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THE HILBERT SCHEME OF HYPERELLIPTIC JACOBIANS AND MODULI OF PICARD

SHEAVES

ANDREA T. RICOLFI

ABSTRACT. Let C be a hyperelliptic curve embedded in its Jacobian J via an Abel–Jacobi map.
We compute the scheme structure of the Hilbert scheme component of HilbJ containing
the Abel–Jacobi embedding as a point. We relate the result to the ramification (and to the
fibres) of the Torelli morphism Mg →Ag along the hyperelliptic locus. As an application, we
determine the scheme structure of the moduli space of Picard sheaves (introduced by Mukai)
on a hyperelliptic Jacobian.
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0. INTRODUCTION

Main result. In this note we study the deformation theory of a smooth hyperelliptic curve C
of genus g ≥ 3, embedded in its Jacobian J = (Pic0 C ,ΘC ) via an Abel–Jacobi map

aj: C ,→ J .

We work over an algebraically closed field k . Our aim is to compute the scheme structure of
the Hilbert scheme component

HilbC /J ⊂HilbJ

containing the point defined by aj. It is well known that the embedded deformations of C into
J are parametrised by translations of C , and that they are obstructed (see the next section for
more details). In other words HilbC /J is singular, with reduced underlying variety isomorphic
to J . The tangent space dimension to the Hilbert scheme has been computed in [10, 7]. The
result is

dimk H 0(C , NC ) = 2g −2.

Therefore, as dim J = g , the non-reduced structure of HilbC /J along J is accounted for (up to
first order) by g −2 extra tangents. By homogeneity of the Jacobian, it is natural to expect a
decomposition

HilbC /J = J ×Rg

for some Artinian scheme Rg with embedding dimension g −2. As we shall see, this is precisely
what happens, and Rg turns out to be the “smallest” Artinian scheme with the required
embedding dimension. More precisely, let

(0.1) Rg = Spec k [s1, . . . , sg−2]/m
2,
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2 ANDREA T. RICOLFI

where m= (s1, . . . , sg−2) is the maximal ideal of the origin. The main result of this note is the
following.

THEOREM 1. Let C be a hyperelliptic curve of genus g ≥ 2, and let J be its Jacobian. Then
there is an isomorphism of schemes

HilbC /J
∼= J ×Rg ,

where Rg is the Artinian scheme (0.1).

Interpretation. Let Mg be the moduli stack of smooth curves of genus g , and let Ag be the
moduli stack of principally polarised Abelian varieties of dimension g . The Torelli morphism

τg : Mg →Ag

sends a curve C to its Jacobian J = Pic0 C , principally polarised by the Theta divisor ΘC . One
can interpret the Artinian scheme Rg as the fibre of τg over a hyperelliptic point [J ,ΘC ] ∈Ag .
This makes explicit the link between the ramification of τg along the hyperelliptic locus
(in other words, the failure of the infinitesimal Torelli property) and the singularities of the
Hilbert scheme HilbC /J (in other words, the obstructions to deform C in J ).

Moduli of Picard sheaves. As an application of our result, in Section 4 we compute the
scheme structure of certain moduli spaces of Picard sheaves on a hyperelliptic Jacobian J .
Mukai introduced these spaces as an application of his Fourier transform; he completed their
study in the non-hyperelliptic case [11, 12], leaving open the hyperelliptic one.

Let F be the Fourier–Mukai transform of a line bundle ξ=OC (d p0), where p0 ∈C and we
assume 1 ≤ d ≤ g − 1 to ensure that F is a simple sheaf on J . Let M (F ) be the connected
component of the moduli space of simple sheaves containing the point [F ]. Mukai proved
that M (F )red = bJ × J , the isomorphism being given by the family of twists and translations of
F [12, Example 1.15]. We prove the following.

THEOREM 2. There is an isomorphism of schemes M (F )∼= bJ × J ×Rg .

Conventions. We work over an algebraically closed field k of characteristic p 6= 2. All curves
are smooth and proper over k , and their Jacobians are principally polarised by the Theta
divisor.

1. RAMIFICATION OF TORELLI AND THE HILBERT SCHEME

In this section we provide the framework where the problem tackled in this note naturally
lives in.

1.1. Deformations of Abel–Jacobi curves. The following theorem was proved in the stated
form by Lange–Sernesi, but see also the work of Griffiths [7].

THEOREM 1.1 ([10, Theorem 1.2]). Let C be a smooth curve of genus g ≥ 3.

(i) If C is non-hyperelliptic, then HilbC /J is smooth of dimension g .
(ii) If C is hyperelliptic, then HilbC /J is irreducible of dimension g and everywhere non-

reduced, with Zariski tangent space of dimension 2g −2.

In both cases, the only deformations of C in J are translations.

The statement of Theorem 1.1 is proved over C in [10], but it holds over algebraically
closed fields k of arbitrary characteristic. To see this, we need Collino’s extension of the Ran–
Matsusaka criterion for Jacobians to an arbitrary field, which we state here for completeness.

THEOREM 1.2 ([5]). Let X be an Abelian variety of dimension g over an algebraically closed
field k . Let D be an effective 1-cycle generating X and let Θ ⊂ X be an ample divisor such
that D ·Θ = g . Then (X ,Θ, D ) is a Jacobian triple.
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Let C → Spec k be a smooth curve of genus g and fix an Abel–Jacobi map C ,→ J . Consider
the normal bundle exact sequence

0→ TC → TJ |C →NC → 0.

Since we have a canonical identification TJ |C =H 1(C ,OC )⊗C OC , the induced cohomology
sequence is

(1.1) 0→H 1(C ,OC )→H 0(C , NC )
∂→H 1(C , TC )

σ→H 1(C ,OC )
⊗2.

Since H 0(C , NC ) is the tangent space to the Hilbert scheme, it is clear that HilbC /J is smooth
of dimension g if and only if ∂ = 0, if and only ifσ is injective. The mapσ factors through
the subspace Sym2 H 1(C ,OC ), and its dual is the multiplication map

µC : Sym2 H 0(C , KC )→H 0(C , K 2
C ),

where KC is the canonical line bundle of C . By a theorem of Max Noether [2, Chapter III
§ 2], the map µC is surjective if and only if C is non-hyperelliptic (see also [7, 1] for different
proofs). If C is hyperelliptic, the quotient H 0(C , NC )/H 1(C ,OC ) = Im ∂ has dimension g −2,
as shown directly in [14, Section 2] by choosing appropriate bases of differentials. This proves
part (i) of Theorem 1.1, along with the count h 0(C , NC ) = 2g −2 (and the non-reducedness
statement) of part (ii). So in the non-hyperelliptic case, HilbC /J is isomorphic to J , the family
of translations.

To finish the proof of part (ii), suppose C is hyperelliptic, and let D ⊂ J be a closed 1-
dimensional k -subscheme defining a point of HilbC /J . Then D is represented by the minimal
cohomology class

Θ
g−1
C

(g −1)!
on J . This implies at once that D generates J , and that D ·ΘC = g . Therefore, by Theorem 1.2,
(Pic0 D ,ΘD ) and (J ,ΘC ) are isomorphic as principally polarised Abelian varieties. By Torelli’s
theorem, this implies (using also that C is hyperelliptic) that D is a translate of C . Thus
HilbC /J is irreducible of dimension g , and its k -points coincide with those of J . Theorem 1.1
follows, over a field of arbitrary characteristic.

Remark 1.3. If C is a generic curve of genus at least 3, its 1-cycle on J is not algebraically
equivalent to the cycle of −C by a famous theorem of Ceresa [4]. Here −C is the image of C
under the automorphism −1: J → J . Therefore the Hilbert scheme HilbJ contains another
component Hilb−C /J , disjoint from HilbC /J and still isomorphic to J .

1.2. Torelli problems. Consider the Torelli morphism

τg : Mg →Ag

from the stack of nonsingular curves of genus g to the stack of principally polarised Abelian
varieties, sending a curve to its (canonically polarised) Jacobian. The infinitesimal Torelli
problem asks whether the Torelli morphism is an immersion. It is well known that τg is
ramified along the hyperelliptic locus: this is again Noether’s theorem, stating that µC , the
codifferential of τg at [C ] ∈Mg , is not surjective. So, even though τg is injective on geometric
points by Torelli’s theorem, it is not an immersion.1

To sum up, we have the following. Let C be an arbitrary smooth curve of genus g ≥ 3, and
let J be its Jacobian. Then the following conditions are equivalent:

(i) C is hyperelliptic,
(ii) HilbC /J is singular at [aj: C ,→ J ],

(iii) the embedded deformations of C into J are obstructed,
(iv) τg : Mg →Ag is ramified at [C ],
(v) infinitesimal Torelli fails at C .

1Note, however, that since the image of µC has dimension g −2, the restriction of τg to the hyperelliptic locus is

an immersion.
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The local Torelli problem for curves, studied by Oort and Steenbrink in [14], asks whether
the morphism

tg : Mg → Ag

between the coarse moduli spaces is an immersion. These schemes do not represent the
corresponding moduli functors, so the local structure of tg is not (directly) linked with defor-
mation theory of curves and their Jacobians. However, introducing suitable level structures,
one replaces the normal varieties Mg and Ag with smooth varieties

M (n )
g , A(n )g

that are fine moduli spaces for the corresponding moduli problem, and are étale over Mg

and Ag , respectively.
Let p ≥ 0 be the characteristic of the base field. Oort and Steenbrink show that tg is an

immersion if p = 0. The answer to the local Torelli problem is also affirmative if p > 2, at almost
all points of Mg . More precisely, tg is an immersion at those points in Mg representing curves
C such that Aut C has no elements of order p [14, Cor. 3.2]. Finally, tg is not an immersion if
p = 2 and g ≥ 5 [14, Cor. 5.3].

2. MODULI SPACES WITH LEVEL STRUCTURES

In this section we introduce the moduli spaces of curves and Abelian varieties we will be
working with throughout.

2.1. Level structures. Let S be a scheme. An Abelian scheme over S is a group scheme X → S
which is smooth and proper and has geometrically connected fibres. We let ÒX → S denote
the dual Abelian scheme. A polarisation on X → S is an S-morphism λ: X → ÒX such that its
restriction to every geometric point s ∈ S is of the form

φL : X s → ÒX s , x 7→ t∗xL ⊗L
∨,

for some ample line bundleL on X s . Here and in what follows, tx is the translation y 7→ x + y
by the element x ∈ X s . We say λ is principal if it is an isomorphism.

Fix an integer n > 0 and an Abelian scheme X → S of relative dimension g . Multiplication
by n is an S-morphism of group schemes

[n ]: X → X ,

and we denote its kernel by Xn . Assuming n is not divisible by p , we have that Xn is an étale
group scheme over S , locally isomorphic in the étale topology to the constant group scheme
(Z/nZ)2g . One has ÒXn = X D

n , where the superscript D denotes the Cartier dual of a finite
group scheme. Then any principal polarisation λ on X induces a skew-symmetric bilinear
form

En : Xn ×S Xn
id×λ−−→ Xn ×S X D

n

en−→µn ,

where en is the Weil pairing. The group Z/nZ is Cartier dual to µn . We endow (Z/nZ)g e→µg
n

with the standard symplectic structure, given by the 2g ×2g matrix
�

0 1g

−1g 0

�

.

Definition 2.1 ([14]). A (symplectic) level-n structure on a principally polarised Abelian
scheme (X /S ,λ) is a symplectic isomorphism

α: (Xn , En ) e→ (Z/nZ)2g .

A level-n structure on a smooth proper curve C → S is a level structure on its Jacobian
Pic0(C/S )→ S .

For later purposes, we need to strengthen the condition (p , n ) = 1 by making the following:
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Assumption 1. Having fixed p = chark and the genus g , we choose n ≥ 3 such that the order
of the symplectic group

|Sp(2g ,Z/nZ)|= n g 2
·

g
∏

i=1

(n 2i −1)

is not divisible by p . In particular, (p , n ) = 1. The assumption implies that the symplectic
group Sp(2g ,Z/nZ) acts freely and transitively on the set of symplectic level-n structures on
a smooth curve defined over k .

Curves with level structure are represented by pairs (C ,α). We consider (C ,α) and (C ′,α′) as
being isomorphic if there is an isomorphism u : C e→C ′ such that the induced isomorphism
J (u ): J e→ J ′ between the Jacobians takes α to α′. An isomorphism between (X ,λ,α) and
(X ′,λ′,α′) is an isomorphism (X ,λ) e→ (X ′,λ′) of principally polarised Abelian schemes, taking
α to α′.

Remark 2.2. If C is a curve of genus g ≥ 3 with trivial automorphism group, and α is a
level structure on C , then (C ,α) is not isomorphic to (C ,−α). On the other hand, if J de-
notes the Jacobian of C , one has that (J ,ΘC ,α) and (J ,ΘC ,−α) are isomorphic, because the
automorphism −1: J → J , defined globally on J , identifies the two pairs.

2.2. Moduli spaces. LetM (n )
g be the functor Schop

k → Sets sending a k -scheme S to the set

of S-isomorphism classes of curves of genus g with level-n structure. Similarly, letA (n )
g be

the functor sending S to the set of S-isomorphism classes of principally polarised Abelian
schemes of relative dimension g over S equipped with a level-n structure.

THEOREM 2.3. If n ≥ 3 and (p , n ) = 1, the functorsM (n )
g andA (n )

g are represented by smooth

quasi-projective varieties M (n )
g and A(n )g of dimensions 3g −3 and g (g +1)/2 respectively.

Proof. For the statement aboutM (n )
g we refer to [15], whereas the one about A (n )

g is [13,
Theorem 7.9]. �

Consider the morphism

(2.1) jn : M (n )
g → A(n )g

sending a curve with level structure to its Jacobian, as usual principally polarised by the Theta
divisor. The map jn is generically of degree two onto its image, essentially because of Remark
2.2. To link it back to tg : Mg → Ag , Oort and Steenbrink form the geometric quotient

V (n ) =M (n )
g /Σ,

where

(2.2) Σ: M (n )
g →M (n )

g

is the involution sending [D ,β ] 7→ [D ,−β ]. Note that Σ is the identity if g ≤ 2. The map jn

factors through a morphism

ι : V (n )→ A(n )g ,

which turns out to be injective on geometric points [14, Lemma 1.11]. In fact, we need the
following stronger statement.

THEOREM 2.4 ([14, Theorem 3.1]). If g ≥ 2 and char k 6= 2 then ι is an immersion.

Oort and Steenbrink use this result crucially to solve the local Torelli problem as we recalled
in Section 1.2. For us, it is not important to have the statement of local Torelli (which strictly
speaking only holds globally in characteristic 0): all we need in our argument is Theorem 2.4,
which is why we assumed k has characteristic p 6= 2.

The following result was proven in [6, Prop. 5.8] in greater generality. We give a short proof
here for the sake of completeness.
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LEMMA 2.5. The maps ϕ : M (n )
g →Mg and ψ: A(n )g → Ag forgetting the level structure are

étale.

Proof. We start by showing that ϕ is flat. Choose an atlas for Mg , that is, an étale surjective
map a : U →Mg from a scheme. Form the fibre square

V M (n )
g

U Mg

�

←→b

←→ ←→ ϕ

←→a

and pick a point u ∈U , with image y = a (u ) ∈Mg . The fibre Vu ⊂V is contained in b −1ϕ−1(y ),
which is étale over ϕ−1(y ) because b is étale. In particular, since ϕ−1(y ) is finite, the same is
true for Vu . Therefore V →U is a map of smooth varieties with fibres of the same dimension
(zero); by “miracle flatness” [8, Prop. 15.4.2], it is flat; therefore ϕ is flat. On the other hand,
the geometric fibres of ϕ are the symplectic groups Sp(2g ,Z/nZ), and they are reduced by
Assumption 1. Henceϕ is smooth of relative dimension zero, that is, étale. The same argument
applies to the mapψ, with the symplectic group replaced by Sp(2g ,Z/nZ)/±1. �

Note that the maps M (n )
g →Mg and A(n )g → Ag down to the coarse moduli schemes are still

finite Galois covers, but they are not étale.
By the lemma, we can identity the tangent space to a point [C ,α] ∈M (n )

g with the tangent
space to its image [C ] ∈Mg underϕ, and similarly on the Abelian variety side. Moreover, the
cartesian diagram

(2.3)

M (n )
g A(n )g

Mg Ag

�

←→
jn

←→ϕ ←→ ψ
←→τg

allows us to identify the map

σ : H 1(C , TC )→ Sym2 H 1(C ,OC ),

already appeared in (1.1), with the tangent map of jn at a point [C ,α]. As we already men-
tioned, in [14, Section 2] it is shown that if C is hyperelliptic the kernel ofσ has dimension
g −2. In particular, the restriction of jn to the hyperelliptic locus is an immersion.

3. PROOF OF THE MAIN THEOREM

Let C be a hyperelliptic curve of genus g ≥ 3 and let J be its Jacobian. Fix an Abel–Jacobi
embedding C ,→ J and let

H ..=HilbC /J

be the Hilbert scheme component containing such embedding as a point. Let

Z H × J

H

←- →ι

←→ ←→

pr1

be the universal family over the Hilbert scheme.

LEMMA 3.1. The restriction morphism

ι∗ : Pic0(H × J /H )→ Pic0(Z/H )
is an isomorphism of Abelian schemes over H .

Proof. We use the critère de platitude par fibres [8, Théorème 11.3.10] in the following special
case: suppose given a scheme S and an S-morphism f : X → Y such that: (a) X /S is finitely
presented and flat, (b) Y /S is locally of finite type, and (c) fs : X s → Ys is flat for each s ∈ S .
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Then f is flat. Applying this to (S , f ) = (H , ι∗), we conclude that ι∗ is flat. But Pic0(H × J /H )
is isomorphic, over H , to the constant Abelian scheme H × J , and ι∗ is an isomorphism
on each fibre over H . Therefore it is a flat, unramified and bijective morphism, hence an
isomorphism. �

Let α be a fixed level-n structure on J , with n ≥ 3 and (p , n ) = 1. Form the constant level
structure αH on the Abelian scheme H × J → H . Transferring the level structure αH from
H × J to Pic0(Z/H ) using the isomorphism ι∗ of Lemma 3.1, we can now regard Z→H as
a family of Abel–Jacobi curves with level-n structure. Since M (n )

g is a fine moduli space for
these objects, we obtain a morphism

(3.1) f : H →M (n )
g .

Note that the topological image of f is just the point x ∈M (n )
g corresponding to [C ,α]. The

tangent map d f at the point [C ] ∈H is the connecting homomorphism

∂ : H 0(C , NC )→H 1(C , TC ),

already appeared in (1.1).
Our next goal is to view the Hilbert scheme H over a suitable Artinian scheme Rg . Recall

the Torelli type morphism jn introduced in (2.1). We define

Rg ⊂M (n )
g

to be the scheme-theoretic fibre of jn over the moduli point [J ,α] ∈ A(n )g . Let y ∈V (n ) be the
image of the point x = [C ,α] under the quotient map

M (n )
g →V (n ) =M (n )

g /Σ,

where Σ is the involution first appeared in (2.2). During the proof of [14, Cor. 3.2] it is shown
that one can choose local coordinates t1, . . . , t3g−3 around x such thatΣ∗ti = ti if i = 1, . . . , 2g −
1 and Σ∗ti =−ti if i = 2g , . . . , 3g −3. Oort–Steenbrink deduce that

(3.2) ÒOy = ÒO Σx = kJt1, . . . , t2g−1, t 2
2g , t2g t2g+1, . . . , t 2

3g−3K.

Since we have a factorisation
jn : M (n )

g →V (n )
ι
,→ A(n )g

where ι is an immersion by Theorem 2.4, we deduce from (3.2) that

Rg = Spec k [s1, . . . , sg−2]/m
2,

wherem= (s1, . . . , sg−2)⊂ k [s1, . . . , sg−2]. For instance, R3 is the scheme of dual numbers k [s ]/s 2,
and if g = 4 we get the triple point k [s , t ]/(s 2, s t , t 2).

Recall the cohomology sequence

(3.3) 0→H 1(C ,OC )→H 0(C , NC )
∂→H 1(C , TC )

σ→H 1(C ,OC )
⊗2,

where σ factors through Sym2 H 1(C ,OC ), the tangent space of Ag at [J ,ΘC ]. Since C is hy-
perelliptic, the image of ∂ has dimension g −2> 0. In other words, the differential ∂ = d f ,
where f was defined in (3.1), does not vanish at the point [C ] ∈ H . Thus f is not scheme-
theoretically constant, although x = [C ,α] ∈M (n )

g is the only point in the image. On the other
hand, the composition

jn ◦ f : H →M (n )
g → A(n )g

is the constant morphism since its differential is identically zero. Indeed the composition

σ ◦ ∂ : H 0(C , NC )→H 1(C , TC )→ Sym2 H 1(C ,OC )

vanishes by exactness of (3.3). So the image point [J ,α] does not deform even at first order,
and we conclude that f factors through the scheme-theoretic fibre of jn . This gives us a
morphism

(3.4) π: H →Rg .

We will exploit the following technical lemma.
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LEMMA 3.2 ([9, Lemma 1.10.1]). Let R be the spectrum of a local ring, p : U →V a morphism
over R , with U →R flat and proper. If the restriction p0 : U0→V0 of p over the closed point
0 ∈R is an isomorphism, then p is an isomorphism.

Recall that J = Hred, so we have a closed immersion J ,→ H (with empty complement).
Consider the closed point 0 ∈ J corresponding to C . Let us fix a regular sequence f1, . . . , fg in

the maximal ideal of OJ ,0. Choose lifts efi ∈OH ,0 along the natural surjection OH ,0�OJ ,0, for
i = 1, . . . , g . Then we consider the zero scheme

i : Sg = Z ( ef1, . . . , efg ) ,→H ,

an Artinian scheme supported at 0 ∈H . We next show that the composition

(3.5) ρ =π ◦ i : Sg ,→H →Rg

is an isomorphism, where π is defined in (3.4). The following lemma is elementary, and its
proof is omitted.

LEMMA 3.3. Let `: k [x1, . . . , xd ]/m2� B be a surjection of local Artin k -algebras such that the
differential d` is an isomorphism. Then ` is an isomorphism.

LEMMA 3.4. The tangent map dρ : TSg
→ TRg

is an isomorphism.

Proof. The kernel of H 1(C , TC )→ H 1(C ,OC )⊗2, which can be identified with the image of
∂ : H 0(C , NC )→H 1(C , TC ), is the tangent space TRg

to the Artinian scheme Rg , as the latter is
by definition the fibre of jn . We then have a direct sum decomposition T0H = T0 J ⊕TRg

. The
intersection of Sg and J inside H is the reduced origin 0 ∈ J , so the linear subspace TSg

⊂ T0H
intersects T0 J trivially, which implies that the tangent map

dρ : TSg
⊂ T0 J ⊕TRg

→ TRg

is injective. On the other hand, the inclusion TSg
⊂ T0H is cut out by independent linear

functions, again because TSg
∩ T0 J = (0). It follows that the linear inclusion TSg

⊂ T0H has
codimension equal to dim T0 J = g , thus

dim TSg
= dim T0H − g = g −2= dim TRg

.

The claim follows. �

COROLLARY 3.5. The map ρ : Sg →Rg of (3.5) is an isomorphism.

Proof. The map ρ is proper, injective on points and, by Lemma 3.4, injective on tangent
spaces. Then it is a closed immersion; in fact, by Lemma 3.4 again, it is an isomorphism on
tangent spaces, so by Lemma 3.3 it is an isomorphism. �

The corollary yields a section of π,

s = i ◦ρ−1 : Rg e→Sg ,→H ,

which finally allows us to prove the main result of this note.

THEOREM 3.6. Let C he a hyperelliptic curve of genus g ≥ 2, and let J be its Jacobian. Then
there is an isomorphism of schemes

J ×Rg e→H .

Proof. If g = 2, the Hilbert scheme is nonsingular because the connecting homomorphism
∂ : H 0(C , NC )→H 1(C , TC ) in (1.1) vanishes. If g ≥ 3, consider the translation action µ: J ×
H →H by J on the Hilbert scheme and the composition

J ×Rg

idJ×s
,−−→ J ×H

µ
−→H ,

viewed as a morphism over the Artinian scheme Rg . Since it restricts to the identity idJ over
the closed point of Rg , by Lemma 3.2 it must be an isomorphism. �



HILBERT SCHEME OF HYPERELLIPTIC JACOBIANS AND PICARD SHEAVES 9

Remark 3.7. The cartesian square (2.3) allows one to identify Rg with the fibre of the Torelli
morphism τg : Mg →Ag over a hyperelliptic point

[J ,ΘC ] ∈Ag .

Therefore, understanding the ramification (the fibres) of the Torelli morphism is equivalent
to understanding the singularities of the Hilbert scheme, and these are controlled by the
Artinian scheme Rg .

3.1. Donaldson–Thomas invariants for Jacobians. Let C be a smooth complex projective
curve of genus 3. One can study the “C -local Donaldson–Thomas invariants” of the Abelian
3-fold J = Pic0 C . As explained in [16], these invariants are completely determined by the
“BPS number” of the curve,

nC = νH (IC ) ∈Z,

in the sense that their generating function is equal to the rational function

nC ·q−2(1+q )4.

Here νH : HilbC /J →Z is the Behrend function of the Hilbert scheme. The Behrend function
attached to a general C-scheme X is an invariant of the singularities of X . It was introduced
in [3] and is now a key tool in Donaldson–Thomas theory. For a smooth scheme Y one has
that νY is the constant (−1)dim Y , and moreover νX×Y = νX ·νY for two complex schemes X
and Y . While for non-hyperelliptic C we have nC =−1 (because the Hilbert scheme is a copy
of the smooth 3-fold J ), the structure result

HilbC /J = J ×Spec C[s ]/s 2

in the hyperelliptic case yields nC =−2, because the scheme of dual numbers has Behrend
function νR3

= 2.

4. AN APPLICATION TO MODULI OF PICARD SHEAVES

Mukai introduced in [11] his celebrated Fourier transform, and gave an application to the
moduli space of Picard sheaves on Jacobians of curves. We now review his results on non-
hyperelliptic Jacobians and extend them to the hyperelliptic case. We let Φ: Db ( bJ )→Db (J )
be the Fourier transform with kernel the Poincaré line bundleP ∈ Pic( bJ × J ).

If bp: bJ × J → bJ and p: bJ × J → J are the projections, by definition one has

Φ(E ) =Rp∗(bp
∗E ⊗P ).

We will denote by Φi (E ) the i -th cohomology sheaf of the complex Φ(E ).
Let p0 ∈ C be a point on a smooth curve of genus g ≥ 2. Let us form the line bundle

ξ=OC (d p0). From now on we view it as a sheaf on bJ by pushing it forward along the Abel–
Jacobi map aj: C ,→ J followed by the identification of J with its dual. Applying his Fourier
transform, Mukai constructs

(4.1) F =Φ1(aj∗ξ),

a Picard sheaf of rank g −d −1 living on J . Assume 1≤ d ≤ g −1, so that by [11, Lemma 4.9]
we know that F is simple (that is, EndOJ

(F ) = k ), and

(4.2) dim Ext1
OJ
(F, F ) =

¨

2g if C is not hyperelliptic

3g −2 if C is hyperelliptic.

Let SplJ be the moduli space of simple coherent sheaves on J , and let M (F ) ⊂ SplJ be the
connected component containing the point corresponding to F . It is shown in [11, Theorem
4.8] that if g = 2 or C is non-hyperelliptic, the morphism

(4.3) f : bJ × J →M (F ), (η, x ) 7→ t∗x F ⊗Pη,

is an isomorphism. By (4.2), the space M (F ) is reduced precisely when C has genus 2 or is
non-hyperelliptic. For C hyperelliptic, f turns out to be an isomorphism onto the reduction
M (F )red (M (F ), as Mukai showed in [12, Example 1.15].



10 ANDREA T. RICOLFI

Remark 4.1. The moduli space M (F ) is a priori only an algebraic space. But an algebraic
space is a scheme if and only if its reduction is a scheme. Therefore M (F ) is a scheme because
of the isomorphism bJ × J =M (F )red.

The following result, which can be seen as a corollary of Theorem 3.6, completes the study
of Picard sheaves on Jacobians considered by Mukai, namely those of rank g −d −1, with
d ≤ g −1.

THEOREM 4.2. Let C be a hyperelliptic curve of genus g ≥ 2. Let J be its Jacobian and F a
Picard sheaf as above. Then, as schemes,

M (F ) = bJ × J ×Rg .

Proof. The case g = 2 is already covered by Mukai’s tangent space calculation. By Theorem
3.6, it is enough to exhibit an isomorphism bJ ×H e→M (F ), where as usual H ⊂HilbJ is the
Hilbert scheme component containing the Abel–Jacobi point [C ]. We will do this by extending
the morphism (4.3) defined by Mukai, that is, completing the diagram

(4.4)

bJ × J M (F )red

bJ ×H M (F )

←→∼

←
-

→ ←
-

→

←→
φ

and showing that the extensionφ is an isomorphism. Let

Z
ι
,−→H × J →H

be the universal family of the Hilbert scheme, where ι is the universal Abel–Jacobi map,
restricting to aj ◦ t−x : tx C →C ,→{x }× J over a point x ∈H . We now construct a sectionσ
of Z→H restricting to the divisor d p0 on C (in other words: a “universal” version of ξ). If
q : H → J denotes the projection (forgetting the non-reduced structure) and u : J → J is the
composition td p0

◦ [d ], the sectionσ is simply the map

σ : H
(1H ,q )
−−−→H × J

1H×u
−−−→H × J , x 7→ (x , d (x +p0)),

clearly landing inside Z . LetL =OZ (σ) be the associated line bundle on the total space Z .
Then, by construction, restrictingL to a fibre of Z→H we get

(4.5) L |tx C =Otx C (d (x +p0)) = t
∗
−xξ.

If we consider the pushforward ι∗L to H × J , using (4.5) it is clear that

(4.6) (ι∗L )|x×J = (aj ◦ t−x )∗(L |tx C ) = aj∗ξ.

Note thatL is flat over H (because Z→H is flat), therefore the same is true for ι∗L . Since
taking the Fourier–Mukai transform commutes with base change, (4.6) yields

(4.7) Φ1(ι∗L )|x×J =Φ
1(aj∗ξ) = F.

Now we consider the following diagram:

( bJ × J )× J (J × J )× J J × J J

bJ × J ( bJ ×H )× J (J ×H )× J H × J

←
-→ i

←→∼

←
-

→

←→
m×idJ

←
-

→
←→

pr1

←→∼←→

pr13 ←→
µ×idJ

where m and µ are the translation actions by J on J and H respectively. The Fourier–Mukai
transform Φ1(ι∗L ) lives on H × J and is flat over H , by flatness of ι∗L . By (4.7), we know that
the families of sheaves Φ1(ι∗L )|J×J and pr∗1F (both flat over J ) define the same morphism
J →M (F ), namely the constant morphism hitting the point [F ]. Since Mukai’s morphism
bJ × J →M (F ), defined in (4.3), corresponds (after identifying J with its dual) to the family of
sheaves

(m × idJ )
∗pr∗1F ⊗ (pr13 ◦ i )∗P ,
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it follows that the family
(µ× idJ )

∗Φ1(ι∗L )⊗pr∗13P
defines an extension φ : bJ ×H → M (F ), completing diagram (4.4). We know that φ is an
isomorphism around [ξ] 7→ [F ]. Indeed,φ is precisely the morphism constructed by Mukai
in [12, Prop. 1.12], where he proves that M (ξ) and M (F ) are isomorphic along a Zariski open
subset. The construction is homogeneous, in the sense thatφ does not depend on the initial
point [ξ] ∈M (ξ). Thereforeφ is globally an isomorphism, as claimed. �

Remark 4.3. The connected component M (ξ) of the moduli space of simple sheaves contain-
ing the point [ξ] is the relative Picard variety Picd (Z/H ), which can be identified with bJ ×H
by Lemma 3.1. It is possible to adapt the proof of [12, Prop. 1.12] to show that the birational
map

Picd (Z/H ) ¹¹ËM (F )
is everywhere defined (and an isomorphism), giving an immediate proof of Corollary 4.2. We
preferred to present the argument above, because the construction makes the isomorphism
φ : bJ ×H →M (F ) arise directly, as a “thickening” of Mukai’s isomorphism bJ × J →M (F )red.
Moreover the argument makes explicit use of (the properties of) the Fourier–Mukai transform.
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