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0.1 Introduction

In thc past fe\v cleeadcs the sllbjcet of algebro-geometrie Fourier functors
have been studiecl in several direetions. Deligne [KL] studiecl a geolnetric
transformation on l - aclic shcaves on the affine spaee ove1' a finite ficlel.
Brylinski, Ivlalgrange anel Verclier ([Bryl],[La]) studied the Fourier transfonn
on 7)- 1110clules on a veetor space over C.

lvlore than a dccade back the Fourier functor on abclian varieties anel
sheaves of modules on thein was developed by Shigeru fvIukai [i\1ukl]. This
fllnctor proved to be very uscful for investigating the moduli schelllc of sOlne
locally free sheaves on an abclian variety. In gauge theory, this functor is
relateel to Nahln's transfonnation ([BB],[Na]) introduccd by \Narner Nailln
[Na] in connection with the application of ADHM construction [AHMD] for
rnonopolcs (one translation invariant instanton).

Let X be an abelian variety Ovcr thc ficld of characteristic /:;ero anel sup­
pose LA is the Ene bundle of even Chern class A over X i.e.

anel Cl (LA) = A. So \vc fix thc cOlnplex structllre of the line bllnelle ehern
class of a line bundle depends on the origin of the abelian variety, so Thus in
thc process of fixing the Chern dass we have fixed up the base of the abelian
variety. 'vVe aSSUlle that thc Chern class of the line bundle over thc abclian
varicty is even.

Hence when thc Chern dass of thc Ene bundle is even thCll there IS a
prefered choice of LA'

Let X be the dual of )( anel Ln be thc corresponding line bundle of even
Chern dass, satisfies

a E H2 (X, Z) n HI,I(y).

Let X x X be the sYlnplectic torus. Then there exist a natllrallinc buuclle,
called Poincare bundle P ([lvhlln],[LB]) over it. Let n E H 2(X x X, Z) bc thc
first Chern dass of the Poincarc buncllc. Let r be the alltonl0rphisIll group of
sYlnplcctic torus X x ./(, fixing a base point; i.e. the group of autolnorphislllS
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which preserve thc cornplex structure and the closeel two fonn n aud which
are induced by linear Inaps on thc covering vector space. Let f 0 C f be the
finite-index subgroup of eleInents I E f such that I = 1 Inod 2 ( i.e. those
which act triviallyon the half lattice in the covering space).

Let D(){) anel D(X) be thc clerivecl categories of Ox anel CJX rnoclules

1I10d(X) anel Mod(X) respectively. t\111kai [wInk1] showed thatiwhen ...Y = X
i.e ...Y is a principally polarizccl abelian variety, thc eleriveel category of Ox
Illodules over ...Y has a natural action of SL(2, Z). In this chapter we extenel
the results of 11ukai and show the following few things:

(1) a new interpretation of Nlukai's action nsing thc analogons rnethod
of Inetaplcctic representation in ordinary geoInetric qllantization Inethod
([Fol], [\~TO]).

(2) Also we generalize the action of SL(2, Z) to the action of Aut (..X x ...Y)
on D(...Y). This result is applicable to non principally polarized abelian vari­
etics too.

\,Ve organise this paper as follows:
In the first section we shall diseuss a few basic things regarding abelian variety
anel Fourier fllIlctors. In the second section we will givc an explicit pictu)'(-~

about how SL(2, Z) acts. Although this appears in the Mukai's theorerl1 it is
not Inacle explicitly cleal' in his paper. In the next sectioH SOIne elelnentary
features of Inetaplectic representations are discllssecl. In the final section
we will show that how the orclinary Inetaplectic represeutation of SL(2, R)
exactly Inatch up the SL(2, Z) action on the rnocluli space. In the final
section wc prove SQIne partial results towards conjecture.

Unfortullately we fail to give the elirect proof of our Buün result hellce we
enel up with the following conjccture.

Conjecture .1 SUPlJOse X ü; an abelian variety and }( be its dual. Then
)( X ...Y is the sympleetie torus und n be the eanonical two form on it. Let f =
Ant(.X" x X) be the automorphisrn group 0/ syrnplectie t01ltS whieh p7'eserves
the two /onns n. Then thcrc exist an action 0/ f o C f J on the deriverl
eategory D(.X:) of CJx rnodules on abelian variety ...Y and it aets on D( ...Y)
7nodulo shift in degree.
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In thc next section we shall recapit1l1ate SOll1e basic rnaterials abollt thc
abelian variety allel sheaves of rnoelules on it anel after that we will discuss
briefty Mukai's Fourier fUllctor on sheaves of rlloclllles on thc abclian variety.

Comment : (1) Throughollt the paper we only consiclcr the line bundles
over complex töri to be even ehern cli:tsses. (2) In general we will specify the
liuc bunelles over X auel X by LA anel Ln respectively. (3) A shcaf on )( is
a coherent V x module.

bf AcknowledgenlCllt: Author is extrcrllely grateful to Professor Sinlon
DOllalelsoll for suggcsting allel guiding to solve this probleIll. He is also grate­
ful Professors Peter Kronheirner anel Nigel Hitchin for their irnportant re­
rHarks. He would likc to thanks Professors 11iles Reid, Bill Cra\vley-Boevey
auel Greg Sankarall for many illumillating cliscllssions. Finally he would like
to thank all the mernbers Mathematical Institute, Oxford and n1ax Planck
Institut, Bonn where actual work has been done.

0.2 Background

\Ve split Hp this section into two parts, in thc first part we consieler all thc
relevant definition anel theorenls about cornplex tori ( see (~111mL[LB]) and in
thc seconel half we consider a pedogological introduction to Nlukai's Fourier
functor on thc sheaves over coruplex tori. Here we have rnainly cOllsulted the
papers of Shigeru I\1ukai (sec [Mukl],[Mllk2]).

0.2.1 Complex tori: a quick survey

The cornplex torus ){ is by dcfination the quotient space of V/ A where V ~

cm is thc vcctor spacc of dirllcnsion rn and A is Cl discrctc subgrollp of rank
21T~ of F.

Theorem .2 All the holomo17Jic line bundles on V are trivial.

Proof: We have
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Since H I (\f, 0) = 0 by a- Poincafe len1111a anel also H2(\I, Z) = 0 ( for
proof see Lange anel Birkenhake [LB] ) thell fron1 the long exaet sequence
H 1(\f, 0*) = (1). So the iesult follows froll1 this. 0

Suppose 771, : \f --+ .J\., then the pullback bundle m*(L) of L to ,/ is
trivial. If we choose an isolllorphislll

{L : 7n*(L) --t V x C

The canonical action of A on rn* (L) is carried by J-L into a linear action of A on
V x C. It. acts on V by translation. For z E V and A E A, thc fibres of m* (L)
at z and z + Aare both identifiecl with the fibre L at 112(z). By cOlnparing
thc loeal trivialization at z anel z + ). wc yielcl a linear autOll1orphislll of C.
Sillce the only hololllorphic autolllorphislllS of a line bundle fixing the base
are given by non-vanishing holoIllorphic function. Therefore the action of A
Oll \f x C is given by

(z,O') --t (z + A, eA(z).a)

The fUllctions eA necessarily satisfy the con1patibility relation

eA(z + A')eA' (z) = eA' (z + A)eA(z) = eA' +A

This collcctioIl of nOll-zero holorllorphic fllnctions

are callccl a set of llltiltipliers for L. Given a set of 11111ltiplier {eA} one can
write any line buncllc L = (C x cm)/ I"V wherc (z, a) I"V (z + A, eA(z)a).

Let 115 consider a group of Hcnnitian fonns ( callcd thc Nefon - Severi
group) H : V X ,/ --+ V, where V ~ C m

, such that thc irnaginary part huf]
is the integral when restricted to given 1\ x A. Vve deRne a semi- charactcr
for H to be a Illap

ß: A --+ Si

which satisfics
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If P(A) dellotes the set of all pairs (H, ß) where H E JVS()() and ß is
thc sClni-character for H. Then wc obtain the following short cxact scqu8nce

1 -+ Horn(A, SI) --i...t P(A) ~ N S(X)

whcre i(ß) = (0, ß) and 7f(H, ß) = H. P(A) is a group with respcct to the

composition

(H], ßl) 0 (H2, ß2) = (H1 + H2, ßIß2)

\tVc havc a nutp ( for details sec [LB, chap.2] or [ ivlU111 , chap.l]) P(A) -+
P'i,c(X) such that for every (H, ß) we havc

7r
C,\ (z) = ß( A)C.Tp(7rJ1 (z, A) + "2 H (A, ).) (*)

\Vc havc the following COIlllllutative diagraIll

P(A)~

NS(X)

PiC(X)/

Ta show thc second map, we write ß(A) = exp(27ri~(A)) then wc obtain
[rom (*)

Lemma.3 There exists a canonical isornorphism H'2(..-\, Z) -+ Alt2 (i\, Z)
.'luch that the ehern class 0/ the line bundle L on X with lactor automorphy
c,\ = exp(27riw) is related to the altcrnating form

AL(A, J-l) = w(/-l, z + A) + W(A, z) - W(A, z + /L) - mÜL, z)

f07' alt A, 11, E A and z E V.
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[ for proof and detail see [LB] chapter 2. ]

Finally we 0 btain A = I m,H.

Heuce we have provecl thc following statelnent.

Proposition .4 Let X be a complex torus and V bc its covel'ing space. Let
H be a Hennitian form on V such that if A = ImH then A(A x A) c Z. Let
ß : 1\ --+ SI be a 1nap which satisfie.9

These rnaps ß are ealled semicharaeters 0/ H. 1/ we put

1
c).(z) = ß(>..)exp(7rH(z, >") + 2"1f H(>",.-\)

then .-\ f---7 CA is a 1 eocyde on A with coefficient in HO(V, Gv)= H* and
these detcrmines a line bundle with the ehern dass being A.

Corollary .5 I/ the ehern dass 0/ the line bundle oveT the eomplex tOTi is
even then the ,r;emicharacters ß 0/ the Neron-Severi group satisfy

Next we shall·focllS Oll thc translation on thc cOInplex tori.

Proposition .6 FOT any y E ~Y, the translation Ty (Lets on any line bundle
L(H, ß) E Pic(X) on X and satisfies

T;L(H,ß) = L(H,ß(e(2ni1rnH(y,.)))

Proof:: Thc translation Ty on thc covcring space V, where Y E V, induces
tbe translation Ty Oll X for y E ~Y. \~le rccall

n
e,,(y) = ß(>..)exp(7rH(y,.-\) + "2H(.-\, .-\))

Thc indllced Inap T y* on the fundamental gTOUp 1\ of ~Y is the identity. So if c).
clenotes the canonical factor ([tvluln],[LBD of L then (idA x Ty)'"e). is a factor
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for r; L. But it is not a unique canonieal factor. Let k(1lJ) = e;c]J( -1rH (w, y))
then,

(idA x Ty)*e>.(w)k(vJ + A)k(w)-l
7r

= ß(A)ex]J(1rH(w + y, A) + "2H(A, A))exp( -7rH(w + A, y).+ 7rH(w, 71))

1r
=ß(A)ea;p (1r H (71, A))exp (-rrH (A, 71 ))ea;p (1rJi (w 1 A) + "2 H (A, A))

= ß(A)exp(2rriJrnH(y, )..))c1;]J(1rH(w, A) + ~H(Al A))

allel this is equivalent to (idll. X Ty)+: L anel certainly this is a ci:tnonical faetor
01' T;L whose senli-character is ß(A)ex]J(21riJn~H(Yl )..)). D

Let (",-\, LA) be a cOlnplex torus having linc bunelle LA whose first ehern
dass is A. Let us recall V is the covering space of ...-\. Consider thc C-vector
space, then P+: = Horne (f/,C) of C-antilincar forms 1/ : V --)- C. Thc
undcrlying real vector space of f1+: is cauonically isorllorphic to H o1nn(V, R),
such that u I--------t J1nu. Hellce canonically wc obtain R-bilinear fonn

such that the isorllorphisrll given by < v, v >= Jrnu(v). This bilinear fornl
is non-elegenerate. This implies that

A:={vEV+:I<v,A>~Z}

is a lattice in V+: 1 called dual lattice of A. Then X := P+: /A be the dual of
X and La. be the line bundle over it.

An isogeny of a corllplex torus X to cornplex X' is by definition a surjec­
ti ve hOIllomorphisrll

x --)- ...-\'
with a finite kernel.

Proposition .7 1/ f : Xl --)- )(2 is an isogeny 0/ cornplex tor'i, the dual
rnap j : ./Y2 --)- ...-Y I is also an isogeny and its kernel is iS07U01'phic to
Hom(ker f, Cl)' lt also satisfies deg j = deg f.
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Proof: The proof is given in ([LB], chapter 2).

G ivell Cl line bunelle LA anel Lo on X anel J'': respectivcly we get a pair of
Inaps

cPDA : X -----t X anel eP4 : X -----t X

Let Tx be the translation on J'\ and it satisfies

Tx : X -----t X , y r-------7 X + Y

Given an alllpie line bunelle L on X for any x EX, wc a construct line
bundle t;'L <;:9 L-l~rhosc first ehern class is zero. So we can ielentify thc dual
varicty of ){ as X := PicO(X), the group of line bundles on J'Y which are

.1 algebraically equivalent to zero. Hence we obtain a map

.~ cPD : )( -----t X
J!

such that
Y f---+ t;L ® L- 1

is a h0I1101110rphisIl1 allel this follows frolll the theorem of square.

Theorem .8 (Theorem 0/ square)

for all X, 11 E )( and L E Pic(X).

For a proof see [111Iln] 01' [LB).

Let us consider Olle of the rnap, say cPL, suppose thc kernel of this Illap is
j«(L). In oreIer to eIescribc ]«L), deHne

/\(L) = {v E VllmH(v, A) S;;; Z},

this yielels
]«(L) = A(L)/A.

It is known that ]«(L) is finite if ancl only if LA is non-dcgenerate. Heuce
the IHap ePL : ){ -----t }( is an isogeny. SiInilarly it is truc for the dual also.
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By abusing thc notation we will often write

A : .-\ -----+ X anel a : X -----+ .-\

Thc isogeny Inap tPL is an isolllorphislll when .-\ is a principally polarizcd
abelian varicty i.c. when X = X. In fact X ~ PüP (.-\), \vhcre PicO(X)
denotes thc isonlorphism group of hololllorphic line blludles on .-Y with first
ehern dass zero whieh is known as thc Picard group of degrcc zero on X.
Thc PicO(X) arises frolli the expoucntial shcaf exaet sequellce as

Pi O(X) = H
1

(.-\, tJ);) ~ ~*
C III ()(, Z) A

sillce H 1(X, Gy;) ~ V* = Hornc(V, C) alld Ä = ]fonl'R.(A, Z).

Let 11S ollce again recall 11 and \/, covcring spaces of X and X.Then
11 x V* is the covcring space of .-Y x X. \Vc can idcntify 1;-* with thc dual
of V as areal veetor space, then we have thc falniliar real sYlnplectic form
on U x U*, where U is areal veetor spaee. Thc variety ..":( x X is again a
eOlllplex torus ( wc shall call synlplcctic torus) allel olle cau define bunellc P
over X x X by

H ((.7; , .i; ), (y, fJ)) = iJ (:r;) + :c (y )

ß((,,\, ,,\*)) = exp( -nilrn< ,,\\,,\ >
.-

whcre x, y E --,Y 1 X, iJ E )( , ,,\ E A alld ,,\* E A*. Then P coincicles with
Poincafc bundlc if X is algebraic.

Definition .9 The two f01'm [2 on )( x )( is a type (1,1) forrn and it is the
CU1"vatur'c form of a canonical conncction of the Poincafe lnLndle.

\!Ve end this part here anel 111 the next part wc shall eliscuss Mukai's
Fourier functor.
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0.2.2 Mukai's Fourier functor

Let ",Y be an abelian variety anel suppose )( be it.s dual. Then the following
projections

are flat and projcctive. Let F bc the functor between thc category of CJx
IllOdulcs M(",Y) into the category of tJj; module A1(X) anel it is givell by

Here P is thc nonnalizcd PoincaTc' bv,ndle on X x X allel it is a fiat 0 Xxx

111oclule. Nonnalizcd Ineans that both Plxxo auel Ploxxarc trivial, also x E

",Y(rcspcctivcly x E "'\) Pi (rcspectivcly PI,) cIenotes Plxxi ( resp. PI XX1Y ) If
thc category of Ox 1110cIllie Pd(",\) havc enough injectives then the functor F
clescenels down to elerivecl fllnctor ([HaI)) between the two elerivecI categories
D(",Y) allel D(X) of lvJ(",Y) anel !l1(X) respectively ([Ivlukl],[Muk2)).

Theorem .10 Supposc

Ri : D(X) ----t D(X)

and
RF : D(",Y) --+ D(X)

bc the deTived /unctor 0/ Fand I, thcn these /;atis/y

RF 0 Rj ~ (-1x )* [- rn)

and
RF 0 RF ~ (-11Y)* [-111)

where [-rn] denale,') the shi/ting 0/ the camplex 7n places to the 'right.

Proof: "Vc shall calTY out this proof hcre. \,Ve shall llse thc followillg
algebraic tools which cau be found in Hartshornc's book ([Harl ],[Har2]). (1)

Base change. (see III.9.3 in [Har2].
(2) ProjectioIl fonnula. ( sec II.5.6 in [Rarl).
(3) Spectral sequence: If RG : D(A) ----t D(B) anel RH : D(B) ----t D(C)
are two suitable cIerivcd functors, then there is a natural isorllorphism of
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fUllctors R(Jf 0 G) ~ RH 0 RG'. On the level of cohonlology this gives rise
to a spectral sequence:

E~,q = HP Ho R1JC => E~+q = Rp+q(H 0 G).

( see [Hartl] for details)

-- ~X ./\ x X ~ X
1ft PI t t-- ~ -- ~ --./\ x X )(x);xX X x.-\

1T+ T+ 1T+
X ~ XxX 24 Xi Looking at the commutative diagralll

RF 0 R:F(!)

::= R1T*(1f'" R1f.(1T*(!) 0 P) 0 P)

== R:7r.(Rpl.P;(7r*(!) ® P) 0 P)

== R7r*Rpl*((1r]J2)*(!) 0 (p;P 0 p;P)

- R(1rpd.((1TPzr'(') 0 (p;P ® p~P))

== R(ql T)*((q2r )*(!) ® (p;P ® TJ~P))

RqhRr.((qzr)*(!) ® (p;P 0 p~P))

Now (177, X l)*P = P2P0p~P, where 171,: ){ x)(~ .-\. This is true because

Hence, we obtaill

RF 0 R:F(!) == Rqh(q;(!) 0 Rr*(1n x l)·P)

= Rqh (q; (!) 0 '171,* R1T. P)

Since we kllOW [I\1Ulll] Hi(X X X, P) = C for i = rn and zero othcrwise,
hellce we obtain

R1T.P == e[-rn]
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\Ve shall use allother fact, let A : Y -----+ Y x Y such that x --+ (-2:, x) anel
A be the irnagc of A, with 0/\ = OxL\. Thus we have

Rqh(q;(!) 00/\(-7nD

- Rq}.RA.A· q; (!)[-7n)

R(ql A). (q2A)· (!)[-ln]

= (-lX)*(!)[-7n]

o

The following elefinitions of W.I.T. anel I.T. [Mukl] are iInportant to
elefinc Fourier fUllctor.

Definition ,lI Let 1\-1 be CL coheicnt Ox rnodule. We say W.!. T. holds for

1\1 i/

(0.1)

for aU but one 1:} say i(lvf), and thi,r;; i(.A1) is called index of lvI. We say

is a Fourier trans/orln 0/ the Ox rnodule A1. We say !. T. holds fOT Al if it

satisfies

(0.2)

for aU bul one i and fOi alt L E PicO (J\).

,",Vhen I.T. holels for A1 ,thCIl W.I.T. also holels für /1,1 allel iw.

Claim .12 1f CL sheuf 1\1 satisfies the condition that Hj ( Y, lvI 0 P;) = 0 for

all j #- i(.A1) and alt p;J then A1 satisfies W.!. T.
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Proof: For the proof we necd thc fo11owing things; Ir f : X -t }7 is a
rnap of projeetive varieties aver an)' arbitra1'Y clased field k anel J11 is the
shcaf on .1\ thcn thcre is a natural map [Ha2]

where ./Y Xy spec[k(y)J is the fibre of f ove1' y E Y anel A1y is thc pu11back
bundle to X y . If Hi(./\y, 1I1y) = 0 for all y E )7 anel i > r then

and since the Euler llumbcr X(A1y ) are independent of:tJ, so if I{j ()(YJ !vfy ) = 0
for a.11 j #- r then dilnensian of Hr()CYl J11

J
J is independent of y anel in that

case RT1.A1 is locally free.
Our clain1 is the simple applieatioll only of thc fact that !v! satisfies l.T.

so Hj(X, 111 ® Px ) = 0 for all j #- i(M) thcn M satisfics vV.I.T. Then NI is
also 10ca11y free.

o

If \'V.LT. holels for any eoherent sheaf J'1(X) then we are in thc position
to clefine the Fourier fUHetof

Theorem .13 I/ W.!. T. hold8 /01' any coherent shea/ Ai, then M i.e. the
Fourier trans/arm 0/ 111) also satisfie8 W.!. T. and

i(}\l) = 7n - i(M)

MOl'eover A1 i8 iso7Twrphic to (-lx )·111 where (-lx)'" : X -t )( is the rnap
senri'inq :r -t -x.

As a.n example of this Fourier transfonn we shall see the next proposition
Example
Suppose E bc thc serni-stable vcctor bunclle of rank r aud degree rl #- 0

over X. Then E has a Fourier transforrn which is also a vactor bUlldle,

Proot' :
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The proof is very siInplc, it suffices to show E is I.T. Suppose d > 0 then
by Serre cl nali ty

H l (~X, E ® L) ~ HO(X, E* ® L*)*

Now E is selni-stable so also E* 0 L*. Since

degE* ® L * = - d < 0

So wc obtain
HOC,\, E* ® L*) = 0

Therefore Eis (l.T.)o Similarly this will hold for degree d < 0 ,there E wOllld

(l.T')l'

f\1ukai [Mukl] stated the action of different functors, for example, Fourier
functor, isogeny fUllctor, twisting with line bundle etc on the derivecl category
D(..-Y) of )(. \·Vhen it is a principally polarized abeliall variety then clearly
isogeny functor is an identity but we have action of Fourier fUllctor and
twisting of lille bllndles on D(..-Y). IVIukai also gave the exchange relation
between isogeny functor aud the Fourier functor.

Lemma .14 Suppose X and )'Y are two abelian var'ieties and cp : X ~ }'
an isogeny anrl $ : Y ------t X be the corresponding dual isogeny 0/ cp then the
exchange relation between the Fourier junctor and isogeny and dual isogeny
functors are

cp* 0 RFf"-+)" ~ R:F~\;-+X 0 $.

cp .. 0 RFx-+x ~ R:F..;"-+ y 0 $.

Here we have kept thc indices different intentionally and for proof olle can
consult Mukai[ I\1ukl]. In i\1ukai's case the line bundle used here is assulned
to bc non-degcncratc OIlC i.c. the Euler characteristic of the line blludle is 1
in such a case it is loosely called principal polarization.

FrOHl thc following observation ~1ukai asscrted the actioll of SL(2, Z) on
the Inoduli space.

Proposition .15 Let (,,-\, LA) be a principally polarized abelian variety 01
dirnension rn 7 the autornorphi.,;rns 0LA , RF on the derived categoTY of )(
and satisfy

(0.3)
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(0.4)

S L(2: Z) is gCIlcrated by the two clCIncllts

Clllei

with tbc relations p2
proposi tiOIl:

Q=(~ ~)
-1 allel (QP)3 = 1. lvlukai cleduces froIn above

,:{ Theorem .16 There e.xists an action 01 SL(2, Z) on the de1'ived category 01
1 ]Jl'inC'ipally polarized abelian variety, in Wh1:ch P acts a" RF and Q as ®LA .
t

In the following section wc shaillay out thc picture of this SL(2, Z) action
on DC.-Y) explicitly. VVc will sec shortly how the geOInetry of the orclinary
llletaplectic rcprescntation heIp us to interpret this action. Sllbscqllently we
shall give a new proof of this theorem.

0.3 Finding SL(2, Z) action on D(X)

ln this section our goal is to unelcrstand the action of SL(2, Z) group on the
clerived category D(X) of cOInplex torus X. In Mukai's paper [Mukl] this
action appears as S0111cthing of an oddity.

Let ./\ be a 'm diIncnsional C0111plcx torus and )C be its dual. Suppose
..-\ x X be a cOInplex sYlnplectic torus. Let V ~ Cm be thc covering space
of X and A be the lattice inside V so that ./\ = V/ A, X is ielentifiecl to a
rn dimensional complex torus Cm / A. Suppose 1 : X -----+ )( be a cOlnplex
analytic autoInorphisnl then it inclllces a lllap dj : X -----+ C m anel we know
froIn the theory of InaxiInUIl1 modular principle it is a locally constant Inap.
So givcn allY such holol1l0rphic rnap f we cau lift to locally C- linear map
Oll the covcring space
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fixing the lattice 1\ C C m
, since f takes L ta itself (see [GH]). \Ve have tlIe

following diagranl cOlTlInutative.

t
CTTI/A

Now U(1n,7n) be autoulOrphism betwecIl thc covcring spaces. Let [2 be thc
canonical closed (1,1) fonn, KälIler fonn on the synlplectic torus 4'\ x X.
TlIen the holOluorphic autoruorphisrn Aut(4'\ x X, S1) be the automorphism
group of syruplectic torus which preserves thc sYluplectic (1,1)- fonn 0, ill­
duced by the linear action of the covering spaces. This group Aut(4'\ x X)
sits inside U(7n, 7n). So we have

U(1n, 717,) ~ Aut(4'\ x X)

In orcler to sec how thc SL(2, Z) appearing we cau deRne a luap

SL(2, Z) ----7 A'Ut(4'\ x X)

such timt for any ('; ~,) E SL(2, Z) wc can clefillc an elemcnt

(
9 Im Alm) A (X X-"7)--=-1-t~"--I- E Ht x
a m 9 In

whcre Im is the 717, X 111, unit rnatrix. Thc eleulents of thc rnatrix deuote the

set of luaps; e,g,
9 : X ----7 )( , A : X ----7 4'\;

anel

Since thc deternünant of the matrix (g -t) E SL(2, Z) is one so the
a 9

action of the corrcsponding representative ruatrix of Aut(X x X) preserves
thc callonical (1,1) fonn on the syrnplectic torus.

Putting clown everything togcther in this section we obtain the following

two results.
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Lemma .17 1/ )( be the 'In dirnensional complex tOTUS and X be it.s du.al.
Then ..'\ x )( is a syrnplectic t07'1L.9. Suppose Cm und c*m be the eorrespond­
'inq eovcrin.'l spaces 01 X and X respectively. Then the automorphisrn gro7J,p
U(m, 'In) 01 the covering space 01 syrnpleetic t0T118 indueed a holamorphie lLU­

t07nol'phisrn U (rn, rn) :::> Aut(X x x) of the syrnpleet7:c tOTUS which pl'CSeTVC."
the closed (1,1) fomt on it.

P roposit ion .18 1/ AutC/\ x X) is the autornoTphisut gr01lJ1 0/ the syrnplectic
tor'us prescr'ving the closed (1, 1) /orrn, then there exists a "nap

S : SL(2, Z) ---+ A'nt(X x X)

which .'live8 the action 0/ S L(2, Z).

In the next programlne our ailn is to establish cxplicit nature of the
SL(2, Z) action on thc moduli space of vector bundles on ahelian varicty
)(, whieh is an analogue of thc ordinary lnetaplectic representatioll on the
Hilbert space L 2 (Rn

). In otherwords we shall inIitate thc classical case aud
want to match up with thc bundle case. So it is worth to rccapitulate the
dassical case of lnetaplectic representation on the L 2 (R7l).

0.4 The metaplectic representation of SL(2, R)

In this section we will foclls prirnal'ily on two things. In the first half we
have given a rapid introduction of geometrie quantihatiou ( for details see
[Fol] ancl [\Vo]) and in the later half wc have cliscussed thc constructioll of
rnetaplectic representation.

0.4.1 Basic idea of geometrie quantization

Let V be a 2n dilllensional synlplectic nlanifold with a closecl non-clegcnerate
two form w, called syrnplcctic form. Thc group Sp(V) is thc group of au­
tornorphislll preserving w. In particular whell V is a phase space R 2n then
the group Sp(R,2n) can be rcalized cxplicitly as the subgrollp of GL(V)
consist.ing of matriccs of the block form
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whcre Al , A2 , A3 , A4 are n x n Inatriccs satisfying

Lct us consider syrnplectic lnanifolcl V, the non-degeneracy Ineans that if
we eonsicler w as a lllap froln

w: TV --t T*V

then therc exist an inverse Inap

w- l
: T*V -r TV

If vi be the local co-ordinates then w anel w- l can be expressed as follov..rs

anel
1 .. a a

- _!J tO..

W - W Bv i '<Y 8vj

then the lIlatrices Wij and wij are inverses

Suppose the ilnage of the cohomology class [w] lies in thc integral eohoillology
H 2 (V, Z) then therc cxists a correspondillg line bundle L. The lilIe bundle
L has 80111e special struetures ,viz, (1) a Hennitian lllctric on each fibre, a
Henllitian form on L is denoteel by (",) anel it is eonjugate linear with the
second variable. (2) A unitary eonnection \7 whose eurvature fonn is -iw.
The section of the line bundle fonns pre-Hilbcrt space anel \7 corresponeling
to each vector fielel ~ gives an endomorphislu

\7( : r(L) --t f(L)

All these together fonn prequanturn data for quantization. Quantization
of sYlllplectic Inanifold means the construetion of an unitary Hilbcrt spaee
representation of thc Poisson Lic algebra Coo(\I) ,

In order to quantize V in addition to the preque-tntull1 clata we nced to in­
troduce polarization whieh foliatcs the \l by n-diIncnsional Lagrangian sub­
Inanifolds P whieh are maxiInal isotropie sllbspaccs of l/, Thc Inaxirnal

18



isotropie subspace rncans WITP = O. There are two eqllivalcllt ways one can
do that, one by real polari~t:ttion Inethocl allel thc other Olle is called cOlllplex
polarization. We take thosc polarized sectiolls whieh are constant along the
leaves of foliation. Then we denote thc Hilbert space as Hp of thc prequtln­
tunt Hilbert space H, viewed as space of sections of a lille blluelle Lover 11

whieh are covariant constant \7 pS = 0 along leaves. \,VC elenotc X p as thc set
vector fidel along thc Ieaf.

Definition .19 A srnooth section .5 : \I --r L is ,said to be polar'izcd 'iJ

\7x s = 0 for ~Y E Xp

Locally polarizcd sections exist becausc the Cllrvature of \7 vanishes on
thc rcstriction to the c1irection in P. So locally we cau reprcscnt theIll in
tenns of coordinates.

Let Panel Q are two polarization anel Hp and HQ are the corresponding
Hilbert spa.ces. If s E Hp thcn we ean clefine s' E HQ whieh is covariantly
constant along thc leaves of Q as

s'(x) - J s(y)rly
- leaf of Q through x

This intcgralulakes invariant sense when we tensor with half fanns sillce the
action of any 9 E sp(2n, R) on the scctions given by

preserves the L 2 - norm.
Let 1rPQ : Hp --r BQ be the abovc projcction Illap betwccn thc two

polarized Hilbert space. Givcll threc Inaps for three different polarizatioll
then thc rnaps between three different spaces in the cOffiInutative diagraIll
agree upto SOllle scale factor. Now we havc to assurne V = R 2

H allel P, Q
are linear whieh follows froIn Schur's IeUlIl1a.
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Hp

~
HR.

HQ Ä
Thc isolIlorphisnl cla.'"is of the representation of Sp(2n, R) on the Hilbert

space does not change whcn twisted by a diffeomorphisrn. If U E Sp(2n, R)
be the autorIlorphisITl such that U 0 P = Q then U induced a map

U : Hp ~ HUPU-I

The Illap U 0 1rPQ is the autolnorphisln lnap of Hp is called rnetaplectic
representation of U on Hp.

0.4.2 Construction of the metaplectic representation

In particular, we take phase space R 2
n is our symplcctic Inanifold. The

lnetaplectic representation ( sec [Wo],[Fol]) is thc double vallied unitary rep­
resentation of S])(2n, R) on the Hilbert space L 2 (Rn). Also olle can equally
define the lnetaplectic representation is a unitary representation of the dou­
ble cover group Nfp(2n, R) of the syrnplectic group Sp(2n, R) on L 2(Rll).

One way to define this representation is to consider first thc reprCSCll­
tation of the Heisenberg group R 2

n X SI. on L2 (Rn). It should be notecl
that Heisenberg algebra is the llndcrlying' algebraic structure of the Poisson
bracket relations for the canonical coordinates in Hamiltonian mechallics allel
the cOIllmlltation relations for their quanttun analogucs. Thc llluitiplication
[Fol] of the Heisenberg group is deHnecl by

(:1;, Ad(Y, A2) = (x + y, A1A2eiw(x,y))

The Lie algebra of Hcisenberg group Illay be cquivalently viewed as

[JJj, Pk] = [qj, qk] = 0 and [Pj, qk] = Ojk
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A rcpresentation 'of these gellcrators on L 2(Rn) beCOIllCS
. k

(jk ---+ 'lX

a
Pk ---+ -

a,'Ek

These givc the reprcsentation of 5p(2r/', R). This ean be arguecl in the fol­
lowing way.

Corresponding to tlw Lie algebra of Sp(2n, R) we ObUtill the POiSSOIl
braekets of hOIIlogeneolls qlladratic polynonlials on R 2n. The Hanliltonian
veetor fields they generate are the infinitesirnal linear syrnplcctic nlaps on
R 2

n. If the operator {fli} _ (Pi1 rJi) on L 2 (R) represent {gd. Then one
reprcscnts thc elernent of 8p(2n, R) corresponding to gigj by the operator
~ (gdi; + gjYi) and these operator really satisfies cOllnnutation relations of
8])(2n, R).

Sinee 5p(2n, R) acts projectively by llrlitary transfonnatioll on L 2 (Rn)
intcl'twilling the action of 5]1(2n, R). This asserts p, the Schrödinger rcp­
resentation of Heiscnberg group 1ln Le. thc rnap frorn }in to the group of
Iluitary operators on the L2 (Rn), defincd by

p(p, q)g(x) = e27fiqx+7fipqg(x + p)

Tf S E 5])(2'11" R), we can COlnpose ltnother new reprcscntation po 5 of the
Hciscnberg gl'OllP on L2(RtL). By the Stonc - von Ncurnann theorern p and
poS arc equivalent. Hence there exist a llnitary operator Us on Hp such
that Us satisfics thc following relation:

p(S(p, q)) = Usp(p, q)U."5 1

for any S E 5p(2n, R). By Schllr's lenuna U(S) is deternüncled upto a phase
faetol' ±1 auel satisfies

US1Sz = ±US1 USZ1

whel'c SI: 52 E 5p(2n,R).ThllS Uso is a double valued unitary rcpresentation
of the sYlllplectic group.

NOVl we give thc metaplcctic represeutation of SOllle elcrnents of the SyIIl­
plectie gl'oup, notiee that these elclnents are the autornorphislll grollp of the
Heisenberg Lie algebra that leaves thc centre point\vise fixcd. Let

(~ n (~l nESL(2, R)
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bc the two elclucnts viz. B anel J ,say. It is easy to find out Us upto a phase
factar for these elcrnents rather than general elcrnent of SL(2, R).

[p 0 S(p, q)]g(x) = p[(p, q). (~ ~) Jg(x) = [p, bp + q]g(x)

The Schröclinger representation af p(p, bp + q) on L2 (Rn) is

exp(27J"i[bp + q]x + 7i"ip[bp + q])g(x + p)

= e-7rixbx e27riqx+7ripqe7ri (::r.+p )b(x+p)g(x+p)

= Up(p, q)U- 1g(x),

where Ug(x) = e-1fi(xbx)g(x) (I)

Remark .20 Notice that when b is positive then the corresponding gaussian
factoT is negative. This will be irnpoTtant when we shall JJ7'opose the action
of Aut ()( x .IX') on D(X).

Similarly whcll S = (~1 ~), thc Schrödingcr reprcsentatioll is

[p 0 (~l ~) ]g(3:) = p(-q, p )g(3:) = ;:p(p, '1 );:-1 (II)

,vhere :F stands for Fourier transform allel illtertwines p(p, lJ) anel p( -q 1 p). So

here thc mctaplcctic reprcsclltation of elcment ( ~1 ~) is Fouricr trans­

fonn.

It is easy ta see that if the rnetaplectic representation of these elements
are known then one can easily construct the rIlctaplectic reprcsentatioll af

(~b ~). We must Iloticc timt this matrix call be cxprcssed as thc prodllct

of the above two Inatrices, hellee
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The correspolldillg Inetaplectie representation is

where .!) clellotes the Fourier trallsfonn of g.
In this way we eau ealculate thc rnetaplectie rcprescntation of thc full

fleclge SL(2, R) group [Fol]. Let (~ ~) be an element of SL(2, R) whose

diagonal entrics are 1 anel rl = 1 + bc. Then if we clceOlnposc thc rnatrix in
thc followillg way

"Ie alreacly know the metaplectic representation of (~ ~) anel (~ ~).

So the metaplectic representation of (~ ~) would be

Similarly one can easily obtain the metaplectic representation of (~ ~)
on L2 (Rn).

So in this seetion we have given an aceount of lllctaplcctic representation
of different elernents of SL(2, R) on L2 (Rn). Next wc will show how thc
actions of different clcrIlcnts of .)L(2, Z) group on thc moeluli space of vector
bunclle ovcr eornplex tori ~\, as stated by i\111kai, nieely nlatch up \vith thc
Illctaplectic representation discllsseel in this section for the general ease.

23



I

0.5 The metaplectic action of f o on the de­
rived category D(X)

\,Ve alTange this scction in thc following way, in the first part we will describe
:l\1ukai's action allel thc conjectural action of Aut(X x X) on the clerived
category D(.-Y) of complex tori. In thc final part we will outline thc proof of
this conjecture.

0.5.1 Action of f o on ,derived category

The plan of this part is to give first a new interpretation of rvlukai's action of
SL(2, Z) on the dcrived category D(.-Y) over cOlnplcx tori anel then establish
the conjectural action on D(.-Y).

New interpretation of 5L(2, Z) action

To begin with, let us conlpare tbe results of the action of different elClnents
of SL(2, Z) on thc D(X) anel thc corresponding elCinents of SL(2, R) ordi­
nary lnetaplectic reprcsentation on L2(R1l) in the ordinary case. \~Then thc

action of generator is (~ ~) then from the previous section we obtain

the nletaplcctic represclltation to he multiplication by a Gallssian in the 01'­

dinary case. This really match up with the :l\1ukai's definition of tensoring
with line bunelle rg;L on D(.-Y) corresponding to thc same generator. Since
lnultiplication by Gaussian is equivalent to twisting with Hne bundle in the

module framework. Similarly the action of the generator ( ~1 ~) also

lnatch with the general (synlplectic ) case. Here we obtain Fourier transfonll
in thc orelinary situation anel Fourier functor in thc bundle ( 01' module)
case. Also note that the shifting of the conlplex in the bllndle in thc right
01' left direction can be compared to the ± phase discrepency in the original
Inetaplectic case.

Hence we can say explicitly the actual nature or type of SL(2, Z) action

which is generated by (~ ~) ancl (~l ~), on the derived category
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D(..-Y) of complex tori. This gives a Bew interpretation of tvlukai's action Oll
D(..-Y).

Proposition .21 Let..-Y be an p1'incipally polarized abelian 1Ja7'iety, then the
grou,p SL(2, Z) (Lets on thc derived eategory of X rriudulu shift.

Next we want to show that a rnuch bigger group f o than SL(2, Z) acts On
D(X) and also this action is even true for nOIl prineipally polarized abelian
variety. ]n fact this is really the outcOlue of this Hew interpretation.

Establishing the conjectural action

Uptil now we have established an analogous picture of classical Inetapleetic
reprcscntation in the derived catcgory fralnework. In this set up the au­
tOlnorphisrn group r 0 acts on the syrnplectic torus X x X preserving thc
two fonn O. \Ve lift this action of r 0 Oll thc derivccl category D(.,Y,). Here
D(..-Y) is playing the role of L 2 (RH) in the classical case. Hence by compar­
ing thc rcsults of ordinary situation [(1) in 4.4J ouc can ilnlnecliate1y write

down the action of (~ -lA) where A is a matrix aud A : X.---+ X. The

actioll of this elClnent is equivalellt to the action of 0LA on M (X), where
A E Ii 2(..-y, Z) is the first ehcrn dass of the line bUlldle LA on ..-\.

Remark .22 We have noticed eadier [(1) in 4.4 J that when bisnegative
the gaussian factoT is positive. L'ikewi,"Jc we will take that convention in the
derivcd eategory ease also, i.c. when A is )'negative" we get a twi8ting of LA
and when A is positive we will twi."Jt with it8 dual LA' Thi8 will be irnpo7tant
when we shall give the partial proof of this conjectu7'e.

Billce we already kIlOW fronl our previous seetion about thc Inetaplectic
representation of the different elernents ( also see [Fol]) of thc SL(2, R) 01'

Sp(2n, R) on L 2 (Rn). So using the correspondence dictionary, which is,
rnultiplication by Gaussian will go to twisting of line bandie and Fourier
anel inverse Fourier will go to Fourier functor and inverse Fourier funetor
respcctive1y we can state thc action of thc different clenlCnts of r 0 on D(..-\).
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To sec this let lIS consider the action of the (~ ~) on the derived category

D(X) whcre a : X~ ..-\. So in this case thc conjectural action would be
RF 0 (0L o 0 RF) where La is the line bundle on the dual torus X of )(
whosc first ehern class is a E H2 (..-Y , Z). Recall

Rf : D(..-\) ~ D(X)

alld
RF : D(..y) ---+ D(..-\).

It shoulcl bc uoted that this action holds gooel for any arbitrary polarizecl
abelian varieties.

\·\,hen a = 1, thc priucipally abelian variety case then the operator lUllst
bc reclucccl to RF 0 (0L 0 RF).

Sinlilar techniqllcs cau be llsecl to calculate tlle action of different elelneuts
of r Le. finite index subgroup of A7Lt(~\'x X) on D(X). Every tüne we use the

action of (~ -(1) and (~l ~) to calculate out the action of different

clelnents of r on the dcrived category of Ox IllOdule. Finally we can write
down a dictiollary:

elenlcnts of SL(2, R) Illctaplectic action Oll L2 (Rn ) proposed action Oll D(X)

( ~ -lA) exp(1ri < x, A:r; » 0LA

( ~l n Fourier transform Fourier functor

\(o\'edgiv~~lo)re cxan(lP~es ~;c).t.ion of different clclnents of r, viJ.~.

0: 1 allel 0: dT would be

0La 0 [Rf 0 (0L A 0 RF))

aud
RF 0 (0La 0 (Rf 0 0LA ))

Here cl stands for endolllorphislll of )( Lc. d:..-\ ----+ )( and cl! stands for
clldolllorphislI1 of }( i.c. rP' : ..Y~ ..-Y. Now wc are in the position to state
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the conjectural action of r on the IIlOdllli space of vcctor bundles on thc
abclian varicty.

Conjecture .23 Let D(X) be the dcr'ivcd category 0/ CJx rnodulc NI(.)()
0/ complex tori ~\. Suppose J{ be the dual 0/ ..'\. Let LA and Ln be the
line bundle,r; 01 even first Che'f7t classe.'i ( A und a TCBP.) over' X and X
respcctively. Let X xX be th-e .'Iymplcctic torus and r0 acts on it, prcBerving
the two closed /07'1Tt n. Thi,r; ind'/1,ces the action 01 r on D(~Y). It aets modulo
a shijt on the D(X). Thc action 01 different elernents 0/ r like

(~-t) (~n

(~ ~) and (~ ~)
on D(~Y) are 0LA : RF 0 (0Lo 0 Rf), 0La 0 [RF 0 (0L A 0 RF)] and RF 0

[0Ln 0 (RF 0 LA)] respectively.

0.5.2 On the way to proof

In this seetion wc are going to prescnt two partial rcsllits along thc line of
proof of our conjecture.

Let D(X) bc thc derivcd catcgory of Ox Illoclule NI();) on the complex
tori J\. \;Ye know that corresponding to any E.. E X wc can a..~sociatc a line
bUlldle Oll X givcn by

Let LEX x X and suppose TL bc thc translation in thc symplectic torus
thcll this has an induced action T

L
* Oll the linc bundle L of clegree zero over

X. Then the 'X' part of the translation acts on L trivially hut the 'X' part
acts Oll L by twisting with Hat line bunclle. We want to see thc action of
grollp r0 on translation.

Let h be the identity eierneIlt of the ::LutoI11orphisrn grollp r 0 and suppose
it is a product of different elenlcnts of r 0 such that h = h l h2h3 ,." ..... hn - 1hn .

All these hi are of special forms and their actions are known from the previous
section.
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Supposc Th ! , 7}t 2 , ••••••• '7}ln bc t.he corresponding rcprcscntations of h1 ,

h2 h11 respective1y on D(X). \~Te denote T h = ThlTh2Th3 Thn_lThn

anel every Thj Inap
Th ; : D(X) ----+ D(J\)'

\,Ve want to proof our Inain conjecture but unfortunately we fail to give a
cOlnplete proof. Instead of that \Ve will give a partial proof of this conjecture
anel replacc it by SOine other conjecture.

Conjecture .24

This is obviously the cquivalent to our main conjecture.

The autolnorphisrn group r 0 is generated by elements of three kinds and

(90) (1 A) (10)these are 90 = ° gT , 91 = ° 1 anel 92 = Q 1

Our Hext ta.sk is to invcstigate the action of these generators on transla­
tion.

Lemma .25 Let l- E J\ x X und TL be the translation on symplectic tOT'llS
J\ x X. Then r,,'" satisfies

Proof: Case 1 : 90 acts on D(X) by siInple autolnorphislll. So the lmnlna
is trivially satisfieel.
Case 2 : Given I, E )( x }:; the translation TL in thc sYlnplectic torus has an
ineluccel action TL'" Oll thc line bundle allel" JY" part acts on line bundle by
twisting with flat Ene bundle. \~Te know froln section 4.3:

A : .1\ ----+ .Iy

\-Ve know froln the previotls disCllssion action of 91 on sYlnplectic torus, if
I, = (x, :,c) then .f}ll- = (5; - Ax, .:'1:). Also \Ve know [raIn our previous discussioll
about the proposed action of Ty ! on an arbitrary line bundlc.
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whcI'C LA is tlH~ degree 2 line bunclle of Chcrn dass A

= TYl (T; L ® Lx)

,.._..= LA ® T;L ® Lx)

If we consicler the fight hand side of thc abovc expression would be

= Tr;IL(L A ® L)

= Li:-Ax ® T;L A ® T;L

= Lx- Ax 0 LA 0 L(O, e1;p(27f'iA('IJ, ))) 0 T;L
. .

= Li; 0 L(O, exp( -27f'iA(v, ))) ® LA ® L(O, cxp(21i"'iA(v,) ® T;L

=L.H.S.

Case 3 [/2 acts Oll L by
L ---+ L0.0 L

Again we have to cOllsider line bUlldle La on ~Y to have even Chern dass and
rest of thc calculation sirnilar to case 2.

o

lt follows that operation cOffillllltes with translation.

Corollary .26

Proof:: L.H.S.
T,lT~* = 1)/\ Th'2 ••••••Th,,_l Thn TL*

= Y',Ll Th2 ····· ·T,Lu-l T):n(L)Thn

= Th1 Th2 .....T~1l_1hn(/..)Thn-l Thn
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....... = Thlh'l ....hn(L)Thl Th'lTh3 .... ·T,ln

= TL*Th

D

Next we wilI"investigate the action of group r ( strictly spcaking rrrwr12)
on the ehern character of the bnnclle ((Ful], (GHD. Let ns start with sonle
definitions.

Definition .27 The Chern character ch(E) of a vector bundle E of rank r
is defined by the fom~ula

r

ch(E) = L e:r]J(ti)
i=l

where t l , t 2l , tr are the Chern roots 01 E.

The first few tenns are

For thc tensor product of thc bundles

ch(E ® F) = ch(E).ch(F)

- -
\Ve know \l X V* be the covcrillg space of the sYlnplectic torus X X X

where V ~ C m
. SU(7n, 'ln) be thc autOlllorphisIll of the covering space

V x V*.

(fl
A

) E SU(rr~, 711,)--arT
acts on V x 11* such that

A : V -t V* , a : V* -t V

\Ve first define an action of SU(rn, 'm) on thc differential farms I\'RV.



Theorem .28 Let \! x \1* oe the covering .'ipace 01 )( x ~";. Suppose 8u(rn, rn)
is the autornorphism grou]) 01 the covering space. Then there exists an action
of 8u(rn, 7n) on I\R\! such that its gene'rato1's act on l\i?,V 'in the following
way,

(1) The generat01' iJa ads on 1\ R.V tlt7'ough standard action 0f y.

(2) The second generator-A' aets on 1\;tV through wedging by the two forn~

A.

(8) The thinl genenzto7' a (Lets on ;\ i? V through cont7'f/'ction by two f07m
0:.

Pl'oof:
rA~t V be a tn-dinlensional vcetor space whieh is equipped with an inner

product <, > allel supposc 1\V is thc exterior algebra of V.
Rcca11 V x t;* is the covering space of the sytnplectic torus X x ~Y where

V ~ Cm
. vVe eaB identify \1* with the dual of 17 as areal vcctor space. \Ve

have thc fanüliar sytnplectie (1,1) form V 0 \1* Oll the coverillg space.

Thc automorphistn group of thc V x ii is su(nl, rn) anel this preserves
thc callonicaJ two fonn Oll it. vVe can lift this action on the exterior algebra
01' spaee of covectors of V. Since su(rn, rn) is generated by tltree generators
(gO, gl, ih) so we sha11 consider the action of the generators of su(rn, 7ft) one
by olle Oll the spaee of exterior algebra.'5 of V.
Let us COIlsider !Ja acts on 1\RV throllgh standard action of g.

Next we consider action of gl = A on I\*V. This action

is defineel by A(v) = A 1\ v , whcre 'U E I\*V. Since A is a two fonn so it acts
on thc extcrior algebra by wedging throllgh two fonn. Hence we obtain

lvlorcover

anel A is bi-holllogelleous of bidegrce (1,1).
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Finally we consieler thc action of 92 = et.

T[J2 : 1\*V ---+ 1\* V

In this case et is a two form and taking values in the dual space, so it acts
on the exterior algebra 1\*1/ by contraction.

anel it is also bi-homogencous anel bidegree.

So we defiue a representation

~: sn(m,rn) ---+ End(AV)

such that ~(g2), ai(.?jd and ai(§o) satisfy

(~Ujo), ~Uh] = -2~Uh)

[3?(go), ~(jh] = 2~(92)

[~(gl' ~(g2] = a~(90

o

Remark .29 Undcr' thc inclusion su(l, 1) C s'lL(nt, rn) we obtain an action
0/ 8u(1, 1) nnd hence 8l(2, C) on the extendable 0/ V, as in Wells [Wej.

Für details sec Vvells [\iVe, chap.V , sec, 3].

o

Our next stcp will be thc rcstrictcd case of this theoreln and we look
for the action of r 0 C SU(m, 711) on the ehern character 1 which lives in 1\* V
having integral coefficient. By the abovc wc havc an action of r 0 C SV (7n, 7n)
on the ehern character. Explicitly
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(1) 90 acts on the Chern character in the obvious Wi:1y.

(2) TY1 ch(E) = eAeh(E) where A is a two fonll anel it acts on ch(E) by
wedging.

(3) T92 C'L(E) = eClch(E) where a is a two forrn on the dual of thc abclian
variety. a aets on ch(E) via COlltraction.

Since the group action cornuilltes \vith thc Chern charactcr anel also we
kllow the tangent bllIlclle of a torus is trivial , then by thc Grothclldicck ­
HieIllann - Roch [Ful] theofCIll the following diagrain is COllllllutativc.

]«.-Y)
eh 4­

H*(~Y, Q)

~ ]«x)
eh t

~ H*(X,Q)

The sccond row operation is 8(:1:) = 7fR.(CO U 1fx (x)) for evcry x E }r*(~y, Q)
where 0 E H 2(X X X, Z) is thc Chern class of a Poincarc bllndlc Oll X x X.

Lemma .30 11 W.!. T. holds for the coherent sheaf [; und its inde:'D is equal
to j, then

eh7l (E) = (_1)j+n'ry2rn-2n(chm - n (E))

,in H27l (J;, Z) and ''7 is fhe rnap 77n : Rn CY, Z) -----t H 2m-n (f( 1 Z) .

Proof: Let Cl, e2, :e2m be thc basis of H1(X: Z) anel et,c;, ,e2m are
thc dual basis of H 1(X, Z). Let [2 E H2(X X X, Z) is thc ehern dass of the
Poincare bundle allel it is given by

i=:lm

[2 = L Ci /\ c:
i=l

Thc p-fold wedge prodllct

0/\ 0 1\ 1\0 = (-1 )P(p-l)j2p ! L Cj] 1\ /\ Cjp /\C;\ /\ /\e;p

j] <12<·· .... ··<jp
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So
2m

eO = L(-1)P(P-I)8p

p=O

wherc <Sp E HP(X, Z) ® HP(X, Z). \Ve have the following canonical projcc­
tions

Hence
2m

eO U 7rx (7) = L (-1 )p(p-l)/28p 1\ 7rx (7)
i=l

for every 7 E H'(J\, Z). Thc dircct image is the natural projection

and

wherc K is thc oricntat.ion of J\' \\Te know

Hencc
8(7) = 1fx,.(eO U1fx(?))

-= (_1)(2m-n)(2m-n-l)/21f . (8 /\ 1f*.(?))
)\.* 2m-p )\'

( _1)H(n+l)/2+m . (( '1\ A,) A( . /\ /\. )/\(. /\ /\. ))7r.x ,. e lJ 1\ eln 1\ cJl eJ2m - n ejJ...... chm_
n

""(CJ'l /\ ...... /\ Ci /\ eJ'J /\ ••.. /\ CJ'2 /\ CJ~ /\ ..... /\ CJ~n rn-1/. 1 2m-n

= (_1)n(n+l)/2+m 1771(?)

whcre ? = ejl /\ /\ Cjn' So thc rcsult follows itnInecliately frOl11 this. 0

Proposition .31
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Proof: Case 1 : go aets triviallyon the Chern eharaeter.
Case 2 : T91 acts on E E M by twisting thc lille bundle TY1 (E) = E @ LA,
where A is thc Chern class ( clcgrec 2 ) of thc linc bundlc Then

ch(E @ LA) = ch(E).ch(L A )

= eAch(E)

=T91 Ch(E)

Ca..'lC 3 : 'vVe know T92 aets on E by

Now we apply thc prcvious leIllIna.

chTlT92 (E) = ehE ® Ln

= (-1)j+Tl172m-2p(chm-p(E @ Ln))

= (-1)j+P1]21H-2lJ[eQchm~p(E)]

= (-l)j+P( -1)2m-j~P172m-2p1]2P[e(\chP(E)]

= T92 Ch(E)

Thus we provecl the proposition.

Next one follows irnrnediatcly frOln this result:

Corollary .32
ch(Th(E)) = ch(E)

This eorollary shows that the Chenl charactcr of T(L) is thc sarne as
that of Land it seenlS likely that wc can decluce that [1'0111 this that T(L) is
incluced a line bundle of zero Chern dass.

\iVe are finishing up this chapter with sonte interesting observations follow
froIlI thc earlier parts of the chapter.
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0.6 Concluding remarks

Let us COlllparc thc derivcd category casc with the function case. Our prob­
ICln is to prove that ccrtain lnap T : DC-Y) -f D(.Y) is identity. In thc
function case we would havc saille problenl (i.e. in defining tbc Illetaplec­
tic rcpreselltation). Let ~ be a linear map frolll fUllction on R to functiOll
on R. In that case it sllffices to prove ~ cornmutes with translation anel
Illultiplication by e:r,p(ixB). This actlla11y fo11ow5 frolll thc fo11owing:

Proposition .33 Let
~ : L 2(R) -f L 2 (R)

C01Tl,mutes with the translation anel the rnultiplication by exp(ixB) then 'J =
A.id for A E C .

.~ This analogy Sllggcst llS to somcthing similar in the derived category case.
~.i

In thc other approach also we havc a rescrnblance with thc lfunction ' case.

Proposition .34 1/ T(e ixO
) = eixB /01' alt 0, then by FO'UTier inversion theo­

Tem, wc know T = icl.

This 5uggest HS to provc in our case

T(L) = L for L E PicO
()().

Fronl thc corollary (54) we obtain

T(L) = L'

whcre L' is allother line bundle with first ehern cla...9s Cl (L') = O.
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