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Defining the residue current of a complete intersection

MIKAEL PASSARE*
Matematiska institutionen
Kungliga tekniska högskolan
100 44 Stockholm
Sweden

Introduction

AUGUST TSIKH*
Otdelenie matematiki
Krasnoyarskir gosudarstvennYl universitet
Prospekt SvobodnYl 79,660 062 Krasnoyarsk
Russia

One way of expressing the classical residue of a one-variable meromorphic function
cp/ I at a point a is by the integral

1 r cp(z) dz

21ri ll*-al=e I(z) ,

where c is sufficiently smalI. The circle of integration lz - al = € may of course be replaced
by some other contour, for instance {z E Ua; I/(z)1 = c}, where Ua is a small neighborhood
of the point a not containing auy other zeros of the function I. With this choice of contour
the notion of rec:ddue has been extended to the multidimensional case in two different
directions.

On the one hand, given a mapping I: en
-+ en

, holomorphic in a neighborhood
of a point a E cn and having a as isolated zero (/- 1(0) n Ua = {a}), one defines the
Grothendieck residue .

Rf(CP) = 1 r cp(z) dZ I 1\ ... A dZn
(21ri)n lT

D
11(z) ... In(z) cp E Oa,

where Ta = {z E Ua; 1/1 (z)1 = cl, ... ,l/n(z)1 = cn}, the radii Cj being sufficiently small
but otherwise arbitrary, see [7], [8], [12], [13].

On the other hand, if f: X --+ eisa holomorphic function defined on an-dimensional
complex manifold X, then the limit

Rf(cp) = lim~ ( CP, cp E vn,n-l(x)
t-tO 21t"t J1/1=f: f

exists and defines a (0, l)-current, Le. a continuouslinear functional on the space of smooth
compactly supported (n, n - l)-forms. The proof of the existence of this residue current
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was first given by Herrera & Lieberman in [9]. In order to generalize this result Coleff &
Herrera considered in [4] integrals of the type

associated to a holomorphic mapping f = (f}, ... , I p ): X -+ CR
• They proved that if the

vector e = (cl . .. ,ep ) tends to zero along an "admissible" path e = e(ö) such that

and j = 1, ... ,p - 1,

for auy natural number q, then the limit of !j(e(ö» as Ö -+ 0 exists and defines a (O,p)
current independently of the particular choice of "admissible" path. We also wish to point
out that for 8-closed forms '{) the corresponding residues were first considered by Dolbeault
in [5].

As shown by simple examples, the residue function Ij(e) will not in general have
a 'WeIl defined limit at the origin e = O. Indeed, if we take f1 = Z}, 12 = Zl Z2 and
<p = t;?(z) dZ1 /\ dZ2 in C2

, we abtain the residue function

and VIe see that if one approaches the origin along a path with e2/ct -+ 00 then the domain
of integration willleave the compact support of r.p and the limit of r; will be zero, while
a path with €2/e1 -+ 0 will yield the limit {)Zl t;?(0, 0).

In the above example one spots right away the reason for the non-existence of a unique
limit of the residue function (*) at the origin. Namely, the mapping f is not at complete
intersection, Le. its zero set 1-1 (0) has dimension bigger than n - p = O. If VIe restriet
our attention to complete intersection mappings I: X -+ CP with zero set of codimension
p in X, it would seem reasonahle to expect that the function (*) should be continuous at
the origin, and hence that one would have an elegant and correct definition of the residue
current by simply writing

This possibility has been considered for instance in [4] aod [2].

In this paper we disprove the continuity of a general complete intersection residue
function. More precisely, we exhibit in Section 1 a polynomial mapping f: C2

-+ C2 with
,-1(0) = {O}, and a smooth test form r.p = t;?(z) dZ1 /\ dz2 , for which the limit (**) does
not exist.

The situation is thus not good enough to allow the definition of the residue current
simply as the ''wlue" for c = 0 of the (2n - p)-dimensional integrals (*). Nevertheless,
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it turns out that it is possible to obtain the residue current by means of certain 2n
dimensional integrals. Indeed, we prove in Section 3 that for a complete intersection
mapping f thc Mellin transform of the residue function Ir (E) behaves almost a.s weil a.s if
it were the Mellin transform of a function which is continuous at the origin. More precisely,
we find that for a complete intersection f, the transform

fj('x) = k. I'f(.fi) e~1-1 .•. e;'-P dc
+

is such that the function Al ... Ap rj(A) is holomorphic at the origin. This latter function
is a p-dimensional integral of an integrand which itself is given by (2n - p)-dimensional
integrals. It may therefore in a natural way be represented as a 2n-dimensional integral,
and a computation shows that

- >. - >.
Al ... ,A rep(.~) = 1 rBild 1 1\ .. . 1\ Bl/pl p /\ rp

p / (47ri)P Jx 11'" fp ,

and we obtain the relation

R/(rp) = ,A1 ... ,Ap rj(,A)1 .
),=0

The authors wish to express their gratitude towards Professor Jiirgen Leiteter at the
Humboldt University in BerUn, with whom we on several occasions had the beuefit of
discussing the theme of this paper.

1. A complete intersection whose residue function is discontinuous at the origin

Let us consider the mapping I: C2
-+ C2 given by the polynomials

Let further cp be a smooth compactly supported (2,O)-form which in a neighborhood of
the origin is equal to

rp = %2 f2(Z) dZ1 /\ dZ2.

With these choices of I aod rp the residue function (*) looks like
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After the birational coordinate change ZI = U, Z2 = 'UV we can write

(1.1)

Proposition 1. Für any fixed positive number c =F 1 one has

Proof. In view of (1.1) we are 100 to the following iteratOO integral:

[ I{> (.c4 .(2) - 62 1. (1 1. -d ) duf u Cu - - - v v -.
, 21ri lul=6 21t"i ItI:l+l+ul=c u 4

(1.2)

We denote the inner integral by J(u) and apply to it the following version of the trace
formula:

r 1jJ(v)dv = r Tr [~](w)dw,
Jlg(tI)l=c J1wl=c 9

where g(v) is a holomorphie funetion whose level set Ig(v)1 = cis a Jl-fald branehed eovering
over the ekele Iwl = c, and

I-'

Tr [1jJ/g'](w) = L[1jJ/g'](Vj(w»,
j=1

with Vj(w) denoting the different preimages g-l(w).

In our case we take aB g(v) the family w = gu (v) = v2 + 1 + u, depending on the
parameter u, and we have Vj(w) = ±Jw - (1 + u). We get

11. 11. iiJ(u) = -. iidv = -. Tr [-](w)dw,
21t"l ltl:l+l+ul=c 21t"z lwl=c 2v

and hence

J(u) = _1 r Jw - (1 + u) dw (1.3)
21t"i J1wl=c Jw - (1 + u) ,

where the integrand should be understood aB Iw - (1 + u)//(w - (1 + u», and is hence
independent af the choice of branch of the square root. From (1.3) it follaws that, if c #= 1,
the function J(u) is real-analytic in a neighborhood of the origin, and therefore the limit

1· 1. J(u) d1m -- u
6~O lul=6 u4
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is a finite complex number. Now, in view of the factor [;2 in formula (1.2) we reach the
desired conclusion and Proposition 1 is proved. •

Proposition 2.

Praaf. In analogy to the equations (1.2.) and (1.3) we have

(1.2')

(1.3')

where

J(u) = _1_ r Jw - (1 + u) dw.
21t'i J1wj=1 Jw - (1 + u)

Here again the integrand is equal to Iw - (1 +u)I/(w - (1 +u)) and from trus it is straight
forward to check that the integral (1.3') is actually afunction only of the modulus 11 + ul.
So if we denote 11 + ul by t we have reduced ourselves to the study of the integral

let) = _1_ f v!W=t dw
21t'i Jjwl=l VW - t

(1.4)

for real parameters t 2:: 0, and it is related to the previous integral J(u) via the simple
formula 1(11 + uD = J(u).

Lemma 1. The integral (1.4) is a piecewise real-analytic, continuous function for t 2:: O.
It is explicitly given by

o~ t < 1,

t ~ 1,

where F denotes the hypergeometrie series

[ ]
~ (a)n (b)n zn

Fa,b;cjz = L...J () -I'
n=O C n n.

with (a)o = 1, (a)n = a (a + 1) ... (a + n - 1) and similary for band c.

Praaf af Lemma 1. Introducing the notation

I_(t) - I(t),
I+(t) - I(t),

5
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we first prove that the following power series expansions hold for the functions I=f(t):

00 2

I_(t) = 1 - '"' gn t2n ,
L.J 2n-l
n=1

00 2
I (t) = '"' gn t-(2n+1)
+ ~2n+2 '

(1.5)

(1.6)

where gn = (!)n/n! = r:)/22n are the Taylor coefficients at the origin of the flUlction
x ~ l/V!=X which takes the value +1 for x = O.

To get started then, we notice that if t > 1 we may pick a single-valued branch of
the function ";w - t on the disk jwl :$ 1. We then re-write it aB Vi· A . VI - w/t,
whcre the branch :: ,(1- mit b the Olle w:t ruhe +10: m = 0. the MU root ..;t b
positive real, and -1 = ±i depending on the choke of branch we j ust made. Apower
series expansion of the integrand aod term-by-term u;tegration then yield

00 2
= L 9n t-(2n+1)

n=O 2n + 2 '

aod we have obtained formula (1.6).

If now instead t < 1 we can 00 longer choose a single-valued branch of the flUlction
";w - t over the circle of integration Iwl = 1, but we may still represent it as VW' VI - t/w,
with a two-valued factor VW and a single-valued factor JI - t/w which takes a positive
real value for w = 1. A calculation similar to the one for the function I+(t) now gives

I_(t) = ~ r VW . Jl - t/w dw
21Tt J1wl=1 VW VI - t/w

00

= 1 - L 9n . 9n-1 t2n .
n=1 2n
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To obtain formula (1.5) it then suffices to observe that

gn . 9"-1 (2n)! (2n - 2)! 1 g~

2n - (n!)2 ·22n . [(n - 1)!]2 . 22n- 2 . 2n - 2n - 1.

Direct substitution shows that (1.5) and (1.6) da indeed coincide with the hypergeometric
functions cited in the lemma, so the sole fact that remains to be proved is the continuity
of the function I(t). But this follows from the representation (1.4) in which I(t) is written
as the integral over {Iwl = I} x {O ~ t < oo} of a bounded function which is continuous
outside the single point (1, 1). Lemma 1 is proved. _

Building on Lemma 1 we shall next describe the asymptotic behaviour of our function
I(t) at the point t = 1.

Lemma 2. In a (real) neigbborhood oE tbe point t = 1 the functions I~(t) admit
representations

(1.7)

the functions A=f' B~ being analytic with tbe properties

(i) A=f(t) = (t2 - 1)/21r + 0 [(t2 - 1)2], as t ~ 1,

(ii) B_(1) = B+(1) = 1(1).

Prool 01 Lemma 2. It ia a classical fact that the hypergeometrie function F[a, b; c; z]
satisfies the differential equation

d'lu du
z (1 - z) dz2 + {c - (a + b+ 1)z} dz - ab u = 0,

and a11 solutions to this equation are in a neighborhood of z = 1 of the form

A(z) log(1 - z) + B(z), (1.8)

where A and B are locally convergent Puiseux series with respect to sorne rational powers
of the variable z - 1, see [14,Sect.10.3-10.32]. It so happens that for those particular
hypergeornetric functions which occur in the representation of I=f, the coefficients A and
B are actually holomorphic near the point z = 1, .that is, the Puiseux series are in fact
Taylor series. To see this we follow [14,Sect.10.3] and write the differential equation as

2 ~u du
(z - 1) dz2 + (z - 1) P(z) dz + Q(z) u = 0,

where the functions P and Q are holomorphic in a neighborhood of the point z = 1. Then
we consider the roots PI, P2 of the quadratic equation

o? + (po - 1)a + qo = 0,
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where Po = P(I), qo = Q(I). A sufficient condition for the functioDS A and B to be
holomorphic is then that the raots PI, P2 be non-negative integers. Recalling that in our
case the parameters are

b - I- ~, c = 1, (far 1_(t»,

and a =!, b =!, c = 2, (for I+(t»,

we find that both Po and qo are zero, and hence that the roots PI = 0, P2 = 1 are indeed
non-negative integers. It follows that for complex t the functions may be represented as

with the functions A=f, B_, B+ being analytic at t = 1. Finally putting B+ = B+ 
A+ log t2 we arrive at the representations (1.7).

Now let us prove property (i). To this end shall malre use of series representations
(1.5) and (1.6) of the ftUlctions I=f. Observe that, in view of Stirling's formula

nl = ,f2rrn· nn . e-n (1 + 0 (1In»),

we have
(2n)! 1

gn = 22n . (n!)~ = Viii (1 + 0 (1/n»), aB n --+ 00.

Therefore the coefficients of the series (1.5) and (1.6) have the following asymptotic be
haviour:

g~ = 1 [1 + 0 (.!.)] = 1 + 0 (~ )
2n - 1 rrn (2n - 1) n 2rrn (n + 1) n3 '

g~ = 1 [1 + 0 ( .!. )] = 1 + 0 (~ )
2n+ 2 7rn2(n+ 1) n 2rrn(n+ 1) n3 .

Summing up the series

00 ( )
1 2n 1 2 2 2

; 21rn (n + 1) t = 2m2 (1 - t ) log(1 - t ) + t ,

00 1 1 ( )L t-(2n+l) = - (t~ - 1) log(t~ - 1) + 1 - (t2 - 1) logt2 ,
n=l 2rrn (n + 1) 2m

8



we deduee that

(1.9)

with the funetions AT' BT heing analytic at t = 1. It should now be observed that in
forming the funetions AT only terms with order of vanishing ~ 2 at t = 1 were involved,
sinee they came from the expansions of 1/t2 and l/t in powers of t 2 - 1, and from power
series with 0 (1/n3

) coefficients. Aecording to a weil known result of Jüngen, see [3,p.86],
if such a stun ean be written A=F(t) log(l - t~) + B=F(t), then the order of vanishing of
A=f(t) at t = 1 is necessa.rily at least two. Consequently, from (1.9) we obtain property (i).

Property (ii) follows from the fact that

A'f(t) . log It2
- 111t=1 = 0,

together with the continuity of the funetion let). The proof of Lemma 2 is eomplete. _

Proo/ 0/ Proposition 2, continued. We recall that we have to find the limit of the
funetion (1.2') as 6 --+ 0, with the integrated funetion J(u) being equal to the funetion
1(11 + ul), deseribed in Lemma 2. Aecording to the lemma we ean represent the funetion
let) as aseries

00

let) = bo(t) + L {an(t) . (t~ ~ l)n . log \t2 - 1\ + bn(t)· (t2 - l)n},
n=l

where the eoefficients an, bn are piecewise eonstant funetions taking only two values:

{
a;;, t < 1,

an(t) =
a~, t ~ 1,

{
b;;, t < 1,

bn(t) =
b~, t ~ 1.

Moreover, tbe properties (i) and (ii) imply that the first two eoefficients are truly eonstant:

bo(t) = bo = 1(1), al (t) = 1/21r.

We ean therefore write

1
J(u) = 1(11 + uJ) = bo + 21r (11 + ul2 -1) log 111 + ul2

- 11 + bl (11 + ul) (11 + ul2
- 1)

+0 (111 + UJ2 - 1j3/2),

9



where

{

bi, 11+ul < 1,
b1 (11 + ul) =

bt, 11 + ul ~ 1.

(Actually, the exponent 3/2 above ean be replaced by auy number < 2.)

We have thus written J(u) as a sum of four terms. Let UB first show that the first,
third and fourth terms all give null contribution to the limit (1.2'). This is obvious for the
first term, whieh is just the constant bo. The fourth term ie also easy to handle. Indeed,
on the eircle of integration u = 6 eitP , 0 ~ <jJ ~ 21r, we have 11 + ul 2 - 1 = 0 (2 cos <jJ + 0),
and heuce

Let us next consider the contrihution of the third term:

1
31r/ 2

= 2b1 i CQS <jJ(cos 3<jJ - i sin 3</» d</> = O.
1r/2

Similarly,

J b+ (11 + ul 2 - 1) 17(/2
l~ 62

lul=6 1 u4 du = 2bt i cos ifJ(cos 3cjJ - i sin 3cjJ) d</> = O.
11+ul>1 -7(/2

This takes care of the third term.

What remains to be shown ia that the second term, which contains the logarithm,
gives a non-zero contribution to the limit (1.2'). We have

= lim _1_ r21r
(2 cos </> + 0) log.(61 2 eos </> + 01) d</>.

6-0 41r2 J0 e3t4J

Observe now that the limit of the last integral does not change if we remove from it the
factor 0 inside the logarithm. This is because the integral of (2 cos </> + 0) / e3i4J is equal to
zero. After the removal of thia factor 0 the integrand will he a uniformly bounded family of
continuous functions, and 80 by Lebesgue's theorem we may perform the limit procedure
inside the integral and obtain:
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Expanding the funetion log 1cos 4>1 as a Fourier series 'We get

. 00 ( 1)0-1
log 1eoa 4>1 = L: - cos 2ntP,

0=1 n

eontaining even frequencies only, see [6]. Therefore the produet eos 4> log \2 eos 4>1 ia equal
to the uniformly convergent series

00 ( 1)0-1
eos 4> log 12 eOB 4>1 = L: -2n (cos(2n + 1)4> + eos(2n - 1)4» l

0=1

in whieb eos 34> appears with the eoefficient 1/4. All the other odd harmonies eos(2n - 1)4>
are orthogonal to e-3itP , and we get

1 fa21r 1 ' 1 fa21r 1
lim Ir (6\ 62

) = -22 -4 cos 3qJ e-3,tP dtP = -82 eos:l 34J d4> = -8•
6_0 1T 0 1T 0 1T

Proposition 2 folIows.

2. The Mellin transform of a residue funetion

•

Let X be an-dimensional eomplex manifold. To a holomorphie mapping I: X -. Co
(p ~ n) and a test form cp E 'D0'o-p we associate a residue funetion Ij: lR~ -. C defined
by the integral

!f(c) = I, { cp
f (21Ta)P JT.: 11 .. ·Ip

over the tube T~ = {z E Xj 1/1 (z)1 2 = C}, •.• , IIp(z)1 2 = cp}, which should be oriented in
an alternating fashion with respect to the numbering of the components Ij of the mapping
f = (/1,···, Ip)· (Note that for convenience we here take 1/;1 2 = Cj in the definition of
the tubes, while in the introduction there was no square.)

The Mellin transform oE the function r; (€) is given by the integral

rj(A) =k. I'j'(e) e>.-I dc,
+

where A= (Al, ... ,Ap ) E CP is a complex vector aod
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Proposition 3. Tbe Mellin transEorm oEtbe residue function associated to a bolomorpbic
mapping f: X --+ CP may be expressed BS an integral over X BS follows:

rCP (..\) = 1. f Ifl~(A-I) dl/\ cp,
J {41n)P JX

witb tbe vector notation

(2.1)

dj = djl /\ ... /\ dIp.

Proof. Since the form cp is of bidegree (n, n - p) we have

( Pdi,) ( P d1f.J2 )
(\ -f~ 1\ cp = (\ 1I ~12 /\ cp.
1=1 1 1=1 1

Hence, fibering X over IR~ by the tubes Ttl e E IR~, we cau represent the integral in the
right hand aide of (2.1) as an integral in e of integrals along the fibers in the following way:

1 f 1I 12A1 1I 12Ap cp (I\P d1f;12)
{41T"i)p Jx 1 ... p • /1'" Iv /\ ;=1 1/;12

1 in (1 ) d,e2 dc
2

= eA} ••• eAp cp 1 /\ /\ ----E
(41T"i)p IR~ 1 P TI: 11 ... I p er ... e~'

By the definition of the residue integral Ij(e) this last integral ia indeed equal to fj{'x)
and the proposition follows. •

The following result was proved in [11].

Theorem 1. Tbe Mellin transEorm fj defined by (2.1) is bolomorpbic for Re,X in IR~

and it bas a meromorpbic continuatioD to a.Il oE CP. Tbere is a finite collection of non-zero
vectors a" in NP, depending only on I and on tbe support oE 'P, such tbat tbe poles offj,
wbicb are a11 simple, are contained in tbe hyperplanes (ak,'x) = -m, m E N (here (ak,'x)
denotes the usual sca.1ar product). In particular, near the origin one bas

where the CK are constants and Q is a finite sum oE functions witb simple poles along fewer
than p byperplanes.

In the next section we shall show that when the mapping I is a complete intersection
one can say a lot more about the structure of the polar set of the function fj{'x).
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3. The Mellin transforrn associated to a complete intersection

Theorem 2. JE I: X ~ CP is a complete intersection, i.e. dirn/-1 (O) = n - p, tben
in a neighborhood oE tbe origin A = 0 the function ri(A) can have (simple) pole" only
along the coordinate hyperplanes A; = O. In otber words, for a complete intersection tbe
function Al ... Ap ri(A) is bolomorpbic near tbe origin.

Remark. For p = 2 the result was proved in [1].

Proof. Let us denote the differential form in the integrand of (2.1) by w. Following [1]
we observe that

= w + (-1 )p-1 . (fI If;1
2
>'J) . (Ä ~) /\ 8cp.

Al ;=1 I; ;=2 I;

Sinee cp has eompaet support we therefore obtain

(41ri)l'rj('\)=1W= (~~)l'1(fI Ifjl~>'J). (Ä~) /\äcp, (3.1)
x x ;=1 I, ;=2 I,

by Stokes' theorem.

Our objective is now to show that the polar set of this last integral at the origin ..\ = 0
ean only eontain hyperplanes whose equations do not eontain Al. By an identical argument
we ean then deduce the analogous property for A2'" ., Ap as well, and this will imply the
statement of the theorem.

After a partition of tUlity we can assume that the support of cp is small enough to
allow a resolution of the singularities of supp cp n {/1 ... I p = O}. Letting X denote a
small neihgborhood of suppcp this means that we ean find a new complex manifold X
and a proper holomorphic mapping 7[: X ~ X such that 7[-1 is biholomorphic outside
the analytie set {/1'" I p = O}, and such that the preimage 7[-1 ({/1 ... I p = O}) has
only normal crossings. The last fact means that near any point ZQ on X there are local
coordinates (1, ... (n centered at zo such that

0'1 o:~

7[. I; = (O'j U;«) = (1 j ••• (n' U;«), j = 1, ... ,p,

where the holomorphic functions u; «) are nowhere vanishing. It follows that after a
partition of unity on the manifold X we have decomposed the integral in (3.1) into a finite
SUffi of terms such as

(3.2)

13



Each of the expressioIlS d(u; (Oj)/u; (Oj can only have simple poles along the coordi
nate hyperplanes (k = 0, since they can be written

- n k
dÜj d(0j _ L [(8U;/8(k) 0:;] rll.+---- +-- ~.Ü, rQj Ü' r k, ~ k=1 ' ~

We may tberefore re-write the integral (3.2) in the following way:

(3.3)

with linear functions Lk (A) = (ak
, A) = otAl +... +a;Ap and norms lakI= af +... + a;.

Notice also that inside the square brackets we have thc expression 7r* (d!i / /;), and that
thc function ~«, A) is smooth in ( and holomorphic in A. It is obvious that the integral
(3.3) can be written as surn of integrals such as

whcre the multi-indices J = {jl ... ,jq} run through thc set {I, ... , n}, and have lenght
IJI = q ~ p - 1; further, (J = (il ... (i", and the functions AJ«, A) are smooth in (,
holomorphic in Aj finally, by [J we mean thc n-vector with 1 in the places jl, ... ,jq and
with zeros elsewhere.

To the smooth functions AJ«, A) we apply the Taylor type formula of [4] and [11]
according to which, for any ß E ~, we have

n

AJ«, A) = L L CP{t«, A) (;(~ +
;=1 k+l<ßi

where tbe functiollB CP{t are independent of (j, and all coefficients are smooth in (, holo
morphic in A. In this formula we now let ß be the vector 101- [J.

In order to evaluate the integral (3.4) we introduce polar coordinates

'6r. - r. e' i
~,-, , r E IR~,8 E [0, 27r]", j = 1, ... ,no

Integration with respect to 8; tben shows that the terms CP{l«' A) (;(J give no contribution
to the integral. This is because they will contain the factor

which is equal to zero, since k -l :$ k + l < ß;.
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Integration of the remainiog terms EK+L=fJ 'PKL«(, A) (K(L with respect to (J E
[0, 271"]n gives

~(r) = (2i)nr1 ... rn L l eiHal-IJ+K-L)BrpKL(reiB) dß,
K +L=IQI-IJ [O,211')n

where the sum now is a smooth function in r. (The factor (2i)nr1 ··· rn comes from
expressing the form d( /\ d( in polar coordinates r, 8.) AB a consequence the integral (3.4)
is reduced to

f r2L().)-IJ. 4>(r) dr
JJRn r IJ '

+

with a smooth function 4J(r)jrIJ . From this it follows that the only poles that will occur
near A= 0 are the ones given by Lj(A) = 0, j E J.

We claim that none of those ofthe hyperplanes Lk(A) = 0 above for wmch Lk depends
on Al actually gives rise to any pole for the integral (3.3). Indeed, the fact that L k depends
on Al means that 01 =F O. Since in the integral (3.4) the denominators (J are obtaioed
from the denominators (i in (3.3), with the coefficients 0; aB numeratora, the plane Lk = 0
will be polar for (3.3) only if at least one of the numbers 07, j = 2, ... , p, ia different
from zero, Le. when Lk depends on at least one of the remaining variables A2,' .. , Ap •

ABswne that the corresponding non-zero coefficients are 01, o~, ... , o~, s :::; p, while the
remaining ones 0~+1" .. ,~ are a11 zero. (Thia can always be accomplished by re-ordering
the components Ij.) This means that the coordinate (k appears as a factor in each of
the pull-backs 71". 11, ... ,71"·111, but not in any of 71". 111+1, ... ,7r·lp' Hence the hyperplane
(k = 0 is mapped by 1T ioto the set VII = {lI = ... = 111 = O}, which has dimension n - s.
We conclude from this that for any multi-index I of length 111 = n - p + 1 the restriction

[1r·(d/s+1 /\ ... /\ dIp /\ dZI)] I = 1T. [d/II+1/\." /\ dIp /\ dill ]
~=O ~

is equal to zero. Hence, if in (3.3) we write the form 8ep as a SUID of (n, n - p + 1)
forIIlB EIII=n-F+1 'PI /\ WI, where the 'PI are smooth (n,O)-forms and WI = dZI, and if we
decompose the product

P P [d1o]i6[00,] = i6 /:
as a product (/\j=d...n/\ (/\;=.t+d.. ·n, we find that the function AJ «, A) in (3.4) is
divisible by (k. It follows that the hyperplane Lk = 0 is not polar for the integrals (3.4)
and (3.3), and and this finishes the proof of the theorem. _
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4. Resume

Since for a smooth function l(e) the Mellin transform r(A) has the property that
..\1 ... Ap r(A)I.\=o is equal to the value 1(0), we see from Section 3 that we can define
the residue current of a complete intersection by the simple formula (* * *). This fits
in weH with the results obtained in [10] and [11], where the residue current was defined
by means of a mean value operation. More precisely, the residue current Rf(r,p) may be
obtained by considering the limits of the residue function l'f(e) along one-parameter curves
of the form € = (6a1

, ••• , 6ap
), and forming the mean value of these limits over the simplex

81 + ... + sp = 1, SI ~ 0, ... , Sp ~ O.
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