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0.1 Introduction

In the past few decades the subject of algebro-geometric Fourier functors
have been studied in several directions. Deligne [KL| studied a geometric
transformation on [ - adic sheaves on the affine space over a finite field.
Brylinski, Malgrange and Verdier ([Bryl],[La]) studied the Fourier transform
on D- modules on a vector space over C.

More than a decade back the Fourier functor on abelian varieties and
sheaves of modules on them was developed by Shigeru Mukai [Muk1]. This
functor proved to be very useful for investigating the moduli scheme of some
locally free sheaves on an abelian variety. In gauge theory, this functor is
related to Nahm’s transformation ([BB],[Na]) introduced by Warner Nahm
[Na] in connection with the application of ADHM construction [AHMD)] for
monopoles (one translation invariant instanton).

Let X be an abelian variety over the field of characteristic zero and sup-
pose L4 is the line bundle of even Chern class A over X i.c.

A€ HYX,Z)n HYY(X)

and ¢;(L4) = A. So we fix the complex structure of the line bundle Chern
class of a line bundle depends on the origin of the abelian variety, so Thus in
the process of fixing the Chern class we have fixed up the base of the abelian
variety. We assume that the Chern class of the line bundle over the abelian
variety is even.

Hence when the Chern class of the line bundle is even then there is a
prefered choice of Ly4.

Let X be the dual of X and L, be the corresponding line bundle of even
Chern class, satisfies N -
o€ HY(X,Z)n HY(X).
Let X x X be the symplectic torus. Then there exist a natural line bundle,
called Poincare bundle P ([Mum]|,[LB]) over it. Let @ € H*(X x X, Z) be the

first Chern class of the Poincare bundle. Let I' be the automorphism group of
symplectic torus X x X, fixing a base point; i.e. the group of automorphisms



which preserve the complex structure and the closed two form 2 and which
are induced by linear maps on the covering vector space. Let I'g C T' be the
finite-index subgroup of elements v € T such that v = 1 mod 2 ( i.e. those
which act trivially on the half lattice in the covering space).

Let D(X) and D(j\;) be the derived categories of Oy and O modules
Mod(X) and Mod(X) respectively. Mukai [Muk1] showed that when X = X
i.e X is a principally polarized abelian variety, the derived category of Oy
modules over X has a natural action of SL(2, Z). In this chapter we extend
the results of Mukai and show the following few things :

(1) a new interpretation of Mukai’s action using the analogous method

of metaplectic representation in ordinary geometric quantization method
([Fol],[Wol).

(2) Also we generalize the action of SL(2, Z) to the action of Aut (X x X)
on D(X). This result is applicable to non principally polarized abelian vari-
eties too.

We organise this paper as follows:

In the first section we shall discuss a few basic things regarding abelian variety
and Fourier functors. In the second section we will give an explicit picture
about how SL(2, Z) acts. Although this appears in the Mukai’s theorem it is
not made explicitly clear in his paper. In the next section some elementary
features of metaplectic representations are discussed. In the final section
we will show that how the ordinary metaplectic representation of SL(2, R)
exactly match up the SL(2, Z) action on the moduli space. In the final
section we prove some partial results towards conjecture.

Unfortunately we fail to give the direct proof of our main result hence we
end up with the following conjecture.

Conjecture .1 Suppose X is an abelian variety and X be its dual. Then
X x X is the symplectic torus and Q be the canonical two form onit. LetT =
Aut(X x X ) be the automorphism group of symplectic torus which preserves
the two forms . Then there exist an action of Iy C ', on the derived
category D(X) of Ox modules on abelian variety X and it acts on D{X)

modulo shift in degree.



In the next section we shall recapitulate some basic materials about the
abelian variety and sheaves of modules on it and after that we will discuss
briefly Mukai’s Fourier functor on sheaves of modules on the abelian variety.

Comment : (1) Throughout the paper we only consider the line bundles
over complex tori to be even Chern classes. (2) In general we will specify the
line bundles over X and X by L4 and L, respectively. (3) A sheafon X is
a coherent Oy module.

bf Acknowledgement: Author is extremely grateful to Professor Simon
Donaldson for suggesting and gniding to solve this problem. He is also grate-
ful Professors Peter IKronheimer and Nigel Hitchin for their important re-
marks. He would like to thanks Professors Miles Reid, Bill Crawley-Boevey
and Greg Sankaran for many illuminating discussions. Finally he would like
to thank all the members Mathematical Institute, Oxford and Max Planck
Institut, Bonn where actual work has been done.

0.2 Background

We split up this section into two parts, in the first part we consider all the
relevant definition and theorems about complex tori ( see [Mum],[LB]) and in
the second half we consider a pedogological introduction to Mukai’s Fourier
functor on the sheaves over complex tori. Here we have mainly consulted the
papers of Shigeru Mukai (see [Muk1],{Muk2]).

0.2.1 Complex tori: a quick survey

The complex torus X is by defination the quotient space of V/A where V =
C™ is the vector space of dimension m and A is a discrete subgroup of rank
2m of V.

Theorem .2 All the holomorpic line bundles on V are trivial.

Proof: We have A
0— 27— 0,80 0



Since H!(V,0) = 0 by 0 - Poincafe lemma and also H*(V,Z) = 0 ( for
proof see Lange and Birkenhake [LB] ) then from the long exact sequence
H'(V,0*) = (1). So the result follows from this. D

Suppose m : V. — X, then the pullback bundle m*(L) of L to V is
trivial. If we choose an isomorphism

pm(L)y —mVxC

The canonical action of A on m*(L) is carried by g into a linear action of A on
V' x C. Tt acts on V by translation. For z € V and A € A, the fibres of m*(L)
at z and z + A are both identified with the fibre L at m(z). By comparing
the local trivialization at z and z 4+ A we yield a linear automorphism of C.
Since the only holomorphic automorphisins of a line bundle fixing the base
are given by non-vanishing holomorphic function. Therefore the action of A
on V x C is given by

(z,0) — (2 + A, en(2).q)
The functions ey necessarily satisfy the compatibility relation
ex(z -+ XNex(2) = ex(z + Nea(z) = exsa
This collection of non-zero holomorphic functions

{ex € O"(V)}aea

are called a set of multipliers for L. Given a sct of multiplier {e,} one can
write any line bundle L = (C x C™)/ ~ where (z,a) ~ (z + A, ex(2)a).

Let us consider a group of Hermitian forms ( called the Nefon - Severi
group ) H : VxV — V| where V = C™, such that the imaginary part Im#
is the integral when restricted to given A x A. We define a semi- character
for H to be a map

B:A—S!

which satisfies

B(A1 + A2) = exp(miImH (A1, A2))B(A)B(A2) for A; € A
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If P(A) denotes the set of all pairs (H,3) where H € NS(X) and § is
the semi-character for H. Then we obtain the following short exact sequence

1 — Hom(A, ') =5 P(A) <5 NS(X)

where #(3) = (0,5) and «(H, 8) = H. P(A) is a group with respect to the

composition
(Hy, B1) o (Ha, f2) = (Hy + Hy, p152)

We have a map ( for details sec [LB, chap.2] or [ Mum, chap.1]) P(A) —
Pic(X) such that for every (H, ) we have

ex(z) = B(Nexp(nH (2, A) + gH(A, Aevriennens (%)

We have the following commutative diagram

N

P(A)

NS(X)

/
P’l,(,(/\’) Cy

To show the second map, we write B(A) = exp(2mi€())}) then we obtain
from (x)

ex(z) = exp(2mif€ — %H(z, A) — ;:H(/\, A)]) = exp{2miw)

Lemma .3 There exists a canonical isomorphism H*(X,Z) — Alt*(A, Z)
such that the Chern class of the line bundle L on X with factor automorphy
ey = exp(2miw) is related to the alternating form

Ap(hp) =w(u,z+ A) +w(A 2) — w2+ p) —w(p, 2)

forall i, peAandze V.



P l'!'.ﬁ‘lﬂ

[ for proof and detail see [LB] chapter 2. ]
Finally we obtain A = ImH.

Hence we have proved the following statement.

Proposition .4 Let X be a complex torus and V' be its covering space. Let
H be a Hermitian form on V such that if A= ImH then A(AxA) CZ. Let
B: A — S be a map which satisfies

B{A + A2) = exp(in A(A, M)B(M)B(A2) , i € A
These maps f are called semicharacters of H. If we put
1
ex(z) = f(Nexp(nH(z,\) + §7TH()\, A)

then A i— ey is a 1 cocycle on A with coefficient in H*(V,0}) = H* and
these determines a line bundle with the Chern class being A.

Corollary .5 If the Chern cluss of the line bundle over the comples tori is
even then the semicharacters f of the Néron-Sever:i group satisfy

B(A + Az) = B(A)B(A2) , €A

Next we shall-focus on the translation on the complex tori.

Proposition .6 For any y € X, the translation 7, acts on any line bundle
L(H,B) € Pic(X) on X and satisfies

T, L(H, B) = L(H, B(e(2rilmH (y, .)))

Proof:: The translation 7y on the covering space V, where Y € V| induces
the translation 7, on X for y € X. We recall

ex(y) = B(Neap(rH(y, ) + ZH(A, V)

The induced map 7. on the fundamental group A of X is the identity. Soif ey
denotes the canonical factor ([Mum,[LB]) of L then (ids % 7y )*ey is a factor
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for 7 L. But it is not a unique canonical factor. Let k(w) = exp(—mH (w, y))
then,
(idy % 7)) ex(w)k{w + A)k(w) ™!

= f(Nexp(rH{w +y,N) + gH(A, Mexp(—mH(w + A\ y) + nH(w,y))

= f(Nexp(n H(y, A))exp(—nH (A y))exp(m H(w, A) + %H()\, A))

= B(Nexp2milmH (y, A))exp(mH (w, A) + g—H(A, A))

and this is equivalent to (ida x 7,)*L and certainly this is a canonical factor
of 7+ L whose semi-character is S(A)exp(2milmH (y, A)). O

Let (X, L4) be a complex torus having line bundle L4 whose first Chern
class is A. Let us recall V' is the covering space of X. Consider the C-vector
space, then V* = Homea(V,C) of C-antilinear forms v : V. — C. The
underlying real vector space of V* is canonically isomorphic to Homgz(V, R),
such that v — I'my. Hence canonically we obtain R-bilinear form

<> V*'xV —>R

such that the isomorphism given by < v,v >= I'mu(v). This bilinear form
is non-clegenerate. This implies that

A={veV <y A>CZ)

is a lattice in V* | called dual lattice of A. Then X := V*/A be the dual of
X and L, be the line bundle over it.
An isogeny of a complex torus X to complex X' is by definition a surjec-
tive homomorphism
X — X
with a finite kernel.

Proposition .7 If f : X1 — X is an wogeny of complez tori, the dual
map [ @ Xo — X, 1s also an 1sogeny and its kernel is 1somorphic to
Hom(ker f, C)). It also satisfies deg f = dey f.
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Proof: The proof is given in ([LB], chapter 2).

Given a line bundle L4 and L, on X and X respectively we get a pair of
maps
$r, X — Xand ¢~ X — X

Let 7, be the translation on X and it satisfies
Te: X — X y— 2ty

Given an ample line bundle L on X for any z € X, we a construct line
bundle 2L ® L~! whose first, Chern class is zero. So we can identify the dual
variety of X as X := Pic’(X), the group of line bundles on X which are
algebraically equivalent to zcro. Hence we obtain a map

qu N — 5&?
such that
y— 7L @ L™

is a homomorphism and this follows from the theorem of square.

Theorem .8 ( Theorem of square)

™ L-—-T;L@T;L@L_l

Tty

for all z,y € X and L € Pic(X).

For a proof see [Mum] or [LB].

Let us consider one of the map, say ¢, suppose the kernel of this map is
K(L). In order to describe K(L), define

A(L) ={v e V|ImH(v,A) C Z},

this vields X

K(L) = A(L)/A.
It is known that K(L) is finite if and only if L, is non-degenerate. Hence
the map ¢ : X — X is an isogeny. Similarly it is true for the dual also.
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By abusing the notation we will often write
A:XN 5 Xanda: X — X

The isogeny map ¢y, is an isomorphism when X is a principally polarized
abelian varicty i.c. when X = X . In fact X = Pic®(X), where Pic®(X)
denotes the isomorphism group of holomorphic line bundles on X with first
Chern class zero which is known as the Picard group of degree zero on X.
The Pic?(X) arises from the exponential sheaf exact sequence as

Hl(z\.r, O(\’)

. %
PECU()\) = —[{1(‘XJ Z) T

since H'(X,0x) = V* = Home(V,C) and A = Homg(A, Z).

Let us once again recall V and V, covering spaces of X and X .Then
V x V* is the covering space of X x X. We can identify ¥* with the dual
of V as a real vector space, then we have the familiar real symplectic form
on U x U*, where U is a real vector space. The variety X x X is again a
complex torus ( we shall call symplectic torus) and one can define bundle P
over X x X by

H((w, ), (v, 9)) = §(x) + & (y)
BUA,A) = exp(—milm < X, A >

where z,y € X , 2,7 € X , A € A and A* € A*. Then P coincides with
Poincare bundle if X is algebraic.

Definition .9 The two form Q on X x X is a type (1, 1) form and it is the
curvature form of a canonical connection of the Poincare bundle.

We end this part here and in the next part we shall discuss Mukai’s
Fonrier functor.
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0.2.2 Mukai’s Fourier functor

Let X be an abelian variety and suppose X be its dual. Then the following
projections

X & XxX -5 X
are flat and projective. Let F be the functor between the category of Oy

—
r

modules M(X) into the category of Og module M(X) and it is given by
F(M)=753.(P®nyxM)

Here P is the normalized Poincare’ bundle on X x X and it is a flat O/\’xﬁf

module. Normalized means that both P, 5 and P|, _gare trivial, also T €
X (respectively z € X) P (respectively P,) denotes Py 2 ( resp. Pl If
the category of Oy module M (.X') have enough injectives then the functor F
descends down to derived functor ([Hal]) between the two derived categories

D(X) and D(X) of M(X) and M(X) respectively ([Muk1],[Muk2]).
Theorem .10 Suppose
RF : D(X) — D(X)

and

RF : D(X) — D(X)
be the dered functor of F and F , then these satisfy
RF o RF & (=1x)*[—m]
and R
RF o RF = (-15)'[-m]

where [—~m] denotes the shifting of the complez m places to the right.

Proof: We shall carry out this proof here. We shall use the following
algebraic tools which can be found in Hartshorne’s book ([Harl],[Har2]).(1)
Base change. ( see I[11.9.3 in [Har2).

(2) Projection formula. ( see 11.5.6 in [Harl].
(3) Spectral sequence: If RG : D(A} — D(B) and RH : D(B) — D(C)
are two suitable derived functors, then there is a natural isomorphism of

10
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functors R(H o G) =2 RH o RG. On the level of cohomology this gives rise
to a spectral sequence:

E}Y = RPH o R'G = EZ = RP*(H o G).

( see [Hartl] for details )

—

X & xxX — X

ﬁTA m T . TA
XxX & XxXxX 2 XxX
Tl rl T

X & Xxxx 5 X
Looking at the commutative diagram
RF o RF(})
= Rr. (7" R (7" (1} @ P) @ P)
= R (Rpupy(m*(1) @ P) @ P)
= Am Bp1.((7p2)* (1) ® (P3P ® piP)
= R(mp1). ((mp2) (1) ® (03P © piP))
= R(q17).((qe)" (1) ® (PP @ p1P))
= Rqi. ir.((q2r)" (1) ® (p2P ® piP))
Now (m x 1)*P = pyP @p| P, where m: X x X' — X. This is true because
PP ®PI’Pf{(m,y)}x,\= =Py X Py = Pryy = (m X 1)*P|{m,y}xx
Hence, we obtain

RF o RF(") = R (5(!) ® Rr.(m x 1)*P)

= Rq1.(g;(!) ® m* R, P)

Since we know [Mum| H*(X x f, P) = C for i = m and zero otherwise,
hence we obtain
Rn,P = C[-m)|

11



We shall use another fact, let A : X' — X x X such that £ — (-2, z) and
A be the image of A, with Oy = Ox|s. Thus we have

R (g3(!) ® Oa[—m])
= Rgi. RAA ¢ (N)[—-m]

R(aiN).(a20)" ()] -m]
= (~1x)"()]-m)]

The following definitions of W.I.'T. and L.T. [Mukl] are important to
define Fourier functor.

Definition .11 Let M be a coherent Oy module. We say W.LT. holds for
M if

RFM) = 0 (0.1)
for all but one i, say i(M), and this i(M) is called index of M. We say
R E(M)

s a Fourier transform of the Ox module M. We say I.T. holds for M if it
satisfies

HX,M®L) = 0 (0.2)
for all but one i and for all L € Pic®(X).

When L T. holds for M ,then W.I.T. also holds for A and M.

Claim .12 If « sheaf M satisfies the condition that HI (X, M ® Pz) = 0 for
all j # (M) and all Pz, then M satisfies W.I.T.

12



Proof: For the proof we need the following things; If f: X — Y isa
map of projective varietics over any arbitrary closed field & and M is the
sheat on X then there is a natural map [Ha2]

R f M ® k(y) — HY(X,, M,)

wheére X xy speclk(y)] is the fibre of f over y € ¥ and M, is the pullback
bundle to X,. If H{(X,,M,) =0forally € Y and ¢ > r then

R f.M @ k(y) = H™(X,, M,)

and since the Euler number x(M,) are independent of y, so if H7(X,, M) =0
for all j # 7 then dimension of H"(X,, M,) is independent of ¥ and in that
case R f, M is locally free.

Our claim is the simple application only of the fact that M satisfies L. T.
so HI(X,M ® P,) = 0 for all j # i(M) then M satisfics W.I.T. Then M is
also locally free.

RF(M) ® k(&) = H(X, (1M @ P)|y,5) = HI(X, M @ P)
O

If W.LT. holds for any coherent sheaf M{X) then we are in the position
to define the Fourier functor

Theorem .13 If W.I.T. holds for any coherent sheaf M, then M ic. the
Fourier transform of M, also satisfies W.ILT. and

Z(Jﬁ) =m — (M)
Moreover M is isomorphic to (—1x)*M where (—1x)* : X — X is the map
sending © — —z.

As an example of this Fourier transform we shall see the next proposition
Example
Suppose E be the semi-stable vector bundle of rank 7 and degree d # 0
over X. Then E has a Fourier transform which is also a vector bundle.

Proof :

13



The proof is very simple, it suffices to show F is I.T. Suppose d > 0 then
by Serre duality
H'(X,E®L) 2 HYX,E*® L")

Now E 1s semi-stable so also £* ® L*. Since
degF* @ L' =—-d <0

So we obtain

HY(X,E*®L") =0
Therefore E is (1.T.)o Similarly this will hold for degree d < 0 ,there E would
(I.T.).

Mukai [Muk1] stated the action of different functors, for example, Fourier
functor, isogeny functor, twisting with line bundle etc on the derived category
D(X) of X. When it is a principally polarized abelian variety then clearly
isogeny functor is an identity but we have action of Fourier functor and
twisting of line bundles on D(X). Mukai also gave the exchange relation
between isogeny functor and the Fourier functor.

Lemma .14 Suppose X and Y are two abelian varieties and ¢ : X — Y
an isogeny end ¢ - Y — X be the corresponding dual isogeny of ¢ then the
exchange relation between the Fourier functor and isogeny and dual isogeny
functors are

@ o RFy_y = RFg xop.

Px © RfX—au\' = R}—"—H’ © ('5*

Here we have kept the indices different intentionally and for proof one can
consult Mukai[ Muk1]. In Mukai’s case the line bundle used here is assumed
to be non-degenerate one i.e. the Euler characteristic of the line bundle is 1
in such a case it is loosely called principal polarization.

From the following observation Mukai asserted the action of SL(2, Z) on
the moduli space.

Proposition .15 Let (X, L4) be a principally polarized abelian variety of
dimension m, the automorphisms ®L, , RF on the derived category of X
and satisfy

(RF)? = (=1x)'[-m] (0.3)

14
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(®Lso RF)® = [—m] (0.4)

SL(2, Z) is generated by the two elements

r=(55)

and
1 1
@=(o 1)
with the relations P? = —1 and (QP)*® = 1. Mukai deduces from above
proposition:

Theorem .16 There cxists an action of SL(2, Z) on the derived category of
principally polarized abelian variety, in which P acts as RF and @) as L 4.

In the following section we shall lay out the picture of this SL(2, Z) action
on D(X) explicitly. We will see shortly how the geometry of the ordinary
metaplectic representation help us to interpret this action. Subsequently we
shall give a new proof of this theorem.

0.3 Finding SL(2,7) action on D(X)

In this section our goal is to understand the action of SL(2, Z) group on the
derived category D(X) of complex torus X. In Mukai’s paper [Mukl] this
action appears as something of an oddity.

Let X be a m dimensional complex torus and X be its dual. Suppose
X x X be a complex symplectic torus. Let V = C™ be the covering space
of X and A be the lattice inside V so that X = V/A, X is identified to a
m. dimensional complex torus C™/A. Suppose f : X — X be a complex
analytic automorphism then it induces a map df : X — C™ and we know
from the theory of maximum modular principle it is a locally constant map.
So given any such holomorphic map f we can lift to locally C- linear map
on the covering space

qg: (UL g UL



fixing the lattice A C C™, since f takes L to itself (see [GH]). We have the
following diagram commutative.

cm - cm

\J X}
Cm/A — Cm/A

Now U(m,m) be automorphism betwecn the covering spaces. Let © be the
canonical closed (1,1) form, Kahler form on the symplectic torus X x X
Then the holomorphic automorphism Aut(X x ;‘?, Q) be the automorphism
group of symplectic torus which preserves the symplectic (1, 1)- form Q, in-
duced by the linear action of the covering spaces. This group Aut(X x X)
sits inside U(m,m). So we have

—

U{m,m) D Aut(X x X)
In order to see how the SL{2, Z) appearing we can define a map

SL(2,2) — Aut(X x X)

such that for any ( ng ;} ) € SL(2,Z) we can define an clement

9Im | Alm e
( oL, | o, ) € Aut(X x X)

where I, is the m X m unit matrix. The elements of the matrix denote the
set of maps; e,g,

g: X — X ,A: X —>X;
and . .

a: X —X,¢': X —X;

. X A .
Since the determinant of the matrix ( i o ) € SL(2,Z) is one so the

action of the corresponding representative matrix of Aut(X X X) preserves
the canonical (1,1) form on the symplectic torus.

Putting down everything together in this section we obtain the following
two results.

16



Lemma .17 If X be the m dimensional complex torus and X be its dual.
Then X x X is a symplectic torus. Suppose C™ and C*™ be the correspond-
g covering spaces of X and X respectively. Then the automorphism group
U(m,m) of the covering space of symplectic torus induced a holomorphic au-
tomorphistn U(m, m) D Aut(X X X ) of the symplectic torus which preserves
the closed (1,1) form on il.

Proposition .18 [f Aut(X x X is the automorphism group of the symplectic
torus preserving the closed (1,1) form, then there exists a map

Z: SL(2,Z) — Aut(X x X)
which gives the action of SL(2, Z).

In the next programie our aim is to establish explicit nature of the
SL(2,Z)} action on the moduli space of vector bundles on abelian variety
X, which is an analogue of the ordinary metaplectic representation on the
Hilbert, space L2(R™). In otherwords we shall imitate the classical case and
want to match up with the bundle case. So it is worth to recapitulate the
classical case of metaplectic representation on the L?(R™).

0.4 The metaplectic representation of SL(2, R)

In this section we will focus primarily on two things. In the first half we
have given a rapid introduction of geometric quantization ( for details see
[Fol] and [Wo]) and in the later half we have discussed the construction of
metaplectic representation.

0.4.1 Basic idea of geometric quantization

Let V be a 2n dimensional symplectic manifold with a closed non-degenerate
two form w, called symplectic form. The group Sp(V) is the group of au-
tomorphism preserving w. In particular when V is a phase space R?" then
the group Sp(R,2n) can be realized explicitly as the subgroup of GL(V)
consisting of matrices of the block form

A1 A,
Az | Ay

17



where A; , Ay , A3, Ay are n X n matrices satisfying
AiAl — /11;/13 =1 3 AtlAg = A;Al ) A%A4 = AZAQ

Let us consider symplectic manifold V, the non-degeneracy means that if
we consider w as a map from

w:TV — TV
then there exist an inverse map

w TV — TV

1

If v* be the local co-ordinates then w and w~! can be expressed as follows

W= w,-jd'u,- N d’Uj

and
w—l — wij 9 i

W® Avd

en the matrices w;; 2 w i $68
then the matri ; and w" are inverses
w,-jw” = (5:

Suppose the image of the cohomology class [w] lies in the integral cohomology
H?(V,Z) then there exists a corresponding line bundle L. The line bundle
L has some special structures , viz. (1) a Hermitian metric on each fibre, a
Hermitian form on L is denoted by (.,.) and it is conjugate linear with the
second variable. (2) A unitary connection V whose curvature form is —iw.
The section of the line bundle forms pre-Hilbert space and V corresponding
to each vector field £ gives an endomorphism

Ve :T(L) — (L)

All these together form prequantum data for quantization. Quantization
of symplectic manifold means the construction of an unitary Hilbert space
representation of the Poisson Lie algebra C(V).

In order to quantize V in addition to the prequantum data we need to in-
troduce polarization which foliates the V' by n-dimensional Lagrangian sub-
manifolds P which are maximal isotropic subspaces of V. The maximal
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isotropic subspace means w|rp = 0. There are two equivalent ways one can
do that, one by real polarization method and the other one is called complex
polarization. We take those polarized sections which are constant along the
leaves of foliation. Then we denote the Hilbert space as Hp of the prequan-
tum Hilbert space H, viewed as space of sections of a line bundle L over V
which are covariant constant Vps = 0 along leaves. We denote X'p as the set
vector field along the leaf.

Definition .19 A smooth section s : V — L 18 said to be polarized if
Vxs=0 for X € Xp

Locally polarized sections exist because the curvature of V vanishes on
the restriction to the direction in P. So locally we can represent them in
terms of coordinates.

Let P and @ are two polarization and Hp and Hg are the corresponding
Hilbert spaces. If s € Hp then we can define 8’ € Hg which is covariantly
constant along the leaves of Q) as

!
s(z) = s(y)dy
() /leaf of Q through x )y
This integral makes invariant sense when we tensor with half forms since the
action of any ¢ € sp(2n, R) on the sections given by

9 — 1 /
¢*(z) = mﬁﬁ(g(ﬁ))

preserves the L? - norm.

Let mpg : Hp — Hg be the above projection map between the two
polarized Hilbert space. Given three maps for three different polarization
then the maps between three different spaces in the commutative diagram
agree upto some scale factor. Now we have to assume V = R?" and P, Q)
are linear which follows from Schur’s lemma.
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The isomorphism class of the representation of Sp(2n, R) on the Hilbert
space does not change when twisted by a diffeomorphism. If U € Sp(2n, R)
be the automorphism such that U o P = @ then U induced a map

U: Hp s HUPU"I

The map U o mpg is the automorphism map of Hp is called metaplectic
representation of U on Hp.

0.4.2 Construction of the metaplectic representation

In particular, we take phase space R* is our symplectic manifold. The
metaplectic representation ( see [Wo,[Fol]) is the double valued unitary rep-
resentation of Sp(2n, R) on the Hilbert space L2(R"). Also one can equally
define the metaplectic representation is a unitary representation of the dou-
ble cover group Mp(2n, R) of the symplectic group Sp(2n, R) on L%(R").

One way to define this representation is to consider first the represen-
tation of the Heisenberg group R?" x S' on L?(R™). It should be noted
that Heisenberg algebra is the underlying algebraic structure of the Poisson
bracket relations for the canonical coordinates in Hamiltonian mechanics and
the commutation relations for their quantum analogues. The multiplication
[Fol] of the Heisenberg group is defined by

(2, M), A) = (@ + y, A Age™ )
The Lie algebra of Heisenberg group may be equivalently viewed as

[p5> Pl = g5, &) = 0 and [p;, qx] = Sjx
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A representation of these gencrators on L*(R™) becomes

g — izt

P — 0
Pr E

These give the representation of Sp(2n, R). This can be argued in the fol-
lowing way.

Corresponding to the Lie algebra of Sp(2n, R) we obtain the Poisson
brackets of homnogeneous quadratic polynomials on R?". The Hamiltonian
vector fields they generate are the infinitesimal linear symplectic maps on
R, If the operator {g;} = (i, q;) on L*(R) represent {g;}. Then one
represents the element of sp(2n, R) corresponding to g;g; by the operator
%(g}g} + ¢;¢;) and these operator really satisfies commutation relations of
sp(2n, R).

Since Sp(2n, R) acts projectively by unitary transformation on L?(R™)
intertwining the action of Sp(2n, R). This asserts p, the Schrodinger rep-
resentation of Heisenberg group H, i.e. the map from H, to the group of
unitary operators on the L%(R™), defined by

p(p, q)g(z) = M= (3 4 p)

If S € Sp(2n, R), we can compose another new representation po S of the
Heisenberg group on L?(R*). By the Stone - von Neumann theorem p and
p o S are equivalent. Hence there exist a unitary operator Ugs on Hp such
that Usg satisfies the following relation:

p(S(p,9)) = Usp(p, q)U3"

for any S € Sp(2n, R). By Schur’s lemma U(S) is determinded upto a phase
factor £1 and satisfies
DYSIS.2 = iUS1US-3,

where S, 52 € Sp(2n, R).Thus Us is a double valued unitary representation
of the symplectic group.

Now we give the metaplectic representation of some elements of the sym-
plectic group, notice that these elements are the automorphism group of the
Heisenberg Lie algebra that leaves the centre pointwise fixed. Let

((1) l{) , (_01 é)eSL(ZR)
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be the two elements viz. B and J,say. It is easy to find out Us upto a phase
factor for these elements rather than general element of SL(2, R).

o Stpallae) = o) g} o) = o+ oo

The Schrodinger representation of p(p, bp + ¢) on L2(R") is

exp(2mi[bp + q|z + wiplbp + q])g(z + p)
— o~ izbz  2miqrmipg ,mi(z+p)b(z+p)g(z-+p)
= Up(p, YU g(2),
where Ug(z) = e"™ @8 g(x). .o ()
Remark .20 Notice that when b is positive then the corresponding gaussian

factor 1s negative. This will be tmportant when we shall propose the action
of Aut (X x X) on D(X).

0 1

Similarly when S = ( 10

), the Schrodinger representation is

[po ( _01 (1] )]9(-"5) = p(—q,p)9(z) = Fp(p, ) F oo, (I1)

where F stands for Fourier transform and intertwines p(p, ¢) and p(—¢,p). So

) is Fourier trans-

. : 0
here the metaplectic representation of element ( 10

form.

It is easy to see that if the metaplectic representation of these elements
are known then one can easily construct the metaplectic representation of
1 0
b 1
of the above two matrices, hence

10N _ o
(_bl)_JSJ.
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The corresponding metaplectic representation is

o 1y 1)t = ey

where § denotes the Fourier transform of g.

In this way we can calculate the metaplectic representation of the full
d b
fledge SL(2, R) group [Fol]. Let e 1 be an element of SL(2, R) whose
diagonal entries are 1 and d = 1 + bc. Then if we decompose the matrix in

the following way
d by _ [ 1 b 1 0
c 1) L0 1 c 1

. . 1
We already know the metaplectic representation of Lo ) and ( : 0 )

0 1 1

-

. . d b
So the metaplectic representation of ( D ) would be

U ( d ’l) )y(a}) = g mibs P emEel G )]

o : : . . 1 b
Similarly one can easily obtain the metaplectic representation of ( . )

on L?(R™).

U ( i 2 ) g(z) = F[mEEF ! (b2 ()]

So in this section we have given an account of metaplectic representation
of different elements of SL(2, R) on L?(R"). Next we will show how the
actions of different elements of SL(2, Z)} group on the moduli space of vector
bundle over complex tori X, as stated by Mukai, nicely match up with the
metaplectic representation discussed in this scction for the general case.
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0.5 The metaplectic action of ['; on the de-
rived category D(X)

We arrange this section in the following way, in the first part we will describe
Mukai’s action and the conjectural action of Aut(X x X) on the derived
category D(X) of complex tori. In the final part we will outline the proof of
this conjecture.

0.5.1 Action of I'y on derived category

The plan of this part is to give first a new interpretation of Mukai’s action of
SL(2, Z) on the derived category D(X) over complex tori and then establish
the conjectural action on D(X).

New interpretation of SL(2, Z) action

To begin with, let us compare the results of the action of different elements
of SL(2,Z) on the D(X) and the corresponding elements of SL(2, R) ordi-
nary metaplectic representation on L2(R") in the ordinary case. When the

action of generator is then from the previous section we obtain

1 1
0 1
the metaplectic representation to be multiplication by a Gaussian in the or-
dinary case. This really match up with the Mukai’s definition of tensoring
with line bundle ® L on D(X'} corresponding to the same generator. Since
multiplication by Gaussian is equivalent to twisting with line bundle in the

. . 1
module framework. Similarly the action of the generator ( _01 0 ) also

match with the general (symplectic ) case. Here we obtain Fourier transform
in the ordinary situation and Fourier functor in the bundle ( or module )
case. Also note that the shifting of the complex in the bundle in the right
or left direction can be compared to the + phase discrepency in the original
metaplectic case.

Hence we can say explicitly the actual nature or type of SL(2, Z) action

which is generated by ( (1J i ) and ( _01 [1] ), on the derived category
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D(X) of complex tori. This gives a new interpretation of Mukai’s action on
D(X).

Proposition .21 Let X be an principally polarized abelian variety, then the
group SL(2, Z) acts on the derived category of X modulo shift.

Next we want to show that a much bigger group [’y than SL(2, Z) acts on
D(X) and also this action is even true for non principally polarized abelian
variety. In fact this is really the outcome of this new interpretation.

Establishing the conjectural action

Uptil now we have established an analogous picture of classical metaplectic
representation in the derived category framework. In this set up the au-
tomorphism group 'y acts on the symplectic torus X x X preserving the
two form €. We lift this action of 'y on the derived category D(X). Here
D(X) is playing the role of L?(R") in the classical case. Hence by compar-
ing the results of ordinary situation [({) in 4.4] one can immediately write
: 1 -4 : : . =
down the action of 01 where A is a matrix and A : X — X. The
action of this element is equivalent to the action of @ L4 on M(X), where

A€ H*(X,Z) is the first Chern class of the line bundle L, on X.

Remark .22 We have noticed earlier [ (I) in 4.4 | that when b 1is negative
the gaussian factor s positive. Likewise we will take that convention in the
derived category case also, i.e. when A is "negative” we get a twisting of L4
and when A is positive we will twist with its dual LY. This will be important
when we shall quue the partial proof of this conjecture.

Since we already know from our previous section abont the metaplectic
representation of the different elements ( also see [Fol]) of the SL(2, R) or
Sp(2n, R) on L*(R™). So using the correspondence dictionary, which is,
multiplication by Gaussian will go to twisting of line bundle and Fourier
and inverse Fourier will go to Fourier functor and inverse Fourier functor
respectively we can state the action of the different elements of I'g on D(X).



.

. . ) 10 .
To see this let us consider the action of the ( ) on the derived category

1

D(X) where :;‘E — X. So in this case the conjectural action would be
RF o (®Lq o RF) where L, is the line bundle on the dual torus X of X
whose first Chern class is « € H%(X, Z). Recall

RF : D(X) — D(X)

and

RF : D(X) — D(X).
It should be noted that this action holds good for any arbitrary polarized
abelian varieties.
When o = 1, the principally abelian variety case then the operator must
be reduced to RF o (®L o RF).

Similar techniques can be used to calculate the action of different elements

of T'i.e. finite index subgroup of Aut(X x X) on D(X). Every time we use the

—A . :
action of ( (1] 1 and _01 [1) to calculate out the action of different,
elements of I' on the derived category of Ox module. Finally we can write
down a dictionary:

elements of SL(2, R) | metaplectic action on L*(R")| proposed action on D(X) |
( [lj —IA ) cxp(mi < z, Ax >) RL 4
0 1 . .
10 Fourier transform Fourier functor

We give more examples of action of different elements of [', viz.

d -4 D =AY would be
o 1 jandl g ) wouldb

®La o [RF 0 (®Ly o RF)]

and R R
RF o[®Lq o (RF o ®L4))

Here d stands for endomorphism of X ie. d: X — X and d7 stands for
endomorphism of X i.c. d7 : X — X. Now we are in the position to state
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the conjectural action of I' on the moduli space of vector bundles on the
abelian variety.

Conjecture .23 Let D(X) be the derived category of Ox module M(X)
of complez tori X. Suppose X be the dual of X. Let L, and L, be the
line bundles of even first Chern classes { A and « resp.) over X and X
respectively. Let X x X be the symplectic torus and [y acts on it, preserving
the two closed form Q. This induces the action of T on D(X). It acts modulo
a shift on the D(X).The action of different elements of U like

(o 7)o 1)
(2 t) (e d)

on D(X) are ®L,, RF o (®Lq o RF), ®La o [RF o (®L 4 0 RF)] and RF o
[®Ly o (RF o La)] respectively.

0.5.2 On the way to proof

In this section we are going to present two partial results along the line of
proof of our conjecture.

Let D(X) be the derived category of Ox module M(X) on the complex
tori X'. We know that corresponding to any £ € X we can associate a line
bundle on X given by

Lg._- — X

Let 1 € X x X and suppose 7, be the translation in the symplectic torus
then this has an induced action 77 on the line bundle L of degree zero over
X. Then the ‘X’ part of the translation acts on L trivially but the ‘X0 part
acts on L by twisting with flat line bundle. We want to see the action of
group [’y on translation.

Let /i be the identity element of the automorphism group I'y and suppose
it is a product of different elements of 'y such that h = Aihghs......... Pp_1.
All these h; are of special forms and their actions are known from the previous
section.
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Suppose T, , Thy oo Ty, be the corresponding representations of hy,
ha oo hy, respectively on D(X). We denote Ty, = T),,Th,Thy-.... Th,_, Th,
and every Ty, map

n—-1

T, : D(X) — D(X).

We want to proof our main conjecture but unfortunately we fail to give a
complete proof. Instead of that we will give a partial proof of this conjecture
and replace it by some other conjecture.

Conjecture .24

This is obviously the equivalent to our main conjecture.,

The automorphism group I'y is generated by elements of three kinds and

. [ g O (1 AY {10
thesed.rego—(o gT),gl—-(O 1)dndg2—(a i

Our next task is to investigate the action of these gencrators on transla-
tion.

Lemma .25 Lei + € X X X and 7, be the translation on symplectic torus
X x X. Then 7 satisfies
T’?i T: = T;;(L)T!]i

Proof: Case 1: gp acts on D(X) by simple automorphism. So the lemma
is trivially satisfied.
Case 2 : Given + € X x X the translation 7, in the symplectic torus has an
induced action 77 on the line bundle and D& part acts on line bundle by
twisting with flat line bundle. We know from section 4.3:

A X — X

We know from the previous discussion action of g, on symplectic torus, if
v = (&, ) then gi¢ = (& — Az, z). Also we know from our previous discussion
about the proposed action of T, on an arbitrary line bundle.

TyL=Lo®L
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where L4 is the degree 2 line bundle of Chern class A
LHS =T, (r'L)

= T.‘Il (T.:L ® Li)
...... =La®7L® L;)

If we consider the right hand side of the above expression would be

RHS =71, T,L

g1t

ZT‘ (LA®L)

gt

=Li_ne T La®T,L
= Lio4o @ La ® L(0, exp(2mid(v,))) @ 72 L
= L; ® L0, exp(—2miA(v, ) ® L@ L(0, ea:p(eriA(v,) Q7L
=L; @Ls®7,L
= L.H.S.

Case 3 g, acts on L by L
L—L,®L

Again we have to consider line bundle L, on X to have even Chern class and
rest of the calculation similar to case 2.
O

It follows that operation commutes with translation.

Corollary .26
T’LTL* = T[* ”l-

Proof:: L.H.S.
j)iTL* = ‘I}LlThg """ I}L,,_lﬂlnT:

=Ty Thyeeoon. ]}lnflr;:ﬂ(L)Thn
= Tthh2 ..... Tf:,,_lhn(L)Thn—lThn
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Next we will investigate the action of group '  strictly speaking I'mod2)
on the Chern character of the bundle ([Ful], [GH]). Let us start with some
definitions.

Definition .27 The Chern character ch(E) of a vector bundle E of rank r
is defined by the formula

ch(E) = geﬂ,‘p(ti)

where t), 19, ........ ,tr are the Chern roots of E.

The first few terms are
1, . 1
C/L(E) =r+c + 5(6'12 - 2C2) + E(C:i —3ci¢o + 03) + ...
For the tensor product of the bundles
ch(E ® F) = ch(E).ch(F)

We know V' x V* be the covering space of the symplectic torus X x X
where V 2 C™. SU(m,m) be the automorphism of the covering space

Vx V.
( 914 ) € SU(m,m)

o |g

acts on V' x V* such that
g:V—oV, gt v —=v
AV —=V oV —V

We first define an action of SU(m,m) on the differential forms ALV
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Theorem .28 Let V xV* be the covering space of X x X . Suppose su(m, m)
18 the automorphism group of the covering space. Then there exists an action
of su(m,m) on ARV such that its generators act on ARV in the following
way.

(1) The gencrator §o acts on ARV through standard action of g.
(2) The second generator-A acts on ALV through wedging by the two form
A.

(3) The third generator a acts on ARV through contraction by two form
.

Proof:

Let V be a m-dimensional vector space which is equipped with an inner
product <, > and suppose AV is the exterior algebra of V.

Recall V x V* is the covering space of the symplectic torus X x X where
V = C™. We can identify V* with the dual of ¥ as a real vector space. We
have the familiar symplectic (1,1) form ¥V ® V* on the covering space.

The antomorphism group of the V x V is su(m,m) and this preserves
the canonical two form on it. We can lift this action on the exterior algebra
or space of covectors of V. Since su{m, m) is generated by three generators
(90, g1, §2) so we shall consider the action of the generators of su(yn, m) one
by one on the space of exterior algebras of V.

Let us consider gy acts on ARV through standard action of g.

Next we consider action of g, = A on A*V. This action
Tgl AV — ATV

is defined by A(v) = AAwv, where v € A*V. Since A is a two form so it acts
on the exterior algebra by wedging through two form. Hence we obtain

A APV — NPTV,

Moreover
A APy AP+1,q+1V

and A is bi-homogeneous of bidegree (1,1).
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Finally we consider the action of §; = .
T, : NV — AV

In this case « is a two form and taking values in the dual space, so it acts
on the exterior algebra A*V by contraction.

o APV — APV
and it is also bi-homogeneous and bidegree.
o APV — APTLElY
So we define a representation
R : su(m,m) — End(AV)
such that R(§2), R(§1) and R(go) satisfy
R(d0), R(1] = —2R(51)

[R(0), R(G2) = 2R(F2)
[5"?(91,%(921 = {R(EO

Remark .29 Under the inclusion su(l,1) C su(m,m) we obtain an action
of su(1,1) end hence sl(2,C) on the extendable of V, as in Wells [We].

For details sece Wells [We, chap.V | sec. 3.

O

Our next step will be the restricted case of this theorem and we look
for the action of I’y C SU(m,m) on the Chern character, which lives in A*V
having integral coefficient. By the above we have an action of I'y C SU(m, m)
on the Chern character. Explicitly
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(1) go acts on the Chern character in the obvious way.

(2) T, ch(E) = e’ch(E) where A is a two form and it acts on ¢h(E) by
wedging.

(3) T,,ch(E) = e“ch(E) where « is a two form on the dual of the abelian
variety. « acts on ¢h(E) via contraction.

Since the group action commutes with the Chern character and also we
know the tangent bundle of a torus is trivial, then by the Grothendieck -
Riemann - Roch [Ful] theorem the following diagram is commutative.

KXy 5 KX
ch ] CfLL
H(X, Q) — H'(X,Q)

The second row operation is s(z) = 7 ¢, (e? Uk (z)) for every z € H*(X, Q)
where Q € H2(X x X, Z) is the Chern class of a Poincare bundle on X x X.

Lemma .30 If W.I.T. holds for the coherent sheaf £ and its index is equal
to j, then '
ch"(f,') _ (_1)]-&-11,)721"—211(Chm—n(g))

in H*(X | Z) and 0 is the map 7 : HY(X, Z) — H* (X, Z).

Proof: Let ey, €2,00,€2m be the basis of HY(X, Z) and e},e},....... €0y, ATC
the dual basis of H'(X, Z). Let Q € H*(X x X, Z) is the Chern class of the
Poincare bundle and it is given by

i=2m

Q=Y ene
i=1
The p-fold wedge product

QAQA v, AQ = (=1)Pe=D2p 5™ el A, Aej, A€ A A€
J1<ia<o . ip
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So

2m

& = 3 (-1y0,

p=0

where 6, € HP(X,Z) ® HP(X,Z). We have the following canonical projec-
tions e
X & XX 5HX
Hence )
e Uy (?) = S (-1)PP U2, Ay (7)

i=1

for every 7 € H'(X, Z). The direct image is the natural projection

H(X xX,Z) — &:H™(X,2)® H(X, Z)
and o o .

&:H™(X,Z)@ H(X,2) 3 @,Z @ H'(X, Z) 2 H'(X)
where & is the orientation of X. We know
s:H(X,Z) — H(X,Z)
Hence
5(?7) = mx (T UTR(T)

S (_1)(2m—n)(2m—n—l)/‘Z,n.X“(62"1_}) A ‘]T):\- (‘?))

(1) Amg e (e A N&L)A(Cj A A A (EL A AES, )

— Jl
ks A ANey, Nejy Ao ANej,  Aer A A€

— (_1)n(n+1)/2+mnn(?)

where 7 = e;, A....... A ej,. So the result follows immediately from this. O

Proposition .31
Ty, (E)) = Tych(E)
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Proof: Case 1 : gy acts trivially on the Chern character.
Case 2 : Ty, acts on £ € M by twisting the line bundle 7, (E) = E® L,

where A is the Chern class ( degree 2 ) of the line bundle Then
ch(E @ L) = ch(E).ch(L,)
= e ch(E)
=T, ch(E)

Case 3 : We know T, acts on E by
F—E® L,

Now we apply the previous lemma.
ch? Ty, (E) = chE @ L,
= (—l)jﬂ’?)zm_z”(chm_p(ﬁ' ® L,))
— (__1)j+pn'2m—2p[eachm—p(E)]
= (= 1P () el ()

= Ty,ch(E)

Thus we proved the proposition.

Next one follows immediately from this result:

Corollary .32
ch(Th(E)) = ch(E)

This corollary shows that the Chern character of T'(L) is the same as
that of L and it seems likely that we can deduce that from this that T'(L) is

induced a line bundle of zero Chern class.
We are finishing up this chapter with some interesting observations follow

from the earlier parts of the chapter.



0.6 Concluding remarks

Let us compare the derived category case with the function case. Our prob-
lem is to prove that certain map 7' : D(X) — D(X) is identity. In the
function case we would have same problem (i.e. in defining the metaplec-
tic representation). Let & be a linear map from function on R to function
on R. In that case it suffices to prove & commutes with translation and
multiplication by exp(iz#). This actually follows from the following:

Proposition .33 Let
S : L*R) — L*R)

commutes with the translation and the multiplication by exp(izf) then S =
Aad for A€ C.

This analogy suggest us to something similar in the derived category case.

In the other approach also we have a resemblance with the ‘function’ case.

Proposition .34 If T(e!®) = =0 for all §, then by Fourier inversion theo-
rem, we know T = id.

This suggest, us to prove in our case
T(L) = L for L € Pic®(X).
From the corollary (54) we obtain
T™L)y=1L

where L' is another line bundle with first Chern class ¢; (L) = 0.
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