence~
a

aH those d that T(d, n(d)) E R max • By the definition for any T(d, n) E A there exists

T(d', n') E R max such that T(d', n') :J T(d, n). For any minimal difference d denote by
a

m(d) a prime integer greater than n(d)j moreover, choose m(d) so that if d1 f= d2 then

m(d1 ) f= m(d2 ). Let us also call starting periods numbers d . m(d) where d is a minimal

difference.

Now consider the family B of all sets Q(m) = {2 i m : i ~ O} C P(f) for which there is

no set T( d, n) ~ Q(m). Sets from B are partially ordered by indusionj let us denote by
a

Bmax the family of all maximal elements of B and call raats all those m that Q(m) E B max .

Finally let us call a number 1 E P(f) aperiod 0/ finite type if it does not belong to sets

from either R max or B max ; the set of all periods of finite type is denoted by :F.

To prove Theorem 3.1 it is enough to show that R max , Bmax,:F are finite sets. Suppose

this is not the case; it meaus that the set of all minimal differences, roots and periods

of finite type is infinite. Let us show that then the set of aH startiog periods, roots and

periods of finite type is infinite. Indeed, none of roots are equal to each other or to some

starting periods. At the SaJ.ne time one starting period may correspond to 00 more than

finite number of minimal differences. So the set in question is infinite. Take for every

starting period, root and period of finite type the correspondent periodic point. This way

we get an infinite sequence {yiJ of periodic points of periods ni and we may assume that

ni /' 00. Let us apply Lemma 3.1 and consider same cases.

Case A. There is a sequeuce oE cyc1es of subgrapbs Mi and a number p sucb tbat for

every t Yi E Mi, there exists a basic set Bi = B(Mi , f) oE period p and ni is divided by

p.

18



By Lemma 1.2 P(flBd almost coincides with pZ; so there exists a set T(d, n) E 'Rmax

such that T(d, n) :> P(flBd :) pZ. At the same time ni E pZ (Vi). Hence ni E T(d, n)
a a

and ni is divided by d for all sufficiently large i. If d == 1 then we are done because P(f)

almost coincides with N. On the other hand if d > 1 then the choice of starting periods

shows that if e . m(e) is a starting period divided by d then e is divided by d or m(e)

is divided by d (because m(e) is a prime integer); the same argument proves that there

are no more than one integer of type m(e) divided by d (namely, in this case d == m(e)

IUust be a prime number). But the properties of minimal differences show that a minimal

difference e may be divided by d only if e == d. So there are only finitely many starting

periods among numbers {nd. Moreover, it is easy to see that there are only finitely many

roots and periods of finite type among numbers {nd which is a contradiction. Note that

in fact we have proved that there is no such d that T(d, n) :) {ni} where T( d, n) E A.
a

Case B. There is a sequence of pairs of intenrals Ji :) Ii 3 Yi BJld a number p such that for

any i we have fP I i == Ji, intenrals f Ii, . .. ,fPIi == Ji are pairwise disjoint, orbYi C U~:~ Ii

and either fP Ii == Ii == J i or endpoints of I i belang to orb Yi.

Let us apply Corollary S to fP Ii. Consider the set R of periods of all periodic points (

for which there exists such i that orb ( c Uj:~ fjl i • Then {nil c R and by Corollary S

there exists such k that R == pS(k) (here either k E N or k == 200
). Consider two subcases.

Cubcase BI. k E N

Clearly the property ni -+ 00 implies that k == 21(2m + 1), m 2: 1. Then we see that

T(2
'
p, 21p(2m + 1)) E A and at the same time T(2

'
p, 21p(2m + 1)) :) R :) {nd; so we are

a

done by what has been proved in Case A.

Subcase B2. k == 200

If there is a set T( d, n) E A such that T( d, n) :) R then we get to the same contradiction
a

as earlier. Suppose there is no such set T(d, n). Then R E ß and there is a set Q(m) E ßma %

such that Re Q(m). Hence {ni} C Q(m). But it is easy to see that there are only finitely

many starting periods, foots and periods of finite type belonging to Q(m) which is a

contradiction. It concludes the proof of the first part of statement 1) of Theorem 3.1.
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1.ii) Now suppose there is a set A which almost coincides with the finite union of some

sets lZ and Q(m). Ta canstruct a graph map f : X -+ X such that P(f) = A let us first

note that we do not suppose X to be connected. So it is enough to show that the following

two statements are true.

Statement 1. For any m 2:: 0 tbere exists a graph map 9 : Y ---+ Y such that we have

P(g) = {i : i 2:: m} = T(l, m)

By the results of [AL,M] it is easy to see that there exists a map gm : SI ---+ SI with

P(gm) = T(l, m).

Statement 2. There is a map 'ljJ : [0,1] ---+ [0, 1] such that P(7/J) = {I, 2,4,8, ... } = Q(l).

This fact is well-known.

Taking into account the existence of graph maps 9 with Per 9 = 0 (e.g. irrational

rotation) one can easily construct the required graph map, so the rest of construction is

Ieft to the reader. It completes the proof of the first statement of Theorem 3.1.

2.i) To prove that every graph map 9 with zero entropy has a set of periods P(g) which

. almost coincides with a finite union of some sets Q(I) one could repeat the same arguments

a.s in the proof of the first statement of Theorem 3.1 taking into account that graph maps

with zero entropy have uo basic set (since a map on a basic set has a positive entropy,

Theorem 1.2.5). An alternative prooffollows from Theorem 2.1 which implies that a graph

map 9 with zero entropy cannot contain a set of type nZ in its set of periods P(g).

2.ii) The construction is similar to that in the proof of the first statement of Theorem

3.1 and is Ieft to the reader. I

Corollary 3.1. There are no graph maps f, 9 with h(/) == 0, h(g) > 0, P(f) = P(g). I

Corolloary 3.2. Suppose that f : X ---+ X is a graph map. Then the following properties

are equivalent:

1) h(f) > 0;

2) there is a number n such that P(f) ~ nZ;
a

3) there are numbers d, r such that P(f) ~ {r, r + d, r + 2d, ... };
a

4) a density of P(f) is positive;
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5) an upper density oE P(f) is positive. I
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