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0. INTRODUCTION

• MULTIPLE ZETA VALUES

a) Definition via multiple Dirichlet series:

ζ(m1, . . . , mk) =
∑

0<n1<···<nk

1

nm1

1 . . . nmk

k

Convergence: mi ≥ 1 and mk > 1.
b) Definition via iterated integrals:

ζ(m1, . . . , mk) =

∫ 1

0

dt1
t1

∫ t1

0

dt2
t2

∫ t2

0

· · ·

∫ tmk−1

0

dtmk

1 − tmk

. . .

The sequence of differential forms in the iterated inte-

gral consists of consecutive subsequences
dt

t
, . . . ,

dt

t
,

dt

1 − t
of lengths mk, mk−1, . . . , m1.

• SHUFFLE RELATIONS

Relations between iterated integrals.

Relations between multiple series.

• DRINFELD’S ASSOCIATOR, QUANTIZATION,
GROTHENDIECK–TEICHMUELLER GROUP.



• GEOMETRY ON P1(C) − {0, 1,∞}:

dt
t
, dt

1−t
span the space of meromorphic differential forms

with no more than logarithmic singularities at {0, 1,∞}.

• LIFT TO THE UPPER HALF PLANE H := {z ∈
C | Im z > 0} AND H := H ∪P1(Q):

(P1(C), {0, 1,∞}) ∼= Γ0(4) \ (H, cusps)

dt
t , dt

1−t lift to Eisenstein series of weight two for Γ0(4) ⊂

SL(2,Z).

The integration path [0, 1] lifts to the geodesic con-
necting two cusps.

• GOAL OF THIS WORK: A GENERALIZATION
OF THE THIS PICTURE ALONG THE FOLLOWING
LINES:

– Γ0(4) is replaced by an arbitrary (congruence) sub-
group Γ of SL(2,Z).

– Eisenstein series of weight two are replaced by ar-
bitrary modular forms (cusp form + Eisenstein series)
with respect to Γ.

NB In this talk I focus on cusp forms (absent in the
classical polyzetas setting).

– Iterated integrals are taken along geodesics con-
necting two cusps.

• MODULAR SYMBOLS.

Integration of cusp forms along geodesics connecting
two cusps = theory of classical modular symbols (of
arbitrary weight).

Hence the subject of this talk can be called “iterated
modular symbols”.



1. FORMALISM OF ITERATED INTEGRALS

OF 1–FORMS ON A RIEMANNIAN SURFACE

Here it will be shown that if one replaces a simple integral not
by an individual iterated integral but by a generating series of all
such integrals, then the usual properties like additivity and vari-
able change formula reappear in a multiplicative/noncommutative
version.

• NOTATION.

X = a connected Riemann surface.
OX = the structure sheaf of holomorphic functions,
Ω1

X = the sheaf of holomorphic 1–forms.
V = a finite set indexing various families, in particu-

lar:
ωV := (ωv | v ∈ V ) a family of holomorphic 1–forms.
AV := (Av | v ∈ V ) = noncommuting free formal vari-

ables.

Ω :=
∑

v∈V

Avωv

γ : [0, 1] → U = a piecewise smooth path.

• Total iterated integral of Ω along γ:

Jγ(Ω) := 1+
∞∑

n=1

∫ 1

0

γ∗(Ω)(t1)

∫ t1

0

γ∗(Ω)(t2)· · ·

∫ tn−1

0

γ∗(Ω)(tn) ∈ C〈〈AV 〉〉

integral is taken over the simplex 0 < tn < · · · < t1 < 1.

γ, γ′ with the same ends are homotopic ⇒ Jγ(Ω) =
Jγ′(Ω).



Another notation: zi = γ(ti) ∈ X, a = γ(0), z = γ(1),

Jz
a (Ω) := 1 +

∞∑

n=1

∫ z

a

Ω(z1)

∫ z1

a

Ω(z2)· · ·

∫ zn−1

a

Ω(zn) .

If U is connected and simply connected, this is an
unambiguously defined element of OX(U)〈〈AV 〉〉. Other-
wise it is a multivalued function of z in this domain.

• PROPOSITION. (i) Jz
a (Ω) as a function of z satisfies

the equation
dJz

a (Ω) = Ω(z) Jz
a (Ω).

In other words, Jz
a (Ω) is a horizontal (multi)section of

the flat connection ∇Ω := d − lΩ on OX〈〈AV 〉〉, where lΩ
is the operator of left multiplication by Ω.

(ii) If U is a simply connected neighborhood of a,
Jz

a (Ω) is the only horizontal section with initial condition
Ja

a = 1. Any other horizontal section Kz can be uniquely
written in the form CJz

a (Ω), C ∈ C〈〈AV 〉〉. In particular,
for any b ∈ U ,

Jz
b (Ω) = Jz

a (Ω)Ja
b (Ω)

• COROLLARY. Let γ be a closed oriented contractible
contour in U , a1, . . . , an points along this contour (cycli-
cally) ordered compatibly with orientation. Then

Ja1

a2
(Ω)Ja2

a3
(Ω) . . . Jan−1

an
(Ω)Jan

a1
(Ω) = 1. (∗)

Formula (*) is the multiplicative version of the additivity of
simple integrals with respect to the union of integration paths.



• PROPOSITION. Consider the comultiplication

∆ : C〈〈AV 〉〉 → C〈〈AV 〉〉⊗̂CC〈〈AV 〉〉, ∆(Av) = Av⊗1+1⊗Av

and extend it to the series with coefficients C(X) and
Ω1(X). Then

∆ (Jz
a (ωV )) = Jz

a (ωV )⊗̂OX
Jz

a (ωV ) . (∗∗)

• CLAIM 1. The identity (**) encodes all shuffle
relations between the iterated integrals of the forms ωv.

• CLAIM 2. The identity (**) is equivalent to the
fact that log Jz

a (ωV ) can be expressed as a series in com-
mutators (of arbitrary length) of the variables Av.

Formula (**) is called “the group–like property of Jz
a (Ω).” It

is a multiplicative version of the additivity of a simple integral
as a functional of the integration form.

• FUNCTORIALITY. g : X → X = an automorphism
such that g∗ maps into itself the linear space spanned
by ωv:

g∗(ωv) =
∑

u gvuωu.

Define g∗(Au) =
∑

v Avgvu .

• LEMMA.

Jgz
ga (ωV ) = g∗(J

z
a (ωV )) . (∗ ∗ ∗)

Formula (***) is a multiplicative version of the variable change
formula.



2. 1–FORMS OF MODULAR TYPE

ON THE UPPER HALF–PLANE

• DEFINITION. (i) A 1–form ω on H is called a form
of modular type, if it can be represented as f(z)zs−1dz
where s is a complex number, and f(z) is a modular form
of some weight with respect to a finite index subgroup
Γ subgroup of the modular group of the modular group
SL(2,Z).

The modular form f(z) is then well defined and called
the associated modular form (to ω), and the number s
is called the Mellin argument of ω.

(ii) ω is called a form of cusp modular type if the
associated f(z) is a cusp form.

• REMINDER.

(i) Action of weight k of γ ∈ GL+(2,Z) upon functions
on H:

f |[γ ]k(z) := (det γ)k/2f([γ ]z) (cγz + dγ)−k.

(ii) f(z) is a modular form of weight k for the group Γ
if f |[γ ]k(z) = f(z) for all γ ∈ Γ and f(z) is finite at cusps.

(iii) Such a form is a cusp form if it vanishes at cusps.



3. CLASSICAL INTEGRALS OF 1–FORMS

OF CUSP MODULAR TYPE

Ordinary (non–iterated) integrals from our vantage point fur-
nish linear (in Av) terms of the iterated theory. For 1–forms of
cusp modular type, theory of ordinary integrals consists of the
following parts.

• CLASSICAL MELLIN TRANSFORM OF f(z):

Λ(f ; s) :=

∫ 0

i∞

f(z)zs−1dz.

Assume that is Γ normalized by the involution

g = gN :=

(
0 −1
N 0

)
:

Denote weight of f by k = 2r. If g∗
N (f(z)(dz)r) =

εf f(z)(dz)r , εf = ±1, then

Λ(f ; s) = −εfNr−sΛ(f ; k − s) .

Critical strip: 0 < Re s < k.

I will define the “total iterated Mellin transform” and extend
the functional equation to it.



• THE SPACE OF MODULAR SYMBOLS MSk(Γ).
It is the space of R–linear functionals on the space of
cusp forms Sk(Γ) spanned by the Shimura integrals:

f(z) 7→

∫ β

α

f(z)zm−1dz; 1 ≤ m ≤ k − 1; α, β ∈ P1(Q).

Three descriptions of MSk(Γ) are known:

(i) Formal (Shimura – Eichler – Manin): generators
and relations.

(ii) Geometric (Shokurov): (part of) middle homol-

ogy of the Kuga–Sato variety Ek−1
Γ .

(iii) As the dual space to the group cohomology H1(Γ, Vk−2),
with coefficients in the (k−2)–th symmetric power of the
basic representation of SL (Shimura).

I will show that the cohomological description admits a sen-
sible iterated extension.



• Λ(f ; s) FOR GENERAL s IS A FORMAL DIRICH-
LET SERIES CONVERGENT IN A RIGHT HALF
PLANE:

f(z) =

∞∑

n=1

ane2πinz =⇒ Λ(f ; s) = −
Γ(s)

(−2πi)s

∞∑

n=1

an

ns

I will show that the components of the total Mellin transform
at integral points of the critical (multidimensional) strip can be
expressed as multiple Dirichlet series of a special form.

• IF Γ IS A CONGRUENCE SUBGROUP:

Λ(f ; s) admits an Euler product ⇔ f is an eigen-
fuction for Hecke operators.

Major unsolved problem: extend this to the iterated context.



4. ITERATED MELLIN TRANSFORM

• DEFINITION. (i) Let f1, . . . , fk be a finite sequence
of cusp forms with respect to Γ, ωj(z) := fj(z) zsj−1dz.
The iterated Mellin transform of (fj) is

M(f1, . . . , fk; s1, . . . , sk) := I0
i∞(ω1, . . . , ωk) =

=

∫ 0

i∞

ω1(z1)

∫ z1

i∞

ω2(z2)· · ·

∫ zn−1

i∞

ωn(zn)

(ii) Let fV = (fv | v ∈ V ) be a finite family of cusp forms
with respect to Γ, sV = (sv | v ∈ V ) a finite family of com-
plex numbers, ωV = (ωv), where ωv(z) := fv(z) zsv−1dz.
The total Mellin transform of fV is

TM(fV ; sV ) := J0
i∞(ωV ) =

=
∞∑

n=0

∑

(v1,...,vn)∈V n

Av1
. . . Avn

M(fv1
, . . . , fvn

; sv1
, . . . , svn

)

• THEOREM. Assume that the space spanned by
fv(z) is stable wrt gN . Let kv be the weight of fv(z), and
kV = (kv). Then

TM(fV ; sV ) = g∗(TM(fV ; kV − sV ))−1

for an appropriate linear transformation gN∗ of formal
variables Av.



5. ITERATED SHIMURA INTEGRALS

• REMINDER ON THE NONCOMMUTATIVE GROUP
COHOMOLOGY.

G a group, N a group with left action of G: (g, n) 7→ gn.

Cocycles: Z1(G, N) := {u : G → N |u(g1g2) = u(g1) g1u(g2) }

Cohomological cocycles: u′ ∼ u ⇔ ∃n ∈ N ∀g ∈
G, u′(g) = n u(g) (gn)−1.

H1(G, N) := Z1(G, N)/(∼).

Marked point: class of trivial cocycles u(g) = n(gn)−1

• THE CASE OF ITERATED SHIMURA INTEGRALS.

G := Γ = a subgroup of modular group

(ωv) = a family of Shimura differentials fv(z)zmv−1dz,
where fv form a basis of ⊕iS(ki, Γ), and for a fixed weight,
mv ranges over all critical integers for this weight.

They span a Γ–invariant space. Put Ω :=
∑

v∈V Avωv.

N = Π := the group of group–like and (−id)∗–invariant
elements of (1 +

∑
v∈V AvC〈〈Av〉〉)

∗

Left action of Γ upon Π: functoriality action g∗.

• THEOREM. (i) For any a ∈ H, the map Γ → Π; γ 7→
Ja

γa(Ω) is a noncommutative 1–cocycle ζa in Z1(Γ, Π).

(ii) The cohomology class of ζa in H1(Γ, Π) does not
depend on the choice of a and is called the noncommu-
tative modular symbol.

(iii) This cohomology class belongs to the cuspidal
subset H1(Γ, Π)cusp consisting of those cohomology classes
whose restriction on all stabilizers of Γ–cusps is trivial.



REDUCTION TO THE COHOMOLOGY OF SL(2,Z)

• NONCOMMUTATIVE SHAPIRO LEMMA. Let
G ⊂ H be a subgroup, N a left G–group, NH := MapG (N, H)
with pointwise multiplication and left action of G, (g∗φ)(h) :=
φ(hg). There is a canonical isomorphism of pointed sets:

H1(G, N) = H1(H, NH ).

• APPLICATION TO THE ITERATED SHIMURA
INTEGRALS.

G := Γ, H := SL(2,Z), N := Π, Π0 := NH .

Generators of H = SL(2,Z):

σ =

(
0 −1
1 0

)
, τ =

(
0 −1
1 −1

)
, J =

(
−1 0
0 −1

)

• THEOREM. (i) An iterated Shimura cocycle re-
stricted to (σ, τ ) belongs to the set

{ (X, Y ) ∈ Π0 × Π0 |X · σ∗X = 1, Y · τ∗Y · τ2
∗Y = 1 }.

(ii) The cohomology relation between cocycles trans-
lates as

(X, Y ) ∼ (m−1Xσ∗(m), m−1Y τ∗Y ).

(iii) Cuspidal part of the cohomology is generated by
the pairs

{ (X, Y ) | ∃Z, X · (στ )∗Y = Z−1(στ )∗Z }



6. ITERATED SHIMURA INTEGRALS

AS MULTIPLE DIRICHLET SERIES

• NOTATION. Start with the family of 1–forms on
H:

ωv(z) =
∞∑

n=1

cv,ne2πinzzmv−1dz, cv,n ∈ C , mv ∈ Z, mv ≥ 1; cv,n = O(nC).

Put
L(z; ωvk

, . . . , ωv1
; jk, . . . , j1) :=

= (2πiz)jk

∑

n1,...,nk≥1

cv1,n1
. . . cvk,nk

e2πi(n1+···+nk)z

n
mv1

+j0−j1
1 (n1 + n2)

mv2
+j1−j2 . . . (n1 + · · · + nk)mvk

+jk−1−jk

.

Exponentials ensure absolute convergence for any z
with Im z > 0.

Formal substitution z = 0 may lead to divergence.

• THEOREM. For any k ≥ 1, (v1, . . . , vk) ∈ V k, and
Im z > 0 we have

(2πi)mv1
+···+mvk Iz

i∞(ωvk
, . . . , ωv1

) =

= (−1)
P

k
i=1

(mvi
−1)

mv1
−1∑

j1=0

mv2
−1+j1∑

j2=0

· · ·

mvk
−1+jk−1∑

jk=0

(−1)jk ×

×
(mv1

− 1)!(mv2
− 1 + j1)! . . . (mvk

− 1 + jk−1)!

j1!j2! . . . jk!
L(z; ωvk

, . . . , ωv1
; jk, . . . , j1) .



• PROPOSITION. Assume that ωV as above is a basis
of a space of 1-forms invariant with respect to gN . Then

J0
i∞(ωV ) = (gN∗(J

i√
N

i∞ (ωV )))−1J
i√
N

i∞ (ωV ) . (∗ ∗ ∗)

REMARK 1. We can mix different weights.

REMARK 2. Replacing the coefficients of the for-
mal series at the r.h.s of (***) by their (convergent)
representations via multiple Dirichlet series with expo-
nents we get such representations for I0

i∞(ωvk
, . . . , ωv1

)
and avoid divergences at z = 0.



7. SHUFFLE RELATIONS

BETWEEN MULTIPLE DIRICHLET SERIES

• DEFINITION. (i) Coefficients data C of depth k is a

family of numbers c
(j,i)
n,m indexed by two pairs of integers

satisfying j > i ≥ 0, j ≤ k, and n > m ≥ 0.

(ii) The multiple Dirichlet series associated with C
and arguments s1, . . . , sk is

LC(s1, . . . , sk) :=
∑

0=u0<u1<···<uk∈Z

∏
k≥j>i≥0 c

(j,i)
uj ,ui

us1

1 us2

2 . . . usk

k

• EXAMPLES. (a) Assume that c
(j,i)
n,m = 1 if m > 0 or

i > 0 and put c
(j,0)
n,0 = a

(j)
n . Then

LC(s1, . . . , sk) =
∑

0<u1<···<uk∈Z

a
(1)
u1

a
(2)
u1

. . . a
(k)
uk

us1

1 us2

2 . . . usk

k

is an ordinary multiple Dirichlet series.



(b) Define cv,n as in 3.1, and choose v1, . . . , vk ∈ V .
Construct the coefficients data C

c(j,j−1)
n,m := cvj ,n−m,

and c
(j,i)
n,m = 1 otherwise. Then LC(mv1

+ j0 − j1, . . . , mvk
+

jk−1 − jk) becomes the formal series

(2πiz)−jk L(z; ωvk
, . . . , ωv1

; jk, . . . , j1) |z=0 =

∑

n1,...,nk≥1

cv1,n1
. . . cvk,nk

n
mv1

+j0−j1
1 (n1 + n2)

mv2
+j1−j2 . . . (n1 + · · · + nk)mvk

+jk−1−jk

.

if we redenote uj = n1 + · · · + nj .

• SHUFFLES AND A COMPOSITION OF THE CO-
EFFICIENTS DATA.

A (k, l, p)–shuffle with repetitions is a pair of strictly
increasing maps σ = (σ1, σ2),

σ1 : [0, k] → [0, p], σ2 : [0, l] → [0, p]

satisfying the following conditions:

σ1(0) = σ2(0) = 0, σ1([0, k])∪σ2([0, l]) = [0, p], max (k, l) ≤ p ≤ k+l.



• CLAIM. Let C = (c
(j,i)
n,m) and D = (d

(j,i)
n,m) be two coeffi-

cients data of depths k and l respectively; s := (s1, . . . , sk)
and t := (t1, . . . , tl) the Dirichlet arguments for the data
C and D, and σ a (k, l, p)–shuffle with repetitions.

One can define a new coefficients data E = C ∗σ D of
depth p and the Dirichlet arguments for it s+σ t in such
a way that

LC(s) · LD(t) =
∑

σ

LC∗σD(s +σ t)

where the summation is taken over all (k, l, p)–shuffles
with repetitions (p variable).



DIFFERENTIALS OF THE THIRD KIND,

EISENSTEIN SERIES,

AND THE GENERALIZED ASSOCIATORS

We will now assume, as in the initial Drinfeld setting, that
the integration limits of the iterated integral are logarithmic sin-
gularities of the form Ω. Generally, they diverge and must be
regularized. The dependence on the regularization is a version
of Deligne’s “base point at infinity”.

• NOTATION.

a = a fixed point of the Riemann surface, z a variable
point.

rv,a := resa ωv, Ra := resa Ω =
∑

v rv,aAv .

ta := a local parameter at a, log ta a local branch of
logarithm real on ta ∈ R+.

tRa
a := eRalog ta .

• DEFINITION. A local solution to dJz = Ω(z)Jz is
called normalized at a (with respect to a choice of ta)
if it is of the form J = K · tRa

a , where K is holomorphic
section in a neighborhood of a and K(a) = 1.

• CLAIM. (i) The normalized solution exists and is
unique.

(ii) It depends only on the tangent vector ∂/∂ta |a.

(iii) If J ′
a = K ′(t′a)Ra is normalized with respect t′a, and

τa := dt′a/dta |a, then J ′
a = Ja · τRa

a .



• SCATTERING OPERATORS. Given:

– (a, ta), (b, tb),

– Ω =
∑

Avωv with at most logarithmic singularities
at a, b,

– a (homotopy class of) path(s) from a to b avoiding
other singularities of Ω.

We construct

(i) the normalized solutions Ja, Jb analytically con-
tinued along γ and THE SCATTERING OPERATOR

J̃a
b = J−1

a Jb ∈ C〈〈AV 〉〉 .

Its coefficients := REGULARIZED ITERATED IN-
TEGRALS.

• EXAMPLE: DRINFELD’S ASSOCIATOR. Let X =
P1(C), V = {0, 1},

ω0 =
1

2πi

dz

z
, ω1 =

1

2πi

dz

z − 1
.

Then
Ω = A0ω0 + A1ω1

has poles at 0, 1,∞ with residues A0/2πi, A1/2πi, −(A0 +

A1)/2πi respectively. Put t0 = z, t1 = 1 − z. Then J̃1
0 in

our notation is the Drinfeld associator φKZ(A0, A1).



• GENERALIZED ASSOCIATORS AND ITERATED
INTEGRALS OF EISENSTEIN SERIES OF WEIGHT
TWO.

Γ := a congruence subgroup of the modular group

fv := a basis of Eisenstein series of weight 2 wrt Γ

{ωv = push forward of fv(z)dz} : 1–forms with loga-
rithmic singularities at cusps on XΓ.

Regularized iterated integrals of Eisenstein series of weight
two between cusps provide a modular generalization of multiple
zeta values.


