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ABSTRACT. We prove the Freiheitssatz for Poisson algebras in characteristic zero. We
also give a new proof of the tameness of automorphisms for two generated free Poisson
algebras and show that an analogue of the commutator test theorem is equivalent to the
two-dimensional classical Jacobian conjecture.
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1. INTRODUCTION

Many interesting and important results have been obtained about the structure of
polynomial algebras, free associative algebras, and free Lie algebras. Although the free
Poisson algebras are closely connected with these algebras, only a few results on their
structure on their structure are known. Here is the surprisingly short list. (1) The
centralizer of a nonconstant element of a free Poisson algebra in the case of characteristic
zero is a polynomial algebra in a single variable (proved in [13], it is an analogue of
the famous Bergman’s Centralizer Theorem [1]) (2) Locally nilpotent derivations of two
generated free Poisson algebras in the case of characteristic zero are triangulable and the
automorphisms of these algebras are tame (proved in [14], these are analogues of the well-
known Rentschler’s Theorem [17] and Jung’s Theorem [7] respectively). In this paper we
continue the study of free Poisson algebras.

In 1930 W. Magnus proved one of the most important theorems of the combinatorial
group theory (see [10]): Let G = (x1,x9,...,x,|r = 1) be a group defined by a single
cyclically reduced relator r. If z, appears in r, then the subgroup of G generated by
x1,...,T,_1 IS a free group, freely generated by x4, ...,x,_1. He called it the Freiheitssatz
and used it to give several applications, the decidability of the word problem for groups
with a single defining relation among them.

Because of its importance and potential applications, the Freiheitssatz was studied in
various settings. Thus, A.I. Shirshov [20] established it for Lie algebras (and deduced
the decidability of the word problem for Lie algebras with a single defining relation);
N.S. Romanovskii [18] researched it for solvable and nilpotent groups; L. Makar-Limanov
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[12] proved it for associative algebras over a field of characteristic zero (the question of
decidability of the word problem for associative algebras and semigroups with a single
defining relation and the Freiheitssatz for associative algebras in a positive characteristic
remain open (see [2])); recently (see [8]) it was confirmed for right-symmetric algebras (and
the decidability of the word problem for right-symmetric algebras with a single defining
relation being obtained as a byproduct).

In this paper we prove the Freiheitssatz for Poisson algebras over fields of characteristic
zero. If the characteristic is positive, it is not true. E. g. if r =  + {z, y}? where p > 0 is
the characteristic, the ideal () 3 @ since {r,y} = {z,y}. There are two principal methods
of proving the Freiheitssatz: one, employing the combinatorics of free algebras, applied in
[10, 18, 20, 8], and the other, related to the study of algebraic and differential equations,
applied in [12]. The latter is used here.

The paper is organized as follows. In Section 2 we prove that some type of differential
equations admits a solution in formal power series over a field of characteristic zero. (A
better result can be obtained over the field of complex numbers from a non-linear Cauchy-
Kovalevsky theorem, see [16].) In Section 3 we confirm that symplectic Poisson algebras
of infinite rank do not satisfy any nontrivial polynomial identity. In Section 4 we rewrite
abstract Poisson algebraic equations as differential equations studied in Section 2 and
prove the Freiheitssatz. In Section 5 we give a new proof of the tameness of automorphisms
of free Poisson algebras of rank two and show that an analogue of the commutator test
theorem found by W. Dicks for free associative algebras of rank two (see [4]) is equivalent
to the two-dimensional classical Jacobian conjecture using the Freiheitssatz and Jung’s
Theorem.

2. DIFFERENTIAL EQUATIONS

Consider the set Z7 , where Z, is the set of all nonnegative integers. Denote by = the
lexicographic order on Z'}. Note that Z is well-ordered with respect to <.

Let k be an arbitrary field of characteristic zero. Let k[xq, xo, ..., z,] be the polynomial

algebra in the variables z1, 2o, ..., %,. For every a = (i1, 12,...,14,) € Z} we put
o_ (9 i 0y 9 i
0" = () () ()
o0x,” " 0x9 ox,,

and define a variable ¢°.
Proposition 1. Let f(x1,29,...,2,, 1,192, .. t%) € k[z1, 29, ..., &y, 1,192, ... 1%7]
and a; < g < ... < . Suppose that there exists (c1,Ca,. .., Cp, ™, ™2, .. c™m) € knT™
so that f(c1,ca, ... ¢, ™, c®2 .. ) =0 and 3?Tfm(01,027 cey Cpy e # 0.
Then the differential equation
(1) f(x1, g, ..., 2,0 (T),0*(T),...,0°"(T)) =0
has a solution in the formal power series algebra k[[x1 — ¢1, 29 — oy ..., Ty — 1]

Proof. For convenience of notations we put C' = (c1,¢9,...,¢n), X = (x1,29,...,1,),
X —C=(x1—c1,09 —Coy..., Ty — ¢), and C' = (1,60, ..., ¢p, ¢, c*2, ..., c*). For
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every o = (i, 12, ...,1,) € Z" put also
ol =dlig) iy, (X = O) = (21 — 1) (zg — )2 ... (2n — cn)™.
We claim that the equation (1) has a unique formal solution in the form
(2) 7= adX—-0C).
agZ?
satisfying the initial conditions
O (T)C) =c*,0(T)(C) =c*,...,0(T)(C) = c*m
and
o°(T)(C) =0
for every 8 # oy, a9, ..., a1 and 8 < a,,. Note that
3) 9°(T)(C) = ala,

for every a in (2). So, by (3) we can define the values of a, for every a < «, since we

already defined the values of 0%(T)(C).
Substituting (2) into the right hand side of the equation (1) we get

(4) flan, @, 20, 0°(T),0(T),...,0"(T)) = Y _ bs(X — C)°

Bewn

We have to show that there exists a sequence {aa}aezi such that bg = 0 for every g € Z7}.
We prove this by transfinite induction using the relation < on Z.
As above,

(5) Blbg = aﬂ(f(xl,xg, ey Ty YT, 0(T), ..., 0" (T)))(C).
Then,
bo = f(a1, 29, ..., 2,,0"(T),0*(T),...,0°(T))(C) = f(C) =0.

For the induction step take a nonzero element 3 € Z7 such that a, is defined for every
a < ap, + f and by, = 0 for every v < 3.

By (5),

by = 0P (f(r, 29, 2, O (T), 0% (T), ... 0* (T)))(C)

Al
1, of
= 51 (Gpem

where A depends only on 0%(T)(C) with « < a,,, + 8. The values of (0%(T))(C) for
o < Q[ defined by (3). Since =2 (C) # 0 there exists a unique value of (97+ (T))(C)

0zom

such that bs =0 . Put agiq,, = m(({)ﬁ*am (T))(C). O
3

(C) (@7 (T))(C) + A),




3. IDENTITIES OF SYMPLECTIC ALGEBRAS

A vector space B over a field k endowed with two bilinear operations z - y (a multipli-
cation) and {z,y} (a Poisson bracket) is called a Poisson algebra if B is a commutative
associative algebra under z-y, B is a Lie algebra under {x, y}, and B satisfies the following
identity (the Leibniz identity):

{z,y-2} ={zy} -2 +y-{z 2}
There are two important classes of Poisson algebras.
1) Symplectic Poisson algebras PS,. For each n algebra PS,, is a polynomial algebra
klx1,y1, ..., %n, ys] endowed with the Poisson bracket defined by

{zi,y;} = 0y {wi 23 =0, {wiy;} =0,
where ¢;; is the Kronecker symbol and 1 < 4,5 < n. Note that PS,, is a subalgebra
of PS,, if n < m. We consider also the symplectic Poisson algebra of infinite rank
PSew =U,~, PS,.
2) Symmetric Poisson algebras PS(g). Let g be a Lie algebra with a linear basis

€1,€2,...,€k,.... Then the usual polynomial algebra kle;,es,..., ex,...] endowed with
the Poisson bracket defined by

{eiej} = [ei e)]
for all i, 7, where [z, y] is the multiplication of the Lie algebra g, is a Poisson algebra and
is called the symmetric Poisson algebra of g.

Note that the Poisson bracket of the algebra PS(g) depends on the Lie structure of g
but does not depend on a chosen basis.

Corollary 1. Let ej,es,...,€m,... be linearly independent elements of g. Then the ele-
ments

U = €4,€...€64, il SZQ S Slk
are linearly independent in PS(g).

Let g be a free Lie algebra with free (Lie) generators z1, xa, ..., Ty, . ... It is well known
(see, for example, [19]) that PS(g) is a free Poisson algebra on the same set of generators.
We denote this algebra by P = k{xy,z2,...,2p,...}.

By deg we denote the standard homogeneous degree function on P, i.e. deg(z;) = 1,
where 1 < 4 < n. By deg, we denote the degree function on P with respect to x;.
The homogeneous elements of P with respect to deg, can be defined in the usual way.
If f is homogeneous with respect to each deg, , then f is called multihomogeneous. A
multihomogeneous element f € P is called multilinear if deg,. = 0,1 for every 1.

Denote by L, the subspace of P of all multilinear elements of degree n in the variables

x1,To, ..., T,. Denote by o, the subspace of Ls, spanned by the elements

(6) {xi17$i2}{xi3v Ii4} s {xiannxlén}'

The elements of @y, are called customary polynomials (see [5]). By Corollary 1, the
elements of the form (6) with i < i9,i3 < ig,...,00n1 < lop, b1 < i3 < ... < lop_1,

compose a linear basis of (Qg,.
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Denote by T5, the set of all permutations 7 from Sy, such that
7(1) < 7(2),7(3) < 7(4),....,72n—1) < 7(2n),7(1) < 7(3) < ... < 7(2n — 1).
Then every customary polynomial f € (s, can be uniquely written in the form
f= Z a2y, Tr@) HEr @) Tray} - {Tr@n—1), Tr2n) }-
TGTQn

Recall that a Poisson algebra is called a PI algebra if it satisfies a nontrivial identity,
i.e., there is a nonzero element f € P which is an identity of this algebra. Identities of
Poisson algebras are studied in [5, 6, 15].

Theorem 1. [5] Every Poisson PI algebra over a field of characteristic zero satisfies a
nontrivial customary identity.

Note that the symplectic Poisson algebra P.S; satisfies the standard customary identity
Sty = {x1, o H{ws, wa} — {z1, wsH{wo, 24} + {71, s {2, 73}
and that PS, also satisfies a standard customary identity (see [15]).

Lemma 1. The symplectic Poisson algebra PSs over a field of characteristic zero does
not satisfy any nontrivial identity.

Proof. Suppose that P.S,, satisfies a nontrivial identity. Then PS,, satisfies a nontrivial
customary identity by Theorem 1. Every nontrivial customary identity can be written in
the form

{Zh 22}{Z37 Z4} cee {ZQn—lu Z2n} = Z aT{ZT(1)7 ZT(Q)}{ZT(3)7 ZT(4)} ce {ZT(Qn—1)7 ZT(Qn)}-
1#£1€Toy,

Substitution zop_1 = Xk, 2o = Yk, Where 1 < k < n, gives 1 = 0, i.e., a contradiction. O

Corollary 2. For every nonzero f from P there is a natural n = n(f) such that f is not
an identity of PS,,.

4. HOMOMORPHISMS INTO SYMPLECTIC POISSON ALGEBRAS

In this section we consider both Poisson symplectic algebras and free Poisson variables.

To distinguish variables, we consider the free Poisson algebra k{z1,zs,...,2,} in the
variables z1, 29, ..., Zm.
Theorem 2. (Freiheitssatz) Let k{zi,z2s,...,2n} be the free Poisson algebra over a

field k of characteristic 0 in the variables z1,z9, ..., 2m. If f € k{z1,22,...,2m} and
fék{z,22, .., 2m-1}, then (f) Nk{z1,22,. .., 2m-1} = 0.

Proof. Without loss of generality we may assume that k is algebraically closed and
that f(z1,22,...,2m-1,0) # 0. The Theorem will be proved if for f and any nonzero g €

k{z1, 22, ..., zm—1} there exist a Poisson algebra A and a homomorphism 0 : k{z1, 29, ..., 2} —

A of Poisson algebras such that 6(g) # 0,6(f) = 0.
Let f be the highest homogeneous part of f with respect to z,. By Corollary 2,

there exists a natural n and a homomorphism ¢ : k{z1, 22, ..., Zm_1, Zm} — PS,, where
5



PS, = klr1,y1,...,%n, yn] is the Poisson symmetric algebra, for which gb(gff) # 0.
Denote by Z1, Z, ..., Z,,_1 the images of z1, 29, ..., z,,_1 under ¢, by Z a general element
of PS,,, and consider the equation

(7) F(Z1, Za, ... Zor, Z) = 0.

Note that

(8) {a,b}:Z(aa ob  Oa 8b)

O0z; Oy - 0y, Ox;
for a,b € PS,. For every a = (i1,j1,...,%n, Jn) € Z3" we put

0 i 0 0 0

% = i1 7

in(_—  \In

and define the variable z%. Denote by < the lexicographic order on Zi”. Using (8) rewrite
(7) as

9) M1, 91,y Ty Yy O Z),0°%(Z), ..., 0 (Z)) =0

where h = h(x1,91,. ., Tn, Yn, 2%, 2%2, ..., 2%) is a polynomial in variables

Ty YLy v oy Ty Y, 220, 29200, 2% Since [ ¢ k{z1, 22, ..., Zm_1} the polynomial h depends
on z*, 2% ... z% i e r>0in (9).

Assume that a3 < as < ... < a, and that h is irreducible. (If h is not irreducible we

can replace it with its irreducible factor which contains z%7.) We assert that there exists
L = (ay,by,... an, by, c®, ..., c) € k¥ such that h(L) = 0 and -2 (L) # 0. If this

0zor
is not true then by Hilbert’s Nulstellenssatz h divides ( 8‘2& )* for some s > 0. But then,
since h is irreducible, h divides ( 6‘2& ), which is clearly impossible.

Therefore we can use Proposition 1 and find a solution Z,, of the differential equation

(9) in the formal power series algebra A = k[[z1 — aq1,b1,. .., 2, — an, Yn — by]]. Note that
PS,, = klx1,y1,..., 20, ys)] € A and that the Poisson structure of PS, can be naturally
extended to A. Take a homomorphism of Poisson algebras 6 : k{z1,22,...,2m} — A
defined by

9(21) = 21,9(22) = Zg, .. ,Q(Zm_l) = Zm_l,e(Zm) = Zm
Then 9|k{21,22 ,,,,, Zm—1} — ¢|k{21,22 ..... Zm—1} and e(f) =0. 0
Here is a more traditional formulation of the Freiheitssatz.

Corollary 3. (Freiheitssatz) Let k{z1,22,...,2n} be the free Poisson algebra over a
field k of characteristic O in the variables z1, za, . . ., zm. Suppose that f € k{z1,22,...,2m}
and f & k{z1,22,...,2m_1}. Then the subalgebra of the quotient algebra k{z1, z2, ..., zm}/(f)
generated by 214 (f), 22+ (f), - -+ 2m_1+ (f) is a free Poisson algebra with free generators
Zl+(f)722+(f)v"'vzm—l+(f)'
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5. RELATIONS WITH AUTOMORPHISMS

As is well known (see [3, 7, 9, 11]), the automorphisms of polynomial algebras and
free associative algebras in two variables are tame. The automorphisms of free Poisson
algebras in two variables over a field of characteristic zero are also tame [14]. A proof of
the tameness theorem for Poisson algebras and associative algebras can be obtained from
the Freiheitssatz and Jung’s Theorem [7].

Theorem 3. [14] Automorphisms of two generated free Poisson algebras over a field of
characteristic 0 are tame.

Proof. Let ¢ be an automorphism of the free Poisson algebra k{z,y} in the variables
x,y over k. Consider the polynomial algebra k[z,y| as a Poisson algebra with trivial
Poisson bracket and the homomorphism k{z,y} — k[z,y] of Poisson algebras such that
x — x,y — y. Every automorphism ¢ of k{x,y} induces the automorphism @ of the
polynomial algebra k[z,y|. By Jung’s Theorem [7], we may assume that @ = id. Then,

pla)=z+fely)=y+g  fgel
where [ is the ideal of k{z,y} generated by {x,y}.

We want to show that f = g = 0. Suppose that f # 0. Then z + f € () + I = (x)
where () is the ideal of k{z,y} generated by x but z+ f ¢ k{z} since f ¢ k{z}. By the
Freiheitssatz, (x+ f) [ k{z} = 0. Note that an algebra k{z,y}/(z+ f) is generated by the
image of y+¢g. Consequently, the Poisson bracket of k{x,y}/(x+ f) is trivial. This means
that I C (z+ f)and g € I C (z+ f). Hence k{x,y}/(z+ f) is the polynomial algebra in
a single variable y and there exists a polynomial h(y) such that x —h(y) € (x+ f). Substi-
tuting x = 0, we get h(y) = 0. Therefore z € (z+ f) which contradicts the Freiheitssatz. O

This approach can be used in the case of associative algebras to prove that automor-
phisms of two generated free associative algebras in characteristic zero are tame. (They
are also tame in positive characteristic [3, 11].)

The well-known commutator test theorem says that an endomorphism ¢ of a free asso-
ciative algebra k(z, y) in two variables is an automorphism if and only if p([z, y]) = o[z, y],
where a € k*. In the case of a free Poisson algebra k{z,y} in two variables it is easy to
check that o({z,y}) = a{z,y} where a € k* for a linear or a triangular automorphism.
Then by Theorem 3 it is true for every automorphism in characteristic 0.

Theorem 4. Let k be a field of characteristic 0. Then the following statements are
equivalent:

(i) Every endomorphism o of the free Poisson algebra k{x,y} in the variables x,y with
o({z,y}) = ofx,y}, where a € k*, is an automorphism;

(i1) Every endomorphism ¢ of the polynomial algebra k[z,y] in the variables x,y with
J(p) € k*, where J(p) is the Jacobian of ¢, is an automorphism.

Proof. Let ¢ be an endomorphism of the polynomial algebra k[x,y] such that J(y) =
a € k*. Then ¢ can be uniquely extended to an endomorphism of k{z,y} since k[z,y] C
k{x,y}. Note that ¢({z,y}) = afx,y}. If (i) is true then ¢ is an automorphism of
k{x,y}. Then obviously ¢ is an automorphism of k[x,y], i. e., (i) implies (ii).
7



The opposite direction is a bit more involved. Let us choose a homogeneous linear basis

€1,€2,...,Em, ...

of the free Lie algebra g = Lie < z,y > such that e; = x,e5 = y, and e3 = {x,y}. Then
deg e; > 3 for all 1 > 4. The elements

(10) €i1€iy - - - €y 11§12§§1k

form a linear basis of k{x,y}. Asin Theorem 3, denote by I the ideal of k{x,y} generated
by {z,y}. Every element of I is a linear combination of words of the form (10) which
contain at least one e; with ¢ > 3.

Let ¢ be an endomorphism of k{x,y} such that p({z,y}) = a{x,y}, where a € k*.

f2,92 € I. Note that

(p({l’,y}) = {fa g} = {flagl} + h7 h = {flagZ} + {f27gl} + {f27g2}7

and h is a linear combination of words of the form (10) containing at least two e; with
i > 3 or one e¢; with ¢ > 4. Note also that {f1,¢1} = t{x,y} where t € k[z,y]. Therefore
the equality

e({z,y}) ={f.9} ={fuq} + h=a{z,y}

is possible if and only if {f1, g1} = a{x,y} and h = 0.
Denote by ¢ the endomorphism of k[x,y] with ¢ (z) = f; and ¥(y) = ¢1. Since

v({z,y}) = {0 = Sz, y) = ofz, ),

J(Y) = a € k*. If (ii) is true then ® is an automorphism of k[z,y] which can be extended
to an automorphism of k{x,y}.
Consider the endomorphism 6 = ¢~ of k{z,y}. Then 6({z,y}) = {z,y} and

() =x+s, 0(y) =y+t; stel.

We want to show that s =¢ = 0. Suppose that s # 0. Then s ¢ k{z} and = + s ¢ k{z}.
By the Freiheitssatz, (z + s)(k{z} = 0. In our case {x + s,y +t}) = {z,y}. Hence
{z,y} € (x+s) and I C (x + s). Therefore x =x +s—s € (r+s) + [ = (x + s) which
contradicts the Freiheitssatz. O
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