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Introduction

One way of expressing the classical residue of a one-variable meromorphic function
@/ f at a point a is by the integral

1 p(z) dz
2mi -[z—a]:c f(Z) ’

where ¢ is sufficiently small. The circle of integration |z — a| = € may of course be replaced
by some other contour, for instance {z € Us; |f(2)| = €}, where U, is a small neighborhood
of the point a not containing any other zeros of the function f. With this choice of contour
the notion of residue has been extended to the multidimensional case in two different
directions.

On the one hand, given a mapping f:C" — C", holomorphic in a neighborhood
of a point a € C™ and having a as isolated zero (f~1(0) nU, = {a}), one defines the
Grothendieck residue

RO =Gy b, @l PO

where T, = {z € U,;|fi(2)| = €1,-..,|fa(2)] = €n}, the radii €; being sufficiently small
but otherwise arbitrary, see [7}, [8], [12], [13].

On the other hand, if f: X — C is a holomorphic function defined on a n-dimensional
complex manifold X, then the limit

1 f w(z)dzy A ... Adz,
To

— 13 1 4 n,n—1

exists and defines a (0, 1)-current, i.e. a continuous linear functional on the space of smooth
compactly supported (n,n — 1)-forms. The proof of the existence of this residue current
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was first given by Herrera & Lieberman in [9]. In order to generalize this result Coleff &
Herrera considered in [4] integrals of the type

L[ e ,,
7€) = Gy fl'ﬁ‘-'i': g $SPTT )

associated to a holomorphic mapping f = (fi,..., fp): X — C". They proved that if the
vector € = (€;1...,€,) tends to zero along an “admissible” path € = £(§) such that

‘ _ - () _ L _
;J_r%e,,(é) 0, and }Sl—r»r(l)“—_z___(sjﬂ(&))q 0, j=1,...,p—-1,

for any natural number g, then the limit of If(¢(§)) as 6§ — 0 exists and defines a (0, p)-
current independently of the particular choice of “admissible” path. We also wish to point
out that for -closed forms ¢ the corresponding residues were first considered by Dolbeault
in [5).

As shown by simple examples, the residue function I¥(g) will not in general have
a well defined limit at the origin € = 0. Indeed, if we take fi = 21, fo = z122 and
¢ = @(z)dz; Adzg in C2, we obtain the residue function

1 @(z) dzy A dzg
14 —_
If (E) (21”:)2 / |‘1I=¢1 Z% 29 ’

|zaj=€a/e1

and we see that if one approaches the origin along a path with €5 /ey — oo then the domain
of integration will leave the compact support of ¢ and the limit of If will be zero, while
a path with €5/€; — 0 will yield the limit 8,, (0, 0).

In the above example one spots right away the reason for the non-existence of a unique
limit of the residue function (*) at the origin. Namely, the mapping f is not at complete
intersection, i.e. its zero set f~1(0) has dimension bigger than n — p = 0. If we restrict
our attention to complete intersection mappings f: X — C? with zero set of codimension
p in X, it would seem reasonable to expect that the function (*) should be continuous at
the origin, and hence that one would have an elegant and correct definition of the residue
current by simply writing

Ry(p)= _ lim If(c), €D P(X). (++)

e=(€1...,£5)—0

This possibility has been considered for instance in [4] and [2).

In this paper we disprove the continuity of a general complete intersection residue
function. More precisely, we exhibit in Section 1 a polynomial mapping f: C? — C? with
f~1(0) = {0}, and a smooth test form ¢ = @(z) dz; A dzq, for which the limit () does
not exist.

The situation is thus not good enough to allow the definition of the residue current
simply as the “value” for € = 0 of the (2n — p)-dimensional integrals (). Nevertheless,
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it turns out that it is possible to obtain the residue current by means of certain 2n-
dimensional integrals. Indeed, we prove in Section 3 that for a complete intersection
mapping f the Mellin transform of the residue function I (¢) behaves almost as well as if
it were the Mellin transform of a function which is continuous at the origin. More precisely,
we find that for a complete intersection f, the transform

0 = [[, AR e

is such that the function A;--- A, I"'}’ (A) is holomorphic at the origin. This latter function
is a p-dimensional integral of an integrand which itself is given by (2n — p)-dimensional
integrals. It may therefore in a natural way be represented as a 2n-dimensional integral,
and a computation shows that

A...AB|fp) e
A,
fio fp i

1 (§|f1|'\l
AL AT = Gy ./x
and we obtain the relation

Ry(¢) = M- A TE(N)

(* * %)

A=0

The authors wish to express their gratitude towards Professor Jiirgen Leiteter at the
Humboldt University in Berlin, with whom we on several occasions had the benefit of
discussing the theme of this paper.

1. A complete intersection whose residue function is discontinuous at the origin
Let us consider the mapping f: C? — C? given by the polynomials
f1(2) = 21
fo(2) =23+ 22423

Let further ¢ be a smooth compactly supported (2,0)-form which in a neighborhood of
the origin is equal to
@ = Zy fa(z) dzy A dzs.

With these choices of f and ¢ the residue function () looks like

__l_ w 1 22
7O Gy /iﬁlzi; i wr) e  Féands

{2} +23+23|=¢3
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After the birational coordinate change 23 = u, z2 = uv we can write

Py = YEL 3
If(e) = @miE | | = - du A dv. (1.1)
Ju?(vi+14u)|=e5

Proposition 1. For any fixed positive number ¢ # 1 one has

: 4 g2y _
}1_1;(1)[}"(6 ,c6%) =0.

Proof. In view of (1.1) we are led to the following iterated integral:

6 1 du
I8(s* 2=—/ —/ vy ) 2. 1.2
f(é b ) 2mi |u|=6(27ri |v’+1+u|=cv ! uf ( )

We denote the inner integral by J(u) and apply to it the following version of the trace

formula: ]
= - d
‘/lg(v)|=c 1,b(v) dv '/|w1=cTr [gf] (w) w,

where g(v) is a holomorphic function whose level set |g(v)| = cis a u-fold branched covering
over the circle |w| = ¢, and

T [/g)(w) = Y_[¥/9')(vi(w)),
j=1
with v;(w) denoting the different preimages g~ (w).

In our case we take as g(v) the family w = ¢,(v) = v? + 1 + u, depending on the
parameter u, and we have v;(w) = +{/w — (1 + u). We get

1 1 v
= — v = — ’I‘[ —_—
I() 2mi |u=+1+u|=cvdv 278 Jjw|=c [20](w) aw,

and hence

_ 1 Vw—(1+u)
J(u) = i /|w|=c ————m dw, (1.3)

where the integrand should be understood as |w — (1 + u)|/(w — (1 + u)), and is hence
independent of the choice of branch of the square root. From (1.3) it follows that, if ¢ # 1,
the function J(u) is real-analytic in a neighborhood of the origin, and therefore the limit

lim/ L;‘)du
§—0 |“l=5 u
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is a finite complex number. Now, in view of the factor 62 in formula (1.2) we reach the
desired conclusion and Proposition 1 is proved. n

Proposition 2.
lim I7(64,6%) #0.

Proof. In analogy to the equations (1.2.) and (1.3) we have

J@) , '
I"’(¢s4 §2) = — s — du, (1.2)
where

T omi lwj=1 /W — (1+u

Here again the integrand is equal to |w— (1 + u)}/(w ~ (1 +u)) and from this it is straight
forward to check that the integral (1.3’) is actually a function only of the modulus |1 + u.
So if we denote |1 + u| by t we have reduced ourselves to the study of the integral

I(t) = o— (1.4)

211’1 Jw|=1

for real parameters t > 0, and it is related to the previous integral J(u) via the simple
formula I(|1 + u]) = J(u).

Lemma 1. The integral (1.4) is a piecewise real-analytic, continuous function for t > 0.
It is explicitly given by

where F' denotes the hypergeometric series

F[a,b c Z] Z (a)n (b)'n

!’

with (a)o =1, (a), =a{a+1)---(a+n—1) and similary for b and c.

Proof of Lemma 1. Introducing the notation

I_()
I ()

I(t), 0<t<]l,
I(t), t21,
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we first prove that the following power series expansions hold for the functions I¢(¢):

I()=1-) oot (1.5)
n=1
g 2
L) =) om0, (1.6)
—oan+t

where g, = (1) _/n! = (37)/2?" are the Taylor coefficients at the origin of the function
z + 1/4/1 — z which takes the value +1 for z = 0.

To get started then, we notice that if £ > 1 we may pick a single-valued branch of
the function v/w —t on the disk |w| < 1. We then re-write it as vt - v/—1 - /1 — w/t,

where the branch of \/1 — w/t is the one with value +1 for w = 0, the square root Viis
positive real, and /-1 = +1 depending on the choice of branch we just made. A power
series expansion of the integrand and term-by-term integration then yield

L = - Vi 1 V1-w/t
+ T 2mi lwj=1 V1 \/:_1 I—IU/t

.1 1+§:g (E)" x[l— S g_mi(_@)m]dw
2mi S L 7 8 = 2m t

2
_ 9n t—(2"+1)

= 2n+2

Y

and we have obtained formula (1.6).

If now instead ¢ < 1 we can no longer choose a single-valued branch of the function
vw — t over the circle of integration |w| = 1, but we may still represent it as v/w-/1 — t/w,
with a two-valued factor v/w and a single-valued factor /1 — t/w which takes a positive
real value for w = 1. A calculation similar to the one for the function I (t) now gives

_L [ Y Vit
-0 =om (wl=1 VW mdw

_1 g (2)°] x [1 = 5 gmt (£ym] dw
T 2mi _[w|=1[1+§g" (w) ] X [1 2m (‘LTJ) ] w

m=1

oo
_ Gn " Gn-1 24
=1- E_l Tt .



To obtain formula (1.5) it then suffices to observe that

gnGn-1 (o)) (@2n-2)! 1 g
2n  (n)2.22 [(n-1)!2.227-2 2 2n-1

Direct substitution shows that (1.5) and (1.6) do indeed coincide with the hypergeometric
functions cited in the lemma, so the sole fact that remains to be proved is the continuity
of the function I(t). But this follows from the representation (1.4) in which I(t) is written
as the integral over {|w| = 1} x {0 <t < 00} of a bounded function which is continuous
outside the single point (1,1). Lemma 1 is proved. ]

Building on Lemma 1 we shall next describe the asymptotic behaviour of our function
I(t) at the point t = 1.

Lemma 2. In a (real) neighborhood of the point t = 1 the functions I¢(t) admit
representations
Ie(t) = Az(t) log|t? — 1] + Bx(t), (1.7)
the functions Az, By being analytic with the properties
() Az(t)=(t*-1)/2r+ O[(t? - 1)?], ast—1,

(ii) B_(1) = B.(1) = I(1).
Proof of Lemma 2. 1t is a classical fact that the hypergeometric function Fla, b; c; 2]
satisfies the differential equation

Bu

du
) +{c—(a+b+1)z}E-abu—0,

z2(1-2)

and all solutions to this equation are in a neighborhood of z = 1 of the form
A(z) log(1 — 2) + B(2), (1.8)
where A and B are locally convergent Puiseux series with respect to some rational powers
of the variable z — 1, see {14,Sect.10.3-10.32]. It so happens that for those particular
hypergeometric functions which occur in the representation of Iz, the coefficients A and

B are actually holomorphic near the point 2z = 1, that is, the Puiseux series are in fact
Taylor series. To see this we follow [14,Sect.10.3] and write the differential equation as

-1 TE 4 - PO R 4 Qe u=0,

where the functions P and @ are holomorphic in a neighborhood of the point z = 1. Then
we consider the roots pi, p2 of the quadratic equation

o + (po— Da+q =0,
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where po = P(1), g0 = Q(1). A sufficient condition for the functions A and B to be
holomorphic is then that the roots p1, p2 be non-negative integers. Recalling that in our
case the parameters are

a,=—%, b=%, C=1, (fOI‘I_(t)),
and a=13%, b=4, c=2, (for I(t),

we find that both py and gp are zero, and hence that the roots p; = 0, p2 = 1 are indeed
non-negative integers. It follows that for complex ¢ the functions may be represented as

I_(t) = A_(t) log(1 —t?) + B_(1),

I (t) = Ay (t) log(1 — 1/£%) + By (t),

with the functions Az, B_, .§+ being analytic at ¢ = 1. Finally putting B, = By -
A, logt? we arrive at the representations (1.7).

Now let us prove property (i). To this end shall make use of series representations
(1.5) and (1.6) of the functions Iy. Observe that, in view of Stirling’s formula

nl=+Vv2rn-n" e (1+0(1/n)),

we have
_ _ (2n)! 1
In= 9 (a2 T Jmn (1+0(1/n)), asn— oo
Therefore the coefficients of the series (1.5) and (1.6) have the following asymptotic be-
haviour:

2 i
9n 1 ' M1 ok
-1 wn(2n-1) .1+O(n). T 2mn(n41) +O(n3)’
AL fiodle o,
2n+2 mn2(n+1) L n’l " 2rn(n+1) n3’’

Summing up the series

0 1 1 ; o
ﬂz=:127m(n+1)t = om? ((1 t%) log(1 — %) + #* ),

- 1 1
; ey ey o7 | (7 = 1) log(t — 1) +1 — (£ — 1) log#? ),
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we deduce that

I(t) = (—%(1—t2)+}i-(t)) log(1 — £2) + B_(t),
(1.9)
L(t) = (%(t” 1) +A+(t)) log(# — 1) + B.(t),

with the functions /i:;;, B’:F being analytic at ¢ = 1. It should now be observed that in
forming the functions A=F only terms with order of vanishing > 2 at ¢ = 1 were involved,
since they came from the expansions of 1/t? and 1/t in powers of t> — 1, and from power
series with O (1/n®%) coefficients. According to a well known result of Jungen, see [3,p.86),
if such a sum can be written A;F(t) log(1 — t?) + B:F(t), then the order of vanishing of
A;F (t) at t = 1 is necessarily at least two. Consequently, from (1.9) we obtain property (7).

Property (ii) follows from the fact that
Az(t) -log|t? —1)| =0,
t=1

together with the continuity of the function I(t). The proof of Lemma 2 is complete. "

Proof of Proposition 2, continued. We recall that we have to find the limit of the
function (1.2’) as § — 0, with the integrated function J(u) being equal to the function
I(|1 + u}), described in Lemma 2. Accordmg to the lemma we can represent the function
I(t) as a series

Ity =bo(t) + > _{an(t)- (B = 1)™ - log|t? — 1| + ba(t)- (¢* — )"},
n=1
where the coefficients a,, b, are piecewise constant functions taking only two values:

a;, t < 1, b;a t< 13
an(t) = { ba(t) ={

at, t>1, bh, t>1.

LR

Moreover, the properties (i) and (i1) imply that the first two coefficients are truly constant:

bo(t) =bo = I(1), a1(t) =1/2m.

We can therefore write

J@) =I(|1 +u]) =by + % (11 +u®> = 1) log ||1 +ul* = 1| + by(|1 +ul) ()1 +u*-1)

+0 (Jin+u? - 1[*?),



where
by, [1+ul <1,

bi(J1 +ul) = {
bt, |14ul>1.
(Actually, the exponent 3/2 above can be replaced by any number < 2.)

We have thus written J(u) as a sum of four terms. Let us first show that the first,
third and fourth terms all give null contribution to the limit (1.2"). This is obvious for the
first term, which is just the constant by. The fourth term is also easy to handle. Indeed,
on the circle of integration u = §e*, 0 < ¢ < 2, we have |1 +u|? — 1 = §(2cos ¢ + 6),
and hence

27 3/2
62/”*5 (11 +uf? |3/“) =& | %}‘é —0, 8s§—0.

Let us next consider the contribution of the third term:

: by (J1+ul?-1) Ry 8 (2cos ¢ + 6)
2 1 2
Jim 8 / jui=2 wt du = fimby 6T / scoan] — pigd W

1-++uj<1 2 cos ¢4-6<0

3n/2
=2b 1 / cos ¢(cos 3¢ — isin3¢) d¢ = 0.
/2

Similarly,

- 2 _ x/2
lim 62 _ by (11 + :‘l 1) = 2b7 i cos ¢(cos 3¢ — 1sin3¢) dp = 0.
6—0 |ul=6 Uu

[1+u]>1 —%/2

This takes care of the third term.

What remains to be shown is that the second term, which contains the logarithm,
gives a non-zero contribution to the limit (1.2’). We have

hmI‘*’(54 5) = lim 62 / (1/2m)(11 +uf* ~ 1) log |1 + uf* — 1] du
6220 271 (u}=6 ud U

— lim L 27 (2cosd+ 6) log(8|2cos ¢ + 5|)
- o £3id

Observe now that the limit of the last integral does not change if we remove from it the
factor 6 inside the logarithm. This is because the integral of (2cos ¢ + 6)/e%*% is equal to
zero. After the removal of this factor é the integrand will be a uniformly bounded family of
continuous functions, and so by Lebesgue’s theorem we may perform the limit procedure
inside the integral and obtain:

. 1 [* cos¢ log|2cos¢|
prsd g2
}l—.moIf (67,67 = 2n? ,/0 edid d¢.
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Expanding the function log | cos ¢| as a Fourier series we get
o0
- (-
1 = ~———— cos2ng,
og | cos @| ,,; . cos 2n¢

containing even frequencies only, see [6). Therefore the product cos ¢ log |2 cos ¢| is equal
to the uniformly convergent series

cos ¢ log |2 cos @| = i % (cos(2n + 1)@ + cos(2n — 1)¢),

n=1

in which cos 3¢ appears with the coefficient 1/4. All the other odd harmonics cos(2n —1)¢
are orthogonal to e~%%, and we get

1 27 1 , 1 2n 1
: Pred £y — el —3ig — — 2 BT —
}J_%If (6%,6%) _21r2,/0 1 cos3¢e do 81r2_/0 cos* 3¢ d¢ -

Proposition 2 follows. .

2. The Mellin transform of a residue function

Let X be a n-dimensional complex manifold. To a holomorphic mapping f: X — C"
(p < n) and a test form ¢ € D™"” we associate a residue function I7:RE — C defined
by the integral

__1 ¢
1€ = G /T A

over the tube T, = {z € X;|f1(2)|? = €1,...,|f»(2)|> = €,}, which should be oriented in
an alternating fashion with respect to the numbering of the components f; of the mapping
f = (f1,...,fp)- (Note that for convenience we here take |f;|2 = ¢; in the definition of
the tubes, while in the introduction there was no square.)

The Mellin transform of the function I }" (€) is given by the integral

e\ = f]R () de,

+

where A = (A1,...,A,) € C? is a complex vector and
e*Tde = ei‘"l . --62”_1 dey A ... Ade,.

11



Proposition 3. The Mellin transform of the residue function associated to a holomorphic
mapping f: X — C? may be expressed as an integral over X as follows:

1 _
® = 2(A-1) 2.1
with the vector notation
FPO-D < (PO f 20 df = dfy AL Ad],

Proof. Since the form ¢ is of bidegree (n,n — p) we have

(A%)ro-(ASEE) re

F=1
Hence, fibering X over R%. by the tubes T,, ¢ € R%, we can represent the integral in the
right hand side of (2.1) as an integral in ¢ of integrals along the fibers in the following way:

(4m f LAl £ f ( /=\ f,P)

1 Ao A ® det dej
- A...A—=2
(47”‘)”./"’5l ep"( T, fl”'fp)?l_ €3

By the definition of the residue integral I¥ 7 (€) this last integral is indeed equal to re ()\)
and the proposition follows.

The following result was proved in [11].

Theorem 1.  The Mellin transform I'} defined by (2.1) is holomorphic for Re) in R}
and it has a meromorphic continuation to all of CP. There is a finite collection of non-zero
vectors a* in NP, depending only on f and on the support of ¢, such that the poles of %,

which are all simple, are contained in the hyperplanes (a*,\) = —m, m € N (here (a*, ))
denotes the usual scalar product). In particular, near the origin one has

=2 @ (ak, 5 +HeW:

|K|=p

where the ckx are constants and Q is a finite sum of functions with simple poles along fewer
than p hyperplanes.

In the next section we shall show that when the mapping f is a complete intersection
one can say a lot more about the structure of the polar set of the function F'}’(A).

12



3. The Mellin transform associated to a complete intersection

Theorem 2. If f: X — CP is a complete intersection, i.e. dim f~1(0) = n — p, then
in a neighborhood of the origin A = 0 the function P‘;(/\) can have (simple) poles only
along the coordinate hyperplanes A; = 0. In other words, for a complete intersection the
function Ay - +- A, I'%(}) is holomorphic near the origin.

Remark. For p = 2 the result was proved in [1].

Proof. Let us denote the differential form in the integrand of (2.1) by w. Following [1]
we observe that

Ifll |f2|2()«g—l) ___lfplﬁ(a\,—l) df? AL /\df,,/\(p} =g{}

M
S ([1) (1)

=2

Since ¢ has compact support we therefore obtain

(ami)P TE(\) =/x _ = I)P/‘ (H |f3|2)\,) | (/r\ %) Ao G

7 =2

by Stokes’ theorem.

Our objective is now to show that the polar set of this last integral at the origin A =0
can only contain hyperplanes whose equations do not contain A;. By an identical argument
we can then deduce the analogous property for Ag,..., A, as well, and this will imply the
statement of the theorem.

After a partition of unity we can assume that the support of ¢ is small enough to
allow a resolution of the singularities of supp N {f1--- fp = 0}. Letting X denote a
small neihgborhood of supp ¢ this means that we can find a new complex manifold X

and a proper holomorphic mapping 7: X — X such that =~! is blholomorphxc outside
the analytic set {f;:-- f, = 0}, and such that the preimage rY{fi---fp = 0}) has

only normal crossings. The last fact means that near any point zg on X there are local
coordinates (1, ...({, centered at z; such that

wf =y = ¢ (T ui€), F=1..p,

where the holomorphic functions u;(¢) are nowhere vanishing. It follows that after a

partition of unity on the manifold X we have decomposed the integral in (3.1) into a finite
sum of terms such as

],.J_ljl(m::,m : luﬂ:h) /p\ (i‘f—?) AT (D). (3.2)

=2
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Each of the expressions d(u; (®/)/u; (*/ can only have simple poles along the coordi-
nate hyperplanes {x = 0, since they can be written

i, /%)
%t = Z[ ] &

We may therefore re-write the integfa.l (3.2) in the following way:

P
[ e )
/C" g( ¢

with linear functions Lg()) = (a*,A) = afA; +...+ ak), and norms |o*| = of +...+ of
Notice also that inside the square brackets we have the expression 7*(df;/f;), and that
the function (¢, A) is smooth in ¢ and holomorphic in A. It is obvious that the integral
(3.3) can be written as sum of integrals such as

[Zj 60+ F) d] AECN TG, 69

j=2ti=1

2Le(N) A (C N - As((,A
/ kl—IIICkIIG"I . Jg, )dCAdC=./;:, I REN-1) Ci’a(f“)d(/\dc, (3.4)

where the multi-indices J = {j;...,7¢} run through the set {1,...,n}, and have lenght
|J| = ¢ £ p—1; further, {; = fjl-”fj,, and the functions A (¢, A) are smooth in (,
holomorphic in A; finally, by Iy we mean the n-vector with 1 in the places ji,...,j, and
with zeros elsewhere.

To the smooth functions A;(¢,A) we apply the Taylor type formula of [4] and [11]
according to which, for any 8 € N", we have

AN =Y Y NG+ D ek N CKEE,

j=1 k+l<ﬁj K+L=p

where the functions ¢}, are independent of ¢;, and all coefficients are smooth in ¢, holo-
morphic in A. In this formula we now let 3 be the vector |a| — I;.

In order to evaluate the integral (3.4) we introduce polar coordinates
(G =r; e, re RY,0€0,27]", j=1,...,n

Integration with respect to 6; then shows that the terms 7, (¢, \) ¢¥¢} give no contribution
to the integral. This is because they will contain the factor

27
/ ei(k—t—ﬁ,)oj dej’
0

which is equal to zero, since k — £ < k+ £ < ;.
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Integration of the remaining terms Y .. L=p PKL((,A) ¢K¢L with respect to 8 €
[0, 27" gives

O(r) = (21))"ry-- 1y Z / e‘('|°1_1J+K‘L)9<pKL(rew) dé,
K+L=|GI—IJ’ [0 21r]n

where the sum now is a smooth function in r. (The factor (2i)"r;---r, comes from
expressing the form d¢ A d(¢ in polar coordinates r, 8.) As a consequence the integral (3.4)

is reduced to o
j P2LN)=1s (r) dr,
R

n rIJ’
+

with a smooth function ®(r)/r!’. From this it follows that the only poles that will occur
near A = 0 are the ones given by L;(A) =0, j € J.

We claim that none of those of the hyperplanes Li(A) = 0 above for which L depends
on A; actually gives rise to any pole for the integral (3.3). Indeed, the fact that L depends
on A; means that of # 0. Since in the integral (3.4) the denominators {; are obtained
from the denominators ¢; in (3.3), with the coefficients a} as numerators, the plane Ly = 0
will be polar for (3.3) only if at least one of the numbers a;‘?, j=2,...,p, is different
from zero, i.e. when Li depends on at least one of the remaining variables A,..., A,.
Assume that the corresponding non-zero coefficients are of,af,..., o, 8 < p, while the
remaining ones af_,_l, ceey a’; are all zero. (This can always be accomplished by re-ordering
the components f;.) This means that the coordinate (i appears as a factor in each of
the pull-backs 7* f1,..., 7" f,, but not in any of 7* f,4.1,...,7* fp. Hence the hyperplane
¢x = 0 is mapped by = into the set V, = {f1 =... = f, = 0}, which has dimension n — s.
We conclude from this that for any multi-index I of length |I| = n — p + 1 the restriction

[7*(dfss1 A ... Adfp AdZp)]

=1r*[df_,+1/\.../\dfp/\dzf ]
$k=0 Ve

is equal to zero. Hence, if in (3.3) we write the form By as a sum of (n,n — p + 1)-
forms z|!|=n-p+1 @1 Awy, where the ¢ are smooth (n,0)-forms and w; = dZ;, and if we

decompose the product
P P df-J
§=2 7

j=2

as a product (Aj_;[...]) A (Af_,44[-..]), we find that the function A;(¢,A) in (3.4) is
divisible by Cx. It follows that the hyperplane Ly = 0 is not polar for the integrals (3.4)
and (3.3), and and this finishes the proof of the theorem. .

15



4. Resume

Ap--

Since for a smooth function I(¢) the Mellin transform I'(A) has the property that
Ap I"(A)I s—o 18 equal to the value I(0), we see from Section 3 that we can define

the residue current of a complete intersection by the simple formula (* * ). This fits
in well with the results obtained in [10] and [11], where the residue current was defined
by means of a mean value operation. More precisely, the residue current Rs(y) may be
obtained by considering the limits of the residue function I7 (¢) along one-parameter curves
of the form € = (6*!,...,6°), and forming the mean value of these limits over the simplex
s14+...+8,=1,820,...,5, 2 0.
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