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MARK L. AGRANOVSKY* AND TATIANA M. BANDMAN**

Bar Ilan University

Introduction. The subject ofthis note is a conjecture formulated by S. Ruscheweyh

at the Conference on Complex. Analysis, held at Bar-Han University, November,

1994.

Conjecture. (S. Ruscheweyh [Rl]). Let f be a function, holomorphic in a ncigh­

borhood of the closed 7lnit disk and 1(0) = O. Assume that JOT" some f > 0 the

Jollowing identity holds on the unit circle:

(1) If'(z)1 = /(1 -lf(z)1 2
) , lzl = 1.

Then, j(z) = czN for some N E N U {O} and c E C.

The conjecture is confinned in the case when f' (z) =f. 0 for z =f. 0 (S. Ruscheweyh

[R2], S.L. !(rllshkal [Kl). The aim of this note is to prove the conjecture for other

classes of function j, namely for multi-valent and entire functions. Another pur-

pose (maybe lllore important) is to attract attention of the readers to this very

nice and intriguing problem. We also give a geolnetric interpretation of the fact for

conformal mappings. In that case it cau be understood as a rigidity property of

hyperbolic metrics.

We will use the following notations:

• Partially supported by a grant from the Academy of Sciences of Israel, no. 540/92-1 and
by a grant from the US-Isrncl Binational Scientific Foundation, no. 92-00246 .

•• Partially supported by the Ministry of Absorption and Ministry of Science and Technology,
State of Israel.
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C - the complex plane; ~ = {z E C: Izi < I}, ~ = {z E C: Izi ~ I}, 8~ = ~ \ ß,

~* = ~ \ {O},

H(l:i.) - the space of all functions holomorphic in a neighborhood of the closed disk

~. Our main result is:

Theorem 1. Let 1 E H(~), 1(0) = 0 belong to one of two following classes:

(a) 1 is a multi-valent fll,nction in ~, i. e the multiplicity # f- 1(f( z)), z E ~ is

finite and COllstant.

(b) f extends to C as an entire function.

Then the condition (1) implies f(z) = czN , for some c E BC and N E Nu 01

1. Reduction of the problem. The following lemll1a reduces Theorem 1 to a

geometrie characterization of the image n = f(6..).

Lemlua 1.1. If f E H(~) n Cl(~) and the functions Ifl and If'l are constant

on 86. then f(z) = czN for some N E N u {O}, c E C. Here f'(z), Izl = 1, is

understood as a continuous extension of f' to 6...

Proof. Suppose f(z)f(z) = 0
2 and f'(z)f'(z) = ß2 for Izi = 1. The differentiation

of both sides of the first identity in 'P, z = ei<p yields

f~l + f(l)~ = O.

Multiply both sides by f~f:

Note that f~(z) = izf'(z) and, therefore, 1f~(z) 1
2
=1 f'(z) 1

2
= ß2, Izi = 1. Then,

1 After our preprint was written we werc informed by S. Ruschewcyh that he too indepen­
dcntly had found the prove of the Conjecture for dass (b).
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The left hand side is holomorphic in 6., hence the identity holds in 6. and we arrive

at two equations in 6.:

o:zf'-ßf=O or o:zl'+ßf=O.

Excluding the trivial case a = 0, we obtain j(z) = cz±ß/Ct and the holomorphic

solution is j(z) = czN , N = ß/a E C. D

The next lemma shows that in Theorem 1 the restrietion j: 86. --+ j(86.) is a

loeal diffeomorphism.

Lenl1ua 1.2. 1/ j E H(b.) satisfies (1), then I ' does not vanish on 86..

Proof. Assuming, on the contrary, that J'(ZO) = 0 for some Zo E 86., we obtain,

due to (1), Ij(zo)1 = 1. Equation (1) is invariant under rotation, so we can assume

Zo = -1, f (zo) = 1. The Taylor series at Zo = 1 has the form

Take z~ = -1 +Ee
irp where E > °and Cf E (-2'lr , %) is chosen so that Re akeikrp > 0.

Then

and we have z~ E 6. and Re f(z~) > 1 when E is sufficiently small. Therefore,

If(z~)1 > 1, which contradicts the Maximum Modulo Principle because (1) implies

Ij(z)1 ::; 1 for z E 86.. D

Reluark. Lemma 1.2 together with the equation (1) shows that f(6.) is compactly

contained on~. In light of Lemma 1.2 the problell1 geometrically looks now as

folIows. Given is a function J E H(~). Consider the restriction ds I')' of thc

hyperbolic metric in 6. on the curve f = j(8i::l). Suppose that f*(ds I')') = cdr.p,

8ß = {E
irp

: r.p E [0, 27r)}. Must / be a circle?

2. Proof of Theorenl l(a).
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Lemma 2.1. Let n be a domain in C with a connected piece-wise smooth boundary

an, and 0 E n. Suppose that for any k E N

(2) Jw k Idwl = O.
1-I1Oj2

an
Then 51 is a disk, n = 6. r = {Izi < r}.

Proof Denote the measure Id~112 on ön by dp. Condition (2) implies that the
1- w

ffieasure dp is orthogonal on an to any function 9 E H(6.) n C(6.) with g(O) = O.

Since J.L is real-valued, the same is true for any harnl0nic function 9 and, moreover,

g(O) = ~ Jg(w)dp(w),

an
where M = f dp and 9 is any harmonie function in 6. and continuous in 6.. Thus

an

the measure PI = ~ P is the normalized harmonie measure for the domain n at

the point w = O. Substituting 10 = 7/;(z), where 7/;: 6. --+ n is aRiemann mapping,

7/;(0) = 0, gives the normalized harmonie measure for the unit disk 6. at z = 0:

7/;*(d )() = ~ 17/;'(z)l Idzl = ~ Id 1
Pl z M 1-17/;(z)12 27r z.

Thus we obtain for 7/; the same equation

AI
17/;'(z)1 = ,(1 -17/;(z)1 2), ,-­- 21f'

Since the Ruscheweyh conjecture is true for thc confonnal mapping 7/; ([R2], [K]),

it follows that 7/;(z) = 1'Z, l' = const, and, conscquently, n ='ljJ(n) = 6. r . 0

We proceed the proof of Theorem 1(a), First, if / is multi-valent, then

/(a6.) = a/(6.) = an.

Aecording to Lemma 1.2, the boundary an is a piece-wise real-analytie curve. For

k E N consider integrals the Jk, k = 1,2, ... :

J k Idwl = N J[/( )]k I/'(z)l ld I
10 1-lw12 Z 1-1/(z)12 z

an a~

= NI J[f(zW Idzl = 2Nrr[f(OW = O.

a~

Here N is the multiplieity of f. It remains to apply Lenllna 2.1 and Lemma 1.1.
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3. Proof of Theorenl 1 (b) (The case of entire functions).

3.1. Riccati equation Define Y(z) = J*(z); where J*(z) = f (~). Then Y is a

holomorphie function in C \ {O} and on the unit circle Y(z) = j(z). For Izl = 1 we

have

and, therefore, equation (1) ean now be rewritten as the Rieeati equation in cL:

(3)

The funetion Y = f* is a holomorphie solution of (3) in C \ {O} while / and

/' are eonsidered as the eoeffieients of this equation. In the next item we want

analyze the eharacter of the singularities of it's solutions at the origin. In fact,

the information is non-explicitly eontained in the theory of Riecati equations (for

example,[B]. p.155). We include the analysis here in order to make reading more

transparent and independent.

3.2 A particular luerolnorphic solution of (3) in a neighborhood of z = O.

Denote by N the order of zero of the fUllction f at z = O. Then /(z) = zNcp(z),

where cp is holomorphic and cp(O) =I- O. For /' we have a representation /'(z) =

zN-l'ljJ(z) with 'ljJ holomorphic and 'ljJ(0) = Ncp(O). Thus, (3) ean be rewritten as

(4)

Now we are looking for a loeal solution Y1 near the point z = 0 having, at this

point, a pole of order N:

(5) V( ) _ a+v(z)
.LI z - N

z

where v is holomorphie at z = 0, v(O) = 0 and Cl = const. Inserting (5) into (4)and

eOlnparing the Laurent series in both sides of (4), we 0 btain the following relation:

(6)
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Therefore, the coefficient a can take two vallles:

7

(7) ± _ 1 [ N
2

N V 2 2 ]
a - ~(O) 1 + 2,2 ± 21'2 N +4, .

Choosing a = a+ in (7), from (4)and (5) obtain:

(8) zv' = A(z) + B(z)v + C(z)v2

where coefficients on the right hand side are:

,2
A (z) = - -:;j; (1 - a~)

2 + Na,
9,2

B(z) = N + ;..J'lj; (1 - a'P)~,

,2
Note that A(O) = N~(O) (1- a~(O)?+aN = 0 due to (6). The function B(z) has

. .
a senes expanSIon

B(z)=Bo+B1z+.··

with Ba = B(O) = N + 2~) (1 - U'f'(0)) 1"(0). Formula (7) implies
N~ 0

Now we can rewrite (8) as

(9) . zv' - Bov = A(z) + (B(z) - Bo)v +C(z)v2 = R(z, v).

where R( z, v) is holomorphic in both variables z and v at the point z = v = 0 and

satisfies R(O, 0) = R~(O, 0) = O. Equation (9) is known as the Briot-Bouquet equa-

tion, and if B o rt. N, which holds in our case, then there exists a unique holomorphic

solution v = v(z), v(O) = 0 defined near the point z = 0 [I, p. 295]. Thus,

a v(z)
Y1(z)=-+­

zN zN

is a holomorphic solution of (4) in a punctured neighborhood of z = 0, having at

z = 0 a pole of order N.

3.3 A general solution of (3) near the point z = O.
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Having at hands a particular solution Y1 constructed above, we can apply the

standard method of reducing the Riccati equation to a linear differential equation.

Let Y be a general solution and u = Y - Y1 f:. O. Then u satisfies the Bernoulli

equation

(10)

Introducing
1

1] = ­
u

and dividing both sides in (10) by u 2 we arrive at the linear equation

Solving it, we get:

u(z) = 2 2 (2( )C + J1L J2, 1 - jY1 )/ d
z2f' exp z2f'z

where C is an al'bitl'al'Y constant. Using the Riccati equation (3), we cau replace
. '2,2(1 - IY1 ) 2Y1

the Integrand z2 I' by - 1 _ IY and, finally, write

(
2Y~'1 )

exp - J 1 _ !Y
1

dz

y = Yl + u = Yl + ,2 f2 (J 2Y{1
O+J z2f' exp - 1-fYl

(11 )

N 2 N
The function 1-fY1 is holomorphic and (fY1 )(0) = rp(O)a = 1+-2+-JN2 +4,2 >

2, 2,
1. We have also

-Na
Y'(z) = -- + ...

1 zN+l /(z) = rp(O)zN + ...

and, thel'efore, we have the decomposition neal' z = 0:

-2Y{(z)f(z) Ci
----- = - + Co + Cl Z +...
1- l(z)Y1 (z) Z
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where the residue
2N<p(O)a

Q' - --.;.......;...-

- 1 - <p(O)a'

Therefore,

J-2~'f
exp ( ;) = exp (Q' In(z) + Co z + ... ) = z° eqt ,

1- Y1

Wis holomorphic, 'IjJ(O) = O. Also,

,2 j2 ,2(<p(O)zN + ... )2 i 2'P(O) N-l
--- = z + ...
z2/' z2(N<p(O)zN-l + ... ) !'l

So, equation (11) may be rewritten in the following form:

9

(12)
zOeqt

Y(z) = Y1 (z) + ----:::-2--------

C + J (' ~(O) zN-l + ... ) z"e'" dz

zO'e tP

C + zO'+N(cO + cIZ +... )
,2<p(O)

where Co = N2 =I=- O. Thus the following Lemma is obtained:

Lemma 3.1. Any loeal holomorphie solution Y 0/ the Riecati equation (3) - (4)

in a punctured neighborhood 0/ z = 0 has at z = 0 singularity which is either a

braneh point, when C =I=- 0 and Q' is integer, or a pole 0/ order N, where N is the

order 0/ zero 0/ the /unction f at z = O.

Note that for Gf = 0, we obtain the second solution with a pole at z = O. This

solution corresponds to the second possible value for a in (5), a = a-.

3.4. Praof of TheorelTI l(b) We know that the inversion Y = j* satisfies the

Riccati equation (3) - (4). According to Lelnula 4.1, the function Y has a pole at

z = 0 of order N, since the branch point at z = 0 is irnpossible for entire j. This

irnplies that f(z) = Y' (z) = Y (~) has a pole of order N at z = 00. But f is entire

and has at z = 0 zero of the same order N. The Liouville Theorem immediately

implies j(z) = const zN. 0

Renlark. Since, as it is shown above, any solution of the Riccati equation has not

essential singularity at the origin, any meromorphic solution of equation (1) has to

be rational.
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4. Geometrie interpretation.

The following Theorem is a geometrie interpretation of the Ruscheweyh Con­

jecture for conformallnappings.

Theorenl 2 (on three hyperbolic disks). Let D C GI C G 2 be three simply-

connected domains in C.Denote by ds l , dS 2 the hyperbolic metries in GI, G 2 respec-

tiuely. Suppose that D is a disk in both hypcrbolic spaces (GI, ds 1 ) and (G2 , ds 2 ).

Then GI is a disk in (G2 , ds 2 ).

In other \vords , if a hyperbolic subspace is not a disk then aH disks in it are

distorted with respect to the metric of the ambient hyperbolic space.

Proof. Let GI, G2 , D be as in Theorem 2. Let <p : G2 -t .ö be a conformal equiv­

alence according to the Rienlaml theorem. Denote G~ = <p(G I ), D' = <p(D) and

let also 'IjJ : Gi --+ .ö be a conformal isomorphisIll. Denote n = 'IjJ[<p(D)]. The

construction is illustrated by the following diagram:

u u

u u u

D 4 <p(D) ~ n

We know that D is a hyperbolic disk in G2 and hence <p(D) is a hyperbolic disk in

.ö. We can choose <p so that <p(D) is a disk eentered at the origin,

<p(D) = .öR = {z E C : Izl < R}, 0 < R < 1.

The mapping 'ljJ ean be also normalized by 7jJ(O) = O. By the condition the disk ßR

is also a disk with respeet to the hyperbolie metric
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in G~. Therefore, the restrietion of ds~ on the eircle BD.R is proportional to the are

length on 8D.R, i.e.,

17/;'(z)1
1 _ IVJ(z)12 = /1 = eonst, Izi = R.

We are in the situation of Theorem 1 with I(z) = VJ(Rz) which a univalent holo­

morphie function in a neighborhood of the unit disk D., 1(0) = 7/;(0) = 0 and

If'(z)l
l-lf(z)J2 =, = R,t, Izl = 1.

We conclude that j(z) = cz and therefore 'IjJ(z) = ~z. Thus, G~ is a disk in D. and,

respectively, GI = rp-l(G~) is a hyperbolic disk in G2 = rp-l(D.) with respect to

the metric ds 2 . 0
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