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Let T ∈ R, {∆, m, n} ∈ N,∆ ≥ 2, Km = Q[exp(2πi/m)] is a cyclotomic
field, ZKm is the ring of all the integers inKm, Λ(n) is the Mangold’s function,
ε2 = ε. Let Λ0(m) = 0, if m is odd and Λ0(m) = Λ(m/2), if m is even. Let
ω1(m) = (m − 1)/2, if m is odd, ω1(m) = m/2 − 2, if m ≡ 2( mod 4) and
ω1(m) = m/2 − 1, if m ≡ 0( mod 4). Let

w∆(T ) =

√
√

(∆2(3 − T 2) + 1)2 + 16∆4T 2 + ∆2(3 − T 2) + 1

2
,(1)

V ∗
∆ = (∆ + 1) + log((∆ − 1)(∆−1)/2(∆ + 1)(∆+1)/2∆−∆) +(2)

π

2

1∑

µ=0

(1 − 2µ)

[(d−1)/2]+µ
∑

κ=1

cot

(
πκ

d− 1 + 2µ

)

,

V∆(m) = V ∗ + (∆ + 1)Λ0(m)/φ(m),(3)

l∆(ε, T ) = −log
(
4(∆ + 1)∆+1(1 − 1/∆)(∆−1)

)
+(4)

1
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1

2
log

(

(2∆ + (−1)εw∆(T ) + (∆ + 1))2 + T 2∆2

(

1 +
(−1)ε2∆

w∆(T )

)2
)

+

1

2
log

(

(2∆ + (−1)εw∆(T ) − (∆ + 1))2 + T 2∆2

(

1 +
(−1)ε2∆

w∆(T )

)2
)

+

(∆ − 1)

2
log

(

(2∆ + (−1)εw∆(T ))2 + T 2∆2

(

1 +
(−1)ε2∆

w∆(T )

)2
)

,

g∆,ε(m) = (−1)ε(l∆(ε, tan(πω1(m)/m) + V∆(m))),(5)

h∆(m) = −V∆(m) − l∆(1, tan(π/m)),(6)

where m 6= 2, k = 0, 1. Let

β(∆, m) = gd,0(m)/h∆(m), α(∆, m) = β(∆, m) − 1 + g∆,1(m)/h∆(m).

Theorem. Let m ∈ N�{1, 2, 6}∆ ∈ {5, 7}. Then

h∆(m) > 0(7)

and for each ε > 0 there exists C∆,m(ε) > 0 such that

max
σ∈Gal(K/Q)

(|qσ log((2 + exp(2πi/m))σ) − pσ|) ≥(8)

C∆,m(ε)( max
σ∈Gal(Km/Q)

(|qσ|)−α(∆,m)−ε,

where p ∈ ZKm and q ∈ ZKm�{0Km}; moreover, for any q ∈ ZKm�{0Km}
and any ε > 0 there exists C∗

∆,m(q, ε) > 0 such that

bβ(∆,m)+ε max
σ∈Gal(K/Q)

(|qσb log((2 + exp(2πi/m))σ) − pσ|) ≥(9)

C∗
∆,m(q, ε),

where p ∈ ZKm , b ∈ N.
For the proof I use the same method, as in [37] – [67]. I work on the

Riemann surface F of the function Log(z) and identify it with the direct
product of the multiplicative group R∗

+ = {r ∈ R : r > 0} of all the positive
real numbers with the operation ×, not to be written down explicitly as
usual, and the additive group R of all the real numbers, so that

z1z2 = (r1r2, φ1 + φ2)
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for any two points z1 = (r1, φ1) and z2 = (r2, φ2) on F. I will illustrate
the appearing situations on the half plain (φ, r), where r > 0.

For each z = (r, φ) ∈ F, let

θ0(z) = r exp iφ, Log(z) = ln(r) + iφ, η∗α(z) = (r, φ− α),

where α ∈ R. Clearly, Log(z1z2) = Log(z1) + Log(z2) for any z1 ∈ F z2 ∈ F.
Let ρ(z1, z2) = |Log(z1) − Log(z2)|, where z1 ∈ F and z2 ∈ F; clearly, (F, ρ)
is a metric space. Clearly, ρ(zz1, zz2) = ρ(z1, z2) for any z1, z2 and z in F.
Clearly, θ0(z) = exp(Log(z)) for any z ∈ F. Clearly, for any α ∈ R the map
z → η∗α(z) is the bijection of F onto F and

θ0((η
∗
α)m(z)) = exp(−imα)θ0(z)

for each z = (r, φ) ∈ F, α ∈ R and m ∈ Z. Clearly, the group F may be
considered as C-linear space, if for any z ∈ F and any s ∈ C we let

zs = (| exp(sLog(z))|,=(sLog(z)).

Let us fix a domain D in F. Let f(z) = f∧(r, φ) for a complex-valued function
f(z) on D, It is well known that f(z) is holomorphic in D if the complex-
valued function f∧(r, φ) of two real variables r and φ has continuous partial
derivatives in D, and the Cauchy-Riemann conditions

r(((∂/∂r)f∧)(r, φ)) = −i((∂/∂φ)f∧)(r, φ)) :=(10)

(δf)(z) := θ0(z)((∂/∂z)f)(z))

are satisfied for every point z = (r, φ) ∈ D. The equalities (10) determine a
differentiations ∂

∂z
and δ = θ0(z)

∂
∂z

on the ring of all the holomorphic in the
domain D functions. In particular, the function Log(z) is holomorphic on F

and we have the equalities

((∂/∂z)Log) (z) = θ0(z
−1), (δLog)(z) = 1.

For the proof I use the functions of C.S.Mejer. Let ∆ ∈ N + 1, δ0 = 1/∆,

γ1 = (1 − δ0)/(1 + δ0), dl = ∆ + (−1)l, l = 1, 2.

To introduce the first of my auxiliary function f1(z, ν), I use the auxiliary
set

Ω0 = {z ∈ F : |z| ≤ 1}.
I prove that, for each ν ∈ N, the function f1(z, ν) belongs to the ring Q[θ0(z)];
therefore using the principle of analytic continuation we may regard it as
being defined in F. For ν ∈ N, let

f1(z, ν) = −(−1)ν(∆+1)G
(1,1)
2,2

(

z

∣
∣
∣
∣

−νd1, 1 + νd2

0, ν

)

(11)

= −(−1)ν(∆+1) 1

2πi

∫

L1

g
(1,1)
2,2 (s)ds,
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where

g
(1,1)
2,2 (s) = θ0(z

s)Γ(−s)Γ(1 + d1ν + s)/(Γ(1 − ν + s)Γ(1 + d2ν − s))

and the curve L1 passes from +∞ to +∞ encircling the set N − 1 in the
negative direction, but not including any point of the set −N. So, for the
parameters of the Meyer’s functions we have

p = q = 2, m = n = 1, a1 = −νd1, a2 = 1 + νd2, b1 = 0, b2 = ν,

∆∗ =

(
q
∑

k=1

bk

)

−
p
∑

j=1

aj = −ν − 1 < −1,

and, since we take |z| ≤ 1, convergence conditions of the integral in (11)
hold. To compute the function f1(z, ν), we use the following formula

G = (−1)k
∑

s∈Sk

Res(g; s),(12)

where k = 1, G denotes the integral (11) with L = Lk, g denotes the inte-
grand of the integral (11), Sk denotes the set of all the unremovable singular-
ities of g encircled by Lk, and Res(g; s) denotes the residue of the function
g at the point s. Then we obtain the equlity

f1(z, ν) =

(νd1)!/(ν∆)!zν(−1)ν∆

ν∆∑

k=0

(−θ0(z))
k

(
ν∆

k

)(
ν∆ + k

νd1

)

.

Therefore, as it has been already remarked, using the principle of analytic
continuation we may regard it as being defined in F. Let

Ω1 = {z ∈ F : |z| ≥ 1}.

Now, let me introduce my second auxiliary function defined for z ∈ Ω1. For
ν ∈ N, let

f2(z, ν) = −(−1)ν(∆+1)G
(2,1)
2,2

(

z

∣
∣
∣
∣

−νd1, 1 + νd2

0, ν

)

=(13)

−(−1)ν(∆+1) 1

2πi

∫

L2

g
(2,1)
2,2 (s)ds,

where

g
(2,1)
2,2 (s) = θ0((ηπ(z))s)Γ(−s)Γ(ν − s)Γ(1 + d1ν + s)/Γ(1 + d2ν − s).

and the curve L2 passes from −∞ to −∞ encircling the set −N in the positive
direction, but not including any point of the set N−1. So, for the parameters
of the Meyer’s functions we have

p = q = m = 2, n = 1, a1 = −νd1, a2 = 1 + νd2, b1 = 0, b2 = ν,
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∆∗ =

(
q
∑

k=1

bk

)

−
p
∑

j=1

aj = −nu− 1 < −1,

and, since we take |z| ≥ 1, convergence conditions of the integral in (13) hold.
To compute the function f2(z, ν), we use the formula (12) where k = 2, G
denotes the integral in (13) with L = Lk, g denotes the integrand of the
integral in (13), Sk denotes the set of all the unremovable singularities of g
encircled by Lk, and Res(g; s) denotes the residue of the function g at the
point s. Then we obtain the equality

f2(z, ν)(ν∆)!/(νd1)! = (−1)ν
∞∑

t=ν+1

R0(t; ν)θ0(z
−t+ν),(14)

where

R0(t; ν) = (ν∆)!/(νd1)!

(
ν∆∏

κ=ν+1

(t− κ)

)
ν∆∏

κ=0

(t+ κ)−1.

Let further

f ∗
k (z, ν) = fk(z, ν)(ν∆)!/(νd1)!,(15)

where k = 1, 2. Expanding the function R0(t; ν) into partial fractions, we
obtain the equality

R0(t; ν) =

ν∆∑

k=0

α∗
ν,k/(t+ k)

with

α∗
ν,k = (−1)ν+ν∆+k

(
ν∆

k

)(
ν∆ + k

ν∆ − ν

)

,(16)

where k = 0, . . . , ν∆. It follows from (13), (14), (15) and (16) that

f ∗
2 (z, ν) = (−θ0(z))

ν

+∞∑

t=1+ν

(θ0(z))
−tR0(t; ν) =(17)

= (−θ0(z))
ν

+∞∑

t=1+ν

(θ0(z))
−t−k+k

ν∆∑

k=0

α∗
ν,k/(t+ k)

= (−θ0(z))
ν

+∞∑

t=1+ν

((θ0(z))
−t−k/(t+ k))

ν∆∑

k=0

α∗
ν,k(θ0(z))

k =

(−θ0(z))
ν

ν∆∑

k=0

α∗
ν,k(θ0(z))

k

+∞∑

τ=1+ν+k

((θ0(z))
−τ/τ)) =

= α∗(z; ν)(− log(1 − 1/θ0(z))) − φ∗(z; ν),

where log(ζ) is a branch of Log(ζ) with | arg(ζ)| < π,

α∗(z; ν) = (−(θ0(z))
ν

ν∆∑

k=0

α∗
ν, k(θ0(z))

k = f ∗
1 (z; ν),(18)
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φ∗(z; ν) = (−θ0(z))
ν

ν∆∑

k=0

α∗
ν,k(θ0(z))

k
ν+k∑

τ=1

((θ0(z))
−τ/τ)) =(19)

(−θ0(z))
ν

ν∑

τ=1

((θ0(z))
−τα∗(z; ν)/τ+

(−θ0(z))
ν

ν∆∑

k=0

α∗
ν,k(θ0(z))

k

ν+k∑

τ=1+ν

((θ0(z))
−τ/τ)).

The change of order of summation by passage to (17) is possible, because the
series in the second sum in (17) is convergent, if |z| ≥ 1 and θ0(z) 6= 1. Since

degt

(
ν∆∏

κ=ν+1

(t− κ)

)

− degt

(
ν∆∏

κ=0

(t+ κ)

)

= −ν − 1,

it follows that
α∗(1; ν) = Res(R0(t; ν); t = ∞) = 0

So in the domain D0 = {z ∈ F : |z| > 1 the funcion f ∗
2 (z, ν) coincides with

the functin

f ∗
0 (z, ν) = α∗(z; ν)(− log(1 − 1/θ0(z))) − φ∗(z; ν),(20)

The form (20) may be used for various applikations. Espeshially it is pleasant,
when both 1/θ0(z) and α∗(z; ν) for some z is integer algebraic number. The
following Lemma corresponds to this remark.

Lemma 1. Let m ∈ N, m > 2 m 6= 2pα, where p run over the all the
prime numbers and α run over N. Then 1+exp(2πi/m) belongs to the group
of the units of the field Km. If m = 2pα, where p is a prime number and
α ∈ N, then the ideal l = (1 + exp(2πi/m)) is a prime ideal in the field Km,
and lφ(m) = (p).

Proof. Let polynomial Φm(z) is irreducible over Q, has the leading
coefficient equal to one and Φm(exp(2πi/m)) = 0. Let Λ(n), as usual, denotes
the Mangold’s function. Since (see, for example, [27], end of the chapter 3)

Φm(z) =
∏

d|m

(zm/d − 1)µ(d),

it follows that

Φm(−1) = (−2)

 

P

d|m

µ(d)

!

= 1,

if m ∈ 1 + 2N,

Φm(z) =
∏

d|(m/2)

(((z)m/(2d) − 1)µ(2)((−z)m/d − 1)/((−z) − 1))µ(d),

Φm(−1) = lim
z→−1

∏

d|(m/2)

(((−z)m/d − 1)/((−z)−1))µ(d)×

(−2)
µ(2)

 

P

d|(m/20

µ(d)

!

=
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exp




∑

d|(m/2)

ln(m/(2d))µ(2d)



 = exp(Λ(m/2)),

if m ∈ 2(1 + 2N),

Φm(z) =
∏

d|(m/2)

(((−z)m/d − 1)/((−z) − 1))µ(d),

and
Φm(−1) = lim

z→−1

∏

d|(m/2)

(((−z)m/d − 1)/((−z) − 1))µ(d) =

exp




∑

d|m/2

ln(m/(2d))µ(d)



 = exp(Λ(m/2)),

if m ∈ 4N. If m = 2pα with α ∈ N, then Φm(−1) = exp(Λ(m/2)) = p, and
ideals lk = (1 + exp(2πik/m)), where (k,m) = 1, divide each other and in
the standard equality efg = n (see, [27], chapter 3, section 10) we have

e = n = φ(m), f = g = 1.�.

In connection with the above remark and with the Lemma 1, the following
case is interesting for us:

θ0(z) = (−ρ)(1 + exp(−iβ)) = −(ρ exp(iβ/2))/(2cos(β/2)) =
(21)

−(ρ exp(iψ))(2cos(ψ)) = −(1 + i tan(ψ))/2

with ρ > 2/3, |β| < π and −π/2 < ψ = β/2 < π/2; then

<(1 − 1/θ0(z)) = <(2 + exp(iβ)/ρ) > 1/2,

and we have no problems with log(1 − 1/θ0(z)). Of course, according to the
Lemma 1, the case ρ = 1 is interesting especially. So, we will take further

z = (ρ/(2 cos(ψ)), ψ − π) = (ρ/(−2cos(θ), θ),(22)

where ρ > 2/3, |ψ| < π/2 and −3π/2 < θ = ψ − π < −π/2; clearly, the
function (20) is analytic in the domain

D1 = {z = (ρ(2 cos(ψ))−1, ψ − π)) : ρ > 2/3, −π/2 < ψ < π/2} =

{z = ((−2ρ cos(θ))−1, θ)) : ρ > 2/3, −3π/2 < θ < −π/2}.
Let

D2(δ0) = {z ∈ F : |z| > 1 + δ0/2}, D3 = D2(δ0) ∪D1.(23)

So, the funcion f ∗
2 (z, ν) coincides with the function (20) in D2(δ0) ⊂ D0.

Since D2(δ0) ∩ D1 6= ∅, it follows that the join D3 = D2(δ0) ∪ D1 of the
domains D2(δ0) and D1 is a domain in F and the function (20) is analytic in
this domain.
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The conditions, which imply the equality

(−1)m+p−n exp(−iα)θ0(z) ×(24)

((
p
∏

j=1

(δ + 1 − aj)

)

(G ◦ η∗α)

)

(z) =

((
q
∏

k=1

(δ − bk)

)

(G ◦ η∗α)

)

(z)

hold in our case for the Mejer’s function

G = G(m,n)
p,q

(

z

∣
∣
∣
∣

a1, . . . , ap

b1, . . . , bq

)

.

We have p = q = 2, m = n = 1, α = 0 for the function f1(z, ν) and the
equation (24) takes the form

θ0(z)((δ + 1 + d1ν)(δ − d2ν)f1)(z, ν) = (δ(δ − ν)f1)(z, ν)

We have p = q = m = 2, n = 1, α = π for the function f2(z, ν) and the
equation (24) takes the form

θ0(z)((δ + 1 + d1ν)(δ − d2ν)f2)(z, ν) = (δ(δ − ν)f2)(z, ν).

We see that both the functions f(z, ν) = f ∗
k (z, ν), where k = 1, 2 satisfy to

the same differential equation

θ0(z)(δ + 1 + d1ν)(δ − d2ν)f(z, ν) = (δ(δ − ν)f)(z, ν).(25)

in the domainD0. According to the general properties of the Mejer’s functions
we have the equality

(
∆−1∏

κ=1

(ν(∆ − 1) + κ)

)
d2∏

κ=1

(δ − d2ν − κ)f ∗
k (z, ν + 1) =(26)

(
∆∏

κ=1

(ν∆ + κ)

)

(δ − ν)
d1∏

κ=1

(δ + d1ν + κ)f ∗
k (z, ν),

where k = 1, 2 and z ∈ D0. Since f ∗
0 (z, ν) and polynomial f ∗

1 (z, ν) are analytic
in the domain D0 ∪D1, and f ∗

0 (z, ν) coincides with f ∗
2 (z, ν), it follows that

the equations (25) and (26) hold in D0 ∪D1 for k = 0, 1.
Let

D∨(w, η) = (η + 1)(η + γ1) − 2(1 + γ1)wη,(27)

D∧(z, η) = D∨(θ0(z), η),(28)

where, in view of (21),

w = θ0(z) = −r exp(iψ), r = 1/(2cos(ψ)), |ψ| < π/2.(29)

In view of (29), the polynomial (27) coincides with the polynomial (1) in
[59]. Let

h∼(η) = (η − 1)(1 − δ0)
−d1(η + 1)2−2 ηd1 .(30)
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As in [51], we consider ν−1 as an independent variable taking its values in the
field C including 0. Let F be a bounded closed subset of F (in particular, this
compact F may be an one-point set). Let H0(F ) be the subring of all those
functions in Q(w), which are well defined for every w ∈ θ0(F ). For ε ∈ (0, 1),
let H(F, ε) be the subring of all those functions in Q(w, ν−1), which are well
defined for every (w, ν−1) with w ∈ θ0(F ), |ν−1| ≤ ε0.

Lemma 2. Let F be a closed bounded subset of D0∪D1 (in particular, F
may be an one-point set). Let further for any z ∈ F the polynomial (28) has
only simple roots and on the set of all the roots η of the polynomial D∧(z, η)
the map

η → h∼(η)(31)

is injective. Then there is ε ∈ (0, 1) such that, for any z ∈ F, ν ∈ N + [1�ε],
the functions f ∗

0 (z, ν), f ∗
1 (z, ν) = α∗(z; ν) and φ∗(z; ν) are solutions of the

difference equation

x(z, ν + 2) +

1∑

j=0

q∗j (z, ν
−1)x(z, ν + j) = 0,(32)

moreover,

q∗j (z, ν
−1) ∈ H(F, ε)(33)

for j = 0, 1, and trinomial

w2 +

1∑

j=0

q∗j (z, 0)wj(34)

coincides with

1∏

k=0

(w − h(ηk)),(35)

if
1∏

k=0

(w − ηk),

coincides with D∨(w, η) from (27).
Proof. Proof may be found in [51]. �

This Lemma shows the importance of the properties of the roots of the
polynomial (27). In correspondence with (22) and with notations in [59], let

ρ > 2/3, r = ρ/(2 cos(ψ)), t = cos(ψ), |ψ| < π/2.(36)

Let u = r2, δ0 ≤ 1/2 < 2/3 < ρ. Then

2δ0 ≤ 2/5 < 2/3 < ρ < 2
√
u = 2r.(37)

Clearly,

(∂/∂ψ)r = (ρ sin(ψ))/(2 cos2(ψ)) = −2ρ(sin(ψ) − 1) − 2ρ/(sin(ψ) + 1),
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(∂/∂ψ)2r = (2ρ cos(ψ))/(sin(ψ) − 1)2 + (2ρ cos(ψ))/(sin(ψ) + 1)2 > 0,

if |ψ| < π/2 In view of (3.1.10) in [52],

|D0(r, ψ, δ0)|2 = r4 + r2 + (δ0/2)4 +(38)

2r2(δ0/2)2(2t2 − 1) + 2r(r2 + (δ0/2)2)t =

u2 + u+ (δ0/2)4 + (δ0/2)2(ρ2 − 2u) + ρ(u+ (δ0/2)2) =

u2 + u(ρ+ 1 − (δ0)
2/2) + (δ0/2)2(ρ2 + ρ+ (δ0/2)2),

|R0(r, ψ, δ0)|2 = |D0(r, ψ, δ0)| =(39)

√

u2 + u(ρ+ 1 − (δ0)2/2) + (δ0/2)2(ρ2 + ρ+ (δ0/2)2).

In view of (3.1.41) - (3.1.43) in [52] and (39),

p1 = 8(|R∗
0(r, ψ, δ0)|2 + |R0(r, ψ, δ0)|2)/(1 + δ0)

2 =(40)

8(r2 + rt+ 1/4 + |D0(r, ψ, δ0)|)/(1 + δ0)
2 = 8(1 + δ0)

−2×
(

u+ ρ/2 + 1/4 +
√

u2 + u(ρ+ 1 − (δ0)2/2) + (δ0/2)2(ρ2 + ρ + (δ0/2)2)
)

,

p2 = (8(|R∗
1(r, ψ, δ0)|2 + |R0(r, ψ, δ0)|2))/(1 + δ0)

2 =(41)

8(r2 − rδ0t+ (δ0)
2/4 + |D0(r, ψ, δ0)|)/(1 + δ0)

2 =

8(u− δ0ρ/2 + (δ0)
2/4)/(1 + δ0)

2+

8(1 + δ0)
−2
√

u2 + u(ρ+ 1 − (δ0)2/2) + (δ0/2)2(ρ2 + ρ+ (δ0/2)2) =

8(1 + δ0)
−2u(2 + (ρ+ 1 − δ0ρ)/(2u) +O(1/u2)),

q1(r, ψ, δ0) = ((1 − δ0)/(1 + δ0))
2, q2(r, ψ, δ0) =(42)

(4r/(1 + δ0))
2 = (16u)/(1 + δ0)

2.

In view of (91) in [59], (36) and (37),

s = s0(r, ψ) = |r exp(iψ) + 1| /2 =
√

(r2 + 1 + 2rcos(ψ))/4 =

(43)

√

(u+ 1 + ρ)/4 ∈ (max(|r − 1|/2, δ0/4), (r + 1)/2]

and
t = cos(ψ) = (4s2 − r2 − 1)/(2r).

In view of (3.1.68) in [52], (3.1.70) – (3.1.71) in [52] and (39),

|R∗
−1(r, ψ, δ0)|2 = r2 + (2 + δ0)

2/4 + r(2 + δ0) cos(ψ) =

u+ (2 + δ0)
2/4 + ρ(2 + δ0)/2,

p0 = 8(|R∗
−1(r, ψ, δ0)|2 + |R0(r, ψ, δ0)|2)/(1 + δ0)

2 =(44)
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8(u+ (2 + δ0)
2/4 + ρ(2 + δ0)/2)/(1 + δ0)

2+

8(1 + δ0)
−2
√

u2 + u(ρ+ 1 − (δ0)2/2) + (δ0/2)2(ρ2 + ρ+ (δ0/2)2),

q0(r, ψ, δ0)(1 + δ0)
2/16 = (r2 + 1 + 2rcos(ψ)) = (u+ 1 + ρ).(45)

According to Lemma 4.4 in [59], (23) and (37),

|η∧1 (r, ψ, δ0) + ε| < |η∧0 (r, ψ, δ0) + ε|,(46)

if ε2 = ε and z ∈ D3. Therefore, according to (40), (42) and (46),

(−1)k(∂/∂u)|η∧k (r, ψ, δ0)| > 0,(47)

where 1
3
< ρ/2 <

√
u = r, k2 = k. According to a) and c) of the Lemma 4.6

in [59], and in view of (23) and (43),

|η∧1 (r, ψ, δ0) − 1| < |η∧0 (r, ψ, δ0) − 1|,(48)

if z ∈ D3. In view of (38),

|D0(r, ψ, δ0)|2 =(49)

u2 + u(ρ+ 1 − (δ0)
2/2) + (δ0/2)2(ρ2 + ρ+ (δ0/2)2) =

(u+ (ρ+ 1)/2 − (δ0)
2/4)2 + (δ0/2)2(ρ2 + ρ+ (δ0/2)2)−

(((ρ + 1)/2)2 − (ρ + 1)(δ0)
2/4 + (δ0/2)4) =

(u+ (ρ+ 1)/2 − (δ0)
2/4)2 + (δ0/2)2(ρ2 + 2ρ+ 1) − (ρ + 1)2/4 =

(u+ (ρ+ 1)/2 − (δ0)
2/4)2 − (ρ+ 1)2(1 − (δ0)

2)/4.

Consequently,

|D0(r, ψ, δ0)| = u+
ρ + 1

2
− (δ0)

2

4
+O(1/u),(50)

where u ≥ 1/4. Since u ≥ 1/4 > (δ0)
2/4, it follows that

u+ (ρ + 1)/2 − (δ0)
2/4 >

√

1 − (δ0)2(ρ+ 1)/2.

If ρ = 1, u = 1/4 then in view of (49),

|D0(r, ψ, δ0)|2 = (5/4 − (δ0)
2/4)2 − (1 − (δ0)

2) =

(
τ − 5/4)2

)2
+ 4τ − 1,

where 0 < τ = (δ0)2

4
< 1

100
; moreover, in this case

(∂/∂τ)|D0(r, ψ, δ0)|2 = 2τ − 5/2 + 4 > 0;

therefore if δ0 ≤ 1/5, then

|D0(r, ψ, δ0)|2
∣
∣
∣
∣
u=1/4,ρ=1

≤ (1, 24)2 − 0, 96 = 0, 5776
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and

|D0(r, ψ, δ0)|2
∣
∣
∣
∣
u=1/4,ρ=1

≤ 0, 76.

In view of (49),
1 < (∂/∂u)|D0(r, ψ, δ0)| =

√

(u+ (ρ+ 1)/2 − (δ0)2/4)2

(u+ (ρ+ 1)/2 − (δ0)2

4
)2 − (ρ + 1)2(1 − (δ0)2)/4

= 1 +O(1/u2),

in view of (40), (41) and (44),

(∂/∂u)pε = 8(2 +O(1/u2))/(1 + δ0)
2,(51)

where ε3 = ε, and (∂/∂u)|D0(r, ψ, δ0)| decreases with increasing u; conse-
quently,

(∂/∂u)2|D0(r, ψ, δ0)| < 0,

if u ≥ 1/4. In view of (40), (41) and (44),

(∂/∂u)2pε = (∂/∂u)2|D0(r, ψ, δ0)| < 0,(52)

where u ≥ 1/4, 0 < δ0 < 2/3 < ρ, ε3 = ε. In view of (41), (42), (49) and
(50), if ρ = 1, u > 1/4, 0 < δ0 ≤ 1/5, then

q2((∂/∂u)p2)/(∂/∂u)q2 − p2/2 =(53)

8u(1 + (u+ 1 − (δ0)
2/4))/|D0(r, ψ, δ0)|)/(1 + δ0)

2−
4(u− δ0/2 + (δ0)

2/4 + |D0(r, ψ, δ0)|)/(1 + δ0)
2 =

4(u+ δ0/2 − (δ0)
2/4)/(1 + δ0)

2+

4((1 + δ0)
2|D0(r, ψ, δ0)|)−1(2u2 + u(2 − (δ0)

2/2)−
4((1 + δ0)

2|D0(r, ψ, δ0)|)−1(u2 + u(2 − (δ0)
2/2) + (δ0/2)2(2 + (δ0/2)2)) =

4(u+ δ0/2 − (δ0)
2/4)/(1 + δ0)

2+

4(1 + δ0)
2|D0(r, ψ, δ0)|)−1(u2 − (δ0/2)2(2 + (δ0/2)2)) > 0,

q2((∂/∂u)p2)/(∂/∂u)q2−p2 =
8

u
(1+(u+1−(δ0)

2/4))/|D0(r, ψ, δ0)|)/(1+δ0)
2−

8(u− δ0/2 + (δ0)
2/4 + |D0(r, ψ, δ0)|)/(1 + δ0)

2 =

8u(2 +O(1/u2))/(1 + δ0)
2−

8(u− δ0
2

+
(δ0)

2

4
+ u+ 1 − (δ0)

2

4
+O(1/u))/(1 + δ0)

2 =

−8(1 − δ0
2

+O(1/u))/(1 + δ0)
2.

In view of (44), (45), (53), (49), (51), (50), if ρ = 1, u > 1/4, 0 < δ0 ≤ 1/5,
then

(u+ 1)(∂/∂u)p0 − p0/2 > 8(2u+ 2)/(1 + δ0)
2−

4(u+ (2 + δ0)
2/4 + (2 + δ0)/2 + u+ 1 − (δ0)

2/4)/(1 + δ0)
2 =



L.A.Gutnik, On the Diophantine Approximations of logarithms in cyclotomic fields. 13

8

(
1/2 + u− (3δ0)/4)/(1 + δ0)

2 > 0,

q0((∂/∂u)p0)/(∂/∂u)q0 − p0/2 = (u+ 2)(∂/∂u)p0 − p0/2 >(54)

(u+ 1)(∂/∂u)p0 − p0/2 > 0,

q0(∂/∂u)p0)/(∂/∂u)q0 − p0 = 8(u+ 2)(2 +O(1/u2))/(1 + δ0)
2 −

(55)

8(u+ (2 + δ0)
2/4 + (2 + δ0)/2 + u+ 1 − (δ0)

2/4)/(1 + δ0)
2 =

8(4 +O(1/u))/(1 + δ0)
2 − (2 + δ0)

2/4 − (2 + δ0)/2 − 1 + (δ0)
2/4 +O(

1

/
u) =

8(1 − (3/2)δ0 +O(1/u))/(1 + δ0)
2,

where u > 1/4. In view of (45), (54) and (52),

(∂/∂u)((q0(∂/∂u)p0)/(∂/∂u)q0 − p0)(∂/(∂u)p0 + (∂/∂u)q0) =

(∂/∂u)(((u+ 2)(∂/∂u)p0 − p0)(∂/∂u)p0) =

((∂/∂u)p0)
2 + ((u+ 2)(∂/∂u)2p0 − (∂/∂u)p0)(∂/∂u)p0+

((u+ 2)(∂/∂u)p0 − p0)(∂/∂u)
2p0 =

((u+ 2)(∂/∂u)2p0)(∂/∂u)p0 + ((u+ 2)(∂/(∂u)p0 − p0)(∂/∂u)
2p0 =

(2(u+ 2)(∂/∂u)p0 − p0)(∂/∂u)
2p0 < 0.

Therefore, according to (55), (51) and (45),

inf{((u+ 2)(∂/∂u)p0 − p0)(∂/∂u)p0 + (∂/∂u)q0 : u ≥ 1/4} =
(56)

lim
u→+∞

((u(∂/∂u)p0 − p0)(∂/∂u)p0 + (∂/∂u)q0) =

128(1 − (3/2)δ0)/(1 + δ0)
4 + 16/(1 + δ0)

2) > 0.

According to the Lemma 4.17 in [59] and in view of (53), (54), (56),

(∂/∂u)|η0(r, ψ, δ0) + ε|2 > 0,(57)

where ε2 = 1, u > 1/4,

(∂/∂u)|η1(r, ψ, δ0) − 1|2 < 0,(58)

where u > 1/4. The following Lemma describes the behavior of the value
h∼(ηk(r, ψ, δ0)) with k2 = k and hsim in (30).

Lemma 3. If ∆ ≥ 5, then

(∂/∂u)(|h∼(η0(r, ψ, δ0))|) > 0,(59)

(∂/∂u)(|h∼(η1(r, ψ, δ0))|) < 0,

where u ∈ (1/4,+∞).
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Proof. The inequality (59) directly follows from (46), (57) and (30). So,
we must prove the inequality (30) Clearly, if β < 1, u > 1/4 then

(∂/∂u)(u3/4 + (3/4)βu−1/4) > 0,

We take
β = (4/3)(δ0/2)2(2 + (δ0)

2)/4)/(2 − (δ0)
2/2).

Then, clearly, β < (δ0)
2 = 1/(∆)2 < 1. Therefore, in view of (40) and (49),

if ρ = 1, then
p1u

−1/4 = 8(1 + δ0)
−2×

(u3/4 + (3/4)u−1/4 +
√

u3/2 + u1/4(ρ + 1 − (δ0)2/2)(u3/4 + (3/4)βu−1/4))

increases together with increasing u ∈ (1/4,+∞), and, in view of (42),

|η0(r, ψ, δ0)|2u−1/4| = p1u
−1/4/2 +

√

(p1u−1/4/2)2 − q1u−1/2(60)

increases together with increasing u ∈ (1/4,+∞).
In view of (47), (42), (60), (57) and (58), if ∆ ≥ 5, then

|η1(r, ψ, δ0)|2(∆−1)|(η1(r, ψ, δ0))
2 − 1|2 =

|η1(r, ψ, δ0)|2(∆−5) (q1)
4

(|η0(r, ψ, δ0)|2u−1/4)4
×

16

(1 + δ0)2
|η0(r, ψ, δ0) + 1|−2|η1(r, ψ, δ0) − 1|2

decreases together with increasing u ∈ (1/4,+∞).�
Let D is bounded domain in C or F. and D∗ is closure of D. Let

a∼0 (z) , . . . , a∼n (z)(61)

are the functions continuous on D∗ and analytic in D. Let a∼n (z) = 1 for any
z ∈ D∗. Let

T (z, λ) =

n∑

i=0

a∼i (z)λk.(62)

Let s ∈ N, ni ∈ N − 1, where i = 1, . . . , s and
s∑

i=1

ni = n. We say that

polynomial T (z, λ) has (n1, . . . , ns)-disjoint system of roots on D∗, if for
any z ∈ D∗ the set of all the roots λ of the polynomial T (z, λ) splits in s
klasses K1(z), . . . , Ks(z) with following properties:

a) the sum of the multiplicities of the roots of the klass Ki is equal to ni

for i = 1, . . . , s;
b) if i ∈ [1, s] ∩ N, j ∈ (i, s] ∩ N and ninj 6= 0, then the absolute value of

each roots of the klass Ki(z) is greater than absolute value of the each roots
of the klass Kj(z).

If the polynomial (62) has (n1, . . . , ns)-disjoint system of roots on D∗,
then for each i = 1, . . . , s we denote by ρ∗i,0(z) and ρ∗i,1(z) respectively the
maximal and minimal absolute value of the roots of the klass Ki(z).
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Let D is bounded domain in F such that D∗ ∈ D3. Let

F∧(z, η) =
2∏

i=1

(θ0(z) − h(ηi−1(r, ψ, δ0))),(63)

n = s = 2, n1 = n2 = 1, Ki(z) = {h(ηi−1(r, ψ, δ0))},
ρi,0 = ρi,1 = |h(ηi−1(r, ψ, δ0))|,

where i = 1, 2.
Lemma 4. The polynomial F ∧(z, η) in (63) has (1, 1)-disjoint system

of roots on D∗.
Proof. The assertion of the Lemma follows from (46) and (48). �

Corollary. The map (31) is injective for every z ∈ D∗; all the conditions
of the Lemma 2 are fulfilled for the functions f ∗

0 (z, ν) from (20), α∗(z, ν)
from (18) and φ∗(z, ν) from (19) in every z ∈ D∗; therefore for every z ∈ D∗

these functions are solutions of the difference equation of Poincaré type (32),
and the polynomial (35) coincides with characteristical polynomial of this
equation. �

Let for each ν ∈ N − 1 are given continuous on D∗ functions

a0(z; ν), . . . , an(z, ν),(64)

which are analytic in D.
Let an(z : ν) = 1 for any z ∈ D∗ and any ν ∈ N − 1. Let for any i =

1, . . . , n− 1 the sequence of functions ai(z; ν) converges to a∼i (z) uniformly
on D∗, when ν → ∞. Let us consider now the difference equation

a0(z; ν)y(ν + 0) + . . . + an(z; ν)y(ν + n) = 0,(65)

i.e. we consider a difference equation of the Poincaré type, coefficients (64)
of this equation are continuous on D∗ and analytic in D, and they uniformly
converge to limit functions (61), when ν → ∞.

Lemma 5. Let polynomial (62) has (n1, . . . , ns)-disjoint system of roots
on D∗. Let y(z, ν) is a solution of the equation (65), and this solution is
continuous on D∗ and analytic on D. Let further i ∈ [1, s]∩Z. Let us consider
the set of all the z ∈ D, for which the following inequality holds

lim sup
ν∈N, ν→∞

|y(z, ν)|1/ν) < ρi,1(z);(66)

if this set has a limit point in D, then the inequality (66) holds in D∗.
Proof. The proof may be found in [31] (Theorem 1 and its Corollary).

�

Lemma 6. Let D is bounded domain in F such that D∗ ∈ D3. Then

lim sup
ν∈N, ν→∞

|f ∗
0 (z, ν)|1/ν) < ρ1,1(z) = |h∼(η0(r, ψ, δ0))|(67)

for any z ∈ D∗.
Proof. In view of (23), expanding the domain D, if necessary, we can

suppose that {(r, φ) : r ∈ [2, 3], φ = 0} ∈ D. Making use the same argu-
ments, as in [55], Lemma 4.2.1, we see that the inequality (67) holds for
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any point z = (r, φ) ∈ {r ∈ [2, 3], φ = 0}. According to the Lemma 5, the
inequality (67) holds for any z ∈ D∗.�

For each prime p ∈ N let vp denotes the p-adic valuation on Q.
Lemma 7.Let p ∈ N + 2 is a prime number,

d ∈ N − 1, r ∈ N − 1, r < p.

Then
vp((dp+ r)!/((−p)dd! r!) − 1) ≥ 1.

Lemma 8. Let p ∈ N + 2 is a prime number, d ∈ N − 1, d1 ∈ N − 1,

r ∈ [0, p− 1] ∩ N, r1 ∈ [0, p− 1] ∩ N, d1p+ r1 ≤ dp+ r.(68)

Then

vp

((
dp+ r

d1p + r1

))

= vp

((
d

d1

))

,(69)

if r1 ≤ r,

vp

((
dp+ r

d1p+ r1

)((
d

d1

)(
r

r1

))−1

− 1

)

≥ 1,(70)

if r1 ≤ r,

vp

((
dp+ r

d1p+ r1

))

= 1 + vp

(

(d− d1)

(
d

d1

))

,(71)

if r < r1,

vp

(

(−1)r1−r−1

(
dp+ r

d1p+ r1

)(
r1
r

)

(r1 − r)

(

p

(
d

d1

)

(d− d1)

)−1

− 1

)

≥ 1,

(72)

Proof. Clearly, d1 ≤ d. If r1 ≤ r, then let r2 = r − r1, d2 = d− d1. On the
other hand, if r1 > r, then, in view of (68), d ≥ d1 + 1; therefore in this case
we let

r2 = p+ r − r1, d2 = d− d− 1.(73)

Then d = d1 + d2, r = r1 + r2,
(
dp+ r

d1p+ r1

)

= (dp+ r)!((d1p+ r1)!(d2p + r2)!)
−1.

Accordindg to the Lemma 7,

vp

((
dp+ r

d1p+ r1

)

(−p)−d+d1+d2d1! r1! d2! r2!/(d! r!) − 1

)

≥ 1,(74)

vp

((
dp+ r

d1p+ r1

))

= d− d1 − d2 +(75)

vp(d! r!/(d1! r1! d2! r2!)).

The equality (69) and the inequality (13) directly follow from (74) and (75).
If
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the inequality r < r1 holds, then in view of (73) – (75),

r2!
∏

j=1

r1 − r − 1(p+r−r1+j) = (p−1)!, vp(r2!(r1−r−1)!(−1)r1−r−1) ≥ 1,

and (72) holds.
Corollary 1. Let p ∈ N is a prime number,

d ∈ N − 1, r ∈ N − 1, d1 ∈ N − 1, d2 ∈ N − 1, r1 ∈ N − 1, r2 ∈ N − 1,

max(r1, r2) < p.

Then
p−d(dp+ r)! ∈ (−1)dd!r! + pZ,

(
d1 + d2)p+ r1 + r2

d1p + r1

)

∈
(
d1 + d2

d1

)(
r1 + r2
r1

)

+ pZ.

Proof. This is direct corollary of the Lemma 7 and Lemma 8. See also
Lemma 9 in [54]. �

Corolary 2. Let p ∈ N + 2 is a prime number,

d ∈ N, r1 ∈ N, r1 < p, d1 ∈ N − 1, d1 < d.

Then

vp

((
dp

d1p+ r1

)(

d

(
d− 1

d1

)(
p

r1

))−1

+ 1

)

≥ 1(76)

Proof. Since,

d

(
d− 1

d1

)

= (d− d1)

(
d

d1

)

, vp

((
p

r1

)

r1/p− (−1)r1

)

≥ 1,

the equality (76) directly follows from (72). �

Corolary 3. Let p ∈ N + 2 is a prime number,

d ∈ N, r1 ∈ N, r1 < p, d∼ ∈ N − 1, d∼ < d.

Then (
dp

d1p+ r1

)

∈ d

(
d− 1

d∼

)(
p

r1

)

+ p2Z.

Proof. This is a corollary of the Corrolary 2. See also Lemma 10 in [54] .�
Let let p be prime in (2, +∞), let K be a finite extension of Q let p

be a prime ideal in ZK and p ∈ p, let f be the degree of p, let (p) = peb,
with entire ideal b not contained in p, let vp be additive p-valuation, which
prolongs vp; so, if π is a p-prime number, then vp(π) = 1/e. If f is the degree
of the ideal p then

vp

(

wpβ − w
)

≥ 1,(77)

where β ∈ Nf, w ∈ K and
vp(w) ≥ 0.
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In viw of (77), (18), and (16),

vp(α
∗(z; pβl) − α∗(z; l)) > 1/e,

if β ∈ Nf, θ0(z) ∈ K and vp(θ0(z)) ≥ 0. In view of (19),

φ∗(z; ν) = (−θ0(z))
ν

ν∆∑

k=0

α∗
ν,k(θ0(z))

k
ν+k∑

τ=1

((θ0(z))
−τ/τ)) =(78)

(−θ0(z))
ν

ν∑

τ=1

((θ0(z))
−τα∗(z; ν)/τ+

(−θ0(z))
ν

ν∆∑

k=0

α∗
ν,k(θ0(z))

k
ν+k∑

τ=1+ν

((θ0(z))
−τ/τ)) =

(−1)ν

ν(∆+1)
∑

τ=1

1

τ

ν∆∑

k=max(0, τ−ν)

α∗
ν,k(θ0(z))

ν−τ+k;

therefore, if ν = pβl, f = 1, β ∈ Nf, p > l(∆+1), θ0(z) ∈ K and vp(θ0(z)) ≥
0, then, according to the Lemma 2,

1 − β ≤(79)

vp










φ∗(z; ν) −
∑

η∈[1, ∆+1]∩Z

k∈[pβ(η−l), pβl∆]∩Z

k≥0, vp(k)>0

(−1)pl

pβη
(θ0(z))

pβ(l−η)+kα∗
ν,k










,

1/e− β ≤(80)

vp










φ∗(z; ν) −
∑

η∈[1, ∆+1]∩Z

k∈[pβ−1(η−l), pβ−1l∆]∩Z
k≥0

(−1)plp

pβη
(θ0(z))

pβ−1(l−η)+kα∗
ν/p,k










.

We make the pass (79) → (80) β times and obtain the inequality

1/e− β ≤(81)

vp

(
φ∗(z; pβl) − p−βφ∗(z; l)

)
,

where
{l, β} ⊂ N, p > l(∆ + 1), p ∈ p

and p is ideal of the first degree.
Lemma 9. If m ∈ N + 1, K = Q[exp(2pi/m)],

α∗(z; l1)φ
∗(z; l2)) 6= 0
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for some z ∈ K�{0}, l1 ∈ N, l2 ∈ N, then for any l ∈ N the sequenses

α∗(z; ν), φ∗(z; ν),(82)

where ν ∈ l + N form a linear independent system over K.
Proof. There exists d∗ ∈ N such that

d∗z ∈ ZK , d
∗zα∗(z; l1) ∈ ZK, d

∗zφ∗(z; l2) ∈ ZK .

Let a prime p ∈ Nm + 1 satisfies to the inequality

p > |NmK/Q(d∗zα∗(z; ν))| + |NmK/Q(d∗zφ∗(z; ν))+

|NmK/Q(d∗z)| + |NmK/Q(d∗) + (∆ + 1)(l1 + l2).

Let p is a prime ideal containing p. Then

vp (α∗(z; l1)) = vp (φ∗(z; l2)) = 0,

and, in view of (81),
vp

(
φ∗(z; pβl2)

)
= −β,

but
vp

(
α∗(z; pβl1)

)
= 0.

with β ∈ N �.
Let m ∈ N, k ∈ Z, 2 ≤ 2|k| < m, and let m and k have no common

divisor with exeption ±1. Let further Km = Q[exp(2πi/m)] is a cyclotomic
field, ZKm is the ring of all the integers of the field Km.

Lemma 10. Let ∆ ∈ {5, 7}. In correspondece with (21), (22) and (23),
let z = (1/(2 cos(kπi/m), kπi/m− π) , where |k| < m/2, (|k|, m) = 1.

Then for each l ∈ N the two sequences (82) form a linear independent
system over C.

Proof. We check the fulfilment of the conditions of the Lemma 9.
Let M = N�{1, 2, 6} and M0 = {m ∈ M : Λ0(m) = 0}. According to

the condition of the Lemma, θ0(z) = −1/(1 + exp(2iπ/m) with m ∈ M. If
m ∈ M and φ(m) > ∆, then, in view of (18) and (16), α∗(z; 1) 6= 0, because
the numbers (1 + exp(2iπ/m)k, where k = 0, . . . , φ(m) − 1, form a basis of
the field Km. Let ∆ = p ∈ 2N + 1, where p is a prime, p is a prime ideal
containing p, and, as before, let (p) = bpe, 1Km ∈ b + p. Then

(
2p− 1

p

)(
p

p− 1

)

≡ p mod p2, vp

((
p+ k

1 + k

)(
p

k

))

= 2,(83)

where k = 1, . . . , p− 2,

(
p

1

)(
p

0

)

= p,

(
2p

p+ 1

)(
p

p

)

≡ 2p mod p2.(84)

If m ∈ M and (m, p) = 1, or, if m ∈ M0, then, according to the Lemma 1,

(1 + exp(2iπ/m), p) = (1)(85)
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and, according to the Lemmata 7 and 8,

α∗(z; 1)/(pθ0(z)) ≡ 1 + (θ0(z))
p−1 − 2(θ0(z))

p ≡(86)

1 + (exp(2iπ/m) + 3)/(1 + exp(2piπ/m)) ≡
(exp(2ipπ/m) + exp(2iπ/m) + 4)/(1 + exp(2piπ/m)) mod p.

If m = qα with α ∈ N and prime q and there exists l in {0, . . . , φ(m) − 1}
such that p ≡ l mod (m), then

exp(2ipπ/m) + exp(2iπ/m) + 4 6≡ 0 mod p.(87)

Ifm = 2qα with odd prime q and α ∈ N, and there exist l in {0, . . . , φ(m/2)−
1} such that p ≡ 2l mod (m/2), then (87) holds.

If p = 5, then {3, 4, 5 8, 10, 12} = {m ∈ M : φ(m) ≤ p}.
If m = 3, 4, 5, 8, 10 then, clearly, (87) holds.
If m = 12, then 1, exp(iπ/2), exp(2iπ/3), exp(iπ/6), form a entire basis

of K12, exp(5iπ/6) = exp(iπ/2) − exp(iπ/6), and (87) holds.
If p = 7 then {3, 4, 5 7, 8, 9, 10, 12, 14, 18} = {m ∈ M : φ(m) ≤ p.
If m = 3, 4, 5, 7, 9, 14, then, clearly, (87) holds.
If m = 8, then exp(7iπ/4) = − exp(3iπ/4) and (87) holds.
If m = 12, then 1, exp(iπ/2), exp(2iπ/3), exp(iπ/6), form a entire basis

of K12, exp(7iπ/6) = − exp(iπ/6), and (87) holds.
If m = 18, then

exp(7iπ/9) = − exp(−2iπ/9) = exp(4iπ/9) + exp(10iπ/9),

and (87) holds.
The coefficient at (θ0(z))

0 in the expression (19) of φ∗(z; ν) is equal to

ν∆∑

k=0

(−1)να∗
ν,k/(ν + k)

and, if ∆ = p, ν = 1, then in view (83) – (84), the value of vp on this
coefficient is equal to 0. Therefore, if m ∈ M and φ(m) > p = ∆, then
φ∗(z; 1) 6= 0.

If m ∈ M�M0, and m ≡ 0 mod p then m = 2pα, where α ∈ N. Ac-
cording to the Lemma 1, p = (1 + exp(2iπ/m) is a prime ideal in Km, and,
furthermore, pφ(m) = (p). Let vp. is the p-adic valuation, which prolongs the
valuation vp. Clearly, vp(1 + exp(2iπ/m) = 1/φ(m), vp(θ0(z)) = −1/φ(m) In
view of (19) with ν = 1, for the summands of the sum

ν∆∑

k=1

α∗
ν,k(θ0(z))

1+k
1+k∑

τ=2

((θ0(z))
−τ/τ))

we have the inequality

vp((θ0(z))
∆+k−yα∗

ν,k/y ≥ −(k − 1)/φ(m) + 2 − vp(τ) ≥ −(p− 3)/φ(m) + 2,

if k = 1, . . . , p− 2, because in this case τ ∈ [2, p− 1],

vp((θ0(z))
∆+k−yα∗

ν,k/y ≥ −(k)/φ(m) + 1 − vp(τ) ≥ −(p− 1)/φ(m),
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where k ∈ {q − 1, q}, and the equality reaches only for k = τ = p; on the
other hand, vp(α

∗(z; 1)) ≥ 1 − (p + 1)/φ(m) ≥ −2/(p − 1) ≥ −2/φ(m). So,
if p ≥ 5, then vp(φ

∗(z; 1)) = −(p− 1)/φ(m). If m ∈ M�M0, then m = 2qα,
with prime q, according to the Lemma 1, l = (1 + exp(2iπ/m)) is a prime
ideal in Km, and lφ(m) = (q). Therefore in this case vp(θ0(z) = 0 If m ∈ M0,
then, according to the Lemma 1, vp(θ0(z) = 0. According to (19), in both
last cases,

vp(φ
∗(z; 1)) + αν,p−1/p+ θ0(z)αν,p/p) ≥ 1.

In view of (83), (84),

vp(αν,p−1/p+ θ0(z)αν,p/p) =

vp(exp(2iπ/m) − 1)/(exp(2iπ/m) + 1)).

If p = 5 and m ∈ {3, 4, 5, 7, 8, 9, 10} then, clearly,

vp((exp(2iπ/m) − 1)) ≤ 1/4.(88)

If p = 5 and m = 12, then NmK12((exp(iπ/6) − 1)) = 3 and (88) holds.
If p = 7, and m ∈ {3, 4, 5, 7, 8, 9, 10, 12, 14, 18}, then

vp((exp(2iπ/m) − 1)) ≤ 1/6.

�

Lemma 11. Let are fulfilled all the conditions of the Lemma 10. Then

lim sup
ν∈N, ν→∞

(

|f ∗
0 (z, ν)|1/ν = ρ2,1(z)

∣
∣
∣
∣
θ0(z)=−1/(1+exp(2ikπ/m)

)

=(89)

|h∼(η1(1/(2 cos(kπi/m)), kπi/m, δ0))|,
where h∼(η) is defined in (30).

Proof. According to the Lemma 2, (20) and Lemma 10, f ∗
0 (z, ν) is a

nonzero solution of the Poincaré type difference equation (32). According to
the Perron’s theorem and Lemma 5, the equality (89) holds. �

Let K/Q be the finite extension of the field Q,

[K : Q] = d.

Let the field K has r1 real places and r2 complex places. Each such place
is the monomorphism of the field K in the field R, if a place is real, or
in the field C, if a place is not real; we will denote these monomorphisms
respectively by σ1 , . . . σr1+r2. Then d = r1 + 2r2. Let B be the fixed integer
basis

ω1 , . . . , ωd

of the field K over Q. Clearly,K is an algebra over Q. With extension of the
ground field from Q to R appears an isomorphism of the algebra K = K ⊗R

onto direct sum
R ⊕ . . .⊕ R
︸ ︷︷ ︸

r1 times

⊕C ⊕ . . .⊕ C
︸ ︷︷ ︸

r2 times
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of r1 copies of the field R and r2 copies of the field C. We identify by means
of this isomorphism the aIgebra K with the specified direct sum. We denote
below by πj, where j = 1 , . . . , r1 + r2, the projection of K onto its j−th
direct summand and also the extension of this projection onto all kinds of
matrices which have all the elements in K. So, πj(K) = R for j = 1 , . . . , r1
and πj(K) = C for j = r1 + 1 , . . . , r1 + r2. Further by iK we denote the
embedding of R in K in diagonal way and also the extension of this embedding
onto all kinds of the real matrices. So, R is imbedded by means of iK in K in
diagonal way. Each element Z ∈ K has a unique representation in the form:

Z =














z1
...

zr1+r2

zr1+1
...

zr1+r2














,

with zj = πj(Z) ∈ R for any j = 1 , . . . , r1 and with zj = πj(Z) ∈ C for
any j = r1 + 1 , . . . , r1 + r2. Further by TrK(Z) we denote the sum

r1∑

j=1

zj +

r1+r2∑

j=r1+1

2<(zj) =

r1∑

j=1

πj(Z) +

r1+r2∑

j=r1+1

2<(πj(Z)),

and by q
(K)
∞ (Z) we denote the value

max(|z1| , . . . , |zr1+r2 |) =

max(|π1(Z)| , . . . , |πr1+r2(Z)|).
Clearly,

q(K)
∞ (Z1Z2) ≤ q(K)

∞ (Z1)q
(K)
∞ (Z2),

q(K)
∞ (Z1 + Z2) ≤ q(K)

∞ (Z1) + q(K)
∞ (Z2),

q(K)
∞ (iK(λ)Z) = |λ|q(K)

∞ (Z)

for any Z1 ∈ K, Z2 ∈ K, Z ∈ K and λ ∈ R. The natural extension of the
norm q

(K)
∞ on the set of all the matrices, which have all the elements in K (i.e.

the maximum of the norm q
(K)
∞ of all the elements of the matrix) also will be

denoted by q
(K)
∞ . If

Z =






z1
...
zd




 ∈ K,

then
zj = σj(Z),
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where j = 1 , . . . , r1 + r2,

zr1+r2+j = σr1+j(Z),

where j = 1 , . . . , r2. In particular,

ωk =















σ1(ωk)
...

σr1+r2(ωk)

σr1+1(ωk)
...

σr1+r2(ωk)















,

As usually, the ring of all the integer elements of the field K will be denoted
by ZK . The ring ZK is embedded in the ring K as discrete lattice. Moreover,
if Z ∈ ZK\{0}, then

(
r1∏

i=1

|σj(Z)|
)

r2∏

i=1

|σr1+i(Z)|2 = |NmK/Q(Z)| ∈ N

and therefore q
(K)
∞ (Z) ≥ 1. for any Z ∈ ZK\{0}. The elements of ZK we name

below by K-integers. For each Z ∈ K let

‖Z‖K = inf
W∈ZK

{q(K)
∞ (Z −W )}.

Let {m, n} ⊂ N,
ai,k ∈ K

for i = 1 , . . . , m, k = 1 , . . . , n,

α∧
j (ν) ∈ ZK ,

where j = 1 , . . . , m + n and ν ∈ N. Let there are γ0, r
∧
1 ≥ 1, . . . , r∧m ≥ 1

such that
q(K)
∞ (αi(ν)) < γ0(r

∧
i )ν

where i = 1 , . . . , m and ν ∈ N. Let

yk(ν) = −α∧
m+k(ν) +

m∑

i=1

ai,kα
∧
i (ν)

where k = 1 , . . . , n and ν ∈ N. If X =






Z1
...
Zn




 ∈ Kn, then let

y∧(X) = y∧(X, ν) =

n∑

k=1

y∧k (ν)Zk
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for ν ∈ N, let

φi(X) =
n∑

k=1

ai,kZk

for i = 1 , . . . , m, and let

α∧
0 (X, ν) =

n∑

k=1

α∧
m+k(ν)Zk

for ν ∈ N. Clearly,

y∧(X, ν) = −α∧
0 (X, ν) +

m∑

i=1

α∧
i (ν)φi(X)

for X ∈ Kn and ν ∈ N,
α∧

0 (X, ν) ∈ ZK

for X ∈ (ZK)n and ν ∈ N.
Lemma 12. Let {l, n} ⊂ N, γ1 > 0, γ2 >

1
2
, R1 ≥ R2 > 1,

αi = (log(r∧i R1/R2))/ log(R2),

where i = 1 , . . . , m, let X ∈ (ZK)n\{(0)},

γ3 = γ1(R1)
(− log(2γ2R2))/ log(R2), γ4 = γ3

(
m∑

i=1

γ0(r
∧
i )(log(2γ2))/ log(R2)+l

)−1

and let for each ν ∈ N − 1 hold the inequalities

γ1(R1)
−νq(K)

∞ (X) ≤ sup{q(K)
∞ (y∧(X, κ)) : κ = ν, . . . , ν + l − 1},

q(K)
∞ (y∧(X, ν)) ≤ γ2(R2)

−νq(K)
∞ (X)

Then
sup{‖φi(X)‖K(q(K)

∞ (X))αi : i = 1, . . . , m} ≥ γ4.

Proof. Proof may be found in [56], Theorem 2.3.1. �

Corollary. Let a ∈ K,

α∧
1 (ν) ∈ ZK , α

∧
2 (ν) ∈ ZK , y(ν) = −α∧

2 (ν) + aα∧
1 (ν)(90)

where ν ∈ N. Let there are γ0, r
∧
1 ≥ 1 such that

q(K)
∞ (α1(ν)) < γ0(r

∧
1 )ν ,

where ν ∈ N. Let l ∈ N, γ1 > 0, γ2 >
1
2
, R1 ≥ R2 > 1,

α1 = (log(r∧1R1/R2))/ log(R2), γ3 = γ1(R1)
(− log(2γ2R2))/ log(R2),

γ4 = γ3

(
γ0(r

∧
1 )(log(2γ2))/ log(R2)+l

)−1
,

X ∈ ZK and let for each ν ∈ N − 1 hold the inequalities

γ1(R1)
−νq(K)

∞ (X) ≤ sup{q(K)
∞ (y1(κ)X) : κ = ν , . . . , ν + l − 1))},
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q(K)
∞ (y(ν)X) ≤ γ2(R2)

−νq(K)
∞ (X)

Then

‖aX‖K(q(K)
∞ (X))α ≥ γ4.(91)

Proof. This Corrolary is the Lemma 12 for m = n = 1. �

Let B ∈ N, D∗(B) = inf{q ∈ N : d/κ ∈ N, κ ∈ N, κ ≤ B}. It is known
that

D∗(B) = exp(B +O(B/ log(B)).

Let d∗0(∆, ν) = D∗(ν(∆ + 1)). Then

d∗0(∆, ν) = exp(ν(∆ + 1) +O(ν/ log(ν))),(92)

when ν → ∞.
Probably G.V. Chudnovsky was the first man, who discovered, that the

numbers (16) have a great common divisor; Hata ([17]) in details studied
this effect. Therefore I name the mentioned common divisor by Chudnovsky-
Hata’s multiplier and denote it by d∗1(∆, ν). According to the Hata’s results,

log(d∗1(∆, ν)) = (1 + o(1))ν ×(93)

1∑

µ=0






∆ + (−1)µ

2
log

(
∆

∆ + (−1)µ

)

+ (−1)µπ

2

h

∆+(−1)µ

2

i

∑

κ=1

cot

(
πκ

∆ + (−1)µ

)




 .

In view of (92),

d∗0(5, ν) = exp(6ν(∆ + 1) +O(ν/ log(ν))), d∗0(7, ν) =(94)

exp(8ν(8) +O(ν/ log(ν))).

In view of (94)

log(d∗1(5, ν)) = (1 + o(1))ν ×(95)

(−3 log(1.2) + 2 log(0.8) + (π/2)(cot(π/6) + cot(π/3) + cot(π/4))) =

(1 + o(1))ν × 1.956124...,

log(d∗1(7, ν)) = (1 + o(1))ν ×(96)

(4 log(7/8) + 3 log(7/6)) + (1 + o(1))(π/2)ν×
(− cot(π/6) − cot(π/3) + cot(π/8) + cot(3π/8) + cot(π/4)) =

(1 + o(1))ν(4 log(7/8) + 3 log(7/6) + π(−2/
√

3 + 2/
√

2 + 1/2) =

(1 + o(1))ν × 2.314407 . . . ,

when ν → ∞.
In view of (18) and (19),

α∗(z; ν)d∗0(ν)/d
∗
1(ν) ∈ Z[z],

φ∗(z; ν)d∗0(ν)/d
∗
1(ν) ∈ Z[z].
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Let

U∆(m, ν) = d∗0(ν)/d
∗
1(ν), Λ0(m) = 0,(97)

if m 6= 2pα, where p run over the all the prime numbers and α run over N

and let

U∆(m, ν) =
d∗0(ν)

d∗1(ν)
p[(∆+1)ν/φ(m)]+1, Λ0(m) = Λ(m/2),(98)

if m = 2pα, where p is a prime number and α ∈ N. In view of the (18), (19)
and Lemma 1,

α∗(z; ν)

∣
∣
∣
∣
z=

„

1

2 cos( kπi
m )

, kπi
m

−π

«
U∆(m, ν) ∈ ZQ[exp(2iπ/m)],(99)

φ∗(z; ν)

∣
∣
∣
∣
z=

„

1

2 cos( kπi
m )

, kπi
m

−π

«
U∆(m, ν) ∈ ZQ[exp(2iπ/m)],(100)

where (k,m) = 1. In view of (98), (97), (93), (92), (2) and (3)

d∗0(ν)

d∗1(ν)
=(101)

ν(1 + o(1))V ∗
∆ log(U∆(m, ν)) = ν(1 + o(1))V∆(m),

when ν → ∞.
The polynomial (28) take the form

D∧(z, η) = (η + 1)

(

η +
∆ − 1

∆ + 1

)

+
2∆ exp(iψ)η

(∆ + 1) cos(ψ)
=

((∆ + 1)η2 + 2∆(2 + iT )η + (∆ − 1))/(∆ + 1),

where ψ ∈ (−pi/2, π/2) and T = tan(ψ); its roots are equal to

−(2∆ + ∆iT +R)/(∆ + 1),(102)

where R2 = ∆2(3 − T 2) + 1 + 4∆2iT. In view of (1), Then

R ∈ {±
(
w∆(T ) + i2∆2iT/w∆(T )}

)
.

In view of (102) and (46),
η∧j (r, ψ, δ0) =

−2∆ + ∆iT + (−1)j (w∆(T ) + i2∆2iT/w∆(T ))

∆ + 1
=

−2∆ + (−1)jw∆(T ) + iT∆ (1 + (−1)j2∆/w∆(T ))

∆ + 1
,

where j = 0, 1,
|η∧j (r, ψ, δ0) + k|2 =
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(2∆ + (−1)jw∆(T ) − k(∆ + 1))
2
+ T 2∆2 (1 + (−1)j2∆/w∆(T ))

2

(∆ + 1)2
,

where j = 0, 1; k = 0, 1, −1. Therefore, in view of (30) and (4)

ln |h∼(η∧j (r, ψ, δ0))| =(103)

(ηj(r, ψ, δ0) − 1)(1 − δ0)
−d1(ηj(r, ψ, δ0) + 1)2−2ηj(r, ψ, δ0)

d1 =

−log
(
4(∆ + 1)∆+1(1 − 1/∆)(∆ − 1)

)
+

1

2
log

(

(
2∆ + (−1)jw∆(T ) + (∆ + 1)

)2
+ T 2∆2

(

1 +
(−1)j2∆

w∆(T )

)2
)

+

1

2
log

(

(
2∆ + (−1)jw∆(T ) − (∆ + 1)

)2
+ T 2∆2

(

1 +
(−1)j2∆

w∆(T )

)2
)

+

(∆ − 1)

2
log

(

(
2∆ + (−1)jw∆(T )

)2
+ T 2∆2

(

1 +
(−1)j2∆

w∆(T )

)2
)

=

l∆(j, T ),

where j = 0, 1. Clearly,
w∆(0) =

√
3∆2 + 1,

η∧j (1/2, 0, δ0) = −2∆ + (−1)j
√

3∆2 + 1

∆ + 1
,

where j = 0, 1,

∣
∣η∧j (1/2, 0, δ0) + k

∣
∣ =

∣
∣
∣
∣
∣

2∆ + (−1)j
√

3∆2 + 1 − k(∆ + 1)

∆ + 1

∣
∣
∣
∣
∣
,

where j = 0, 1; k = 0, 1, −1. Therefore

l∆(ε, 0) = (log |h∼(η∧ε (1/2, 0, δ0))|) =(104)

log
(
|(ηε(1/2, 0, δ0) − 1)(1 − δ0)

−d1(ηε(1/2, 0, δ0) + 1)2−2ηε(1/2, 0, δ0)
d1 |
)

=

− log
(
4(∆ + 1)∆+1(1 − 1/∆)(∆ − 1)

)
+

log
(

|2∆ + (−1)ε
√

3∆2 + 1 − (∆ + 1)|
)

+

log
(

|2∆ + (−1)ε
√

3∆2 + 1 + (∆ + 1)|
)

+

(∆ − 1) log
(

|2∆ + (−1)ε
√

3∆2 + 1|
)

.

Consequently

l5(1, 0) = −‖og(4) − 6 log 6 − 4 log(0.8)+

log(
√

76 − 4) + log(16 −
√

76) + 4 log(10 −
√

76)

I made computations below ”by hands” using calculator of the firm ”CASIO.”

log 4 = 1, 386294361... ; 6 log(6) = 10, 7505682... ;
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4 log(0.8) = −0, 892574205... ;
√

76 = 8, 717797887... ;
√

76 − 4 = 4, 717797887... ;

16 −
√

76 = 7, 282202113... ; 10 −
√

76 = 1, 282202113... ;

log
(√

76 − 4
)

= 1.551342141... ; log
(

16 −
√

76
)

= 1.985433305... ;

log
(

10 −
√

76
)

= 0.248579... ; 4 log
(

10 −
√

76
)

= 0, 994316001... ;

l5(1, 0) = −6.713196909...;(105)

l7(1, 0) = − log(4) − 8 log(8) − 6 log(6) + 6 log(7)+

log
(√

148 − 6
)

+ log
(

22 −
√

148
)

+ 6 log
(

14 −
√

148
)

;

8 log 8 = 16, 63553233... ; 6 log 6 = 10, 75055682...; 6 log 7 = 11, 67546089...;
√

148 = 12, 16552506... ;
√

148 − 6 = 6, 16552506...

22 −
√

148 = 9, 83474939... ; 14 −
√

148 = 1, 83474939... ;

log(
√

148 − 6) = 1, 818973301; log(22 −
√

148) = 2, 285894063...;

log(14 −
√

148) = 0, 606758304... ; 6 log(14 −
√

148) = 3, 640549824... ;

l7(1, 0) = −9, 35150543... .(106)

In view of (2), (92), (93), (95), (96) and (101),

V ∗
5 = 6 − 1.956124... = 4, 04387...;V ∗

7 = 8 − 2.314407 = 5, 685593.
(107)

In view (105) – (107),

−V ∗
5 − l5(1, 0) > 0, −V ∗

7 − l7(1, 0) > 0.(108)

So, the key inequalities (108) are checked ”by hands”. I view of (103), (108)
and Lemma 3,

−V ∗
5 − l5(1, tan(π/m)) > 0, −V ∗

7 − l7(1, tan(π/m)) > 0,

where m > 2. Since (log(p))/(pα−1(p−1)) decreases together with increasing
of p ∈ (3, +∞) with fixed α ≥ 1, or icreasing of α ∈ (1, +∞ with fixed p ≥ 2
(or, of course, increasing both α ∈ (1, +∞ and p ∈ (3, +∞)), and

lim
p→∞

((log(p))/(pα−1(p− 1))) = 0,

where α ≥ 1,
lim

α→∞
((log(p))/(pα−1(p− 1))) = 0,

where p ≥ 2, it follows that the inequality (7) holds for all the sufficient big
integers m. Computations on computer of class ”Pentium” show that the
inequality (7) holds for m = 3, m = 4, m = 5 and m = 2 × 5; therefore
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inequality (7) holds for all the m > 2×3. Let ε0 = h∆(m)/2, with h∆(m) de-
fined in (6). In view of (7), ε0 > 0. We take now K = Km = Q[exp(2πi/m)].
Let further {σ1, . . . , σφ(m)} = Gal(K/Q). For each j = 1, . . . , φ(m) there
exists kj ∈ (−m/2, m/2) ∩ Z such that

(|kj|, m) = 1, σj

(

exp

(
2πi

m

))

= exp

(
2πikj

m

)

.

Let a be the element of K, such that

πj(a) = log(2 + σj(exp(2πi/m))) = log(2 + exp(2πikj/m)),

where j = 1, . . . , φ(m); we suppose that k1 = 1. In view of (99) and (100),
let α∨

1 (ν), α∧
1 (ν), α∨

2 (ν), α∧
2 (ν), are elements in K such that

πj(α
∨
1 (ν)) = α∗(z; ν)

∣
∣
∣
∣
z=

 

1

2 cos(
kjπi

m )

,
kjπi

m
−π

!,

πj(α
∨
2 (ν)) = φ∗(z; ν)

∣
∣
∣
∣
z=

 

1

2 cos(
kjπi

m )

,
kjπi

m
−π

!,

πj(α
∧
1 (ν)) = α∗(z; ν)

∣
∣
∣
∣
z=

 

1

2 cos(
kjπi

m )

,
kjπi

m
−π

!U∆(m, ν),(109)

πj(α
∧
2 (ν)) = φ∗(z; ν)

∣
∣
∣
∣
z=

 

1

2 cos(
kjπi

m )

,
kjπi

m
−π

!U∆(m, ν),(110)

where j = 1, . . . , φ(m). Then α∧
k (ν) ∈ ZK for k = 1, 2.

y∨(ν) = −α∨
2 (ν) + aα∨

1 (ν),(111)

and let y(ν) is defined by means the equality (90). According to the Corrol-
lary of the Lemma 4, to the Theorem 4 in [58] (or Theorem 7 in [66]), to the
Lemma 8, to (103), there exist m∗

1 ∈ N having the following property:
for any ε ∈ (0, ε0) there exist γ0(ε) > 0, γ1(ε) > 0, and γ2(ε) > 0 such

that

|πj(α
∨
k (ν))| ≤(112)

γ0(ε) exp((l∆(tan((kjπi)/m), 0) + ε/3)ν),

where k = 1, 2, j = 1, . . . , φ(m) and ν ∈ N − 1 +m∗
1,

γ1(ε) exp((l∆(tan((kjπi)/m), 1) − ε/3)ν) ≤(113)

max(|πj(y
∨(ν))|, |πj(y

∨(ν + 1))| ≤
γ2(ε) exp((l∆(tan((kjπi)/m), 1) + ε/3)ν),

where j = 1, . . . , φ(m) and ν ∈ N − 1 +m∗
1.
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Let ω1(m) = (m−1)/2, if m is odd, ω1(m) = m/2−2, if m ≡ 2( mod 4)
and ω(m) = m/2 − 1, if m ≡ 0( mod 4). Then

ω1(m) = sup{k ∈ N : kj < m/2, (k,m) = 1}.

According to the Lemma 3 and (103),

l∆(tan((kjπi)/m), 0) ≤ l∆(tan((ω1(m)πi)/m), 0),(114)

l∆(tan((ω1(m)πi)/m), 1) ≤(115)

l∆(tan((kjπi)/m), 1) ≤ l∆(tan((πi)/m), 1)

where j = 1, . . . , φ(m). In view of (112) – (115),

|πj(α
∨
k (ν))| ≤ γ0(ε) exp((l∆(tan((ω1(ν)πi)/m), 0) + ε/3)ν),

(116)

where k = 1, 2, j = 1, . . . , φ(m) and ν ∈ N − 1 +m∗
1,

γ1(ε) exp((l∆(tan((ω1(m)πi)/m), 1) − ε/3)ν) ≤(117)

max(|πj(y
∨(ν))|, |πj(y

∨(ν + 1))| ≤
γ2(ε) exp((l∆(tan((πi)/m), 1) + ε/3)ν),

where j = 1, . . . , φ(m) and ν ∈ N − 1 + m∗
1. In view of (101), there exists

m∗
2 ∈ N − 1 +m∗

1, such that

exp(V∆(m) − ε/3)ν ≤ U∆(m, ν) ≤ exp(V∆(m) − ε/3)ν(118)

where ν ∈ N − 1 +m∗
2.

In view of (115) – (118), (109) – (111), (6), (5),

|πj(αk(ν))| ≤ γ0(ε) exp((g∆,0(m) + 2ε/3)ν),(119)

where k = 1, 2, j = 1, . . . , φ(m) and ν ∈ N − 1 +m∗
2,

γ1(ε) exp((−g∆,1(m) − 2ε/3)ν) ≤(120)

max(|πj(y
∨(ν))|, |πj(y

∨(ν + 1))| ≤
γ2(ε) exp((−h∆(m) + 2ε/3)ν),

where j = 1, . . . , φ(m) and ν ∈ N − 1 +m∗
2.

Let X ∈ ZKm�{0}. Then, in view of (119) and (120),

|πj(Xαk(ν))|| ≤ γ0(ε) exp((g∆,0(m) + 2ε/3)ν)|πj(X)| ≤
(121)

γ0(ε) exp((g∆,0(m) + 2ε/3)ν)q(K)
∞ (X),

where k = 1, 2, j = 1, . . . , φ(m) and ν ∈ N − 1 +m∗
2,

γ1(ε) exp((−g∆,1(m) − 2ε/3)ν)|πj(X)| ≤(122)
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max(|πj(Xy
∨(ν))|, |πj(Xy

∨(ν + 1))| ≤
max(q(K)

∞ (Xy∨(ν)), q(K)
∞ (Xy∨(ν + 1)),

where j = 1, . . . , φ(m) and ν ∈ N − 1 +m∗
2,

max(|πj(Xy
∨(ν))|, |πj(Xy

∨(ν + 1))| ≤(123)

γ2(ε) exp((−h∆(m) + 2ε/3)ν)|πj(X)| ≤
γ2(ε) exp((−h∆(m) + 2ε/3)ν)qK

∞(X),

where j = 1, . . . , φ(m) and ν ∈ N − 1 +m∗
2.

In view of (121)

q(K)
∞ (Xαk(ν)) ≤(124)

γ0(ε) exp((g∆,0(m) + 2ε/3)ν)q(K)
∞ (X),

where k = 1, 2, and ν ∈ N − 1 +m∗
2. In view of (123),

max(q(K)
∞ (Xy∨(ν)), q(K)

∞ ((Xy∨(ν + 1)) =(125)

sup({|πj(Xy
∨(ν + ε))|, : ε ∈ {0, 1}, j = 1, . . . , φ(m)}) ≤

γ2(ε) exp((−h∆(m) + 2ε/3)ν)q(K)
∞ (X),

where ν ∈ N − 1 +m∗
2.

Taking in acount (124), (125) and (122), we see that all the conditions of
the Corollary of the Lemma 12 are fulfilled for

ε ∈ (0, ε0), γ0(ε), γ1(ε), γ2(ε), y = y(ν), α1(ν), α2(ν),

r1 = r1(ε) = exp(g∆,0(m) + 2ε/3,

R1 = R1(ε) = exp(g∆,1(m) + 2ε/3),

R2 = R2(ε) exp(h∆(m) − 2ε/3),

and this proves the part of our Theorem connected with the inequality (8).
Let again X ∈ ZKm�{0} and let

q
(K)
min(X) = inf(|{πj(X)| : j = 1, . . . , φ(m)})

Clearly, q
(K)
min(X) > 0 According to the Theorem 4 in [58], or to the Theorem 7

in [66], there exist m∗
1 ∈ N having the following property: for any ε ∈ (0, ε0)

there exist γ∗0(X, ε) > 0, γ∗1(X, ε) > 0, and γ∗2(X, ε) > 0 such that

|πj(α
∨
k (ν))| ≤ γ∗0(ε) exp((l∆(tan((ωmπi)/m), 0) + ε/3)ν),

where k = 1, 2, j = 1, . . . , φ(m) and ν ∈ N − 1 +m∗
1,

γ∗1(Xε) exp((l∆(tan((πi)/m), 1) − ε/3)ν) ≤

max(|πj(y
∨(ν))|, |πj(y

∨(ν + 1))| ≤
γ2(ε) exp((l∆(tan((πi)/m), 1) + ε/3)ν),
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where j = 1, . . . , φ(m) and ν ∈ N− 1 +m∗
1. Repeating the previous consid-

erations, we see that all the conditions of the Corollary of the Lemma 12 are
fulfilled for ε ∈ (0, ε0),

γ0 = γ∗0(X, ε), γ1 = γ∗1(X, ε), γ2 = γ∗2(X, ε),

y = y(ν), α1(ν), α2(ν), r1 = r1(ε) = exp(g∆,0(m) + 2ε/3,

and
R1 = R2 = R2(ε) exp(h∆(m) − 2ε/3),

and this proves the part of our Theorem connected with the inequality (9).
�

Below are values of β and α computed for ∆ ∈ {5, 7} and some m ∈ N.

(m; ∆; β; α) = (3; 5; 3, 111228... ; 3, 111228...),

(m; ∆; β; α) = (3; 7; 3, 073525... ; 3, 073525...),

(m; ∆; β; α) = (4; 5; 11, 458947... ; 11, 458947...),

(m; ∆; β; α) = (4; 7; 10, 551730... ; 10, 551730...),

(m; ∆; β; α) = (5; 5; 4, 826751... ; 5, 607961...),

(m; ∆; β; α) = (5; 7, 4, 837858... ; 5, 684622...),

(m; ∆; β; α) = (7; 5; 5, 701485... ; 6, 977258...),

(m; ∆; β; α) = (7; 7; 5, 724804... ; 7, 114963...),

(m; ∆; β; α) = (8; 5; 8, 337857... ; 9, 436901...),

(m; ∆; β; α) = (8; 7; 8, 253047... ; 9, 433260...),

(m; ∆; β; α) = (9; 5; 6, 312056... ; 7, 960502...),

(m; ∆; β; α) = (9; 7; 6, 335274... ; 8, 134962...),

(m; ∆; β; α) = (10; 5; 43, 546644... ; 46, 230614...),

(m; ∆; β; α) = (10; 7; 35, 648681... ; 38, 043440...),

(m; ∆; β; α) = (11; 5; 6, 786990... ; 8, 735234...),

(m; ∆; β; α) = (11; 7, 6, 806087... ; 8, 934922...),

(m; ∆; β; α) = (12; 5; 5, 638541... ; 6, 813222...),

(m; ∆; β; α) = (12; 7; 5, 696732... ; 6, 983870...),

(m; ∆; β; α) = (13; 5; 7, 177155... ; 9, 376030...),

(m; ∆; β; α) = (13; 7; 7, 190814... ; 9, 594580...),

(m; ∆; β; α) = (14; 5; 19, 659885... ; 21, 835056...),

(m; ∆; β; α) = (14; 7; 18, 447228... ; 20, 668254...),

(m; ∆; β; α) = (15 ; 5; 7, 508714... ; 9, 922761...),

(m; ∆; β; α) = (15; 7; 7, 516606... ; 10, 156245...),

(m; ∆; β; α) = (16; 5, 7, 951153... ; 9, 876454...),
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(m; ∆; β; α) = (16; 7, 7, 945763... ; 10, 039605...),

(m; ∆; β; α) = (17; 5; 7, 797153... ; 10, 399610...),

(m; ∆; β; α) = (17; 7, 7, 799343... ; 10, 645404...),

(m; ∆; β; α) = (18; 5, 9, 486110... ; 10, 955534...),

(m; ∆; β; α) = (18; 7, 9, 406368... ; 10, 989150...),

(m; ∆; β; α) = (19; 5; 8, 052478... ; 10, 822446...),

(m; ∆; β; α) = (19; 7; 8, 049182... ; 11, 078690...),

(m; ∆; β; α) = (20; 5; 6, 696241... ; 8, 559091...),

(m; ∆; β; α) = (20; 7; 6, 733979... ; 8, 774063...),

(m; ∆; β; α) = (21; 5; 8, 281548... ; 11, 202268...),

(m; ∆; β; α) = (21; 7; 8, 273039... ; 11, 467583...),

(m; ∆; β; α) = (22; 5; 13, 134623... ; 15, 504916...),

(m; ∆; β; α) = (22; 7; 12, 815391... ; 15, 331975...),

(m; ∆; β; α) = (23; 5; 8, 489281... ; 11, 547024...),

(m; ∆; β; α) = (23; 7; 8, 475843... ; 11, 820351...),

(m; ∆; β; α) = (24; 5; 7, 088338... ; 9, 210037...),

(m; ∆; β; α) = (24; 7; 7, 116679... ; 8, 439782...),

(m; ∆; β; α) = (25; 5; 8, 679328... ; 11, 862643...),

(m; ∆; β; α) = (25; 7; 8, 661235... ; 12, 143143...),

(m; ∆; β; α) = (26; 5; 12, 172520... ; 14, 674949...),

(m; ∆; β; α) = (26; 7; 11, 944943... ; 14, 618461...),

. . .

(m; ∆; β; α) = (32; 5; 8, 654733... ; 11, 466214...),

(m; ∆; β; α) = (32; 7; 8, 637697... ; 11, 705492...),

(m; ∆; β; α) = (33; 5; 9, 310125... ; 12, 911341...),

(m; ∆; β; α) = (33; 5; 9, 275806... ; 13, 214792...),
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et de fonctions binômes, et mesures d’irrationalité,
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[19] H.Bateman and A.Erdélyi, Higher transcendental functions,1953,
New-York – Toronto – London, Mc. Grow-Hill Book Company, Inc.;
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