On the Diophantine Approximations of logarithms in cyclotomic fields.

L.A. Gutnik

To 100th birthday of Professor A.O.Gelfond.

Acknowledgments. I express my deepest thanks to Professors B.Z.Moroz, I.I. Piatetski-Shapiro, A.G.Aleksandrov, P.Bundshuh and S.G.Gindikin for help and support.

Let $T \in \mathbb{R}$, $\{\Delta, m, n\} \in \mathbb{N}, \Delta \geq 2$, $K_m = \mathbb{Q}[\exp(2\pi i/m)]$ is a cyclotomic field, \mathbb{Z}_{K_m} is the ring of all the integers in K_m , $\Lambda(n)$ is the Mangold's function, $\epsilon^2 = \epsilon$. Let $\Lambda_0(m) = 0$, if m is odd and $\Lambda_0(m) = \Lambda(m/2)$, if m is even. Let $\omega_1(m) = (m-1)/2$, if m is odd, $\omega_1(m) = m/2 - 2$, if $m \equiv 2 \pmod{4}$ and $\omega_1(m) = m/2 - 1$, if $m \equiv 0 \pmod{4}$. Let

(1)
$$w_{\Delta}(T) = \sqrt{\frac{\sqrt{(\Delta^2(3-T^2)+1)^2 + 16\Delta^4 T^2} + \Delta^2(3-T^2) + 1}{2}},$$

(2)
$$V_{\Delta}^{*} = (\Delta + 1) + \log((\Delta - 1)^{(\Delta - 1)/2} (\Delta + 1)^{(\Delta + 1)/2} \Delta^{-\Delta}) + \frac{\pi}{2} \sum_{\mu=0}^{1} (1 - 2\mu) \sum_{\kappa=1}^{[(d-1)/2]+\mu} \cot\left(\frac{\pi\kappa}{d - 1 + 2\mu}\right),$$

 $\kappa = 1$

(3)
$$V_{\Delta}(m) = V^* + (\Delta + 1)\Lambda_0(m)/\phi(m),$$

(4)
$$l_{\Delta}(\epsilon, T) = -\log\left(4(\Delta + 1)^{\Delta + 1}(1 - 1/\Delta)^{(\Delta - 1)}\right) +$$

$$\frac{1}{2} \log \left((2\Delta + (-1)^{\epsilon} w_{\Delta}(T) + (\Delta + 1))^{2} + T^{2} \Delta^{2} \left(1 + \frac{(-1)^{\epsilon} 2\Delta}{w_{\Delta}(T)} \right)^{2} \right) + \frac{1}{2} \log \left((2\Delta + (-1)^{\epsilon} w_{\Delta}(T) - (\Delta + 1))^{2} + T^{2} \Delta^{2} \left(1 + \frac{(-1)^{\epsilon} 2\Delta}{w_{\Delta}(T)} \right)^{2} \right) + \frac{(\Delta - 1)}{2} \log \left((2\Delta + (-1)^{\epsilon} w_{\Delta}(T))^{2} + T^{2} \Delta^{2} \left(1 + \frac{(-1)^{\epsilon} 2\Delta}{w_{\Delta}(T)} \right)^{2} \right),$$

(5)
$$g_{\Delta,\epsilon}(m) = (-1)^{\varepsilon} (l_{\Delta}(\epsilon, \tan(\pi\omega_1(m)/m) + V_{\Delta}(m))),$$

(6)
$$h_{\Delta}(m) = -V_{\Delta}(m) - l_{\Delta}(1, \tan(\pi/m)),$$

where $m \neq 2, k = 0, 1$. Let

$$\beta(\Delta, m) = g_{d,0}(m)/h_{\Delta}(m), \ \alpha(\Delta, m) = \beta(\Delta, m) - 1 + g_{\Delta,1}(m)/h_{\Delta}(m).$$

Theorem. Let $m \in \mathbb{N} \setminus \{1, 2, 6\} \Delta \in \{5, 7\}$. Then

(7)
$$h_{\Delta}(m) > 0$$

and for each $\varepsilon > 0$ there exists $C_{\Delta,m}(\varepsilon) > 0$ such that

(8)
$$\max_{\sigma \in Gal(K/\mathbb{Q})} (|q^{\sigma} \log((2 + \exp(2\pi i/m))^{\sigma}) - p^{\sigma}|) \ge$$

$$C_{\Delta,m}(\varepsilon)(\max_{\sigma\in Gal(K_m/\mathbb{Q})}(|q^{\sigma}|)^{-\alpha(\Delta,m)-\varepsilon},$$

where $p \in \mathbb{Z}_{K_m}$ and $q \in \mathbb{Z}_{K_m} \setminus \{0_{K_m}\}$; moreover, for any $q \in \mathbb{Z}_{K_m} \setminus \{0_{K_m}\}$ and any $\varepsilon > 0$ there exists $C^*_{\Delta,m}(q,\varepsilon) > 0$ such that

(9)
$$b^{\beta(\Delta,m)+\varepsilon} \max_{\sigma \in Gal(K/\mathbb{Q})} (|q^{\sigma}b\log((2+\exp(2\pi i/m))^{\sigma}) - p^{\sigma}|) \ge$$

$$C^*_{\Delta,m}(q,\varepsilon),$$

where $p \in \mathbb{Z}_{K_m}, b \in \mathbb{N}$.

For the proof I use the same method, as in [37] - [67]. I work on the Riemann surface \mathfrak{F} of the function Log(z) and identify it with the direct product of the multiplicative group $\mathbb{R}^*_+ = \{r \in \mathbb{R} : r > 0\}$ of all the positive real numbers with the operation \times , not to be written down explicitly as usual, and the additive group \mathbb{R} of all the real numbers, so that

$$z_1 z_2 = (r_1 r_2, \phi_1 + \phi_2)$$

for any two points $z_1 = (r_1, \phi_1)$ and $z_2 = (r_2, \phi_2)$ on \mathfrak{F} . I will illustrate the appearing situations on the half plain (ϕ, r) , where r > 0.

For each $z = (r, \phi) \in \mathfrak{F}$, let

$$\theta_0(z) = r \exp i\phi, \ Log(z) = \ln(r) + i\phi, \ \eta^*_\alpha(z) = (r, \phi - \alpha),$$

where $\alpha \in \mathbb{R}$. Clearly, $Log(z_1z_2) = Log(z_1) + Log(z_2)$ for any $z_1 \in \mathfrak{F} \ z_2 \in \mathfrak{F}$. Let $\rho(z_1, z_2) = |Log(z_1) - Log(z_2)|$, where $z_1 \in \mathfrak{F}$ and $z_2 \in \mathfrak{F}$; clearly, (\mathfrak{F}, ρ) is a metric space. Clearly, $\rho(zz_1, zz_2) = \rho(z_1, z_2)$ for any z_1, z_2 and z in \mathfrak{F} . Clearly, $\theta_0(z) = \exp(Log(z))$ for any $z \in \mathfrak{F}$. Clearly, for any $\alpha \in \mathbb{R}$ the map $z \to \eta_\alpha^*(z)$ is the bijection of \mathfrak{F} onto \mathfrak{F} and

$$\theta_0((\eta^*_\alpha)^m(z)) = \exp(-im\alpha)\theta_0(z)$$

for each $z = (r, \phi) \in \mathfrak{F}$, $\alpha \in \mathbb{R}$ and $m \in \mathbb{Z}$. Clearly, the group \mathfrak{F} may be considered as \mathbb{C} -linear space, if for any $z \in \mathfrak{F}$ and any $s \in \mathbb{C}$ we let

$$z^{s} = (|\exp(sLog(z))|, \Im(sLog(z)).$$

Let us fix a domain D in \mathfrak{F} . Let $f(z) = f^{\wedge}(r, \phi)$ for a complex-valued function f(z) on D, It is well known that f(z) is holomorphic in D if the complex-valued function $f^{\wedge}(r, \phi)$ of two real variables r and ϕ has continuous partial derivatives in D, and the Cauchy-Riemann conditions

(10)
$$r(((\partial/\partial r)f^{\wedge})(r,\phi)) = -i((\partial/\partial\phi)f^{\wedge})(r,\phi)) :=$$
$$(\delta f)(z) := \theta_0(z)((\partial/\partial z)f)(z))$$

are satisfied for every point $z = (r, \phi) \in D$. The equalities (10) determine a differentiations $\frac{\partial}{\partial z}$ and $\delta = \theta_0(z) \frac{\partial}{\partial z}$ on the ring of all the holomorphic in the domain D functions. In particular, the function Log(z) is holomorphic on \mathfrak{F} and we have the equalities

$$((\partial/\partial z)Log)(z) = \theta_0(z^{-1}), \ (\delta Log)(z) = 1.$$

For the proof I use the functions of C.S.Mejer. Let $\Delta \in \mathbb{N} + 1$, $\delta_0 = 1/\Delta$,

$$\gamma_1 = (1 - \delta_0)/(1 + \delta_0), \quad d_l = \Delta + (-1)^l, \quad l = 1, 2.$$

To introduce the first of my auxiliary function $f_1(z, \nu)$, I use the auxiliary set

$$\Omega_0 = \{ z \in \mathfrak{F} : |z| \le 1 \}.$$

I prove that, for each $\nu \in \mathbb{N}$, the function $f_1(z,\nu)$ belongs to the ring $\mathbb{Q}[\theta_0(z)]$; therefore using the principle of analytic continuation we may regard it as being defined in \mathfrak{F} . For $\nu \in \mathbb{N}$, let

(11)
$$f_1(z,\nu) = -(-1)^{\nu(\Delta+1)} G_{2,2}^{(1,1)} \left(z \begin{vmatrix} -\nu d_1, & 1+\nu d_2 \\ 0, & \nu \end{vmatrix} \right)$$
$$= -(-1)^{\nu(\Delta+1)} \frac{1}{2\pi i} \int_{L_1} g_{2,2}^{(1,1)}(s) ds,$$

where

$$g_{2,2}^{(1,1)}(s) = \theta_0(z^s)\Gamma(-s)\Gamma(1+d_1\nu+s)/(\Gamma(1-\nu+s)\Gamma(1+d_2\nu-s))$$

and the curve L_1 passes from $+\infty$ to $+\infty$ encircling the set $\mathbb{N} - 1$ in the negative direction, but not including any point of the set $-\mathbb{N}$. So, for the parameters of the Meyer's functions we have

$$p = q = 2, \ m = n = 1, \ a_1 = -\nu d_1, \ a_2 = 1 + \nu d_2, \ b_1 = 0, \ b_2 = \nu,$$
$$\Delta^* = \left(\sum_{k=1}^q b_k\right) - \sum_{j=1}^p a_j = -\nu - 1 < -1,$$

and, since we take $|z| \leq 1$, convergence conditions of the integral in (11) hold. To compute the function $f_1(z, \nu)$, we use the following formula

(12)
$$G = (-1)^k \sum_{s \in S_k} \operatorname{Res}(g; s),$$

where k = 1, G denotes the integral (11) with $L = L_k$, g denotes the integrand of the integral (11), S_k denotes the set of all the unremovable singularities of g encircled by L_k , and Res(g; s) denotes the residue of the function g at the point s. Then we obtain the equility

$$f_1(z, \nu) =$$

$$(\nu d_1)!/(\nu \Delta)! z^{\nu} (-1)^{\nu \Delta} \sum_{k=0}^{\nu \Delta} (-\theta_0(z))^k {\binom{\nu \Delta}{k}} {\binom{\nu \Delta + k}{\nu d_1}}$$

Therefore, as it has been already remarked, using the principle of analytic continuation we may regard it as being defined in \mathfrak{F} . Let

$$\Omega_1 = \{ z \in \mathfrak{F} : |z| \ge 1 \}.$$

Now, let me introduce my second auxiliary function defined for $z \in \Omega_1$. For $\nu \in \mathbb{N}$, let

(13)
$$f_{2}(z,\nu) = -(-1)^{\nu(\Delta+1)} G_{2,2}^{(2,1)} \left(z \begin{vmatrix} -\nu d_{1}, & 1+\nu d_{2} \\ 0, & \nu \end{vmatrix} \right) = -(-1)^{\nu(\Delta+1)} \frac{1}{2\pi i} \int_{L_{2}} g_{2,2}^{(2,1)}(s) ds,$$

where

$$g_{2,2}^{(2,1)}(s) = \theta_0((\eta_\pi(z))^s)\Gamma(-s)\Gamma(\nu-s)\Gamma(1+d_1\nu+s)/\Gamma(1+d_2\nu-s).$$

and the curve L_2 passes from $-\infty$ to $-\infty$ encircling the set $-\mathbb{N}$ in the positive direction, but not including any point of the set $\mathbb{N}-1$. So, for the parameters of the Meyer's functions we have

$$p = q = m = 2, n = 1, a_1 = -\nu d_1, a_2 = 1 + \nu d_2, b_1 = 0, b_2 = \nu,$$

$$\Delta^* = \left(\sum_{k=1}^q b_k\right) - \sum_{j=1}^p a_j = -nu - 1 < -1,$$

and, since we take $|z| \ge 1$, convergence conditions of the integral in (13) hold. To compute the function $f_2(z,\nu)$, we use the formula (12) where k = 2, G denotes the integral in (13) with $L = L_k$, g denotes the integrand of the integral in (13), S_k denotes the set of all the unremovable singularities of g encircled by L_k , and Res(g; s) denotes the residue of the function g at the point s. Then we obtain the equality

(14)
$$f_2(z,\nu)(\nu\Delta)!/(\nu d_1)! = (-1)^{\nu} \sum_{t=\nu+1}^{\infty} R_0(t;\nu)\theta_0(z^{-t+\nu}),$$

where

$$R_0(t;\nu) = (\nu\Delta)!/(\nu d_1)! \left(\prod_{\kappa=\nu+1}^{\nu\Delta} (t-\kappa)\right) \prod_{\kappa=0}^{\nu\Delta} (t+\kappa)^{-1}.$$

Let further

(15)
$$f_k^*(z, \nu) = f_k(z, \nu)(\nu\Delta)!/(\nu d_1)!,$$

where k = 1, 2. Expanding the function $R_0(t; \nu)$ into partial fractions, we obtain the equality

$$R_0(t;\nu) = \sum_{k=0}^{\nu\Delta} \alpha_{\nu,k}^* / (t+k)$$

with

(16)
$$\alpha_{\nu,k}^* = (-1)^{\nu+\nu\Delta+k} \binom{\nu\Delta}{k} \binom{\nu\Delta+k}{\nu\Delta-\nu},$$

where $k = 0, ..., \nu \Delta$. It follows from (13), (14), (15) and (16) that

(17)
$$f_{2}^{*}(z,\nu) = (-\theta_{0}(z))^{\nu} \sum_{t=1+\nu}^{+\infty} (\theta_{0}(z))^{-t} R_{0}(t;\nu) =$$
$$= (-\theta_{0}(z))^{\nu} \sum_{t=1+\nu}^{+\infty} (\theta_{0}(z))^{-t-k+k} \sum_{k=0}^{\nu\Delta} \alpha_{\nu,k}^{*}/(t+k)$$
$$= (-\theta_{0}(z))^{\nu} \sum_{t=1+\nu}^{+\infty} ((\theta_{0}(z))^{-t-k}/(t+k)) \sum_{k=0}^{\nu\Delta} \alpha_{\nu,k}^{*}(\theta_{0}(z))^{k} =$$
$$(-\theta_{0}(z))^{\nu} \sum_{k=0}^{\nu\Delta} \alpha_{\nu,k}^{*}(\theta_{0}(z))^{k} \sum_{\tau=1+\nu+k}^{+\infty} ((\theta_{0}(z))^{-\tau}/\tau)) =$$
$$= \alpha^{*}(z;\nu)(-\log(1-1/\theta_{0}(z))) - \phi^{*}(z;\nu),$$

where $\log(\zeta)$ is a branch of $Log(\zeta)$ with $|\arg(\zeta)| < \pi$,

(18)
$$\alpha^*(z;\nu) = (-(\theta_0(z))^{\nu} \sum_{k=0}^{\nu\Delta} \alpha^*_{\nu,k} (\theta_0(z))^k = f_1^*(z;\nu),$$

(19)
$$\phi^*(z;\nu) = (-\theta_0(z))^{\nu} \sum_{k=0}^{\nu\Delta} \alpha^*_{\nu,k} (\theta_0(z))^k \sum_{\tau=1}^{\nu+k} ((\theta_0(z))^{-\tau} / \tau)) = (-\theta_0(z))^{\nu} \sum_{\tau=1}^{\nu} ((\theta_0(z))^{-\tau} \alpha^*(z;\nu) / \tau + (-\theta_0(z))^{\nu} \sum_{k=0}^{\nu\Delta} \alpha^*_{\nu,k} (\theta_0(z))^k \sum_{\tau=1+\nu}^{\nu+k} ((\theta_0(z))^{-\tau} / \tau)).$$

The change of order of summation by passage to (17) is possible, because the series in the second sum in (17) is convergent, if $|z| \ge 1$ and $\theta_0(z) \ne 1$. Since

$$\deg_t \left(\prod_{\kappa=\nu+1}^{\nu\Delta} (t-\kappa)\right) - \deg_t \left(\prod_{\kappa=0}^{\nu\Delta} (t+\kappa)\right) = -\nu - 1,$$

it follows that

$$\alpha^*(1;\nu) = \operatorname{Res}(R_0(t;\nu);t=\infty) = 0$$

So in the domain $D_0 = \{z \in \mathfrak{F} : |z| > 1$ the function $f_2^*(z, \nu)$ coincides with the function

(20)
$$f_0^*(z,\nu) = \alpha^*(z;\nu)(-\log(1-1/\theta_0(z))) - \phi^*(z;\nu),$$

The form (20) may be used for various applikations. Espeshially it is pleasant, when both $1/\theta_0(z)$ and $\alpha^*(z;\nu)$ for some z is integer algebraic number. The following Lemma corresponds to this remark.

Lemma 1. Let $m \in \mathbb{N}$, m > 2 $m \neq 2p^{\alpha}$, where p run over the all the prime numbers and α run over \mathbb{N} . Then $1 + \exp(2\pi i/m)$ belongs to the group of the units of the field K_m . If $m = 2p^{\alpha}$, where p is a prime number and $\alpha \in \mathbb{N}$, then the ideal $\mathfrak{l} = (1 + \exp(2\pi i/m))$ is a prime ideal in the field K_m , and $\mathfrak{l}^{\phi(m)} = (p)$.

Proof. Let polynomial $\Phi_m(z)$ is irreducible over \mathbb{Q} , has the leading coefficient equal to one and $\Phi_m(\exp(2\pi i/m)) = 0$. Let $\Lambda(n)$, as usual, denotes the Mangold's function. Since (see, for example, [27], end of the chapter 3)

$$\Phi_m(z) = \prod_{d|m} (z^{m/d} - 1)^{\mu(d)},$$

it follows that

$$\Phi_m(-1) = (-2)^{\left(\sum_{d\mid m} \mu(d)\right)} = 1,$$

if $m \in 1 + 2\mathbb{N}$,

$$\Phi_m(z) = \prod_{d \mid (m/2)} (((z)^{m/(2d)} - 1)^{\mu(2)} ((-z)^{m/d} - 1)/((-z) - 1))^{\mu(d)} \times$$
$$\Phi_m(-1) = \lim_{z \to -1} \prod_{d \mid (m/2)} (((-z)^{m/d} - 1)/((-z)^{-1}))^{\mu(d)} \times$$
$$(-2)^{\mu(2)} \left(\sum_{d \mid (m/20)} \mu(d)\right) =$$

$$\exp\left(\sum_{d\mid (m/2)} \ln(m/(2d))\mu(2d)\right) = \exp(\Lambda(m/2)),$$

if $m \in 2(1+2\mathbb{N})$,

$$\Phi_m(z) = \prod_{d \mid (m/2)} (((-z)^{m/d} - 1)/((-z) - 1))^{\mu(d)},$$

and

$$\Phi_m(-1) = \lim_{z \to -1} \prod_{d \mid (m/2)} (((-z)^{m/d} - 1)/((-z) - 1))^{\mu(d)} = \exp\left(\sum_{d \mid m/2} \ln(m/(2d))\mu(d)\right) = \exp(\Lambda(m/2)),$$

if $m \in 4\mathbb{N}$. If $m = 2p^{\alpha}$ with $\alpha \in \mathbb{N}$, then $\Phi_m(-1) = \exp(\Lambda(m/2)) = p$, and ideals $l_k = (1 + exp(2\pi i k/m))$, where (k, m) = 1, divide each other and in the standard equality efg = n (see, [27], chapter 3, section 10) we have

$$e = n = \phi(m), \ f = g = 1. \blacksquare.$$

In connection with the above remark and with the Lemma 1, the following case is interesting for us:

(21)

$$\theta_0(z) = (-\rho)(1 + \exp(-i\beta)) = -(\rho \exp(i\beta/2))/(2\cos(\beta/2)) = -(\rho \exp(i\psi))(2\cos(\psi)) = -(1 + i\tan(\psi))/2$$
with $\rho > 2/3$, $|\beta| < \pi$ and $-\pi/2 < \psi = \beta/2 < \pi/2$; then

with $\rho > 2/3$, $|\beta| < \pi$ and $-\pi/2 < \psi = \beta/2 < \pi/2$; then

$$\Re(1 - 1/\theta_0(z)) = \Re(2 + \exp(i\beta)/\rho) > 1/2,$$

and we have no problems with $\log(1-1/\theta_0(z))$. Of course, according to the Lemma 1, the case $\rho = 1$ is interesting especially. So, we will take further

(22)
$$z = (\rho/(2\cos(\psi)), \psi - \pi) = (\rho/(-2\cos(\theta), \theta), \theta)$$

where $\rho > 2/3$, $|\psi| < \pi/2$ and $-3\pi/2 < \theta = \psi - \pi < -\pi/2$; clearly, the function (20) is analytic in the domain

$$D_1 = \{ z = (\rho(2\cos(\psi))^{-1}, \psi - \pi) \} : \rho > 2/3, -\pi/2 < \psi < \pi/2 \} = \{ z = ((-2\rho\cos(\theta))^{-1}, \theta) \} : \rho > 2/3, -3\pi/2 < \theta < -\pi/2 \}.$$

Let

(23)
$$D_2(\delta_0) = \{ z \in \mathfrak{F} : |z| > 1 + \delta_0/2 \}, \ D_3 = D_2(\delta_0) \cup D_1.$$

So, the function $f_2^*(z,\nu)$ coincides with the function (20) in $D_2(\delta_0) \subset D_0$. Since $D_2(\delta_0) \cap D_1 \neq \emptyset$, it follows that the join $D_3 = D_2(\delta_0) \cup D_1$ of the domains $D_2(\delta_0)$ and D_1 is a domain in \mathfrak{F} and the function (20) is analytic in this domain.

The conditions, which imply the equality

(24)
$$(-1)^{m+p-n} \exp(-i\alpha)\theta_0(z) \times \left(\left(\prod_{j=1}^p (\delta+1-a_j)\right) (G \circ \eta_\alpha^*)\right)(z) = \left(\left(\prod_{k=1}^q (\delta-b_k)\right) (G \circ \eta_\alpha^*)\right)(z)$$

hold in our case for the Mejer's function

$$G = G_{p,q}^{(m,n)} \left(z \begin{vmatrix} a_1, & \dots, & a_p \\ b_1, & \dots, & b_q \end{vmatrix} \right).$$

We have p = q = 2, m = n = 1, $\alpha = 0$ for the function $f_1(z, \nu)$ and the equation (24) takes the form

$$\theta_0(z)((\delta + 1 + d_1\nu)(\delta - d_2\nu)f_1)(z,\nu) = (\delta(\delta - \nu)f_1)(z,\nu)$$

We have p = q = m = 2, n = 1, $\alpha = \pi$ for the function $f_2(z, \nu)$ and the equation (24) takes the form

$$\theta_0(z)((\delta + 1 + d_1\nu)(\delta - d_2\nu)f_2)(z,\nu) = (\delta(\delta - \nu)f_2)(z,\nu).$$

We see that both the functions $f(z, \nu) = f_k^*(z, \nu)$, where k = 1, 2 satisfy to the same differential equation

(25)
$$\theta_0(z)(\delta + 1 + d_1\nu)(\delta - d_2\nu)f(z,\nu) = (\delta(\delta - \nu)f)(z,\nu).$$

in the domain D_0 . According to the general properties of the Mejer's functions we have the equality

(26)
$$\left(\prod_{\kappa=1}^{\Delta-1} (\nu(\Delta-1)+\kappa)\right) \prod_{\kappa=1}^{d_2} (\delta-d_2\nu-\kappa) f_k^*(z,\,\nu+1) = \left(\prod_{\kappa=1}^{\Delta} (\nu\Delta+\kappa)\right) (\delta-\nu) \prod_{\kappa=1}^{d_1} (\delta+d_1\nu+\kappa) f_k^*(z,\,\nu),$$

where k = 1, 2 and $z \in D_0$. Since $f_0^*(z, \nu)$ and polynomial $f_1^*(z, \nu)$ are analytic in the domain $D_0 \cup D_1$, and $f_0^*(z, \nu)$ coincides with $f_2^*(z, \nu)$, it follows that the equations (25) and (26) hold in $D_0 \cup D_1$ for k = 0, 1.

Let

(27)
$$D^{\vee}(w,\eta) = (\eta+1)(\eta+\gamma_1) - 2(1+\gamma_1)w\eta,$$

(28)
$$D^{\wedge}(z,\eta) = D^{\vee}(\theta_0(z),\eta),$$

where, in view of (21),

(29)
$$w = \theta_0(z) = -r \exp(i\psi), r = 1/(2\cos(\psi)), |\psi| < \pi/2.$$

In view of (29), the polynomial (27) coincides with the polynomial (1) in [59]. Let

(30)
$$h^{\sim}(\eta) = (\eta - 1)(1 - \delta_0)^{-d_1}(\eta + 1)2^{-2} \eta^{d_1}.$$

As in [51], we consider ν^{-1} as an independent variable taking its values in the field \mathbb{C} including 0. Let F be a bounded closed subset of \mathfrak{F} (in particular, this compact F may be an one-point set). Let $\mathfrak{H}_0(F)$ be the subring of all those functions in $\mathbb{Q}(w)$, which are well defined for every $w \in \theta_0(F)$. For $\varepsilon \in (0, 1)$, let $\mathfrak{H}(F, \varepsilon)$ be the subring of all those functions in $\mathbb{Q}(w, \nu^{-1})$, which are well defined for every (w, ν^{-1}) , which are well defined for every (w, ν^{-1}) .

Lemma 2. Let F be a closed bounded subset of $D_0 \cup D_1$ (in particular, F may be an one-point set). Let further for any $z \in F$ the polynomial (28) has only simple roots and on the set of all the roots η of the polynomial $D^{\wedge}(z, \eta)$ the map

(31)
$$\eta \to h^{\sim}(\eta)$$

is injective. Then there is $\varepsilon \in (0,1)$ such that, for any $z \in F, \nu \in \mathbb{N} + [1/\varepsilon]$, the functions $f_0^*(z,\nu)$, $f_1^*(z,\nu) = \alpha^*(z;\nu)$ and $\phi^*(z;\nu)$ are solutions of the difference equation

(32)
$$x(z,\nu+2) + \sum_{j=0}^{1} q_j^*(z,\nu^{-1})x(z,\nu+j) = 0$$

moreover,

(33)
$$q_j^*(z,\,\nu^{-1}) \in \mathfrak{H}(F,\,\varepsilon)$$

for j = 0, 1, and trinomial

(34)
$$w^2 + \sum_{j=0}^{1} q_j^*(z,0) w^j$$

coincides with

(35)
$$\prod_{k=0}^{1} (w - h(\eta_k)),$$

 $i\!f$

$$\prod_{k=0}^{1} (w - \eta_k),$$

coincides with $D^{\vee}(w,\eta)$ from (27).

Proof. Proof may be found in [51]. \blacksquare

This Lemma shows the importance of the properties of the roots of the polynomial (27). In correspondence with (22) and with notations in [59], let

(36)
$$\rho > 2/3, r = \rho/(2\cos(\psi)), t = \cos(\psi), |\psi| < \pi/2.$$

Let $u = r^2, \delta_0 \le 1/2 < 2/3 < \rho$. Then

(37)
$$2\delta_0 \le 2/5 < 2/3 < \rho < 2\sqrt{u} = 2r.$$

Clearly,

$$(\partial/\partial\psi)r = (\rho\sin(\psi))/(2\cos^2(\psi)) = -2\rho(\sin(\psi) - 1) - 2\rho/(\sin(\psi) + 1),$$

 $(\partial/\partial\psi)^2 r = (2\rho\cos(\psi))/(\sin(\psi) - 1)^2 + (2\rho\cos(\psi))/(\sin(\psi) + 1)^2 > 0,$ if $|\psi| < \pi/2$ In view of (3.1.10) in [52],

(38)

$$|D_{0}(r,\psi,\delta_{0})|^{2} = r^{4} + r^{2} + (\delta_{0}/2)^{4} + 2r^{2}(\delta_{0}/2)^{2}(2t^{2} - 1) + 2r(r^{2} + (\delta_{0}/2)^{2})t = u^{2} + u + (\delta_{0}/2)^{4} + (\delta_{0}/2)^{2}(\rho^{2} - 2u) + \rho(u + (\delta_{0}/2)^{2}) = u^{2} + u(\rho + 1 - (\delta_{0})^{2}/2) + (\delta_{0}/2)^{2}(\rho^{2} + \rho + (\delta_{0}/2)^{2}),$$

(39)
$$|R_0(r,\psi,\delta_0)|^2 = |D_0(r,\psi,\delta_0)| =$$

$$\sqrt{u^2 + u(\rho + 1 - (\delta_0)^2/2) + (\delta_0/2)^2(\rho^2 + \rho + (\delta_0/2)^2)}.$$

In view of (3.1.41) - (3.1.43) in [52] and (39),

(40)
$$p_{1} = 8(|R_{0}^{*}(r,\psi,\delta_{0})|^{2} + |R_{0}(r,\psi,\delta_{0})|^{2})/(1+\delta_{0})^{2} = 8(r^{2} + rt + 1/4 + |D_{0}(r,\psi,\delta_{0})|)/(1+\delta_{0})^{2} = 8(1+\delta_{0})^{-2} \times \left(u + \rho/2 + 1/4 + \sqrt{u^{2} + u(\rho + 1 - (\delta_{0})^{2}/2) + (\delta_{0}/2)^{2}(\rho^{2} + \rho + (\delta_{0}/2)^{2})}\right),$$

(41)
$$p_{2} = (8(|R_{1}^{*}(r,\psi,\delta_{0})|^{2} + |R_{0}(r,\psi,\delta_{0})|^{2}))/(1+\delta_{0})^{2} = \\8(r^{2} - r\delta_{0}t + (\delta_{0})^{2}/4 + |D_{0}(r,\psi,\delta_{0})|)/(1+\delta_{0})^{2} = \\8(u - \delta_{0}\rho/2 + (\delta_{0})^{2}/4)/(1+\delta_{0})^{2} + \\8(1+\delta_{0})^{-2}\sqrt{u^{2} + u(\rho + 1 - (\delta_{0})^{2}/2) + (\delta_{0}/2)^{2}(\rho^{2} + \rho + (\delta_{0}/2)^{2})} = \\8(1+\delta_{0})^{-2}u(2 + (\rho + 1 - \delta_{0}\rho)/(2u) + O(1/u^{2})),$$

(42)
$$q_1(r,\psi,\delta_0) = ((1-\delta_0)/(1+\delta_0))^2, q_2(r,\psi,\delta_0) = (4r/(1+\delta_0))^2 = (16u)/(1+\delta_0)^2.$$

In view of (91) in [59], (36) and (37),

(43)

$$s = s_0(r, \psi) = |r \exp(i\psi) + 1| / 2 = \sqrt{(r^2 + 1 + 2r\cos(\psi))/4} = \sqrt{(u+1+\rho)/4} \in (\max(|r-1|/2, \delta_0/4), (r+1)/2]$$

and

$$t = \cos(\psi) = (4s^2 - r^2 - 1)/(2r).$$

In view of (3.1.68) in [52], (3.1.70) - (3.1.71) in [52] and (39),

$$|R_{-1}^*(r,\psi,\delta_0)|^2 = r^2 + (2+\delta_0)^2/4 + r(2+\delta_0)\cos(\psi) = u + (2+\delta_0)^2/4 + \rho(2+\delta_0)/2,$$

(44)
$$p_0 = 8(|R_{-1}^*(r,\psi,\delta_0)|^2 + |R_0(r,\psi,\delta_0)|^2)/(1+\delta_0)^2 =$$

$$8(u + (2 + \delta_0)^2/4 + \rho(2 + \delta_0)/2)/(1 + \delta_0)^2 + 8(1 + \delta_0)^{-2}\sqrt{u^2 + u(\rho + 1 - (\delta_0)^2/2) + (\delta_0/2)^2(\rho^2 + \rho + (\delta_0/2)^2)},$$

(45)
$$q_0(r,\psi,\delta_0)(1+\delta_0)^2/16 = (r^2+1+2r\cos(\psi)) = (u+1+\rho).$$

According to Lemma 4.4 in [59], (23) and (37),

(46)
$$|\eta_1^{\wedge}(r,\psi,\delta_0) + \epsilon| < |\eta_0^{\wedge}(r,\psi,\delta_0) + \epsilon|,$$

if $\epsilon^2 = \epsilon$ and $z \in D_3$. Therefore, according to (40), (42) and (46),

(47)
$$(-1)^k (\partial/\partial u) |\eta_k^{\wedge}(r,\psi,\delta_0)| > 0,$$

where $\frac{1}{3} < \rho/2 < \sqrt{u} = r$, $k^2 = k$. According to a) and c) of the Lemma 4.6 in [59], and in view of (23) and (43),

(48)
$$|\eta_1^{\wedge}(r,\psi,\delta_0) - 1| < |\eta_0^{\wedge}(r,\psi,\delta_0) - 1|,$$

if $z \in D_3$. In view of (38),

(49)
$$|D_0(r,\psi,\delta_0)|^2 =$$

$$\begin{aligned} u^2 + u(\rho + 1 - (\delta_0)^2/2) + (\delta_0/2)^2(\rho^2 + \rho + (\delta_0/2)^2) &= \\ (u + (\rho + 1)/2 - (\delta_0)^2/4)^2 + (\delta_0/2)^2(\rho^2 + \rho + (\delta_0/2)^2) - \\ (((\rho + 1)/2)^2 - (\rho + 1)(\delta_0)^2/4 + (\delta_0/2)^4) &= \\ (u + (\rho + 1)/2 - (\delta_0)^2/4)^2 + (\delta_0/2)^2(\rho^2 + 2\rho + 1) - (\rho + 1)^2/4 &= \\ (u + (\rho + 1)/2 - (\delta_0)^2/4)^2 - (\rho + 1)^2(1 - (\delta_0)^2)/4. \end{aligned}$$

Consequently,

(50)
$$|D_0(r,\psi,\delta_0)| = u + \frac{\rho+1}{2} - \frac{(\delta_0)^2}{4} + O(1/u),$$

where $u \ge 1/4$. Since $u \ge 1/4 > (\delta_0)^2/4$, it follows that

$$u + (\rho + 1)/2 - (\delta_0)^2/4 > \sqrt{1 - (\delta_0)^2}(\rho + 1)/2.$$

If $\rho = 1, u = 1/4$ then in view of (49),

$$|D_0(r,\psi,\delta_0)|^2 = (5/4 - (\delta_0)^2/4)^2 - (1 - (\delta_0)^2) = (\tau - 5/4)^2 + 4\tau - 1,$$

where $0 < \tau = \frac{(\delta_0)^2}{4} < \frac{1}{100}$; moreover, in this case

$$(\partial/\partial \tau)|D_0(r,\psi,\delta_0)|^2 = 2\tau - 5/2 + 4 > 0;$$

therefore if $\delta_0 \leq 1/5$, then

$$|D_0(r,\psi,\delta_0)|^2 \Big|_{u=1/4,\rho=1} \le (1,24)^2 - 0,96 = 0,5776$$

and

$$D_0(r,\psi,\delta_0)|^2\Big|_{u=1/4,\rho=1} \le 0,76.$$

In view of (49),

$$1 < (\partial/\partial u)|D_0(r,\psi,\delta_0)| =$$

$$\sqrt{\frac{(u+(\rho+1)/2 - (\delta_0)^2/4)^2}{(u+(\rho+1)/2 - \frac{(\delta_0)^2}{4})^2 - (\rho+1)^2(1-(\delta_0)^2)/4}} = 1 + O(1/u^2),$$

in view of (40), (41) and (44),

(51)
$$(\partial/\partial u)p_{\epsilon} = 8(2 + O(1/u^2))/(1 + \delta_0)^2,$$

where $\epsilon^3 = \epsilon$, and $(\partial/\partial u)|D_0(r, \psi, \delta_0)|$ decreases with increasing u; consequently,

$$(\partial/\partial u)^2 |D_0(r,\psi,\delta_0)| < 0,$$

if $u \ge 1/4$. In view of (40), (41) and (44),

(52)
$$(\partial/\partial u)^2 p_{\epsilon} = (\partial/\partial u)^2 |D_0(r,\psi,\delta_0)| < 0,$$

where $u \ge 1/4$, $0 < \delta_0 < 2/3 < \rho$, $\epsilon^3 = \epsilon$. In view of (41), (42), (49) and (50), if $\rho = 1$, u > 1/4, $0 < \delta_0 \le 1/5$, then

$$(53) \qquad q_{2}((\partial/\partial u)p_{2})/(\partial/\partial u)q_{2} - p_{2}/2 = \\8u(1 + (u + 1 - (\delta_{0})^{2}/4))/|D_{0}(r, \psi, \delta_{0})|)/(1 + \delta_{0})^{2} - \\4(u - \delta_{0}/2 + (\delta_{0})^{2}/4 + |D_{0}(r, \psi, \delta_{0})|)/(1 + \delta_{0})^{2} = \\4(u + \delta_{0}/2 - (\delta_{0})^{2}/4)/(1 + \delta_{0})^{2} + \\4((1 + \delta_{0})^{2}|D_{0}(r, \psi, \delta_{0})|)^{-1}(2u^{2} + u(2 - (\delta_{0})^{2}/2) - \\4((1 + \delta_{0})^{2}|D_{0}(r, \psi, \delta_{0})|)^{-1}(u^{2} + u(2 - (\delta_{0})^{2}/2) + (\delta_{0}/2)^{2}(2 + (\delta_{0}/2)^{2})) = \\4(u + \delta_{0}/2 - (\delta_{0})^{2}/4)/(1 + \delta_{0})^{2} + \\4(1 + \delta_{0})^{2}|D_{0}(r, \psi, \delta_{0})|)^{-1}(u^{2} - (\delta_{0}/2)^{2}(2 + (\delta_{0}/2)^{2})) > 0, \\q_{2}((\partial/\partial u)p_{2})/(\partial/\partial u)q_{2} - p_{2} = \frac{8}{u}(1 + (u + 1 - (\delta_{0})^{2}/4))/|D_{0}(r, \psi, \delta_{0})|)/(1 + \delta_{0})^{2} - \\8(u - \delta_{0}/2 + (\delta_{0})^{2}/4 + |D_{0}(r, \psi, \delta_{0})|)/(1 + \delta_{0})^{2} = \\8u(2 + O(1/u^{2}))/(1 + \delta_{0})^{2} - \\8(u - \frac{\delta_{0}}{2} + \frac{(\delta_{0})^{2}}{4} + u + 1 - \frac{(\delta_{0})^{2}}{4} + O(1/u))/(1 + \delta_{0})^{2} = \\-8(1 - \frac{\delta_{0}}{2} + O(1/u))/(1 + \delta_{0})^{2}.$$

In view of (44), (45), (53), (49), (51), (50), if $\rho = 1, u > 1/4, 0 < \delta_0 \le 1/5$, then

$$(u+1)(\partial/\partial u)p_0 - p_0/2 > 8(2u+2)/(1+\delta_0)^2 - 4(u+(2+\delta_0)^2/4 + (2+\delta_0)/2 + u+1 - (\delta_0)^2/4)/(1+\delta_0)^2 =$$

$$\frac{8}{(1/2 + u - (3\delta_0)/4)/(1 + \delta_0)^2} > 0,$$

(54)
$$q_0((\partial/\partial u)p_0)/(\partial/\partial u)q_0 - p_0/2 = (u+2)(\partial/\partial u)p_0 - p_0/2 > (u+1)(\partial/\partial u)p_0 - p_0/2 > 0,$$

(55)

$$q_{0}(\partial/\partial u)p_{0}/(\partial/\partial u)q_{0} - p_{0} = 8(u+2)(2+O(1/u^{2}))/(1+\delta_{0})^{2} - 8(u+(2+\delta_{0})^{2}/4 + (2+\delta_{0})/2 + u+1 - (\delta_{0})^{2}/4)/(1+\delta_{0})^{2} = 8(4+O(1/u))/(1+\delta_{0})^{2} - (2+\delta_{0})^{2}/4 - (2+\delta_{0})/2 - 1 + (\delta_{0})^{2}/4 + O(\frac{1}{/}u) = 8(1-(3/2)\delta_{0} + O(1/u))/(1+\delta_{0})^{2},$$

where u > 1/4. In view of (45), (54) and (52),

$$\begin{aligned} (\partial/\partial u)((q_0(\partial/\partial u)p_0)/(\partial/\partial u)q_0 - p_0)(\partial/(\partial u)p_0 + (\partial/\partial u)q_0) &= \\ (\partial/\partial u)(((u+2)(\partial/\partial u)p_0 - p_0)(\partial/\partial u)p_0) &= \\ ((\partial/\partial u)p_0)^2 + ((u+2)(\partial/\partial u)^2p_0 - (\partial/\partial u)p_0)(\partial/\partial u)p_0 + \\ ((u+2)(\partial/\partial u)p_0 - p_0)(\partial/\partial u)^2p_0 &= \\ ((u+2)(\partial/\partial u)^2p_0)(\partial/\partial u)p_0 + ((u+2)(\partial/(\partial u)p_0 - p_0)(\partial/\partial u)^2p_0 &= \\ (2(u+2)(\partial/\partial u)p_0 - p_0)(\partial/\partial u)^2p_0 < 0. \end{aligned}$$

Therefore, according to (55), (51) and (45),

(56)

$$\inf\{((u+2)(\partial/\partial u)p_0 - p_0)(\partial/\partial u)p_0 + (\partial/\partial u)q_0 : u \ge 1/4\} = \\ \lim_{u \to +\infty} ((u(\partial/\partial u)p_0 - p_0)(\partial/\partial u)p_0 + (\partial/\partial u)q_0) = \\ 128(1 - (3/2)\delta_0)/(1 + \delta_0)^4 + 16/(1 + \delta_0)^2) > 0.$$

According to the Lemma 4.17 in [59] and in view of (53), (54), (56),

(57)
$$(\partial/\partial u)|\eta_0(r,\psi,\delta_0) + \epsilon|^2 > 0,$$

where $\epsilon^2 = 1, \, u > 1/4,$

(58)
$$(\partial/\partial u)|\eta_1(r,\psi,\delta_0) - 1|^2 < 0,$$

where u > 1/4. The following Lemma describes the behavior of the value $h^{\sim}(\eta_k(r, \psi, \delta_0))$ with $k^2 = k$ and $h^s im$ in (30).

Lemma 3. If $\Delta \geq 5$, then

(59)
$$(\partial/\partial u)(|h^{\sim}(\eta_0(r,\psi,\delta_0))|) > 0,$$

$$(\partial/\partial u)(|h^{\sim}(\eta_1(r,\psi,\delta_0))|) < 0,$$

where $u \in (1/4, +\infty)$.

Proof. The inequality (59) directly follows from (46), (57) and (30). So, we must prove the inequality (30) Clearly, if $\beta < 1$, u > 1/4 then

$$(\partial/\partial u)(u^{3/4} + (3/4)\beta u^{-1/4}) > 0,$$

We take

$$\beta = (4/3)(\delta_0/2)^2(2 + (\delta_0)^2)/4)/(2 - (\delta_0)^2/2).$$

Then, clearly, $\beta < (\delta_0)^2 = 1/(\Delta)^2 < 1$. Therefore, in view of (40) and (49), if $\rho = 1$, then

$$p_1 u^{-1/4} = 8(1+\delta_0)^{-2} \times$$

$$\left(u^{3/4} + (3/4)u^{-1/4} + \sqrt{u^{3/2} + u^{1/4}(\rho + 1 - (\delta_0)^2/2)(u^{3/4} + (3/4)\beta u^{-1/4})}\right)$$

increases together with increasing $u \in (1/4, +\infty)$, and, in view of (42),

(60)
$$|\eta_0(r,\psi,\delta_0)|^2 u^{-1/4}| = p_1 u^{-1/4}/2 + \sqrt{(p_1 u^{-1/4}/2)^2 - q_1 u^{-1/2}}$$

increases together with increasing $u \in (1/4, +\infty)$.

In view of (47), (42), (60), (57) and (58), if $\Delta \ge 5$, then

$$\begin{aligned} &|\eta_1(r,\psi,\delta_0)|^{2(\Delta-1)} |(\eta_1(r,\psi,\delta_0))^2 - 1|^2 = \\ &|\eta_1(r,\psi,\delta_0)|^{2(\Delta-5)} \frac{(q_1)^4}{(|\eta_0(r,\psi,\delta_0)|^2 u^{-1/4})^4} \times \\ &\frac{16}{(1+\delta_0)^2} |\eta_0(r,\psi,\delta_0) + 1|^{-2} |\eta_1(r,\psi,\delta_0) - 1|^2 \end{aligned}$$

decreases together with increasing $u \in (1/4, +\infty)$.

Let D is bounded domain in \mathbb{C} or \mathfrak{F} . and D^* is closure of D. Let

(61)
$$a_0^{\sim}(z), \ldots, a_n^{\sim}(z)$$

are the functions continuous on D^* and analytic in D. Let $a_n^{\sim}(z) = 1$ for any $z \in D^*$. Let

(62)
$$T(z,\lambda) = \sum_{i=0}^{n} a_i^{\sim}(z)\lambda^k.$$

Let $s \in \mathbb{N}$, $n_i \in \mathbb{N} - 1$, where $i = 1, \ldots, s$ and $\sum_{i=1}^{s} n_i = n$. We say that polynomial $T(z, \lambda)$ has (n_1, \ldots, n_s) -disjoint system of roots on D^* , if for any $z \in D^*$ the set of all the roots λ of the polynomial $T(z, \lambda)$ splits in s klasses $\mathfrak{K}_1(z), \ldots, \mathfrak{K}_s(z)$ with following properties:

a) the sum of the multiplicities of the roots of the klass \mathfrak{K}_i is equal to n_i for $i = 1, \ldots, s$;

b) if $i \in [1, s] \cap \mathbb{N}$, $j \in (i, s] \cap \mathbb{N}$ and $n_i n_j \neq 0$, then the absolute value of each roots of the klass $\mathfrak{K}_i(z)$ is greater than absolute value of the each roots of the klass $\mathfrak{K}_i(z)$.

If the polynomial (62) has (n_1, \ldots, n_s) -disjoint system of roots on D^* , then for each $i = 1, \ldots, s$ we denote by $\rho_{i,0}^*(z)$ and $\rho_{i,1}^*(z)$ respectively the maximal and minimal absolute value of the roots of the klass $\mathfrak{K}_i(z)$. Let D is bounded domain in \mathfrak{F} such that $D^* \in D_3$. Let

(63)
$$F^{\wedge}(z,\eta) = \prod_{i=1}^{2} (\theta_{0}(z) - h(\eta_{i-1}(r,\psi,\delta_{0}))),$$
$$n = s = 2, \ n_{1} = n_{2} = 1, \ \mathfrak{K}_{i}(z) = \{h(\eta_{i-1}(r,\psi,\delta_{0}))\},$$
$$\rho_{i,0} = \rho_{i,1} = |h(\eta_{i-1}(r,\psi,\delta_{0}))|,$$

where i = 1, 2.

Lemma 4. The polynomial $F^{\wedge}(z,\eta)$ in (63) has (1, 1)-disjoint system of roots on D^* .

Proof. The assertion of the Lemma follows from (46) and (48). \blacksquare

Corollary. The map (31) is injective for every $z \in D^*$; all the conditions of the Lemma 2 are fulfilled for the functions $f_0^*(z,\nu)$ from (20), $\alpha^*(z,\nu)$ from (18) and $\phi^*(z,\nu)$ from (19) in every $z \in D^*$; therefore for every $z \in D^*$ these functions are solutions of the difference equation of Poincaré type (32), and the polynomial (35) coincides with characteristical polynomial of this equation.

Let for each $\nu \in \mathbb{N} - 1$ are given continuous on D^* functions

(64)
$$a_0(z;\nu),\ldots,a_n(z,\nu)$$

which are analytic in D.

Let $a_n(z : \nu) = 1$ for any $z \in D^*$ and any $\nu \in \mathbb{N} - 1$. Let for any $i = 1, \ldots, n-1$ the sequence of functions $a_i(z; \nu)$ converges to $a_i^{\sim}(z)$ uniformly on D^* , when $\nu \to \infty$. Let us consider now the difference equation

(65)
$$a_0(z;\nu)y(\nu+0) + \ldots + a_n(z;\nu)y(\nu+n) = 0,$$

i.e. we consider a difference equation of the Poincaré type, coefficients (64) of this equation are continuous on D^* and analytic in D, and they uniformly converge to limit functions (61), when $\nu \to \infty$.

Lemma 5. Let polynomial (62) has (n_1, \ldots, n_s) -disjoint system of roots on D^* . Let $y(z, \nu)$ is a solution of the equation (65), and this solution is continuous on D^* and analytic on D. Let further $i \in [1, s] \cap \mathbb{Z}$. Let us consider the set of all the $z \in D$, for which the following inequality holds

(66)
$$\lim_{\nu \in \mathbb{N}, \nu \to \infty} \sup |y(z, \nu)|^{1/\nu}) < \rho_{i,1}(z);$$

if this set has a limit point in D, then the inequality (66) holds in D^* .

Proof. The proof may be found in [31] (Theorem 1 and its Corollary). ■

Lemma 6. Let D is bounded domain in \mathfrak{F} such that $D^* \in D_3$. Then

(67)
$$\lim_{\nu \in \mathbb{N}, \nu \to \infty} \sup |f_0^*(z, \nu)|^{1/\nu}) < \rho_{1,1}(z) = |h^{\sim}(\eta_0(r, \psi, \delta_0))|$$

for any $z \in D^*$.

Proof. In view of (23), expanding the domain D, if necessary, we can suppose that $\{(r, \phi): r \in [2, 3], \phi = 0\} \in D$. Making use the same arguments, as in [55], Lemma 4.2.1, we see that the inequality (67) holds for

any point $z = (r, \phi) \in \{r \in [2, 3], \phi = 0\}$. According to the Lemma 5, the inequality (67) holds for any $z \in D^*$.

For each prime $p \in \mathbb{N}$ let v_p denotes the *p*-adic valuation on \mathbb{Q} . Lemma 7.Let $p \in \mathbb{N} + 2$ is a prime number,

$$d \in \mathbb{N} - 1, r \in \mathbb{N} - 1, r < p.$$

Then

$$v_p((dp+r)!/((-p)^d d! r!) - 1) \ge 1$$

Lemma 8. Let $p \in \mathbb{N} + 2$ is a prime number, $d \in \mathbb{N} - 1$, $d_1 \in \mathbb{N} - 1$,

(68)
$$r \in [0, p-1] \cap \mathbb{N}, r_1 \in [0, p-1] \cap \mathbb{N}, d_1p + r_1 \le dp + r.$$

Then

(69)
$$v_p\left(\binom{dp+r}{d_1p+r_1}\right) = v_p\left(\binom{d}{d_1}\right),$$

if $r_1 \leq r$,

(70)
$$v_p\left(\binom{dp+r}{d_1p+r_1}\binom{d}{d_1}\binom{r}{r_1}\right)^{-1}-1\geq 1,$$

if $r_1 \leq r$,

(71)
$$v_p\left(\binom{dp+r}{d_1p+r_1}\right) = 1 + v_p\left((d-d_1)\binom{d}{d_1}\right),$$

if $r < r_1$,

(72)
$$v_p\left((-1)^{r_1-r-1}\binom{dp+r}{d_1p+r_1}\binom{r_1}{r}(r_1-r)\left(p\binom{d}{d_1}(d-d_1)\right)^{-1}-1\right) \ge 1,$$

Proof. Clearly, $d_1 \leq d$. If $r_1 \leq r$, then let $r_2 = r - r_1$, $d_2 = d - d_1$. On the other hand, if $r_1 > r$, then, in view of (68), $d \geq d_1 + 1$; therefore in this case we let

(73)
$$r_2 = p + r - r_1, d_2 = d - d - 1.$$

Then $d = d_1 + d_2$, $r = r_1 + r_2$,

$$\binom{dp+r}{d_1p+r_1} = (dp+r)!((d_1p+r_1)!(d_2p+r_2)!)^{-1}$$

According to the Lemma 7,

(74)
$$v_p\left(\binom{dp+r}{d_1p+r_1}(-p)^{-d+d_1+d_2}d_1!r_1!d_2!r_2!/(d!r!)-1\right) \ge 1,$$

(75)
$$v_p\left(\binom{dp+r}{d_1p+r_1}\right) = d - d_1 - d_2 + v_p(d! r!/(d_1! r_1! d_2! r_2!)).$$

The equality (69) and the inequality (13) directly follow from (74) and (75). If

the inequality $r < r_1$ holds, then in view of (73) – (75),

$$r_{2}!\prod_{j=1}r_{1}-r-1(p+r-r_{1}+j)=(p-1)!, v_{p}(r_{2}!(r_{1}-r-1)!(-1)^{r_{1}-r}-1)\geq 1,$$

and (72) holds.

Corollary 1. Let $p \in \mathbb{N}$ is a prime number,

$$d \in \mathbb{N} - 1, r \in \mathbb{N} - 1, d_1 \in \mathbb{N} - 1, d_2 \in \mathbb{N} - 1, r_1 \in \mathbb{N} - 1, r_2 \in \mathbb{N} - 1,$$

 $max(r_1, r_2) < p.$

Then

$$p^{-d}(dp+r)! \in (-1)^d d!r! + p\mathbb{Z},$$
$$\binom{d_1+d_2p+r_1+r_2}{d_1p+r_1} \in \binom{d_1+d_2}{d_1}\binom{r_1+r_2}{r_1} + p\mathbb{Z}.$$

Proof. This is direct corollary of the Lemma 7 and Lemma 8. See also Lemma 9 in [54]. \blacksquare

Corolary 2. Let $p \in \mathbb{N} + 2$ is a prime number,

$$d \in \mathbb{N}, r_1 \in \mathbb{N}, r_1 < p, d_1 \in \mathbb{N} - 1, d_1 < d.$$

Then

(76)
$$v_p\left(\binom{dp}{d_1p+r_1}\left(d\binom{d-1}{d_1}\binom{p}{r_1}\right)^{-1}+1\right) \ge 1$$

Proof. Since,

$$d\binom{d-1}{d_1} = (d-d_1)\binom{d}{d_1}, v_p\left(\binom{p}{r_1}r_1/p - (-1)^{r_1}\right) \ge 1,$$

the equality (76) directly follows from (72). \blacksquare

Corolary 3. Let $p \in \mathbb{N} + 2$ is a prime number,

$$d \in \mathbb{N}, r_1 \in \mathbb{N}, r_1 < p, d^{\sim} \in \mathbb{N} - 1, d^{\sim} < d.$$

Then

$$\binom{dp}{d_1p+r_1} \in d\binom{d-1}{d^{\sim}} \binom{p}{r_1} + p^2 \mathbb{Z}.$$

Proof. This is a corollary of the Corrolary 2. See also Lemma 10 in [54] .■

Let let p be prime in $(2, +\infty)$, let K be a finite extension of \mathbb{Q} let \mathfrak{p} be a prime ideal in \mathbb{Z}_K and $p \in \mathfrak{p}$, let f be the degree of \mathfrak{p} , let $(p) = \mathfrak{p}^e \mathfrak{b}$, with entire ideal \mathfrak{b} not contained in \mathfrak{p} , let $v_{\mathfrak{p}}$ be additive \mathfrak{p} -valuation, which prolongs v_p ; so, if π is a \mathfrak{p} -prime number, then $v_{\mathfrak{p}}(\pi) = 1/e$. If f is the degree of the ideal \mathfrak{p} then

(77)
$$v_{\mathfrak{p}}\left(w^{p^{\beta}}-w\right) \ge 1,$$

where $\beta \in \mathbb{N}f$, $w \in K$ and

$$v_{\mathfrak{p}}(w) \ge 0.$$

In viw of (77), (18), and (16),

$$v_{\mathfrak{p}}(\alpha^*(z; p^\beta l) - \alpha^*(z; l)) > 1/e,$$

if $\beta \in \mathbb{N}f$, $\theta_0(z) \in K$ and $v_{\mathfrak{p}}(\theta_0(z)) \ge 0$. In view of (19),

(78)
$$\phi^{*}(z;\nu) = (-\theta_{0}(z))^{\nu} \sum_{k=0}^{\nu\Delta} \alpha_{\nu,k}^{*}(\theta_{0}(z))^{k} \sum_{\tau=1}^{\nu+k} ((\theta_{0}(z))^{-\tau}/\tau)) = (-\theta_{0}(z))^{\nu} \sum_{\tau=1}^{\nu} ((\theta_{0}(z))^{-\tau} \alpha^{*}(z;\nu)/\tau + (-\theta_{0}(z))^{\nu} \sum_{k=0}^{\nu\Delta} \alpha_{\nu,k}^{*}(\theta_{0}(z))^{k} \sum_{\tau=1+\nu}^{\nu+k} ((\theta_{0}(z))^{-\tau}/\tau)) = (-1)^{\nu} \sum_{\tau=1}^{\nu(\Delta+1)} \frac{1}{\tau} \sum_{k=\max(0,\tau-\nu)}^{\nu\Delta} \alpha_{\nu,k}^{*}(\theta_{0}(z))^{\nu-\tau+k};$$

therefore, if $\nu = p^{\beta}l$, f = 1, $\beta \in \mathbb{N}f$, $p > l(\Delta+1)$, $\theta_0(z) \in K$ and $v_{\mathfrak{p}}(\theta_0(z)) \ge 0$, then, according to the Lemma 2,

(79)
$$1-\beta \leq v_{\mathfrak{p}}\left(\phi^{*}(z;\nu) - \sum_{\substack{\eta \in [1, \Delta+1] \cap \mathbb{Z} \\ k \in [p^{\beta}(\eta-l), p^{\beta}l\Delta] \cap \mathbb{Z} \\ k \ge 0, v_{\mathfrak{p}}(k) > 0}} \frac{(-1)^{pl}}{p^{\beta}\eta} (\theta_{0}(z))^{p^{\beta}(l-\eta)+k} \alpha^{*}_{\nu,k}\right),$$

$$(80) 1/e - \beta \le$$

$$v_{\mathfrak{p}}\left(\phi^{*}(z;\nu)-\sum_{\substack{\eta\in[1,\,\Delta+1]\cap\mathbb{Z}\\k\in[p^{\beta-1}(\eta-l),\,p^{\beta-1}l\Delta]\cap\mathbb{Z}\\k\geq 0}}\frac{(-1)^{pl}p}{p^{\beta}\eta}(\theta_{0}(z))^{p^{\beta-1}(l-\eta)+k}\alpha^{*}_{\nu/p,k}\right).$$

We make the pass (79) \rightarrow (80) β times and obtain the inequality

(81)
$$1/e - \beta \le v_{\mathfrak{p}} \left(\phi^*(z; p^\beta l) - p^{-\beta} \phi^*(z; l) \right),$$

where

$$\{l,\,\beta\}\subset\mathbb{N},\,p>l(\Delta+1),\,p\in\mathfrak{p}$$

and \mathfrak{p} is ideal of the first degree.

Lemma 9. If $m \in \mathbb{N} + 1$, $K = \mathbb{Q}[\exp(2pi/m)]$,

$$\alpha^*(z; l_1)\phi^*(z; l_2)) \neq 0$$

for some $z \in K \setminus \{0\}$, $l_1 \in \mathbb{N}$, $l_2 \in \mathbb{N}$, then for any $l \in \mathbb{N}$ the sequences

(82)
$$\alpha^*(z;\nu), \phi^*(z;\nu),$$

where $\nu \in l + \mathbb{N}$ form a linear independent system over K.

Proof. There exists $d^* \in \mathbb{N}$ such that

$$d^*z \in \mathbb{Z}_K, d^*z\alpha^*(z; l_1) \in \mathbb{Z}_K, d^*z\phi^*(z; l_2) \in \mathbb{Z}_K.$$

Let a prime $p \in \mathbb{N}m + 1$ satisfies to the inequality

$$p > |Nm_{K/\mathbb{Q}}(d^*z\alpha^*(z;\nu))| + |Nm_{K/\mathbb{Q}}(d^*z\phi^*(z;\nu)) + |Nm_{K/\mathbb{Q}}(d^*z)| + |Nm_{K/\mathbb{Q}}(d^*) + (\Delta + 1)(l_1 + l_2).$$

Let \mathfrak{p} is a prime ideal containing p. Then

$$v_{\mathfrak{p}}\left(lpha^{*}(z;\,l_{1})
ight) = v_{\mathfrak{p}}\left(\phi^{*}(z;\,l_{2})
ight) = 0,$$

and, in view of (81),

$$v_{\mathfrak{p}}\left(\phi^*(z;\,p^\beta l_2)\right) = -\beta,$$

but

$$v_{\mathfrak{p}}\left(\alpha^*(z;\,p^\beta l_1)\right) = 0.$$

with $\beta \in \mathbb{N} \blacksquare$.

Let $m \in \mathbb{N}$, $k \in \mathbb{Z}$, $2 \leq 2|k| < m$, and let m and k have no common divisor with exeption ± 1 . Let further $K_m = \mathbb{Q}[\exp(2\pi i/m)]$ is a cyclotomic field, \mathbb{Z}_{K_m} is the ring of all the integers of the field K_m .

Lemma 10. Let $\Delta \in \{5, 7\}$. In correspondece with (21), (22) and (23), let $z = (1/(2\cos(k\pi i/m), k\pi i/m - \pi), where |k| < m/2, (|k|, m) = 1.$

Then for each $l \in \mathbb{N}$ the two sequences (82) form a linear independent system over \mathbb{C} .

Proof. We check the fulfilment of the conditions of the Lemma 9.

Let $\mathfrak{M} = \mathbb{N} \setminus \{1, 2, 6\}$ and $\mathfrak{M}_0 = \{m \in \mathfrak{M} \colon \Lambda_0(m) = 0\}$. According to the condition of the Lemma, $\theta_0(z) = -1/(1 + \exp(2i\pi/m))$ with $m \in \mathfrak{M}$. If $m \in \mathfrak{M}$ and $\phi(m) > \Delta$, then, in view of (18) and (16), $\alpha^*(z; 1) \neq 0$, because the numbers $(1 + \exp(2i\pi/m)^k)$, where $k = 0, \ldots, \phi(m) - 1$, form a basis of the field K_m . Let $\Delta = p \in 2\mathbb{N} + 1$, where p is a prime, \mathfrak{p} is a prime ideal containing p, and, as before, let $(p) = \mathfrak{bp}^e, 1_{K_m} \in \mathfrak{b} + \mathfrak{p}$. Then

(83)
$$\binom{2p-1}{p}\binom{p}{p-1} \equiv p \mod p^2, v_{\mathfrak{p}}\left(\binom{p+k}{1+k}\binom{p}{k}\right) = 2,$$

where k = 1, ..., p - 2,

(84)
$$\binom{p}{1}\binom{p}{0} = p, \, \binom{2p}{p+1}\binom{p}{p} \equiv 2p \mod p^2.$$

If $m \in \mathfrak{M}$ and (m, p) = 1, or, if $m \in \mathfrak{M}_0$, then, according to the Lemma 1,

(85)
$$(1 + \exp(2i\pi/m), p) = (1)$$

and, according to the Lemmata 7 and 8,

(86)
$$\alpha^*(z;1)/(p\theta_0(z)) \equiv 1 + (\theta_0(z))^{p-1} - 2(\theta_0(z))^p \equiv 1 + (\exp(2i\pi/m) + 3)/(1 + \exp(2pi\pi/m)) \equiv (\exp(2ip\pi/m) + \exp(2i\pi/m) + 4)/(1 + \exp(2pi\pi/m)) \mod p.$$

If $m = q^{\alpha}$ with $\alpha \in \mathbb{N}$ and prime q and there exists l in $\{0, \ldots, \phi(m) - 1\}$ such that $p \equiv l \mod (m)$, then

(87)
$$\exp(2ip\pi/m) + \exp(2i\pi/m) + 4 \not\equiv 0 \mod p.$$

If $m = 2q^{\alpha}$ with odd prime q and $\alpha \in \mathbb{N}$, and there exist l in $\{0, \ldots, \phi(m/2) -$ 1} such that $p \equiv 2l \mod (m/2)$, then (87) holds. If p = 5, then $\{3, 4, 5, 8, 10, 12\} = \{m \in \mathfrak{M} : \phi(\mathfrak{m}) \leq \mathfrak{p}\}.$ If m = 3, 4, 5, 8, 10 then, clearly, (87) holds. If m = 12, then 1, $\exp(i\pi/2)$, $\exp(2i\pi/3)$, $\exp(i\pi/6)$, form a entire basis of K_{12} , $\exp(5i\pi/6) = \exp(i\pi/2) - \exp(i\pi/6)$, and (87) holds. If p = 7 then $\{3, 4, 57, 8, 9, 10, 12, 14, 18\} = \{m \in \mathfrak{M} : \phi(\mathfrak{m}) \leq \mathfrak{p}.$ If m = 3, 4, 5, 7, 9, 14, then, clearly, (87) holds. If m = 8, then $\exp(7i\pi/4) = -\exp(3i\pi/4)$ and (87) holds. If m = 12, then 1, $\exp(i\pi/2)$, $\exp(2i\pi/3)$, $\exp(i\pi/6)$, form a entire basis of K_{12} , $\exp(7i\pi/6) = -\exp(i\pi/6)$, and (87) holds.

If m = 18, then

$$\exp(7i\pi/9) = -\exp(-2i\pi/9) = \exp(4i\pi/9) + \exp(10i\pi/9),$$

and (87) holds.

The coefficient at $(\theta_0(z))^0$ in the expression (19) of $\phi^*(z;\nu)$ is equal to

$$\sum_{k=0}^{\nu\Delta} (-1)^{\nu} \alpha_{\nu,k}^* / (\nu+k)$$

and, if $\Delta = p, \nu = 1$, then in view (83) – (84), the value of v_p on this coefficient is equal to 0. Therefore, if $m \in \mathfrak{M}$ and $\phi(m) > p = \Delta$, then $\phi^*(z;1) \neq 0.$

If $m \in \mathfrak{M} \setminus \mathfrak{M}_0$, and $m \equiv 0 \mod p$ then $m = 2p^{\alpha}$, where $\alpha \in \mathbb{N}$. According to the Lemma 1, $\mathbf{p} = (1 + \exp(2i\pi/m))$ is a prime ideal in K_m , and, furthermore, $\mathbf{p}^{\phi(m)} = (p)$. Let $v_{\mathbf{p}}$ is the **p**-adic valuation, which prolongs the valuation v_p . Clearly, $v_p(1 + \exp(2i\pi/m) = 1/\phi(m), v_p(\theta_0(z)) = -1/\phi(m)$ In view of (19) with $\nu = 1$, for the summands of the sum

$$\sum_{k=1}^{\nu\Delta} \alpha_{\nu,k}^*(\theta_0(z))^{1+k} \sum_{\tau=2}^{1+k} ((\theta_0(z))^{-\tau}/\tau))$$

we have the inequality

$$v_{\mathfrak{p}}((\theta_0(z))^{\Delta+k-y\alpha^*_{\nu,k}/y} \ge -(k-1)/\phi(m) + 2 - v_{\mathfrak{p}}(\tau) \ge -(p-3)/\phi(m) + 2,$$

if $k = 1, \ldots, p - 2$, because in this case $\tau \in [2, p - 1]$,

$$v_p((\theta_0(z))^{\Delta+k-y\alpha^*_{\nu,k}/y} \ge -(k)/\phi(m) + 1 - v_p(\tau) \ge -(p-1)/\phi(m),$$

where $k \in \{q - 1, q\}$, and the equality reaches only for $k = \tau = p$; on the other hand, $v_{\mathfrak{p}}(\alpha^*(z;1)) \ge 1 - (p+1)/\phi(m) \ge -2/(p-1) \ge -2/\phi(m)$. So, if $p \ge 5$, then $v_{\mathfrak{p}}(\phi^*(z;1)) = -(p-1)/\phi(m)$. If $m \in \mathfrak{M} \setminus \mathfrak{M}_{o}$, then $m = 2q^{\alpha}$, with prime q, according to the Lemma 1, $\mathfrak{l} = (1 + \exp(2i\pi/m))$ is a prime ideal in K_m , and $\mathfrak{l}^{\phi(m)} = (q)$. Therefore in this case $v_{\mathfrak{p}}(\theta_0(z) = 0$ If $m \in \mathfrak{M}_0$, then, according to the Lemma 1, $v_{\mathfrak{p}}(\theta_0(z) = 0$. According to (19), in both last cases,

$$v_{\mathfrak{p}}(\phi^*(z;1)) + \alpha_{\nu,p-1}/p + \theta_0(z)\alpha_{\nu,p}/p) \ge 1.$$

In view of (83), (84),

$$v_{\mathfrak{p}}(\alpha_{\nu,p-1}/p + \theta_0(z)\alpha_{\nu,p}/p) =$$
$$v_{\mathfrak{p}}(exp(2i\pi/m) - 1)/(exp(2i\pi/m) + 1))$$

If p = 5 and $m \in \{3, 4, 5, 7, 8, 9, 10\}$ then, clearly,

(88)
$$v_{\mathfrak{p}}((exp(2i\pi/m) - 1)) \le 1/4$$

If p = 5 and m = 12, then $Nm_{K_{12}}((exp(i\pi/6) - 1)) = 3$ and (88) holds. If p = 7, and $m \in \{3, 4, 5, 7, 8, 9, 10, 12, 14, 18\}$, then

$$v_{\mathfrak{p}}((exp(2i\pi/m) - 1)) \le 1/6.$$

Lemma 11. Let are fulfilled all the conditions of the Lemma 10. Then

(89)
$$\lim_{\nu \in \mathbb{N}, \nu \to \infty} \left(|f_0^*(z, \nu)|^{1/\nu} = \rho_{2,1}(z) \Big|_{\theta_0(z) = -1/(1 + \exp(2ik\pi/m))} \right) = |h^{\sim}(\eta_1(1/(2\cos(k\pi i/m)), k\pi i/m, \delta_0))|,$$

where $h^{\sim}(\eta)$ is defined in (30).

Proof. According to the Lemma 2, (20) and Lemma 10, $f_0^*(z, \nu)$ is a nonzero solution of the Poincaré type difference equation (32). According to the Perron's theorem and Lemma 5, the equality (89) holds.

Let K/\mathbb{Q} be the finite extension of the field \mathbb{Q} ,

$$[K:\mathbb{Q}]=d.$$

Let the field K has r_1 real places and r_2 complex places. Each such place is the monomorphism of the field K in the field \mathbb{R} , if a place is real, or in the field \mathbb{C} , if a place is not real; we will denote these monomorphisms respectively by $\sigma_1, \ldots, \sigma_{r_1+r_2}$. Then $d = r_1 + 2r_2$. Let \mathfrak{B} be the fixed integer basis

$$\omega_1,\ldots,\omega_d$$

of the field K over \mathbb{Q} . Clearly, K is an algebra over \mathbb{Q} . With extension of the ground field from \mathbb{Q} to \mathbb{R} appears an isomorphism of the algebra $\mathfrak{K} = K \otimes \mathbb{R}$ onto direct sum

$$\underbrace{\mathbb{R} \oplus \ldots \oplus \mathbb{R}}_{r_1 \text{ times}} \oplus \underbrace{\mathbb{C} \oplus \ldots \oplus \mathbb{C}}_{r_2 \text{ times}}$$

of r_1 copies of the field \mathbb{R} and r_2 copies of the field \mathbb{C} . We identify by means of this isomorphism the algebra \mathfrak{K} with the specified direct sum. We denote below by π_j , where $j = 1, \ldots, r_1 + r_2$, the projection of \mathfrak{K} onto its j-th direct summand and also the extension of this projection onto all kinds of matrices which have all the elements in \mathfrak{K} . So, $\pi_j(\mathfrak{K}) = \mathbb{R}$ for $j = 1, \ldots, r_1$ and $\pi_j(\mathfrak{K}) = \mathbb{C}$ for $j = r_1 + 1, \ldots, r_1 + r_2$. Further by $\mathfrak{i}_{\mathfrak{K}}$ we denote the embedding of \mathbb{R} in \mathfrak{K} in diagonal way and also the extension of this embedding onto all kinds of the real matrices. So, \mathbb{R} is imbedded by means of $\mathfrak{i}_{\mathfrak{K}}$ in \mathfrak{K} in diagonal way. Each element $Z \in \mathfrak{K}$ has a unique representation in the form:

$$Z = \begin{pmatrix} z_1 \\ \vdots \\ z_{r_1+r_2} \\ \hline z_{r_1+1} \\ \vdots \\ \hline z_{r_1+r_2} \end{pmatrix},$$

with $z_j = \pi_j(Z) \in \mathbb{R}$ for any $j = 1, \ldots, r_1$ and with $z_j = \pi_j(Z) \in \mathbb{C}$ for any $j = r_1 + 1, \ldots, r_1 + r_2$. Further by $Tr_{\mathfrak{K}}(Z)$ we denote the sum

$$\sum_{j=1}^{r_1} z_j + \sum_{j=r_1+1}^{r_1+r_2} 2\Re(z_j) =$$
$$\sum_{j=1}^{r_1} \pi_j(Z) + \sum_{j=r_1+1}^{r_1+r_2} 2\Re(\pi_j(Z)),$$

and by $q_{\infty}^{(\mathfrak{K})}(Z)$ we denote the value

$$\max(|z_1|, \dots, |z_{r_1+r_2}|) = \max(|\pi_1(Z)|, \dots, |\pi_{r_1+r_2}(Z)|).$$

Clearly,

$$q_{\infty}^{(\mathfrak{K})}(Z_1Z_2) \leq q_{\infty}^{(\mathfrak{K})}(Z_1)q_{\infty}^{(\mathfrak{K})}(Z_2),$$

$$q_{\infty}^{(\mathfrak{K})}(Z_1+Z_2) \leq q_{\infty}^{(\mathfrak{K})}(Z_1) + q_{\infty}^{(\mathfrak{K})}(Z_2),$$

$$q_{\infty}^{(\mathfrak{K})}(\mathfrak{i}_{\mathfrak{K}}(\lambda)Z) = |\lambda|q_{\infty}^{(\mathfrak{K})}(Z)$$

for any $Z_1 \in \mathfrak{K}, Z_2 \in \mathfrak{K}, Z \in \mathfrak{K}$ and $\lambda \in \mathbb{R}$. The natural extension of the norm $q_{\infty}^{(\mathfrak{K})}$ on the set of all the matrices, which have all the elements in \mathfrak{K} (i.e. the maximum of the norm $q_{\infty}^{(\mathfrak{K})}$ of all the elements of the matrix) also will be denoted by $q_{\infty}^{(\mathfrak{K})}$. If

$$Z = \begin{pmatrix} z_1 \\ \vdots \\ z_d \end{pmatrix} \in K,$$

then

$$z_j = \sigma_j(Z),$$

where $j = 1, ..., r_1 + r_2$,

$$z_{r_1+r_2+j} = \overline{\sigma_{r_1+j}(Z)},$$

where $j = 1, \ldots, r_2$. In particular,

$$\omega_k = \begin{pmatrix} \sigma_1(\omega_k) \\ \vdots \\ \sigma_{r_1+r_2}(\omega_k) \\ \frac{\sigma_{r_1+1}(\omega_k)}{\sigma_{r_1+r_2}(\omega_k)} \end{pmatrix},$$

As usually, the ring of all the integer elements of the field K will be denoted by \mathbb{Z}_K . The ring \mathbb{Z}_K is embedded in the ring \mathfrak{K} as discrete lattice. Moreover, if $Z \in \mathbb{Z}_K \setminus \{0\}$, then

$$\left(\prod_{i=1}^{r_1} |\sigma_j(Z)|\right) \prod_{i=1}^{r_2} |\sigma_{r_1+i}(Z)|^2 = |Nm_{K/\mathbb{Q}}(Z)| \in \mathbb{N}$$

and therefore $q_{\infty}^{(\mathfrak{K})}(Z) \geq 1$. for any $Z \in \mathbb{Z}_K \setminus \{0\}$. The elements of \mathbb{Z}_K we name below by K-integers. For each $Z \in \mathfrak{K}$ let

$$\|\mathbb{Z}\|_{K} = \inf_{W \in \mathbb{Z}_{K}} \{q_{\infty}^{(\mathfrak{K})}(Z - W)\}.$$

Let $\{m, n\} \subset \mathbb{N}$,

$$a_{i,k} \in \mathfrak{K}$$

for i = 1, ..., m, k = 1, ..., n,

$$\alpha_j^{\wedge}(\nu) \in \mathbb{Z}_K,$$

where j = 1, ..., m + n and $\nu \in \mathbb{N}$. Let there are $\gamma_0, r_1^{\wedge} \ge 1, ..., r_m^{\wedge} \ge 1$ such that

$$q_{\infty}^{(\mathfrak{K})}(\alpha_i(\nu)) < \gamma_0(r_i^{\wedge})^{\nu}$$

where $i = 1, \ldots, m$ and $\nu \in \mathbb{N}$. Let

$$y_k(\nu) = -\alpha_{m+k}^{\wedge}(\nu) + \sum_{i=1}^m a_{i,k}\alpha_i^{\wedge}(\nu)$$

where k = 1, ..., n and $\nu \in \mathbb{N}$. If $X = \begin{pmatrix} Z_1 \\ \vdots \\ Z_n \end{pmatrix} \in \mathfrak{K}^n$, then let

$$y^{\wedge}(X) = y^{\wedge}(X,\nu) = \sum_{k=1}^{n} y_k^{\wedge}(\nu) Z_k$$

for $\nu \in \mathbb{N}$, let

$$\phi_i(X) = \sum_{k=1}^n a_{i,k} Z_k$$

for $i = 1, \ldots, m$, and let

$$\alpha_0^{\wedge}(X,\nu) = \sum_{k=1}^n \alpha_{m+k}^{\wedge}(\nu) Z_k$$

for $\nu \in \mathbb{N}$. Clearly,

$$y^{\wedge}(X,\nu) = -\alpha_0^{\wedge}(X,\nu) + \sum_{i=1}^m \alpha_i^{\wedge}(\nu)\phi_i(X)$$

for $X \in \mathfrak{K}^n$ and $\nu \in \mathbb{N}$,

$$\alpha_0^{\wedge}(X,\nu) \in \mathbb{Z}_{\mathbb{K}}$$

for $X \in (\mathbb{Z}_K)^n$ and $\nu \in \mathbb{N}$. Lemma 12. Let $\{l, n\} \subset \mathbb{N}, \gamma_1 > 0, \gamma_2 > \frac{1}{2}, R_1 \ge R_2 > 1$,

$$\alpha_i = \left(\log(r_i^{\wedge} R_1/R_2)\right) / \log(R_2),$$

where $i = 1, \ldots, m$, let $X \in (\mathbb{Z}_K)^n \setminus \{(0)\},\$

$$\gamma_3 = \gamma_1(R_1)^{(-\log(2\gamma_2R_2))/\log(R_2)}, \gamma_4 = \gamma_3 \left(\sum_{i=1}^m \gamma_0(r_i^{\wedge})^{(\log(2\gamma_2))/\log(R_2)+l}\right)^{-1}$$

and let for each $\nu \in \mathbb{N} - 1$ hold the inequalities

$$\gamma_1(R_1)^{-\nu} q_{\infty}^{(\mathfrak{K})}(X) \leq \sup\{q_{\infty}^{(\mathfrak{K})}(y^{\wedge}(X,\kappa)) \colon \kappa = \nu, \dots, \nu + l - 1\},$$
$$q_{\infty}^{(\mathfrak{K})}(y^{\wedge}(X,\nu)) \leq \gamma_2(R_2)^{-\nu} q_{\infty}^{(\mathfrak{K})}(X)$$

Then

$$\sup\{\|\phi_i(X)\|_K(q_\infty^{(\mathfrak{K})}(X))^{\alpha_i}: i=1,\ldots, m\} \ge \gamma_4.$$

Proof. Proof may be found in [56], Theorem 2.3.1. \blacksquare Corollary. Let $a \in \mathfrak{K}$,

(90)
$$\alpha_1^{\wedge}(\nu) \in \mathbb{Z}_K, \, \alpha_2^{\wedge}(\nu) \in \mathbb{Z}_K, \, y(\nu) = -\alpha_2^{\wedge}(\nu) + a\alpha_1^{\wedge}(\nu)$$

where $\nu \in \mathbb{N}$. Let there are $\gamma_0, r_1^{\wedge} \geq 1$ such that

$$q_{\infty}^{(\mathfrak{K})}(\alpha_1(\nu)) < \gamma_0(r_1^{\wedge})^{\nu},$$

where $\nu \in \mathbb{N}$. Let $l \in \mathbb{N}$, $\gamma_1 > 0$, $\gamma_2 > \frac{1}{2}$, $R_1 \ge R_2 > 1$,

$$\alpha_1 = \left(\log(r_1^{\wedge} R_1 / R_2) \right) / \log(R_2), \ \gamma_3 = \gamma_1(R_1)^{(-\log(2\gamma_2 R_2)) / \log(R_2)},$$
$$\gamma_4 = \gamma_3 \left(\gamma_0(r_1^{\wedge})^{(\log(2\gamma_2)) / \log(R_2) + l} \right)^{-1},$$

 $X \in \mathbb{Z}_K$ and let for each $\nu \in \mathbb{N} - 1$ hold the inequalities

$$\gamma_1(R_1)^{-\nu} q_{\infty}^{(\mathfrak{K})}(X) \le \sup\{q_{\infty}^{(\mathfrak{K})}(y_1(\kappa)X) \colon \kappa = \nu, \dots, \nu + l - 1)\},\$$

$$q_{\infty}^{(\widehat{\mathbf{x}})}(y(\nu)X) \leq \gamma_2(R_2)^{-\nu}q_{\infty}^{(\widehat{\mathbf{x}})}(X)$$

Then

(91)
$$||aX||_K (q_{\infty}^{(\mathfrak{K})}(X))^{\alpha} \ge \gamma_4.$$

Proof. This Corrolary is the Lemma 12 for m = n = 1.

Let $B \in \mathbb{N}$, $D^*(B) = \inf\{q \in \mathbb{N} \colon d/\kappa \in \mathbb{N}, \kappa \in \mathbb{N}, \kappa \leq B\}$. It is known that

$$D^*(B) = \exp(B + O(B/\log(B)))$$

Let $d_0^*(\Delta, \nu) = D^*(\nu(\Delta + 1))$. Then

(92)
$$d_0^*(\Delta, \nu) = \exp(\nu(\Delta + 1) + O(\nu/\log(\nu))),$$

when $\nu \to \infty$.

Probably G.V. Chudnovsky was the first man, who discovered, that the numbers (16) have a great common divisor; Hata ([17]) in details studied this effect. Therefore I name the mentioned common divisor by Chudnovsky-Hata's multiplier and denote it by $d_1^*(\Delta, \nu)$. According to the Hata's results,

(93)
$$\log(d_1^*(\Delta, \nu)) = (1 + o(1))\nu \times$$

$$\sum_{\mu=0}^{1} \left(\frac{\Delta + (-1)^{\mu}}{2} \log \left(\frac{\Delta}{\Delta + (-1)^{\mu}} \right) + (-1)^{\mu} \frac{\pi}{2} \sum_{\kappa=1}^{\left\lfloor \frac{\Delta + (-1)^{\mu}}{2} \right\rfloor} \cot \left(\frac{\pi \kappa}{\Delta + (-1)^{\mu}} \right) \right).$$

In view of (92),

(94)
$$d_0^*(5,\nu) = \exp(6\nu(\Delta+1) + O(\nu/\log(\nu))), d_0^*(7,\nu) = \exp(8\nu(8) + O(\nu/\log(\nu))).$$

In view of (94)

(95)
$$\log(d_1^*(5,\nu)) = (1+o(1))\nu \times (-3\log(1.2) + 2\log(0.8) + (\pi/2)(\cot(\pi/6) + \cot(\pi/3) + \cot(\pi/4))) =$$

$$(1+o(1))\nu \times 1.956124...,$$

(96)

$$\log(d_1^*(7,\nu)) = (1+o(1))\nu \times (4\log(7/8) + 3\log(7/6)) + (1+o(1))(\pi/2)\nu \times (-\cot(\pi/6) - \cot(\pi/3) + \cot(\pi/8) + \cot(3\pi/8) + \cot(\pi/4)) = (1+o(1))\nu(4\log(7/8) + 3\log(7/6) + \pi(-2/\sqrt{3} + 2/\sqrt{2} + 1/2)) = (1+o(1))\nu \times 2.314407...,$$

when $\nu \to \infty$.

In view of (18) and (19),

$$\alpha^{*}(z;\nu)d_{0}^{*}(\nu)/d_{1}^{*}(\nu) \in \mathbb{Z}[z],$$

$$\phi^{*}(z;\nu)d_{0}^{*}(\nu)/d_{1}^{*}(\nu) \in \mathbb{Z}[z].$$

Let

(97)
$$U_{\Delta}(m,\nu) = d_0^*(\nu)/d_1^*(\nu), \ \Lambda_0(m) = 0,$$

if $m \neq 2p^{\alpha}$, where p run over the all the prime numbers and α run over N and let

(98)
$$U_{\Delta}(m,\nu) = \frac{d_0^*(\nu)}{d_1^*(\nu)} p^{[(\Delta+1)\nu/\phi(m)]+1}, \ \Lambda_0(m) = \Lambda(m/2),$$

if $m = 2p^{\alpha}$, where p is a prime number and $\alpha \in \mathbb{N}$. In view of the (18), (19) and Lemma 1,

(99)
$$\alpha^*(z;\nu)\Big|_{z=\left(\frac{1}{2\cos(\frac{k\pi i}{m})},\frac{k\pi i}{m}-\pi\right)}U_{\Delta}(m,\nu)\in\mathbb{Z}_{\mathbb{Q}[\exp(2i\pi/m)]};$$

(100)
$$\phi^*(z;\nu)\Big|_{z=\left(\frac{1}{2\cos(\frac{k\pi i}{m})},\frac{k\pi i}{m}-\pi\right)}U_{\Delta}(m,\nu)\in\mathbb{Z}_{\mathbb{Q}[\exp(2i\pi/m)]},$$

where (k, m) = 1. In view of (98), (97), (93), (92), (2) and (3)

(101)
$$\frac{d_0^*(\nu)}{d_1^*(\nu)} =$$

$$\nu(1 + o(1))V_{\Delta}^* \log(U_{\Delta}(m, \nu)) = \nu(1 + o(1))V_{\Delta}(m),$$

when $\nu \to \infty$.

The polynomial (28) take the form

$$D^{\wedge}(z,\eta) = (\eta+1)\left(\eta + \frac{\Delta-1}{\Delta+1}\right) + \frac{2\Delta\exp(i\psi)\eta}{(\Delta+1)\cos(\psi)} = ((\Delta+1)\eta^2 + 2\Delta(2+iT)\eta + (\Delta-1))/(\Delta+1),$$

where $\psi \in (-pi/2, \pi/2)$ and $T = \tan(\psi)$; its roots are equal to

(102)
$$-(2\Delta + \Delta iT + R)/(\Delta + 1),$$

where $R^2 = \Delta^2 (3 - T^2) + 1 + 4\Delta^2 iT$. In view of (1), Then

$$R \in \left\{ \pm \left(w_{\Delta}(T) + i2\Delta^2 iT / w_{\Delta}(T) \right\} \right).$$

In view of (102) and (46),

$$\eta_j^{\wedge}(r,\psi,\delta_0) = -\frac{2\Delta + \Delta iT + (-1)^j (w_{\Delta}(T) + i2\Delta^2 iT/w_{\Delta}(T))}{\Delta + 1} = -\frac{2\Delta + (-1)^j w_{\Delta}(T) + iT\Delta (1 + (-1)^j 2\Delta/w_{\Delta}(T))}{\Delta + 1},$$

where j = 0, 1,

$$|\eta_j^{\wedge}(r,\psi,\delta_0) + k|^2 =$$

$$\frac{(2\Delta + (-1)^{j}w_{\Delta}(T) - k(\Delta + 1))^{2} + T^{2}\Delta^{2}(1 + (-1)^{j}2\Delta/w_{\Delta}(T))^{2}}{(\Delta + 1)^{2}},$$

where j = 0, 1; k = 0, 1, -1. Therefore, in view of (30) and (4)

(103)
$$\ln |h^{\sim}(\eta_j^{\wedge}(r,\psi,\delta_0))| =$$

$$\begin{split} (\eta_j(r,\psi,\delta_0)-1)(1-\delta_0)^{-d_1}(\eta_j(r,\psi,\delta_0)+1)2^{-2}\eta_j(r,\psi,\delta_0)^{d_1} &= \\ -\log\left(4(\Delta+1)^{\Delta+1}(1-1/\Delta)^{(\Delta}-1)\right) + \\ \frac{1}{2}\log\left(\left(2\Delta+(-1)^j w_{\Delta}(T) + (\Delta+1)\right)^2 + T^2\Delta^2\left(1+\frac{(-1)^j 2\Delta}{w_{\Delta}(T)}\right)^2\right) + \\ \frac{1}{2}\log\left(\left(2\Delta+(-1)^j w_{\Delta}(T) - (\Delta+1)\right)^2 + T^2\Delta^2\left(1+\frac{(-1)^j 2\Delta}{w_{\Delta}(T)}\right)^2\right) + \\ \frac{(\Delta-1)}{2}\log\left(\left(2\Delta+(-1)^j w_{\Delta}(T)\right)^2 + T^2\Delta^2\left(1+\frac{(-1)^j 2\Delta}{w_{\Delta}(T)}\right)^2\right) = \\ l_{\Delta}(j,T), \end{split}$$

where j = 0, 1. Clearly,

$$w_{\Delta}(0) = \sqrt{3\Delta^2 + 1},$$

$$\eta_j^{\wedge}(1/2, 0, \delta_0) = -\frac{2\Delta + (-1)^j \sqrt{3\Delta^2 + 1}}{\Delta + 1},$$

where j = 0, 1,

$$\left|\eta_{j}^{\wedge}(1/2,0,\delta_{0})+k\right| = \left|\frac{2\Delta + (-1)^{j}\sqrt{3\Delta^{2}+1}-k(\Delta+1)}{\Delta+1}\right|,$$

where j = 0, 1; k = 0, 1, -1. Therefore

(104)
$$l_{\Delta}(\epsilon, 0) = (\log |h^{\sim}(\eta_{\epsilon}^{\wedge}(1/2, 0, \delta_0))|) =$$

$$\log \left(\left| (\eta_{\epsilon}(1/2, 0, \delta_{0}) - 1)(1 - \delta_{0})^{-d_{1}} (\eta_{\epsilon}(1/2, 0, \delta_{0}) + 1)2^{-2} \eta_{\epsilon}(1/2, 0, \delta_{0})^{d_{1}} \right| \right) = -\log \left(4(\Delta + 1)^{\Delta + 1}(1 - 1/\Delta)^{(}\Delta - 1) \right) + \log \left(\left| 2\Delta + (-1)^{\epsilon} \sqrt{3\Delta^{2} + 1} - (\Delta + 1) \right| \right) + \log \left(\left| 2\Delta + (-1)^{\epsilon} \sqrt{3\Delta^{2} + 1} + (\Delta + 1) \right| \right) + (\Delta - 1) \log \left(\left| 2\Delta + (-1)^{\epsilon} \sqrt{3\Delta^{2} + 1} \right| \right).$$

Consequently

$$l_5(1,0) = -\|og(4) - 6\log 6 - 4\log(0.8) + \log(\sqrt{76} - 4) + \log(16 - \sqrt{76}) + 4\log(10 - \sqrt{76})$$

I made computations below "by hands" using calculator of the firm "CASIO."

$$\log 4 = 1,386294361...; 6 \log(6) = 10,7505682...;$$

$$\begin{split} 4\log(0.8) &= -0,892574205...;\\ \sqrt{76} &= 8,717797887...; \sqrt{76} - 4 = 4,717797887...;\\ 16 - \sqrt{76} &= 7,282202113...; 10 - \sqrt{76} = 1,282202113...;\\ \log\left(\sqrt{76} - 4\right) &= 1.551342141...; \log\left(16 - \sqrt{76}\right) = 1.985433305...;\\ \log\left(10 - \sqrt{76}\right) &= 0.248579...; 4\log\left(10 - \sqrt{76}\right) = 0,994316001...;\\ \end{split}$$

$$\begin{split} (105) \qquad l_5(1,0) &= -6.713196909...;\\ l_7(1,0) &= -\log(4) - 8\log(8) - 6\log(6) + 6\log(7) + \\ \log\left(\sqrt{148} - 6\right) + \log\left(22 - \sqrt{148}\right) + 6\log\left(14 - \sqrt{148}\right);\\ 8\log 8 &= 16,63553233...; 6\log 6 = 10,75055682...; 6\log 7 = 11,67546089...;\\ \sqrt{148} &= 12,16552506...; \sqrt{148} - 6 = 6,16552506...\\ 22 - \sqrt{148} &= 9,83474939...; 14 - \sqrt{148} = 1,83474939...;\\ \log(\sqrt{148} - 6) &= 1,818973301; \log(22 - \sqrt{148}) = 2,285894063...;\\ \log(14 - \sqrt{148}) &= 0,606758304...; 6\log(14 - \sqrt{148}) = 3,640549824...; \end{split}$$

(106)
$$l_7(1,0) = -9,35150543...$$

In view of (2), (92), (93), (95), (96) and (101),

(107)
$$V_5^* = 6 - 1.956124... = 4,04387...; V_7^* = 8 - 2.314407 = 5,685593.$$

In view (105) - (107),

(108)
$$-V_5^* - l_5(1,0) > 0, \ -V_7^* - l_7(1,0) > 0.$$

So, the key inequalities (108) are checked "by hands". I view of (103), (108) and Lemma 3,

$$-V_5^* - l_5(1, \tan(\pi/m)) > 0, \ -V_7^* - l_7(1, \tan(\pi/m)) > 0,$$

where m > 2. Since $(\log(p))/(p^{\alpha-1}(p-1))$ decreases together with increasing of $p \in (3, +\infty)$ with fixed $\alpha \ge 1$, or icreasing of $\alpha \in (1, +\infty)$ with fixed $p \ge 2$ (or, of course, increasing both $\alpha \in (1, +\infty)$ and $p \in (3, +\infty)$), and

$$\lim_{p \to \infty} ((\log(p)) / (p^{\alpha - 1}(p - 1))) = 0.$$

where $\alpha \geq 1$,

$$\lim_{\alpha \to \infty} ((\log(p)) / (p^{\alpha - 1}(p - 1))) = 0,$$

where $p \ge 2$, it follows that the inequality (7) holds for all the sufficient big integers m. Computations on computer of class "Pentium" show that the inequality (7) holds for m = 3, m = 4, m = 5 and $m = 2 \times 5$; therefore inequality (7) holds for all the $m > 2 \times 3$. Let $\varepsilon_0 = h_\Delta(m)/2$, with $h_\Delta(m)$ defined in (6). In view of (7), $\varepsilon_0 > 0$. We take now $K = K_m = \mathbb{Q}[\exp(2\pi i/m)]$. Let further $\{\sigma_1, \ldots, \sigma_{\phi(m)}\} = Gal(K/\mathbb{Q})$. For each $j = 1, \ldots, \phi(m)$ there exists $k_j \in (-m/2, m/2) \cap \mathbb{Z}$ such that

$$(|k_j|, m) = 1, \sigma_j \left(\exp\left(\frac{2\pi i}{m}\right) \right) = \exp\left(\frac{2\pi i k_j}{m}\right).$$

Let a be the element of \mathfrak{K} , such that

$$\pi_j(a) = \log(2 + \sigma_j(\exp(2\pi i/m))) = \log(2 + \exp(2\pi i k_j/m)),$$

where $j = 1, \ldots, \phi(m)$; we suppose that $k_1 = 1$. In view of (99) and (100), let $\alpha_1^{\vee}(\nu)$, $\alpha_1^{\wedge}(\nu)$, $\alpha_2^{\vee}(\nu)$, $\alpha_2^{\wedge}(\nu)$, are elements in \mathfrak{K} such that

$$\pi_j(\alpha_1^{\vee}(\nu)) = \alpha^*(z;\nu) \bigg|_{z = \left(\frac{1}{2\cos(\frac{k_j\pi i}{m})}, \frac{k_j\pi i}{m} - \pi\right)},$$
$$\pi_j(\alpha_2^{\vee}(\nu)) = \phi^*(z;\nu) \bigg|_{z = \left(\frac{1}{2\cos(\frac{k_j\pi i}{m})}, \frac{k_j\pi i}{m} - \pi\right)},$$

(109)
$$\pi_{j}(\alpha_{1}^{\wedge}(\nu)) = \alpha^{*}(z;\nu) \bigg|_{z = \left(\frac{1}{2\cos(\frac{k_{j}\pi i}{m})}, \frac{k_{j}\pi i}{m} - \pi\right)} U_{\Delta}(m,\nu),$$

(110)
$$\pi_{j}(\alpha_{2}^{\wedge}(\nu)) = \phi^{*}(z;\nu) \Big|_{z = \left(\frac{1}{2\cos(\frac{k_{j}\pi i}{m})}, \frac{k_{j}\pi i}{m} - \pi\right)} U_{\Delta}(m,\nu),$$

where $j = 1, \ldots, \phi(m)$. Then $\alpha_k^{\wedge}(\nu) \in \mathbb{Z}_K$ for k = 1, 2.

(111)
$$y^{\vee}(\nu) = -\alpha_2^{\vee}(\nu) + a\alpha_1^{\vee}(\nu),$$

and let $y(\nu)$ is defined by means the equality (90). According to the Corrollary of the Lemma 4, to the Theorem 4 in [58] (or Theorem 7 in [66]), to the Lemma 8, to (103), there exist $m_1^* \in \mathbb{N}$ having the following property:

for any $\varepsilon \in (0, \varepsilon_0)$ there exist $\gamma_0(\varepsilon) > 0, \gamma_1(\varepsilon) > 0$, and $\gamma_2(\varepsilon) > 0$ such that

(112)
$$|\pi_j(\alpha_k^{\vee}(\nu))| \le$$

$$\gamma_0(\varepsilon) \exp((l_\Delta(\tan((k_j\pi i)/m), 0) + \varepsilon/3)\nu))$$

where $k = 1, 2, j = 1, ..., \phi(m)$ and $\nu \in \mathbb{N} - 1 + m_1^*$,

(113)
$$\gamma_{1}(\varepsilon) \exp((l_{\Delta}(\tan((k_{j}\pi i)/m), 1) - \varepsilon/3)\nu) \leq \max(|\pi_{j}(y^{\vee}(\nu))|, |\pi_{j}(y^{\vee}(\nu+1))| \leq \gamma_{2}(\varepsilon) \exp((l_{\Delta}(\tan((k_{j}\pi i)/m), 1) + \varepsilon/3)\nu),$$
where $i = 1$ $\phi(m)$ and $\nu \in \mathbb{N} - 1 + m^{*}$

where $j = 1, \ldots, \phi(m)$ and $\nu \in \mathbb{N} - 1 + m_1^*$.

Let $\omega_1(m) = (m-1)/2$, if m is odd, $\omega_1(m) = m/2 - 2$, if $m \equiv 2 \pmod{4}$ and $\omega(m) = m/2 - 1$, if $m \equiv 0 \pmod{4}$. Then

$$\omega_1(m) = \sup\{k \in \mathbb{N} \colon k_j < m/2, (k,m) = 1\}.$$

According to the Lemma 3 and (103),

(114)
$$l_{\Delta}(\tan((k_j\pi i)/m), 0) \le l_{\Delta}(\tan((\omega_1(m)\pi i)/m), 0),$$

(115)
$$l_{\Delta}(\tan((\omega_1(m)\pi i)/m), 1) \le$$

$$l_{\Delta}(\tan((k_j\pi i)/m), 1) \le l_{\Delta}(\tan((\pi i)/m), 1)$$

where $j = 1, ..., \phi(m)$. In view of (112) – (115),

(116)

$$|\pi_j(\alpha_k^{\vee}(\nu))| \le \gamma_0(\varepsilon) \exp(((l_\Delta(\tan((\omega_1(\nu)\pi i)/m), 0) + \varepsilon/3)\nu),$$

where $k = 1, 2, j = 1, ..., \phi(m)$ and $\nu \in \mathbb{N} - 1 + m_1^*$,

(117)
$$\gamma_1(\varepsilon) \exp((l_\Delta(\tan((\omega_1(m)\pi i)/m), 1) - \varepsilon/3)\nu) \le \max(|\pi_j(y^{\vee}(\nu))|, |\pi_j(y^{\vee}(\nu+1))| \le \gamma_2(\varepsilon) \exp((l_\Delta(\tan((\pi i)/m), 1) + \varepsilon/3)\nu),$$

where $j = 1, ..., \phi(m)$ and $\nu \in \mathbb{N} - 1 + m_1^*$. In view of (101), there exists $m_2^* \in \mathbb{N} - 1 + m_1^*$, such that

(118)
$$\exp(V_{\Delta}(m) - \varepsilon/3)\nu \le U_{\Delta}(m,\nu) \le \exp(V_{\Delta}(m) - \varepsilon/3)\nu$$

where $\nu \in \mathbb{N} - 1 + m_2^*$.

In view of
$$(115) - (118)$$
, $(109) - (111)$, (6) , (5) ,

(119)
$$|\pi_j(\alpha_k(\nu))| \le \gamma_0(\varepsilon) \exp((g_{\Delta,0}(m) + 2\varepsilon/3)\nu),$$

where $k = 1, 2, j = 1, ..., \phi(m)$ and $\nu \in \mathbb{N} - 1 + m_2^*$,

(120)
$$\gamma_1(\varepsilon) \exp((-g_{\Delta,1}(m) - 2\varepsilon/3)\nu) \le \max(|\pi_j(y^{\vee}(\nu))|, |\pi_j(y^{\vee}(\nu+1))| \le \gamma_2(\varepsilon) \exp((-h_{\Delta}(m) + 2\varepsilon/3)\nu),$$

where $j = 1, \ldots, \phi(m)$ and $\nu \in \mathbb{N} - 1 + m_2^*$. Let $X \in \mathbb{Z}_{K_m} \setminus \{0\}$. Then, in view of (119) and (120),

$$\begin{aligned} |\pi_j(X\alpha_k(\nu))|| &\leq \gamma_0(\varepsilon) \exp((g_{\Delta,0}(m) + 2\varepsilon/3)\nu) |\pi_j(X)| \leq \\ \gamma_0(\varepsilon) \exp((g_{\Delta,0}(m) + 2\varepsilon/3)\nu) q_{\infty}^{(\mathfrak{K})}(X), \end{aligned}$$

where $k = 1, 2, j = 1, \ldots, \phi(m)$ and $\nu \in \mathbb{N} - 1 + m_2^*,$

(122)
$$\gamma_1(\varepsilon) \exp((-g_{\Delta,1}(m) - 2\varepsilon/3)\nu) |\pi_j(X)| \le$$

$$\max(|\pi_j(Xy^{\vee}(\nu))|, |\pi_j(Xy^{\vee}(\nu+1))| \le \max(q_{\infty}^{(\mathfrak{K})}(Xy^{\vee}(\nu)), q_{\infty}^{(\mathfrak{K})}(Xy^{\vee}(\nu+1)),$$

where $j = 1, \ldots, \phi(m)$ and $\nu \in \mathbb{N} - 1 + m_2^*,$
(123)
$$\max(|\pi_j(Xy^{\vee}(\nu))|, |\pi_j(Xy^{\vee}(\nu+1))| \le \gamma_2(\varepsilon) \exp((-h_{\Delta}(m) + 2\varepsilon/3)\nu)|\pi_j(X)| \le \varepsilon$$

$$\gamma_2(\varepsilon) \exp((-h_\Delta(m) + 2\varepsilon/3)\nu) q_\infty^{\mathfrak{K}}(X),$$

where $j = 1, \ldots, \phi(m)$ and $\nu \in \mathbb{N} - 1 + m_2^*$. In view of (121)

(124)
$$q_{\infty}^{(\hat{\mathbf{R}})}(X\alpha_k(\nu)) \leq$$

$$\gamma_0(\varepsilon) \exp((g_{\Delta,0}(m) + 2\varepsilon/3)\nu) q_{\infty}^{(\mathfrak{K})}(X),$$

where k = 1, 2, and $\nu \in \mathbb{N} - 1 + m_2^*$. In view of (123),

(125)
$$\max(q_{\infty}^{(\mathfrak{K})}(Xy^{\vee}(\nu)), q_{\infty}^{(\mathfrak{K})}((Xy^{\vee}(\nu+1))) = \\ \sup(\{|\pi_j(Xy^{\vee}(\nu+\epsilon))|, : \epsilon \in \{0, 1\}, j = 1, \dots, \phi(m)\}) \\ \gamma_2(\varepsilon) \exp((-h_{\Delta}(m) + 2\varepsilon/3)\nu)q_{\infty}^{(\mathfrak{K})}(X),$$

where $\nu \in \mathbb{N} - 1 + m_2^*$.

Taking in acount (124), (125) and (122), we see that all the conditions of the Corollary of the Lemma 12 are fulfilled for

 \leq

$$\varepsilon \in (0, \varepsilon_0), \gamma_0(\varepsilon), \gamma_1(\varepsilon), \gamma_2(\varepsilon), y = y(\nu), \alpha_1(\nu), \alpha_2(\nu),$$
$$r_1 = r_1(\varepsilon) = \exp(g_{\Delta,0}(m) + 2\varepsilon/3,$$
$$R_1 = R_1(\varepsilon) = \exp(g_{\Delta,1}(m) + 2\varepsilon/3),$$
$$R_2 = R_2(\varepsilon) \exp(h_{\Delta}(m) - 2\varepsilon/3),$$

and this proves the part of our Theorem connected with the inequality (8).

Let again $X \in \mathbb{Z}_{K_m} \setminus \{0\}$ and let

$$q_{min}^{(\mathfrak{K})}(X) = \inf(|\{\pi_j(X)|: j = 1, \dots, \phi(m)\})$$

Clearly, $q_{min}^{(\mathfrak{K})}(X) > 0$ According to the Theorem 4 in [58], or to the Theorem 7 in [66], there exist $m_1^* \in \mathbb{N}$ having the following property: for any $\varepsilon \in (0, \varepsilon_0)$ there exist $\gamma_0^*(X, \varepsilon) > 0$, $\gamma_1^*(X, \varepsilon) > 0$, and $\gamma_2^*(X, \varepsilon) > 0$ such that

$$|\pi_j(\alpha_k^{\vee}(\nu))| \le \gamma_0^*(\varepsilon) \exp((l_{\Delta}(\tan((\omega_m \pi i)/m), 0) + \varepsilon/3)\nu),$$

where $k = 1, 2, j = 1, ..., \phi(m)$ and $\nu \in \mathbb{N} - 1 + m_1^*$,

$$\gamma_1^*(X\varepsilon) \exp((l_{\Delta}(\tan((\pi i)/m), 1) - \varepsilon/3)\nu) \le \max(|\pi_j(y^{\vee}(\nu))|, |\pi_j(y^{\vee}(\nu+1))| \le \gamma_2(\varepsilon) \exp((l_{\Delta}(\tan((\pi i)/m), 1) + \varepsilon/3)\nu),$$

where $j = 1, ..., \phi(m)$ and $\nu \in \mathbb{N} - 1 + m_1^*$. Repeating the previous considerations, we see that all the conditions of the Corollary of the Lemma 12 are fulfilled for $\varepsilon \in (0, \varepsilon_0)$,

$$\gamma_0 = \gamma_0^*(X,\varepsilon), \ \gamma_1 = \gamma_1^*(X,\varepsilon), \ \gamma_2 = \gamma_2^*(X,\varepsilon),$$
$$y = y(\nu), \ \alpha_1(\nu), \alpha_2(\nu), \ r_1 = r_1(\varepsilon) = \exp(g_{\Delta,0}(m) + 2\varepsilon/3,$$

and

$$R_1 = R_2 = R_2(\varepsilon) \exp(h_\Delta(m) - 2\varepsilon/3),$$

and this proves the part of our Theorem connected with the inequality (9).

Below are values of β and α computed for $\Delta \in \{5, 7\}$ and some $m \in \mathbb{N}$.

 $(m; \Delta; \beta; \alpha) = (3; 5; 3, 111228...; 3, 111228...),$ $(m; \Delta; \beta; \alpha) = (3; 7; 3, 073525...; 3, 073525...),$ $(m; \Delta; \beta; \alpha) = (4; 5; 11, 458947...; 11, 458947...),$ $(m; \Delta; \beta; \alpha) = (4; 7; 10, 551730...; 10, 551730...),$ $(m; \Delta; \beta; \alpha) = (5; 5; 4, 826751...; 5, 607961...),$ $(m; \Delta; \beta; \alpha) = (5; 7, 4, 837858...; 5, 684622...),$ $(m; \Delta; \beta; \alpha) = (7; 5; 5, 701485...; 6, 977258...),$ $(m; \Delta; \beta; \alpha) = (7; 7; 5, 724804...; 7, 114963...),$ $(m; \Delta; \beta; \alpha) = (8; 5; 8, 337857...; 9, 436901...),$ $(m; \Delta; \beta; \alpha) = (8; 7; 8, 253047...; 9, 433260...),$ $(m; \Delta; \beta; \alpha) = (9; 5; 6, 312056...; 7, 960502...),$ $(m; \Delta; \beta; \alpha) = (9; 7; 6, 335274...; 8, 134962...),$ $(m; \Delta; \beta; \alpha) = (10; 5; 43, 546644...; 46, 230614...),$ $(m; \Delta; \beta; \alpha) = (10; 7; 35, 648681...; 38, 043440...),$ $(m; \Delta; \beta; \alpha) = (11; 5; 6, 786990...; 8, 735234...),$ $(m; \Delta; \beta; \alpha) = (11; 7, 6, 806087...; 8, 934922...),$ $(m; \Delta; \beta; \alpha) = (12; 5; 5, 638541...; 6, 813222...),$ $(m; \Delta; \beta; \alpha) = (12; 7; 5, 696732...; 6, 983870...),$ $(m; \Delta; \beta; \alpha) = (13; 5; 7, 177155...; 9, 376030...),$ $(m; \Delta; \beta; \alpha) = (13; 7; 7, 190814...; 9, 594580...),$ $(m; \Delta; \beta; \alpha) = (14; 5; 19, 659885...; 21, 835056...),$ $(m; \Delta; \beta; \alpha) = (14; 7; 18, 447228...; 20, 668254...),$ $(m; \Delta; \beta; \alpha) = (15; 5; 7, 508714...; 9, 922761...),$ $(m; \Delta; \beta; \alpha) = (15; 7; 7, 516606...; 10, 156245...),$ $(m; \Delta; \beta; \alpha) = (16; 5, 7, 951153...; 9, 876454...),$

$$\begin{array}{l} (m; \ \Delta; \ \beta; \ \alpha) = (16; \ 7, \ 7, 945763...; \ 10, 039605...), \\ (m; \ \Delta; \ \beta; \ \alpha) = (17; \ 5; \ 7, 797153...; \ 10, 399610...), \\ (m; \ \Delta; \ \beta; \ \alpha) = (17; \ 7, \ 7, 799343...; \ 10, 645404...), \\ (m; \ \Delta; \ \beta; \ \alpha) = (18; \ 5, \ 9, 486110...; \ 10, 955534...), \\ (m; \ \Delta; \ \beta; \ \alpha) = (18; \ 7, \ 9, 406368...; \ 10, 989150...), \\ (m; \ \Delta; \ \beta; \ \alpha) = (19; \ 5; \ 8, 052478...; \ 10, 822446...), \\ (m; \ \Delta; \ \beta; \ \alpha) = (19; \ 5; \ 8, 049182...; \ 11, 078690...), \\ (m; \ \Delta; \ \beta; \ \alpha) = (20; \ 5; \ 6, 696241...; \ 8, 559091...), \\ (m; \ \Delta; \ \beta; \ \alpha) = (20; \ 7; \ 6, 733979...; \ 8, 774063...), \\ (m; \ \Delta; \ \beta; \ \alpha) = (20; \ 7; \ 6, 733979...; \ 8, 774063...), \\ (m; \ \Delta; \ \beta; \ \alpha) = (21; \ 7; \ 8, 273039...; \ 11, 467583...), \\ (m; \ \Delta; \ \beta; \ \alpha) = (22; \ 5; \ 13, 134623...; \ 15, 504916...), \\ (m; \ \Delta; \ \beta; \ \alpha) = (22; \ 7; \ 12, 815391...; \ 15, 504916...), \\ (m; \ \Delta; \ \beta; \ \alpha) = (22; \ 7; \ 12, 815391...; \ 15, 331975...), \\ (m; \ \Delta; \ \beta; \ \alpha) = (23; \ 5; \ 8, 489281...; \ 11, 547024...), \\ (m; \ \Delta; \ \beta; \ \alpha) = (24; \ 5; \ 7, 088338...; \ 9, 210037...), \\ (m; \ \Delta; \ \beta; \ \alpha) = (24; \ 5; \ 7, 088338...; \ 9, 210037...), \\ (m; \ \Delta; \ \beta; \ \alpha) = (24; \ 5; \ 7, 088338...; \ 9, 210037...), \\ (m; \ \Delta; \ \beta; \ \alpha) = (25; \ 5; \ 8, 679328...; \ 11, 862643...), \\ (m; \ \Delta; \ \beta; \ \alpha) = (25; \ 7; \ 8, 661235...; \ 12, 143143...), \\ (m; \ \Delta; \ \beta; \ \alpha) = (26; \ 5; \ 12, 172520...; \ 14, 674949...), \\ (m; \ \Delta; \ \beta; \ \alpha) = (26; \ 5; \ 12, 172520...; \ 14, 618461...), \\ (m; \ \Delta; \ \beta; \ \alpha) = (26; \ 7; \ 11, 944943...; \ 14, 618461...), \\ (m; \ \Delta; \ \beta; \ \alpha) = (26; \ 7; \ 11, 944943...; \ 14, 618461...), \\ (m; \ \Delta; \ \beta; \ \alpha) = (26; \ 7; \ 11, 944943...; \ 14, 618461...), \\ (m; \ \Delta; \ \beta; \ \alpha) = (26; \ 7; \ 11, 944943...; \ 14, 618461...), \\ (m; \ \Delta; \ \beta; \ \alpha) = (26; \ 7; \ 11, 944943...; \ 14, 618461...), \\ (m; \ \Delta; \ \beta; \ \alpha) = (26; \ 7; \ 11, 944943...; \ 14, 618461...), \\ (m; \ \Delta; \ \beta; \ \alpha) = (26; \ 7; \ 11, 944943...; \ 14, 618461...), \\ (m; \ \Delta; \ \beta; \ \alpha) = (26; \ 7; \ 11, 944943...; \ 14, 618461....), \\ (m; \ \Delta; \ \beta; \ \alpha) =$$

$$\begin{split} (m; \ \Delta; \ \beta; \ \alpha) &= (32; \ 5; \ 8, 654733...; \ 11, 466214...), \\ (m; \ \Delta; \ \beta; \ \alpha) &= (32; \ 7; \ 8, 637697...; \ 11, 705492...), \\ (m; \ \Delta; \ \beta; \ \alpha) &= (33; \ 5; \ 9, 310125...; \ 12, 911341...), \\ (m; \ \Delta; \ \beta; \ \alpha) &= (33; \ 5; \ 9, 275806...; \ 13, 214792...), \end{split}$$

References.

 R.Apéry, Interpolation des fractions continues et irrationalite de certaines constantes, Bulletin de la section des sciences du C.T.H., 1981, No 3, 37 – 53;
 F.Beukers, A note on the irrationality of ζ(2) and ζ(3), Bull. London Math. Soc., 1979, 11, 268 – 272;
 A.van der Porten, A proof that Euler missed...Apéry's proof of the irrationality of ζ(3), Math Intellegencer, 1979, 1, 195 – 203;
 W. Maier, Potenzreihen irrationalen Grenzwertes, J.reine angew. Math., 156, 1927, 93 – 148;
 E.M. Nikišin, On irrationality of the values of the functions F(x,s) (in Russian), Mat.Sb. 109 (1979), 410 – 417; English transl. in Math. USSR Sb. 37 (1980), 381 – 388;

[6] G.V. Chudnovsl	ky, Pade approximations to the generalized hyper-geometric functions
	I,J.Math.Pures Appl., 58 , 1979 , $445 - 476$;
[7]	, Transcendental numbers, Number Theory, Carbondale,
	Lecture Notes in Math, Springer-Verlag, 1979, 751, 45 – 69;
[8]	, Approximations rationelles des logarithmes de nombres rationelles
	C.R.Acad.Sc. Paris, Série A, 1979, 288, 607 – 609;
[9]	, Formules d'Hermite pour les approximants de Padé de logarithmes
	et de fonctions binômes, et mesures d'irrationalité,
	C.R.Acad.Sc. Paris, Série A, 1979, t.288, 965 – 967;
[10]	_,Un systme explicite d'approximants de Padé
	pour les fonctions hypérgéometriques généraliesées,
	avec applications a l'arithmétique,
F 1	C.R.Acad.Sc. Paris, Série A, 1979, t.288, 1001 – 1004;
[11]	, Recurrenses defining Rational Approximations
	to the irrational numbers, Proceedings
[+ 0]	of the Japan Academie, Ser. A, 1982, 58, 129 – 133;
[12]	, On the method of Thue-Siegel,
	Annals of Mathematics, 117 (1983), 325 – 382;
[13] K.Alladi and M	M. Robinson, Legendre polinomials and irrationality,
	J. Reine Angew.Math., 1980, 318, 137 – 155;
[14] A. Dubitskas, .	An approximation of logarithms of some numbers,
[1]	Diophantine approximations II,Moscow, 1986, 20 – 34;
[15],	On approximation of $\pi/\sqrt{3}$ by rational fractions,
	Vestnik MGU, series 1, 1987, 6, 73 – 76;
[16] S.Eckmann, U	ber die lineare Unaqbhangigkeit der Werte gewisser Reihen,
[17] N. TT (T	Results in Mathematics, 11, 1987, 7 – 43;
[17] M.Hata, Legen	I D i A v V V V 1000 407 00 125
	J. Reine Angew. Math., 1990, 407, 99 – 125;
[18] A.O. Gelfond,	Transcendental and algebraic numbers (in Russian),
[10] II D	GIT-TL, Moscow, 1952;
[19] H.Bateman and	d A.Erdélyi, Higher transcendental functions, 1953,
[90] O D Ül.	New-York – Toronto – London, Mc. Grow-Hill Book Company, Inc.;
[20] O.Perron, Obe	r die Poincaresche Differenzengleichung,
	Journal für die reine und angewandte mathematik,
[21] A O Colford I	1910, 137, 6 – 64; Differenzenrechnung (in Russian), 1967, Nauka, Moscow.
	nd I.M.Kubenskaya, On the theorem of Perron
	in the theory of difference equations (in Russian),
	IAN USSR, math. ser., 1953, 17, 2, 83 – 86.
[22] M A Everator	New proof of the theorem of Perron
[23] M.A.Evgraiov,	(in Russian), IAN USSR, math. ser., 1953, 17, 2, 77 – 82;
[24] C A Freiman	On theorems of of Poincaré and Perron
[24] G.A.Piejinan,	(in Russian), UMN, 1957, 12, 3 (75), $243 - 245$;
[25] N E Nörlund 1	Differenzenrechnung, Berlin, Springer Verlag, 1924;
	v, Foundtions of the Number Theory, (in Russian), 1952, GIT-TL;
	H.WEYL, Algebraic theory of numbers, 1940,
[21],	Russian translation by L.I.Kopejkina,
[28] L A Gutnik O	n the decomposition of the difference operators of Poincaré type
[20] E.H.Guthin, O	(in Russian), VINITI, Moscow, 1992, $2468 - 92$, $1 - 55$;
[29]	On the decomposition of the difference operators
[20],	of Poincaré type in Banach algebras
	(in Russian), VINITI, Moscow, 1992, 3443 – 92, 1 – 36;
[30]	On the difference equations of Poincaré type
L- ~];	(in Russian), VINITI, Moscow 1993, 443 – B93, 1 – 41;
[31]	On the difference equations of Poincaré type in normed algebras
[~=];	(in Russian), VINITI, Moscow, 1994, 668 – B94, 1 – 44;
[32]	On the decomposition of the difference equations of Poincaré type
L- = J;	(in Russian), VINITI, Moscow, 1997, $2062 - B97$, $1 - 41$;
[33]	The difference equations of Poincaré type
L J,	J T

	with characteristic polynomial having roots equal to zero
	(in Russian), VINITI, Moscow, 1997, $2418 - 97$, $1 - 20$;
[34]	, On the behavior of solutions
	of difference equations of Poincaré type
	(in Russian), VINITI, Moscow, 1997, 3384 – B97, 1 - 41;
[35]	, On the variability of solutions of difference equations of Poincaré type
	(in Russian), VINITI, Moscow, 1999, 361 – B99, 1 – 9;
[36]	, To the question of the variability of solutions
	of difference equations of Poincaré type (in Russian),
	VINITI, Moscow, 2000, $2416 - B00, 1 - 22;$
[37]	, On linear forms with coefficients in $\mathbb{N}\zeta(1+\mathbb{N})$,
[31]	Max-Plank-Institut für Mathematik,
	Bonn, Preprint Series, 2000, $3, 1 - 13;$
[38]	, On the Irrationality of Some Quantyties Containing $\zeta(3)$ (in Russian),
	Uspekhi Mat. Nauk, 1979, 34, 3(207), 190;
[20]	, On the Irrationality of Some Quantities Containing $\zeta(3)$,
[39]	
[40]	Eleven papers translated from the Russian,
	American Mathematical Society, 1988, 140, 45 - 56;
	, Linear independence over \mathbb{Q} of dilogarithms at rational points
	(in Russian), UMN, 37 (1982), 179-180;
	english transl. in Russ. Math. surveys 37 (1982), 176-177;
[41]	, On a measure of the irrationality of dilogarithms at rational points
[()]	(in Russian), VINITI, 1984, $4345-84$, $1-74$;
[42]	, To the question of the smallness of some linear forms
5 · - 7	(in Russian), VINITI, 1993, 2413-B93, $1 - 94$;
[43]	, About linear forms,
	whose coefficients are logarithms
	of algebraic numbers (in Russian),
	$\rm VINITI,\ 1995,\ 135\text{-}B95,\ 1-149;$
[44]	, About systems of vectors, whose coordinates
	are linear combinations of logarithms of algebraic numbers
	with algebraic coefficients (in Russian),
	VINITI, 1994, 3122-B94, 1 - 158;
[45]	, On the linear forms, whose
	coefficients are $\mathbb A$ - linear combinations
	of logarithms of \mathbb{A} - numbers,
	VINITI, 1996, 1617-B96, pp. 1 – 23.
[46]	, On systems of linear forms, whose
	coefficients are $\mathbb A$ - linear combinations
	of logarithms of \mathbb{A} - numbers,
	VINITI, 1996, 2663-B96, pp. 1 – 18.
[47]	, About linear forms, whose coefficients
	are \mathbb{Q} -proportional to the number log 2, and the values
	of $\zeta(s)$ for integer s (in Russian),
	VINITI, 1996, 3258-B96, $1 - 70;$
[48]	, The lower estimate for some linear forms,
	coefficients of which are proportional to the values
	of $\zeta(s)$ for integer s (in Russian),
	VINITI, 1997, 3072-B97, $1 - 77$;
[49]	, On linear forms with coefficients in $\mathbb{N}\zeta(1+\mathbb{N})$
[10]	Max-Plank-Institut für Mathematik, Bonn,
	Preprint Series, 2000, 3, $1 - 13$;
[50]	, On linear forms with coefficients in $\mathbb{N}\zeta(1+\mathbb{N})$
[30]	(the detailed version, part 1), Max-Plank-Institut für Mathematik,
	Bonn, Preprint Series, 2001, 15, $1 - 20$;
[51]	, On linear forms with coefficients in $\mathbb{N}\zeta(1+\mathbb{N})$
[01]	
	(the detailed version, part 2), Max-Plank-Institut für Mathematik,
[50]	Bonn, Preprint Series, 2001, 104, $1 - 36$; On linear forma with coefficients in $\mathbb{N}((1 + \mathbb{N}))$
[92]	, On linear forms with coefficients in $\mathbb{N}\zeta(1+\mathbb{N})$

	(the detailed version, part 3), Max-Plank-Institut für Mathematik,
	Bonn, Preprint Series, 2002, 57, $1 - 33$;
[53]	, On the rank over \mathbb{Q} of some real matrices (in Russian),
	VINITI, 1984, 5736-84; 1 - 29;
[54]	_, On the rank over \mathbb{Q} of some real matrices,
	Max-Plank-Institut für Mathematik,
	Bonn, Preprint Series, 2002 , 27 , $1 - 32$;
[55]	_, On linear forms with coefficients in $\mathbb{N}\zeta(1+\mathbb{N})$
	(the detailed version, part 4), Max-Plank-Institut für Mathematik,
	Bonn, Preprint Series, 2002 , 142 , $1 - 27$;
[56]	, On the dimension of some linear spaces
	over finite extension of \mathbb{Q} (part 2),
	Max-Plank-Institut für Mathematik, Bonn, Preprint Series,
	2002,107,1-37;
[57]	_, On the dimension of some linear spaces over \mathbb{Q} (part 3),
	Max-Plank-Institut für Mathematik, Bonn,
	Preprint Series, $2003, 16, 1 - 45$.
[58]	_,On the difference equation of Poincaré type (Part 1).
	Max-Plank-Institut für Mathematik, Bonn,
	Preprint Series, $2003, 52, 1 - 44$.
[59]	_, On the dimension of some linear spaces over \mathbb{Q} , (part 4)
	Max-Plank-Institut für Mathematik, Bonn,
	Preprint Series, $2003, 73, 1 - 38$.
[60]	_, On linear forms with coefficients in $\mathbb{N}\zeta(1+\mathbb{N})$
	(the detailed version, part 5),
	Max-Plank-Institut für Mathematik, Bonn,
	Preprint Series, $2003, 83, 1 - 13$.
[61]	, On linear forms with coefficients in $\mathbb{N}\zeta(1+\mathbb{N})$
	(the detailed version, part 6),
	Max-Plank-Institut für Mathematik, Bonn,
	Preprint Series, 2003, 99, 1 – 33.
[62]	$_{,}$ On the difference equation of Poincaré type (Part 2).
	Max-Plank-Institut für Mathematik, Bonn,
	Preprint Series, 2003 , 107 , $1 - 25$.
[63]	_, On the asymptotic behavior of solutions
	of difference equation (in English).
	Chebyshevskij sbornik, 2003, v.4, issue 2, $142 - 153$.
[64]	, On linear forms with coefficients in $\mathbb{N}\zeta(1+\mathbb{N})$,
	Bonner Mathematishe Schriften Nr. 360,
[08]	Bonn, 2003, 360.
[65]	_, On the dimension of some linear spaces over \mathbb{Q} , (part 5)
	Max-Plank-Institut für Mathematik, Bonn,
[0.0]	Preprint Series, 2004 , 46 , $1-42$.
[66]	_,On the difference equation of Poincaré type (Part 3).
	Max-Plank-Institut für Mathematik, Bonn,
	Preprint Series, 2004, 9, $1 - 33$.
[67]	, On linear forms with coefficients in $\mathbb{N}\zeta(1+\mathbb{N})$
	(the detailed version, part 7),
	Max-Plank-Institut für Mathematik, Bonn,
	Preprint Series, $2004, 88, 1 - 27$.

E-mail: gutnik@gutnik.mccme.ru