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Abstract

Let P be an elliptie differential operator on a non-eompaet connected
manifold Xi suppose that both X and the eoefficients of P are real analytic.
Given a pair of open sets 1) and (7 in X with u CC 1) ce X, we fix a
sequence {e&/} of solutions to Pu = 0 in 1) whieh are pairwise orthogonal under
integration over both 1) and (J. By orthogonality is meant the orthogonality
in the corresponding Sobolev spacesj we also assume a completeness of the
system on (7. For a fixed y E X \ u, denote by k&/(y) the Fourier coefficients
of a fundamental solution t(., y) to P with respect to the restriction of {e&/}
to (J. Suppose K is a compact set in 1) \ 7f, and let I be a distribution with
support on K. In this paper we show, under appropriate conditions on K,
that if the moments (I, k v ) decrease sufficiently rapidly in a certain precise
sense, then these moments vanish identically. In the most favorable cases,
it is then possible to conelude that f = o. This phenomenon was previously
noticed by the first author and L.Zalcman for analytic and harmonie moments
of f.

·Supported by the Max-Planck-Gesellschaft.
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Let K be a compact set in the complex plane which does not contain the origin,
and let m be a finite complex measure on K with moments

11=0,1, ....m v = Ld~l~),

Aizenberg and Zalcman [2] proved that if

imsup ;/im < 1 I I
1I_00 maxK Z

(1.1 )

(1.2)

and K does not separate 0 from 00 (Le., 0 belongs to the unbounded component of
C \ K), then m", = 0 for all 11 = 0, 1, ....

Moreover, if K does separate 0 from 00, then for each sequence {mJl} satisfying
(1.2) there is a measure m on K having {m",} as its moments, i.e., such that (1.1)
holds.

In this paper we explain this "instability phenomenon" in the context of the
so-called bases with double orthogonality.

In Section 2 we briefly recall the concept of a basis with double orthogonality
and show the conditions under which such bases exist. Sections 3 and 4 contain
some explicit examples of bases with double orthogonality. In Section 5 we discuss
a Liouville type theorem for solutions of elliptic equations. In Section 6 we state
and prove our main result on the instahility of the Fourier coefficients with respect
to hases with double orthogonality. In Sections 7 and 8 we restriet our attention
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to the results of Aizenberg and Zalcman [2] and show how these results follow from
ours (with the exception of Section 2 in [2] devoted to holomorphic moments in C n

,

n > 1). Finally, in the last section a new interesting example is indicated (of course,
there are many other examples of the instability of the Fourier coefficients in various
sit uations).

This research was carried out during the stay of the second author at the Emmy
Noether Research Institute at the Bar-Ban University. The author wishes to thank
this institute for the invitation and hospitality.

2 Bases with double orthogonality

Let P be an elliptic differential operator of order p on a non-compact connected
manifold X; suppose that both X and the coefficients of P are real analytic.

By a c1assical solution of Pu = 0 in an open set U C X is meant any function
u E G~c(U) satisfying this equation pointwise in U. By a theorem of Petrovskii, any
c1assical solution to Pu = 0 is in fact areal analytic function in U.

Moreover, if u E V'(U) satisfies Pu = 0 weakly in U, then u is induced by a
c1assical solution of this equation (Weil's Lemma).

Given an open set U C X, we denote by Sol(U) the space of all c1assieal
solutions to the equation Pu = 0 in U. Moreover, let Sol(U) stand for the spase
of GP functions u which are solutions of the equation Pu = 0 in at least some
neighborhood of the c10sure of U.

We will he interested in the subspaces of Sol(U) whieh possess Hilbert struc­
tures. Such a structure may be induced by the Hilbert structure of a Sobolev space
H·(U), where s is a non-negative integer.

Gf course, H6 (U) has no canonical Hilbert structure unless U is a coordinate
patch in X. The inner product of H·(U) does depend on the particular choice of the
covering of (the c10sure of) U by coordinate patches. However, if U is a relatively
compact open subset of X, then the topology in H6(U) is actually independent of
the coverings.

From what has already been said it follows that the subspace of H6(U) which
consists of c1assical solutions to Pu = 0 in U is cIosed. Thus, tbe intersection
H6(U) n Sol(U) is a Hilbert space with the inner product inherited from H6(U).

We now fix two relatively compact domains 1) and u in X such that u C
V. In what follows we assurne that both V and u have strong cone property.
This ensures the equivalence of two possible definitions of Sobolev spaces on these
domains, namely internal and external spaces (see Example 1.4.24 in [16]).

Definition 2.1 A system e~, v = 1,2, ... , in 801(V) is said to be a basis with
double orthogonality if it is an orthonormal basis in H6(V) n 801(V) and its restrie­
tion to (j is an orthogonal basis in H6 (()") n 801((7).

We are going to prove that such hases always exist unless u has "holes" in 1).

Moreover, we show an explicit way of constructing bases with the property of double
orthogonality.
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To this end, set LI = H"(V) and L'J = H~(O'), so that L] and L2 are separable
Hilbert spaces.

The mapping T: LI -+ L2 is defined to be the restriction from V to 0',

Le., Tu = UI<1 for u E LI. Then T is a continuous linear operator with norm

IITlI.c(Ll-~) ~ 1.
Further, we distinguish in LI the subspace H1 which is formed by classical

solutions of the equation Pu = 0 in V. As above, HI is a closed subspace of LI,
and so BI, when endowed with the induced Hermitian structure, becomes a Hilbert
space.

Letting H2 denote the subspace of L2 consisting of classical solutions of the
equation Pu = 0 in 0', we see that the restriction of T to BI maps to H2 • However,
it is not evident that the image of H I by T is dense in H2 •

Lemma 2.2 11 the complement 010' has no compact connected components be·
longing to V, then the operator T: H1 -+ H2 has dense range.

Proof. 0 ur task is to prove that rest rictions to 0' of elements in !l" (V) nSol (V)
are dense in H"(O') n Sol(O') in the H"(O')-norm. Since 0' has strong cone propcrty,
Theorems 8.1.2 and 8.4.1 in Tarkhanov [16] show that the subspace Sol(u) is dense
in B"(O') n Sol(O') in the H~(O')-norm. On the other hand, as the complement of
0' has 00 compact connected components in V, the subspace Sol(V) is, by tbe
Runge Theorem, dense in Sol(u) in the inductive limit topology of COO(u). Since
Sol(V) C H"(V) n Sol(V) and the inductive limit topology in Sol(a) is stronger
than the topology induced by the H· (0' )-norm, we obtain even more than we wanted
to prove.

o
To describe tbe adjoint mapping for T: H1 -+ H2 , we denote by T- tbe adjoint

for T acting on the whole L] and by 11" the orthogonal projection of LI onto BI.
It follows from Subsection 4.2.8 of [15] that BI is a Hilbert space with reproducing
kerne!. Therefore, 11" is an integral operator whose kernel is thc reproducing kernel
K. of the domain V with respect to H"(V) n Sol(V).

Lemma 2.3 For any Uo E L2 , we have

x EV.

Proof. Indeed,

1I"T- uo = (T-uo,K(x,'))L1

= (uo,TK(x,'))L:n

which establishes the formula.
o

A trivial verification shows that the adjoint mapping for T: H I -+ H2 is given
by tbe restrietion of the operator 1fT- to B'l' Hence, the composition 1rT- T, when
restricted to BI, is a selfadjoint operator in this space. (H s = 0, then 1fT- T is a
Toeplitz operator in LI')
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As folIows, the bases with double orthogonality are complete systems of eigen­
functions of the operator 1fT· T in BI.

To handle the corresponding eigenvalue problem, let us look more c10sely at the
properties of the restrietion of T to Ht •

Lemma 2.4 The operator T: B t -40 B'J is injective.

Proof. Let u E Ht and Tu = o. This means that u is a solution of the equation
Pu = 0 in the domain V vanishing on the nonempty open subset (7 of V. Hence the
real analyticity of u implies that u =0 everywhere in V, as desired.

o
However, the most important property of T is the following.

Lemma 2.5 The operator T: H 1 -40 H2 is compact.

Proof. The task is to show, given any bounded set B C Ht, thaiP the image of
B by the mapping T is relatively compact in H2• f'l

Let B be a bounded subset of Bt, Le., there is a constant R ~ 0 such that
lIullLl :::; R for all u E B. The image of B by T (denoted by T(B)}'is relatively
compact in H2 if from any sequence {uo,d C T(B) one can extract a subsequence
{UO,iv } converging in H2 •

However, if {uo,d C T(B), then UO,i = uila, where {ud C B. As the sequence
{Ui} is bounded in the Hilbert space BI, it contains a subsequence {Uiv } which
converges weakly to some element u E H t • Clearly, {Uiv } converges to u in the
topology of the space of distributions in V.

We now invoke the Stieltijes- Vitali Theorem (see Subsection 2.1.5 in {I5]) to
conclude that {Ui~}, converges to u together with all derivatives uniformlyon com­
pact subsets of V. Setting Uo = ula and UO,i" = uivla, we can assert that Uo E H2
and {UO,i,,} converges to Uo in H2.

This is the desired conclusion.
o

We can now formulate the main result concerning the existence of bases with
double orthogonality.

Theorem 2.6 If (7 is a subdomain ofV such that V\(7 has no compacl conneeted
components, then there is an orthonormal basis {e y } in H· (V) n S ol(V) whose
restrietion to (7 is an orthogonal basis in H6((7) n Sol((7).

Proof. Consider the operator rrT* T in B t • This operator is selfadjoint, injec­
tive and compact. According to the Spectral Theorem, 1fT· T has a complete system
of normalized eigenfunctions {e~} y;;;;I,2, ... corresponding to eigenvalues {,\y} C (0, I].
An easy computation shows that (Te JJ , Te~)~ = '\", (e JJ , eY)Lp and so the system
{Te~} is orthogonal in L2 • Since T: H t -+ H2 has dense range, {Te y } is an
orthogonal basis in H2 , which is our claim.

o
The concept of sequences of analytic functions which are pairwise orthogonal

simultaneously in two domains, one of which contains the other, is due to Bergman
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(see [4], p. 14-20). Shapiro [10] is convinced that Bergman knew well that the
phenomenon of double orthogonality was of general character. Krasichkov [9] showed
that a simple application of the spectral theorem leads to an abstract Bergman
theorem on the existence of bases with double orthogonality. Dur account in this
section reproduces Bergman's concept in general (see also Shlapunov and Tarkhanov
[12] and Tarkhanov [16, Ch.12]).

3 A basis of holomorphic monomials

Let P = alffZ be the Cauchy·Riemann operator in the complex plane C ~ R 2 •

Denote by B(O, R) the disk of center 0 and radius R in the plane, and by
Hol(B(O, R)) the space of holomorphic functions in the disko

Lemma 3.1 For any °< R < 00, the system {,*, ~~t~ Z&I}", v = 0,1, ..., is

an orthonormal basis in L2 (B(0, R)) n Ho/(B(O, R)), and an orthogonal basis in
L2 (B) n Ho/(B) where B is an arbitrary disk with center at the origin.

Proof. We begin by proving that the system {ZII} is orthogonal in any ball
B(O, R). For this purpose, we use the polar coordinates z = reilp in obtaining

from which the desired conclusion folIows.

We shall have established the lemma if we prove the following: for any disk B,
the restrietion of the system {zlI} to B is complete in the space L2 (B) n Hol(B).
However, combining the contraction u(z) 1-+ u(t z), t E [0,1], with the Runge Theo·
rem we deduce that the holomofJjhic polynomials, when restricted to B, are dense in
L2 (B) n Ho/(B). On the other hand, any holomorphic polynomial is a finite linear
combination of the monomi~Lls ZII' Hence our assertion follows.

o
We fix positive r < R, and set V = B(O, R), (j = B(O, r) so that (j C V. Then

Lemma 3.1 just amounts to saying that the restriction of the syst.em

v=O,l, ... ,

to V is a basis with double orthogonality in L2(V) n Hol(V).
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4 A basis of harmonie polynomiali;

7

o

Assurne now that P = ß is the Laplaee operator in the spaee Rn.

Let {h~)} be a set of the homogeneous harmonie polynomials in Rn whieh

form a eomplete orthonormal system in the Lebesgue spaee L2 on the unit sphere
{lyl = I} (spherical harmonics). The index v means the degree of homogeneity, and
the index j runs through the number of polynomials of the degree v in the basis.
The dependence of the range oI j on v is well-known, namely j = 1, ... , J(v) where

J(v) = (n+2v-2)(n+v-3)!
v!(n - 2)!

for n > 2. If n = 2, then, obviously, J(O) = 1 and J(v) = 2 for v ~ 1 (see Sobolev
[13, p. 453]).

Example 4.1 Ir n = 2, then, as a system of homogeneous harmonie polynomials

{ h~) }, we ean take the system {yk;, J; z~, J; z~} where z = Xl + iX2.

Denote by B(O, R) the ball of center 0 and radius R in the spaee, and by
Harm(B(O, R)) the spaee of harmonie funetions in the ball. The main property oI
the system { h~)} is established by our next lemma.

Lemma 4.2 For any 0 < R < 00, the system { ~t+2';: h~)} is an orthonormal

basis in L2(B(0, R))nHarm(B(O, R)), and an orthogonal basis in L2 (B)nHarm(B)
where B is an arbitrary ball with center at zero.

Proof. We begin by proving that the system { h~)} is orthogonal in any ball

B(O, R). For this purpose, we write

whieh is the desired eonclusion.
We shall have established the lemma if we prove the following: for any ball B,

the restriction of the system { h~)} to B is eomplete in the space L2(B) n Harm( B).
However, eombining the eontraetion u(x) 1---+ u(t x), t E [0, 1], with the Runge The­
orem we deduee that the harmonie polynomials, when restricted to B, are dense in
L2(B) nHarm(B). On the other hand, any harmonie polynomial is the sum of a fi­
nite number of homogeneous harmonie polynomials, and any homogeneous harmonie
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polynomial of degree v is a linear combination of the polynomials ht1), ••• , hLJ(Y))
(cf. Sobolev [13]). Hence our assertion folIows.

o
We fix 0 < r < R, and set V = B(O, R), (7 = B(O, r) so that (7 C V. Then

Lemma 4.2 just amounts to saying that the restrietion of the system

v = 0,1, ... ; j = 1, ... , J(v),

to V is a basis with double orthogonality in L'l(V) n Harm(V).

5 A Liouville theorem

From now on, fix a fundamental solution ~ of the differential operator P. That such
a solution exists follows from a theorem of Malgrange (see also Theorem 4.4.3 in
Tarkhanov [16]. Moreover, ~ is a pseudodifferential operator of order -p on X j its
Schwartz kernel cl>(x ,y) is a distribution in the product X x X real analytic away
from the diagonal {x = y}.

We are aimed in extending Liouville 's Theorem to solutions of the equation
Pu = 0 in X. To this end, we need a suitable concept of the solution to Pu = 0 at
infinity. However, this depends on a compactification of X.

We shall use the so-called one-point, or Aleksandrov, compactification of X,
denoted by X. This means that X is the union of X and the symbolic point 00,

and the topology of X is given by the following neighborhoods bases:

• If x EX, then we take the usual basis of neighborhoods of x (for exarnple, the
family of all balls centered at x) .

• If x = 00, then the basis of neighborhoods of x is defined to be the family
{U U oo}, where U is an open subset of X with cornpact complement.

If f is a distribution with compact support in X, then the potential u = 4>(f)
satisfies Pu = 0 away from the support of f.

Definition 5.1 Let u be a solution of Pu = 0 on an open set U in X with
compact complement. Then u is said to be regular at infinity if in a neighborhood of
00 we have u = ~(f), where f E E'(X).

We emphasize that this definition depends in an essential way on the choice of
the fundamental solution ~ to P.

Lemma 5.2 TI u satisfies Pu = 0 on the whole manifold X and is regular at
infinity, then u =O.
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This result is actually due to Grothendieck (see also Section 5.4 in Tarkhanov
[15]). Because the proof is simple, we present it for the convenience of the reader.

Proof. Let f E t"'(X) be such that u = ~(f) in the complement of a compact
subset of X. Then u' = u - ~(f) is a compactly supported distribution in X, and
so u' = ~(Pu'). Hence it follows that u = ~(f + Pu'). Applying the differential
operator P to both parts of this equality yields 0 =f +Pu' on X. Therefore, u =0
on X, as desired.

o

6 Instability phenomena

In what fallows, we assume that V is a relatively compact domain in X with con­
nected boundary.

Let u be a subdomain of V whose complement has no compact connected com­
ponents in V. (Under the assumption above, the last condition just amounts to
saying that V \ u is connected.)

By Theorem 2.6, there is an orthonormal basis {e y } in H6(V) n Sol(V) whose
restriction to u is an orthogonal basis in H6( (]') n Sol((]'). We fix such a basis.

For fixed y E X \ Ci, the fundamental solution ~ (', y) satisfies P 4>(., y) = 0
in a neighborhood of the closure of u. We denote by ky(y) the Fourier coefficients
for the restriction of ~(" y) to u with respect to the orthogonal system {e y } in
Ha(u) n 801(u), Le.,

kv(y) = (cI>\i yii2ev )H'(a) , v = 1,2,. ... (6.1)
ey B'(O')

Lemma 6.1 Por v = 1,2, ... , the coefficients k y satis/y the transposed equation
p' ky = 0 away from the closure 0/ (]' on X.

Praof. This is obvious because of the equality P'(y, D) 4>(x, y) = Dr(y) on X,
where Dr is the Dirac delta-function supported at x EX.

o
Given a compact set 1( C V \ Ci and a distribution f with support on K, we

consider the moments

Cv = Jkv(y) f(y) dv(y), v = 1,2, .... (6.2)

The set K is said to do not separate u from 00 if u belongs to the component
of X \ K which contains 00.

Theorem 6.2 1/
00

(6.3)

and K does not separate u from 00, then Cy = 0 for all v.
Moreover, if K does separate u from 00, then for each sequence {c y } satisfying

{6.9} there is a distribution f with support on K having {e y } as its moments, i.e.,
such that {6.2} holds.
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Proof. Suppose that K does not separate (j and 00. Consider the potential

u' (x) = J<I> (x, y) J(y) dv(y), x E X \ K.

Clearly, u' satisfies Pu' = 0 in the complement of K in X, in particular, in a
neighborhood of the closure of (j. Expanding the restriction of u' to (j in a Fourier
series wi th respect to the orthogonal basis {e v } in H· ((j) n Sol((j ), we fin d

00

u' (x) = L: Cv ev(x),
v=1

x E (j,

where the Cv are given by (6.2).
If (6.3) holds, this series converges, by the Fischer-Riesz Theorem, in the norm

of H8(V) to a function u" satisfying Pu" = 0 in V. Letting U denote the component

of X \ K which contains 00, we consider the function

{
u' (x), when x E U;

u(x)= u"(x), when xEV\U.

Obviously, u is an analytic extension of u' to the whole manifold X. It follows
that Pu = 0 on X.

On the other hand, u is regular at infinity. By Lemma 5.2, u vanishes identically
on X.

So u' - 0 and Cv = 0 for v = 1,2, .... This proves the first part of the theorem.
Now suppose that K separates (j from 00. We denote by U the complement of

the closure of (j in X. Then U is a subdomain of X containing I<.
Define the space CP-

1(K) as the inductive limit ofthe sequence C~~l(Ui), where
{Ui} is a sequence of neighborhoods of K with Ui+l ce Ui and niUi = K. It is
easy to see that the dual space for CP-1(K) can be identified with the subspace of
distributions of order p - 1 on X consisting of those supported on K.

Let 801(U, P') be the space of all classical solutions to the transposed equation
P'g = 0 on U which are regular at infinity (with respect to the fundament.al solution
<P' of P'). We endow this space with the topology induced by Cp

-
l (1<).

Assurne that {cv } is a sequence of complex numbers which satisfies (6.3). Hy the
Fischer-Riesz Theorem, the series u = 2::1 Cv ev converges in the norm of }[8(V)
to a function u satisfying Pu = 0 in V.

Fix a Green operator Gp for P on X, i.e., abidifferentialoperator of order p-l
with values in the space of differential farms of degree n - 1 such that d Gp(g, u) =
(g Pu - P'g u)dv pointwise on X, for all 9 and u smooth enough. Now set

(6.4)9 E 801(U, P'),(:Fu,g) = - [ Gp(g, u),180
where 0 is a relatively compact subdomain of V with piecewise smooth boundary
such that u C O.

It follows from Stokes' formula that the functional :Fu is independent of the
particular choice of the domain O. In particular, we may assume that [( C 0, for
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if not, then we enlarge O. So, applying Green's formula for solutions of P'g = 0
regular at infinity shows that F u is a continuous linear functional on 80/(U, Pi).

By the Hahn-Banach Theorem, F u can be extended to the whole space Cp- 1 ( K).
Hence there is a distribution f of order p - 1 with support on K such that

(:Fu,g) = J9 f dv for all 9 E 801(U, P'). (6.5)

For every v = 1,2, ... , the function klJ(Y) is, by Lemma 6.1, in 80/(U, Pi). Thus,
applying (6.5) we get

(:Fu, k") = Jk"(y) f(y) dv(y), v = 1,2, . . . . (6.6)

On the other hand, (6.4) and Green's formula for u yield

(Fu,klJ ) = - ( Gp(klJ,u)180
(- Iao Gp(4)(·, y), u(y)), elJ) H.((T)

1I elJ II~ .((T)

(u, elJ )H.(cr)
=

IlelJlI~.((T)
elJ ,

for all v = 1,2, ....
Comparing the latter equalities with (6.6), we obtain the desired conclusion.

o
In the most favorable cases, it is possible to conclude from (6.3) that f = O.

Corollary 6.3 Let K be a compact subset o/V \ (f 0/ zero measure, and let the
complement 0/ K is connected. For any distribution f 0/ order p - 1 with support
on K, the condition (6.3) implies / =O.

Proof. Consider the potential

As above,

u'(x) = J<1>(x,y) f(y) dv(y),

00

u' (x) = I: CIJ elJ(x),
v=}

x E X \ K.

xE u,

where the elJ are given by (6.2).
Since !( does not separate u from 00, Theorem 6.2 shows that Cv = 0 for all v.

It follows that u' =0 in u.
However, combining Theorems 5.3.2 and 6.3.1 in Tarkhanov [16] we deduce

that finite linear combination of the potentials 4>(x, '), where x E u, are dense in
CP-l(K). For this reason, the equality u' _ 0 in u implies f =0 on X, a.s desired.

o
We finish this section with an example showing that a regularity condition for

f is necessary for Corollary 6.3 be valid.
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Example 6.4 Given a smooth closed surface S in V \ (j, denote by 6s the func­
tional of integration over S (sur/ace layer on S). This is a measure with support
S on X, and so I = P6s is well-defined to be a distribution supported in S. Since
~(/) = ös, the potential u' = (fJ(/) vanishes away from S. It follows that all of the
moments (6.2) are zero for I while f f. 0.

o

7 Holomorphic moments

Assurne that P is the Cauchy-Riemann opera.tor in the complex plane, and {e v }

tbe basis with double orthogonality in L2 (B(0, R)) n Hol(B(O, R)) constructed in
Section 3.

Tbe standard fundamental solution of the Cauchy-Riemann operator in C is
~(z () =! _1•

, '7t z-(

The Fourier coefficients of the restriction of ~(z, () to B(O, r), for fixed ( away
from the closure of B(O, r), are given in our next lemma which is elementary.

Lemma 7.1 /11(1 > r, then

v = 0,1, .... (7.1)

Proof. Use the fact that in the cone C = {(z, C) E C xe: 1(1) ]zl} one has

1 1 1 00 1 v

;- z _ ( = -;- L (v+l Z ;
v=o

the series converges together with all the derivatives in z and ( absolutely and
uniformlyon closed subsets of C.

o
Given a distribution / with a. compact support K in B(O, R) \ B(O, r), define

the holomorphie moments of f by

v = 0,1, ....

Set

v = 0,1, ... ,

just as in (1.1). Then candition (1.2) is written as

lim sup vtlmvl < R
1
"

v-oo

wbere R' = maXK Izl.

(7.2)
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On the other hand, condition (6.3) becomes

00 R'J(1+v)

L 1 + v Imvl'J < 00

v=o

13

(7.3)

because of (7.1).
Let us now compare Theorem 6.2 in the case of holomorphic moments under

consideration to the result of Aizenberg and Zalcman [2] cited in Seetion 1.
Ir (7.3) holds, then there is a constant c such that

Imvl:'S c~, 11 = 0,1, ... ,

and so

lim sup vllmvl < R
1

•
v-oo

Since R! < R, condition (7.2) follows.
Conversely, if (7.2) is fulfilled, then

[im sup v'lmvl < R'
1

.
v-oo + e

for some e > 0 small enough. Pick R such that R! < R < R' + e. For such an R,

the general term in (7.3) can be estimated by

R2(1+v) 'J , 1 ( R ) 2(I+v)

1 + v Imvl < c 1 + v R' + e '

and hence (7.3) holds.
Therefore, the mentioned result of Aizenberg and Zalcman [2] is a consequence

of our Theorem 6.2.

8 Harmonie moments

Assume that P is the Laplace operator in the space Rf\ and {e~)} thc basis with

double orthogonality in L2(B(0, R)) n Harm(B(O, R)) constructed in Section 4.
The standard fundamental solution of the Laplace operator in Rn is

( )
{

21 log Ix - Yl when n = 2;
cl> x, y = r n 'J 1 1

2Ift) 2-n IX-lIln-2 when n > 2,

The Fourier coefficients of the rest'riction of cI>(x, y) to 8(0, r), for fixed y away
from the closure of B(O, r), are given in our next lemma.

Lemma 8.1 If lyl > r, then

. 1 JR;n+2v hlil(y)
k~])(y) = - n + 2v - 2 n +2v IYI:+2v-2' v = 0, 1, ... ; j = 1, ... , J (v).

(8.1 )
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Proof. Use the fact that in the cone C = {(x, y) E Rn X Rn: lyl > lxI} one
has

00 J(~) 1 (i)
( ) ( ) "" h~ (y) h(j)(x)'~ x, y = cI» 0, y - LJ LJ n + 2v _ 2 lyln+2~-2 ~ ,

~=1 i=1

(8.2)

the series converges together with all the derivatives in x and y absolutely and
uniformlyon closed subsets of C.

o
Expansion (8.2) has been frequently used, beginning with the paper of Deny

[8). There may weIl be an earlier source.
Given a distribution f with compact support in B(O, R) \ B(O, r), define the

harmonie moments of f by

c~) =Jk~j)(Y)f(y)dv(y),

The condition

v=O,l, ... ; j=I, ... ,J(v).

is easily seen to imply
00 J(~)

LL Ic~)12 < 00.

~=O j=1

Thus, applying Theorem 6.2 yields the following result due to Aizenberg and
Zalcman [2). (They proved it for f being a measure.)

Let K be a compact set in Rn which does not contain the origin, and let f be
a distribution supported on !( with moments

(')
(i) - Jf( ) hj (y) d ( )

m~ - y lyln+2~-2 v Y 1

Corollary 8.2 If

v = 0,1, ... ; j = 1, ... , J(v). (8.3)

imsu max vlm&)1 < 1 I I
~-oo J maXK x

(8.4 )

and K does not separate 0 from 00, then m&) = 0 for alt v, j.
Moreover, if K does separate 0 from 00, then for eaeh sequenee {mY)} satisfying

(8.4) there is a distribution f with support on K having {m&)} as its moments, i.e.,
such that (8.3) holds.
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Suppose that P is a first order h0n:t0geneous differential operator with eonstant
coeffieients in Rn satisfying p.P = -.6., where p. is the formal adjoint for P. Such
differential operators are known as factorizations of the Laplaee operator in Rn.

The standard fundamental solution ~(x, y) for P is obtained by applying the
differential operator -P'" in the variable y to the standard fundamental solution of
.6..

Ir Pu = 0 in a ball B C Rn, then u is obviously a harmonie funetion in B. For
this reason, H3(B) n 801(B) is a closed subspace of H3(B) n Harm(B).

In the recent paper of Shlapunov [11], there was eonstrueted an orthonormal

basis {eW)} in H'(B(O, R)) n Harm(B(O, R)) eonsisting of homogeneous harmonie

polynomials.
More precisely, eaeh e~) is an eigenfunetion of Green 's integral

u ~ - ( Gp(~(x, .), u)
JaB(O,R)

on H3(B(0, R)) eorresponding to an eigenvalue °::; ..\~) ::; 1. (It is worth pointing

out tbat if an e~) eorresponds to ..\~) = 0, then

away from the origin. )

From what has already been proved, it follows that { e~)} is a basis with double

orthogonality in H3(B(0, R)) n Harm(B(O, R)), with u an arbitrary ball B(O, r) of
smaller radius.

Those e~), whieh eorrespond to the eigenvalues A~) > 0, form a basis with
double orthogonality in H3(B(0, R)) n 80/(B(0, R)).

Our next objeetive is to evaluate the Fourier eoeffieients of the restrietion of
~(x, y) to B(O, r), for fixed y away from the closure of B(O, r).

Lemma 9.1 11 jyl > r, then

. 1 JRn e(j){y)
k(J)( ) - p _ ....~-

v Y - n + 2v - 2 n + 2v Iy In+'l....-2 '
v=O,l, ... ; j= 1, ... ,J(v),

(9.1 )

up to a multiple 01 v' (the constant being in a range depending only on n and s).

Proof. It is suffieient to apply the differential operator - p.' in the variable y
to both sides of deeomposition (8.2) and make use of Lemma 1.4 in Shlapunov [11]
whieh states that
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with Cl and C2 constants depending only on n, s.

Sectjon 9

o
For a distribution f with compact support in B(O, R) \ B(O, r), we consider the

moments

c~) =Jk~)(y)f(y)dv(y),

The condition

v = 0, 1, ... ; j = 1, ... ,J(v).

is easily verified to imply
00 J(~)

LL Ic~j)12 < 00.

~=O j;;;:l

Thus, Theorem 6.2 leads to the following result which sheds some new light on
Corollary 8.2.

Let K be a compact set in Rn which does not contain the origin, and let f be
a distribution supported on K with moments

C)
(1) - J () e,: (y) ()

m~ - f y P lyln+2~-2 dv y ,

Corollary 9.2 lf

v = 0,1, ... ; j = 1, ... , J(v). (9.2)

mw max Vlmtj)1 < 1 I I
~-oo J maxK x

(9.3)

and K does not separate 0 from 00, then mtj ) = 0 for all v, j.
Moreover, if K does sepamte 0 from 00, then for each sequence {m~)} satisfying

(9.9) there is a distribution f with support on K having {m~)} as its moments, i.e.,
such that (9.2) ho/ds.
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