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REMARKS ON A CONJECTURE OF RUSCHEWEYH

MARK L. AGRANOVSKY* AND TATIANA M. BANDMAN**

Bar [lan University

Introduction. The subject of this note is a conjecture formulated by S. Ruscheweyh
at the Conference on Complex Analysis, held at Bar-llan University, November,

1994.

Conjecture. (S. Ruscheweyh [R1]). Let f be a function, holomorphic in a neigh-
borhood of the closed unit disk and f(0) = 0. Assume that for some v > 0 the

following identity holds on the unit circle:

(1) 1f(@) =v1=1f)") . |zl =1.

Then, f(z) = cz" for some N € N U{0} and c € C.

The conjecture is confirmed in the case when f'(z) # 0 for z # 0 (S. Ruscheweyh
[R2], S.L. Krushkal [K]). The aim of this note is to prove the conjecture for other
classes of function f, namely for multi-valent and entire functions. Another pur-
pose (maybe more important) is to attract attention of the readers to this very
nice and intriguing problem. We also give a geometric interpretation of the fact for
conformal mappings. In that case it can be understood as a rigidity property of
hyperbolic metrics.

We will use the following notations:

* Partially supported by a grant from the Academy of Sciences of Israel, no. 540/92-1 and
by a grant from the US-lsrael Binational Scientific Foundation, no. 92-00246.

** Partially supported by the Ministry of Absorption and Ministry of Science and Technology,
State of Israel. :
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C - the complex plane; A = {z € C: 2| < 1}, A= {2z € C: |z| < 1}, 0A = A\ A,
Ar =4\ {0},
H(A) - the space of all functions holomorphic in a neighborhood of the closed disk
A. Our main result is:

Theorem 1. Let f € H(A), f(0) = 0 belong to one of two following classes:

(a) f is a multi-valent function in A, i.e the multiplicity #f71(f(2)),z € A s
finite and constant.

(b) f eztends to C as an entire function.

Then the condition (1) implies f(z) = czV, for some c € BC and N € NU (!

1. Reduction of the problem. The following lemma reduces Theorem 1 to a

geometric characterization of the image @ = f(A).

Lemma 1.1. If f € H(A)N CY(A) and the functions |f| and |f'| are constant
on OA then f(z) = czV for some N € N U {0}, ¢ € C. Here f'(z),]z] = 1, is

understood as a continuous eztension of f' to A.

Proof. Suppose f(z)f(z) = a® and f'(2)f'(z) = 8° for |z| = 1. The differentiation

of both sides of the first identity in ¢, z = €' yields
fof +£(f), =0
Multiply both sides by f.f:
(F) o+ £ | S ['=0
Note that f,(z) = izf(z) and, therefore, | f,(z) |“=| f'(z) |'= 6%, |2| = 1. Then,

___a2z2(fl)2 +ﬁ2f2 =0.

L After our preprint was written we were informed by S. Ruscheweyh that he too indepen-
dently had found the prove of the Conjecture for class (b).
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The left hand side is holomorphic in A, hence the identity holds in A and we arrive

at two equations in A

azf —Bf=0 or azf' + Bf =0.

Excluding the trivial case o = 0, we obtain f(z) = cz*#/® and the holomorphic

solution is f(z) = c2N , N =f/acC. a

The next lemma shows that in Theorem 1 the restriction f: A — f(9A) is a

local diffeomorphism.

Lemma 1.2. If f € H(A) satisfies (1), then f' does not vanish on 0A.

Proof. Assuming, on the contrary, that f/'(zg) = 0 for some zp € 0A, we obtain,
due to (1), |f(z0)| = 1. Equation (1) is invariant under rotation, so we can assume

zo = —1, f(20) = 1. The Taylor series at zp = 1 has the form

fle)=1+a(z+ D)  + ez + D)+ #0, k> 2.

Take z, = —1+€e*® wheree > 0 and ¢ € (%ﬂ' Z) is chosen so that Re are'*? > 0.

' 2
Then
Re f(z.) = 1 + & Reare’™® 4 0(e*),

and we have 2. € A and Re f(z.) > 1 when ¢ is sufficiently small. Therefore,

|f(z¢)] > 1, which contradicts the Maximum Modulo Principle because (1) implies
|f(2)] < 1for z € OA. =

Remark. Lemma 1.2 together with the equation (1) shows that f(A) is compactly
contained on A. In light of Lemma 1.2 the problem geometrically looks now as
follows. Given is a function f € H(A). Consider the restriction ds ]7 of the
hyperbolic metric in A on the curve v = f(9A). Suppose that f*(ds Iy) = cdp,
OA = {e'¥ : ¢ € [0,27)}. Must v be a circle?

2. Proof of Theorem 1(a).
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Lemma 2.1. Let §2 be a domain in C with a connected piece-wise smooth boundary

0, and 0 € Q. Suppose that for any k € N

(2) [u* '_"”l"lilz _

on
Then Q 13 a disk, Q = A, = {|z| <r}.

|dw]
1 — |w]?

measure du is orthogonal on 99 to any function g € H(A) N C(A) with g(0) = 0.

Proof. Denote the measure on 9Q by du. Condition (2) implies that the

Since p is real-valued, the same is true for any harmonic function g and, moreover,

90) = 37 [ stwidu(w)

of

where M = [ du and g is any harmonic function in A and continuous in A. Thus
(2193

the measure py = M is the normalized harmonic measure for the domain Q at
the point w = 0. Substituting w = (z), where ¢»: A — Q is a Riemann mapping,

¥(0) = 0, gives the normalized harmonic measure for the unit disk A at z = 0:

Thus we obtain for ¢ the same equation

B =1 - b)), 7=

2n
Since the Ruscheweyh conjecture is true for the conformal mapping ¥ ([R2], [K]),
it follows that ¥(z) = rz, r = const, and, consequently, Q = () = A,. a
We proceed the proof of Theorem 1(a). First, if f is multi-valent, then

f(0A) =0f(A) =
According to Lemma 1.2, the boundary 952 is a piece-wise real-analytic curve. For

k € N consider integrals the Ji, k=1,2,...:
. dw ! z
an

— Ny /[f(z)]" |dz| = 2N=(f(0)]* =
8A

Here N is the multiplicity of f. It remains to apply Lemma 2.1 and Lemma 1.1.
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3. Proof of Theorem 1(b) (The case of entire functions).

3.1. Riccati equation Define Y (z) = f*(z); where f*(2) = f (

W | —

). Then Y is a

holomorphic function in C\ {0} and on the unit circle Y(z) = f(z). For |z| = 1 we

have

Fi(z) = =2*Y'(2)

and, therefore, equation (1) can now be rewritten as the Riccati equation in C:
(3) —2fY =4 (1- fY)

The function ¥ = f* is a holomorphic solution of (3) in C\ {0} while f and
f' are considered as the coeflicients of this equation. In the next item we want
analyze the character of the singularities of it’s solutions at the origin. In fact,
the information is non-explicitly contained in the theory of Riccati equations (for
example,[B]. p.155). We include the analysis here in order to make reading more
transparent and independent.

3.2 A particular meromorphic solution of (3) in a neighborhood of z = 0.

Denote by N the order of zero of the function f at z = 0. Then f(z) = 2N p(2),
where ¢ is holomorphic and ¢(0) # 0. For f' we have a representation f'(z) =
zN~14(2) with ¥ holomorphic and %(0) = N(0). Thus, (3) can be rewritten as

(4) Y = _ZNL ; (1 — 2NpY)2.

Now we are looking for a local solution Y; near the point z = 0 having, at this

point, a pole of order N:

a+v(z)

() Yi(2) = —x

z

where v is holomorphic at z = 0, v(0) = 0 and « = const . Inserting (5) into (4)and

comparing the Laurent series in both sides of (4), we obtain the following relation:

(6) N?ap(0) = ¥*(1 — ayp(0))?
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Therefore, the coefficient a can take two values:

1 N? N
(7) a 2(0) 1+ % + 272\/1\r +4~? |.

Choosing @ = a™ in (7), from (4)and (5) obtain:
(8) zv' = A(z) + B(z)v + C(2)v*

where coefficients on the right hand side are:

2 2 2
A(Z)Z_zl,b— (1 — ap)?® + Na, B(z):N-}—%(l—ag@)tp, C(z)_—__l 2

Note that A(0) = N;(O) (1—ap(0))? +aN = 0 due to (6). The function B(z) has

a series expansion

B(Z)=B0+B12—{—--'

with Bg = B(0) = N + 2y (1 — ap(0)) ©(0). Formula (7) implies

BO = —/ N2 +4’72

Now we can rewrite (8) as
(9) - zv' — Bov = A(2) + (B(2) — Bo)v + C(2)v? = R(z,v).

where R(z,v) is holomorphic in both variables z and v at the point z = v =0 and
satisfies R(0,0) = R} (0,0) = 0. Equation (9) is known as the Briot-Bouquet equa-
tion, and if By ¢ N, which holds in our case, then there exists a unique holomorphic

solution v = v(z),v(0) = 0 defined near the point z = 0 [I, p. 295]. Thus,

is a holomorphic solution of (4) in a punctured neighborhood of z = 0, having at

z = 0 a pole of order N.

3.3 A general solution of (3) near the point z = 0.
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Having at hands a particular solution Y7 constructed above, we can apply the
standard method of reducing the Riccati equation to a linear differential equation.

Let Y be a general solution and u = Y — Y7 # 0. Then u satisfies the Bernoulli

equation
A -f)f P,
(10) u' = F U~ ZF u”.
Introducing
1
n=-
u

and dividing both sides in (10) by u? we arrive at the linear equation

, 21 = fN)f vEf?
-n = 22 f1 U 2f

Solving it, we get:

o (1 TEUZL1 )

2f? 1—f)f
C+f72fr P(/ (z2f’ ) dz)

where C is an arbitrary constant. Using the Riccati equation (3), we can replace
21—V, 2%
22 f! Y1 gy

2v, f
exp (—f /Y dz)
2f2 21;1!](: .
O+ J A ¢ <_/1—le dz)
The function 1—fY; is holomorphicand (fY7)(0) = ¢(0)a = 1+——+ \/N2 + 4% >
1. We have also

u(z) =

the mtegra.nd and, finally, write

(11) Y=Y1+u=Y+

—Na

V()= et L f(2) = p(0)N 4

and, therefore, we have the decomposition near z = 0:

—2Y/(2)f(2)

(a4
T J@Wn(G) —z T
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where the residue
L _ 2Np(0)a
T 1—p(0)a’

Therefore,

=-2Y/
exp([ 1'—;}{1 ) = exp(aln(z) +coz + - ) = 2",

¥ is holomorphic, ¥(0) = 0. Also,
Y e+ ) e(0) ne

2f 22(Nep(0)zN-14...) N T
So, equation (11) may be rewritten in the following form:
z%e¥
(12) Y(z) =Y(z) + 72(’0(0)
C+ [ (T N4 ) zoe¥dz

z%e¥
T CHzotN(cg+crz+---)

v2(0)

N2
Lemma 3.1.  Any local holomorphic solution Y of the Riccati equation (3) - (4)

where ¢g = # 0. Thus the following Lemma is obtained:

in a punctured neighborhood of z = 0 has at z = 0 singularity which ts either a
branch point, when C # 0 and « i3 integer, or a pole of order N, where N 1s the

order of zero of the function f at z =0.

Note that for ¢ = 0, we obtain the second solution with a pole at z = 0. This

solution corresponds to the second possible value for a in (5), a = a™.

3.4. Proof of Theorem 1(b) We know that the inversion ¥ = f* satisfies the
Riccati equation (3) - (4). According to Lemma 4.1, the function Y has a pole at
z = 0 of order N, since the branch point at z = 0 is impossible for entire f. This
implies that f(2) =Y*(z) =Y (%) has a pole of order N at z = oo. But f is entire
and has at z = 0 zero of the same order N. The Liouville Theorem immediately

implies f(z) = const z%. O

Remark. Since, as it is shown above, any solution of the Riccati equation has not
essential singularity at the origin, any meromorphic solution of equation (1) has to

be rational.
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4. Geometric interpretation.

The following Theorem is a geometric interpretation of the Ruscheweyh Con-

jecture for conformal mappings.

Theorem 2 (on three hyperbolic disks). Let D C Gy C G, be three simply-
connected domains in C.Denote by dsy,dse the hyperbolic metrics in Gy, Gy respec-

tively. Suppose that D 13 a disk in both hyperbolic spaces (G,,ds1) and (G2,ds;).
Then G, 13 a disk in (Ga,dsy).

In other words , if a hyperbolic subspace is not a disk then all disks in it are

distorted with respect to the metric of the ambient hyperbolic space.

Proof. Let G1,G2, D be as in Theorem 2. Let ¢ : G2 = A be a conformal equiv-
alence according to the Riemann theorem. Denote G} = ¢(G1), D' = ¢(D) and
let also ¢ : Gf — A be a conformal isomorphism. Denote Q = [p(D)]). The

construction is illustrated by the following diagram:

DA o) 40
We know that D is a hyperbolic disk in G2 and hence ¢(D) is a hyperbolic disk in
A. We can choose ¢ so that ¢(D) is a disk centered at the origin,
e(D)=Ar={2€C:|z| <R}, 0<R<L

The mapping ¥ can be also normalized by 1(0) = 0. By the condition the disk Ag

is also a disk with respect to the hyperbolic metric

gl
= T g
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in G. Therefore, the restriction of ds} on the circle A is proportional to the arc

length on AR, i.e.,

!
G =y = const, |z|=R.

L—[¢(2)[?
We are in the situation of Theorem 1 with f(z) = ¢(Rz) which a univalent holo-

morphic function in a neighborhood of the unit disk A, f(0) = %(0) = 0 and

If'(2)]

WZ’YZR%’ 2| =1.

We conclude that f(z) = ¢z and therefore ¢(2) = %z. Thus, G} is a disk in A and,
respectively, G1 = ¢ 1(G!) is a hyperbolic disk in G2 = ¢~ !(A) with respect to

the metric ds. 3
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