SUPPLEMENT TO "REGULAR SYSTEM OF WEIGHTS AND ASSOCIATED SINGULARITIES"

(The sum formulae for powers of exponents)

Kyoji Saito

Max-Planck-Institut für Mathematik Gottfried-Claren-Str. 26 D-5300 Bonn 3 Sonderforschungsbereich 40 Theoretische Mathematik Beringstraße 4 D-5300 Bonn 1

SFB/MPI 85-34

SUPPLEMENT TO "REGULAR SYSTEM OF WEIGHTS

AND ASSOCIATED SINGULARITIES"

(The sum formulae for powers of exponents)

Kyoji Saito

§1. STATEMENT

(1.1) Let a system of four integers $(a,b,c;h) \in \mathbb{N}$ be regular in the sence [1, (1.2) Definition], which implies that $\mu := (h-a)(h-b)(h-c)/abc$ is a positive integer and there exist μ number of integers $m_1, m_2, \ldots, m_{\mu} \in \mathbb{Z}$, called the exponents for (a,b,c;h), so that the following formula holds ([loc. cit.]):

(1.1.1)
$$T^{-h} \left(\frac{T^{h}-T^{a}}{(T^{a}-1)(T^{b}-1)(T^{c}-1)}\right) = T^{m} + T^{$$

In fact this property is equivalent for (a,b,c;h) to be regular.

(1.2) In this note we show that <u>for any positive integer</u> $k \in \mathbb{N}$ there exists a unique homogeneous polynomial $P_k(a,b,c,h) \in \mathbb{Z}[a,b,c,h]$ of degree k such that for any regular system of weights (a,b,c;h), we have,

(1.2.1)
$$\sum_{k=1}^{k} m_{i}^{k} = \frac{\mu}{(k+1)!} P_{k}(a,b,c,h) .$$

(1.3) For $1 \le k \le 7$, explicite formulae are given as follows:

$$\sum_{i=1}^{\mu} m_{i} = \frac{\mu}{2} h$$

$$\sum_{i=1}^{\mu} m_{i}^{2} = \frac{\mu}{6} h (2h - \epsilon)$$

$$\sum_{i=1}^{\mu} m_{i}^{3} = \frac{\mu}{4} h^{2} (h - \epsilon)$$

$$\sum_{i=1}^{\mu} m_{i}^{4} = \frac{\mu}{30} h (6h^{3} - 9\epsilon h^{2} + 4\epsilon^{2}h + \epsilon^{3} + 3\sigma)$$

$$\sum_{i=1}^{\mu} m_{i}^{5} = \frac{\mu}{12} h^{2} (2h^{3} - 4\epsilon h^{2} + 4\epsilon^{2}h + \epsilon^{3} + 3\sigma)$$

$$\sum_{i=1}^{\mu} m_{i}^{6} = \frac{\mu}{84} h \{12h^{5} - 30\epsilon h^{4} + 44\epsilon^{2}h^{3} - (9\epsilon^{3} - 32\sigma)h^{2} + (-12\epsilon^{4} + 10\epsilon^{2}\tau - 21\epsilon\sigma)h - 2\epsilon^{5} - 10\epsilon^{2}\sigma + 10\tau\sigma\}$$

$$\sum_{i=1}^{\mu} m_{i}^{7} = \frac{\mu}{24} h^{2} \{3h^{5} - 9\epsilon h^{4} + 16\epsilon^{2}h^{3} - (16\epsilon^{3} - 11\sigma)h^{2} + (-12\epsilon^{4} + 10\epsilon^{2}\tau - 21\epsilon\sigma)h - 2\epsilon^{5} - 10\epsilon^{2}\sigma + 10\tau\sigma\}$$

Here

$$\varepsilon := a + b + c - h$$

$$\tau := ab + bc + ca$$

$$\sigma := abc - (ab + bc + ca) (a + b + c - h)$$

$$= abc - \varepsilon \tau$$

(1.4) Note

Let E_k and \tilde{E}_k (k = 6,7,8) be regular system of weights for $\varepsilon = 1$ and $\varepsilon = 0$ ([1, Tables 1.,2.]). Due to the McKay correspondence, to each E_k certain finite subgroup of SU(2), say Γ_k , is associated. (cf.[2],[3]. compare [1,(3.4) <u>Note</u>]). The exponents $m_i(\tilde{E}_k)$ for \tilde{E}_k are the dimensions of the irreducible representations of Γ_k [loc. cit.], so that we have the formulae [],

$$\sum_{i=1}^{\mu} m_{i} (\widetilde{E}_{k}) = h(E_{k}) \qquad k = 6,7,8 \qquad$$

$$\sum_{i=1}^{\mu} m_{i} (\widetilde{E}_{k})^{2} = \#\Gamma_{k} \qquad k = 6,7,8 \qquad$$

Comparing these formulae with the corresponding ones in (1.3), we obtain following relations:

(1.4.1)
$$2h(E_k) = \mu(\widetilde{E}_k)h(\widetilde{E}_k)$$
 $k = 6,7,8$

(1.4.2)
$$\# \Gamma_k = \frac{2}{3} h(E_k) h(\widetilde{E}_k) k = 6,7,8$$

The starting points of the present note is to proof the last formulae (1.4.1), (1.4.2).

§2 PROOFS OF THE STATEMENT

(2.1) First, we prepare a Lemma.

Lemma For a positive integer $k \in \mathbb{N}$, there exists a polynomial $Q_k(a,d) \in \mathbb{Z}[a,d]$ of degree k, such that

(2.1.1)
$$\left[\left(T \frac{\partial}{\partial T} \right)^k \left(\frac{T^d - 1}{T^a - 1} \right) \right]_{T=1} = \frac{1}{(k+1)!} \frac{d}{a} Q_k(a, d)$$

for any positive integers a,d .

<u>PROOF</u> Consider a ring $R := \mathbf{Z}[a,d,T^{a},T^{d}]$ of four indeterminates a,d,T^{a},T^{d} , on which a differential operater $T\frac{\partial}{\partial T}$ is given by the relations: $T\frac{\partial}{\partial T}a = 0$, $T\frac{\partial}{\partial T}d = 0$, $T\frac{\partial}{\partial T}T^{d} = dT^{d}$, $T\frac{\partial}{\partial T}T^{a} = aT^{a}$.

By induction on k , one sees directly a formula,

(2.1.2)
$$\left(T\frac{\partial}{\partial T}\right)^{k}\left(\frac{T^{d}-1}{T^{a}-1}\right) = \frac{\sum_{i=0}^{k} \varphi_{k,i} a^{i} (T^{a})^{i} (T^{a}-1)^{k-i}}{(T^{a}-1)^{k+1}}, k=0,1,2...$$

where $\varphi_{k,i}$ is an element of the ideal I .:= Rd + R(T^d-1) of R, given by

(2.1.3)
$$\varphi_{k,i} = U_{k,i} dT^{d} + V_{k,i} a^{i-i} (T^{d}-1), 0 \le i \le k$$
.

Here $V_{k,i}$ are integers given by

(2.1.4)
$$V_{k,i} := \begin{cases} \sum_{j=0}^{i} (-1)^{j} \frac{(i-j)^{k}}{j! (i-j)!} , & 0 \le i \le k \\ 0 & \text{otherwise} \end{cases}$$

and $U_{k,i}$ are homogeneous polynomials in a and d of degree k-i-1, inductively defined as follows.

(2.1.5)
$$U_{k+1,i} = U_{k,i}(d+ia) + V_{k,i} + U_{k,i-1}$$

 $U_{k,i} = 0$ for $i \le 0$ or $i \ge k$.

If the positive integral values for a and d are given, there is a natural homomorphism $R = Z[a,d,T^{a},T^{d}] \rightarrow Z[T]$ so that the formula (2.1.2) has a natural interpretation in the ring Z[T], whose verifications are omitted here. Particularly the function $\frac{T^{d}-1}{T^{a}-1}$ and hence also the functions $\left(T\frac{\partial}{\partial T}\right)\left(\frac{T^{d}-1}{T^{a}-1}\right)$ have removable singular point at T = 1, so that they take finite values at T = 1, which can be evalueated in the following manner:

$$\left[\frac{\sum_{i=0}^{k} \varphi_{k,i} a^{i} (T^{a})^{i} (T^{a-1})^{k-i}}{(T^{a-1})^{k+1}}\right]_{T=1} = \frac{\left[\left(T\frac{\partial}{\partial T}\right)^{k+1} \sum_{i=0}^{k} \varphi_{k,i} a^{i} (T^{a})^{i} (T^{a-1})^{k-i}\right]_{T^{a}=T^{d}=1}}{\left[\left(T\frac{\partial}{\partial T}\right)^{k+1} (T^{a-1})^{k+1}\right]_{T^{a}=1}}$$

where the right hand side is defined and calculated in the ring R .

The denominater of the right hand side is $(k+1)!a^{k+1}$.

If we have shown that the numerater of the right hand is an integral polynomial in a and d of degree $\leq 2k + 1$, which is divisible by da^k, we have done the proof.

Put

$$\left(\mathbf{T} \frac{\partial}{\partial \mathbf{T}} \right)^{\mathbf{k}+1} \sum_{i=0}^{\mathbf{k}} \varphi_{\mathbf{k},i} a^{i} (\mathbf{T}^{\mathbf{a}})^{i} (\mathbf{T}^{\mathbf{a}}-1)^{\mathbf{k}-i}$$

$$= \sum_{i=0}^{\mathbf{k}} \sum_{j=0}^{\mathbf{k}+1} \left(\left(\mathbf{T} \frac{\partial}{\partial \mathbf{T}} \right)^{j} \varphi_{\mathbf{k},i} \right) a^{i} \left(\mathbf{T} \frac{\partial}{\partial \mathbf{T}} \right)^{\mathbf{k}+1-j} (\mathbf{T}^{\mathbf{a}})^{i} (\mathbf{T}^{\mathbf{a}}-1)^{\mathbf{k}-i}$$

The facts $\varphi_{k,i} \in I$, $T \frac{\partial}{\partial T} I \subset I$ and $I_{T^{a}=T^{d}=1} \subset d Z[a,d]$, imply that the numerater is divisible by d. The facts that $\left[\left(T \frac{\partial}{\partial T} \right)^{k+1-j} (T^{a})^{i} (T^{a}-1)^{k-i} \right]_{T^{a}=1}$ is 0 for $T^{a}=1$ k+1-j < k-i and is divisible by a^{k+1-j} for $k+1-j \ge k-i$, imply that the numerater is divisible by a^{k} .

Q.E.D.

(2.2) A PROOF OF (1.2.1)

Apply $\left[\left(T\frac{\partial}{\partial T}\right)^k\right]_{T=1}$ on the both sides of (1.1.1), where the right hand gives $\sum_{i=1}^{\mu} m_i^k$. Applying the (2.1) Lemma the left hand side is calculated as follows.

$$\begin{split} & \left[\left(T \frac{\partial}{\partial T} \right)^{k} \left(T^{\varepsilon} \left(\frac{T^{h-a}-1}{T^{a}-1} \right) \left(\frac{T^{h-b}-1}{T^{b}-1} \right) \left(\frac{T^{h-c}-1}{T^{c}-1} \right) \right) \right]_{T=1} = \\ & = \sum_{\substack{0 \le k_{0}, k_{1}, k_{2}, k_{3} \le k \\ k_{0} + k_{1} + k_{2} + k_{3} = k}} C_{k_{0}k_{1}k_{2}k_{3}}^{k} \left[\left(T \frac{\partial}{\partial T} \right)^{k_{0}} T^{\varepsilon} \right]_{T=1} \\ & \times \left[\left(T \frac{\partial}{\partial T} \right)^{k_{1}} \left(\frac{T^{h-a}-1}{T^{a}-1} \right) \right]_{T=1} \left[\left(T \frac{\partial}{\partial T} \right)^{k_{2}} \left(\frac{T^{h-b}-1}{T^{b}-1} \right) \right]_{T=1} \left[\left(T \frac{\partial}{\partial T} \right)^{k_{3}} \left(\frac{T^{h-c}-1}{T^{c}-1} \right) \right]_{T=1} = \\ & = \sum_{\substack{0 \le k_{0}, k_{1}, k_{2}, k_{3} \le k \\ k_{0} + k_{1} + k_{2} + k_{3} = k}} \frac{C_{k_{0}k_{1}k_{2}k_{3}}}{(k_{1}+1)!(k_{2}+1)!(k_{3}+1)!} \frac{\varepsilon^{0} (h-a) (h-b) (h-c)}{a \ b \ c} \\ & \times \end{split}$$

$$\times \frac{(h-a)(h-b)(h-c)}{abc} Q_{k_{1}}(a,h-a) Q_{k_{1}}(a,h-a) Q_{k_{2}}(b_{1}h-b) Q_{k_{3}}(c,h-c)$$

Recalling $\mu := (h-a)(h-b)(h-c)/abc$, we obtain the formula (1.2.1).

For the unicity of the polynomial $P_k(a,b,c,h)$, it is enough to see the set $\{(a,b,c,h) \in \mathbb{Z}^4 : (a,b,c;h) \text{ is a}$ regular system of weights} is Zariski dense in \mathbb{Z}^4 . But for any positive $a,b,c,t \in \mathbb{N}$, (a,b,c;tabc) is regular and the set $\{(a,b,c,tabc) : a,b,c,t \in \mathbb{N}\}$ is already Zariski dense in \mathbb{Z}^4 . The homocety transformation $(a,b,c;h) \mapsto (ta,tb,tc;th)$ for some $t \in \mathbb{N}$ leaves μ invariant but the exponents are transformed to tm_1, \ldots, tm_{μ} . Therefore

$$P_k(ta,tb,tc,th) = t^k P_k(a,b,c,h)$$

Again using the fact of Zariski denseness above, we see that P_k is a homogeneous polynomial of degree k.

(2.3) A further explicite calculations shows the formulae of (1.3), where the following duality property is strongly used.

$$\sum_{i=1}^{k} m_{i}^{k} = \sum_{i=1}^{k} (h-m_{i})^{k} = \sum_{j=0}^{k} C_{j}^{k} (-1)^{k-j} h^{j} \sum_{i=1}^{k} m_{i}^{k-j}$$

REFERENCES

- [1] K. SAITO: Regular System of Weights and Associated Singularities, to appear in the Proc. of Japan - U.S. Seminar on Singularities '84.
- [2] P. SLODOWY: Simple Singularities and Simple Algebraic Groups, Springer Lecture Note #815, Appendix III.
- [3] R. STEINBERG: Subgroups of SU₂ and Dynkin Diagrams, Preprint.