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Abstract

Let P be an elliptic differential operator on a non-compact connected
manifold X; suppose that both X and the coefficients of P are real analytic.
Given a pair of open sets D and o in X with ¢ CC D CC X, we fix a
sequence {e, } of solutions to Pu = 0 in D which are pairwise orthogonal under
integration over both D and ¢. By orthogonality is meant the orthogonality
in the corresponding Sobolev spaces; we also assume a completeness of the
system on ¢. For a fixed y € X \ 7, denote by k,(y) the Fourier coefficients
of a fundamental solution ®(-,y) to P with respect to the restriction of {e,}
to 0. Suppose K is a compact set in D\ 7, and let f be a distribution with
support on K. In this paper we show, under appropriate conditions on K,
that if the moments (f, k,) decrease sufficiently rapidly in a certain precise
sense, then these moments vanish identically. In the most favorable cases,
it is then possible to conclude that f = 0. This phenomenon was previously
noticed by the first author and L.Zalcman for analytic and harmonic moments

of f.

*Supported by the Max-Planck-Gesellschaft.
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1 Introduction

Let K be a compact set in the complex plane which does not contain the origin,
and let m be a finite complex measure on K with moments

_ [ 4

"= kK ¢t

Aizenberg and Zalcman [2] proved that if

v=0,1,.... (1.1)

limsup v/Im,| < 1 (1.2)

ve—00 maxg |Z|

and K does not separate 0 from oo (i.e., 0 belongs to the unbounded component of
C\ K), then m, =0 forall v =0,1,....

Moreover, if K does separate 0 from oo, then for each sequence {m,} satisfying
(1.2) there is a measure m on K having {m,} as its moments, i.e., such that (1.1)
holds.

In this paper we explain this “instability phenomenon” in the context of the
so-called bases with double orthogonality.

In Section 2 we briefly recall the concept of a basis with double orthogonality
and show the conditions under which such bases exist. Sections 3 and 4 contain
some explicit examples of bases with double orthogonality. In Section 5 we discuss
a Liouville type theorem for solutions of elliptic equations. In Section 6 we state
and prove our main result on the instability of the Fourier coefficients with respect
to bases with double orthogonality. In Sections 7 and 8 we restrict our attention
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to the results of Aizenberg and Zalcman [2] and show how these results follow from
ours (with the exception of Section 2 in [2] devoted to holomorphic moments in C*,
n > 1). Finally, in the last section a new interesting example is indicated (of course,
there are many other examples of the instability of the Fourier coefficients in various
situations).

This research was carried out during the stay of the second author at the Emmy
Noether Research Institute at the Bar-Ilan University. The author wishes to thank
this institute for the invitation and hospitality.

2 Bases with double orthogonality

Let P be an elliptic differential operator of order p on a non-compact connected
manifold X; suppose that both X and the coeflicients of P are real analytic.

By a classical solution of Pu = 0 in an open set U C X is meant any function
u € Cf _(U) satisfying this equation pointwise in U. By a theorem of Petrovskii, any
classical solution to Pu = 0 is in fact a real analytic function in U.

Moreover, if u € D'(U) satisfies Pu = 0 weakly in U, then u is induced by a
classical solution of this equation ( Weil’s Lemma).

Given an open set U C X, we denote by Sol(U) the space of all classical
solutions to the equation Pu = 0 in U. Moreover, let Sol(U) stand for the spase
of C? functions u which are solutions of the equation Pu = 0 in at least some
neighborhood of the closure of U.

We will be interested in the subspaces of Sol(U) which possess Hilbert struc-
tures. Such a structure may be induced by the Hilbert structure of a Sobolev space
H*(U), where s is a non-negative integer.

Of course, H*(U) has no canonical Hilbert structure unless U is a coordinate
patch in X. The inner product of H*(U) does depend on the particular choice of the
covering of (the closure of) U by coordinate patches. However, if U is a relatively
compact open subset of X, then the topology in H?(U) is actually independent of
the coverings.

From what has already been said it follows that the subspace of H*(U) which
consists of classical solutions to Pu = 0 in U is closed. Thus, the intersection
H*(U) N Sol{U) is a Hilbert space with the inner product inherited from H*(U).

We now fix two relatively compact domains D and o in X such that ¢ C
D. In what follows we assume that both D and o have strong cone property.
This ensures the equivalence of two possible definitions of Sobolev spaces on these
domains, namely internal and external spaces (see Example 1.4.24 in [16]).

Definition 2.1 A systeme,, v = 1,2,..., in Sol(D) is said to be a basis with
double orthogonality if it is an orthonormal basis in H*(D) N Sol(D) and its restric-
tion to o is an orthogonal basis in H*(a) N Sol(o).

We are going to prove that such bases always exist unless o has “holes” in D.
Moreover, we show an explicit way of constructing bases with the property of double
orthogonality.
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To this end, set L; = H*(D) and Ly = H*(0), so that L, and L, are separable
Hilbert spaces.

The mapping T : L, — L, is defined to be the restriction from D to o,
ie., Tu = u|, for v € L;. Then T is a continuous linear operator with norm
170 ctaminy < 1.

Further, we distinguish in L, the subspace H; which is formed by classical
solutions of the equation Pu = 0 in D. As above, H; is a closed subspace of L,,
and so H;, when endowed with the induced Hermitian structure, becomes a Hilbert
space.

Letting H, denote the subspace of Ly consisting of classical solutions of the
equation Pu = 0 in o, we see that the restriction of T to H, maps to H,;. However,
it is not evident that the image of H, by T is dense in Hj.

Lemma 2.2 If the complement of o has no compact connected components be-
longing to D, then the operator T : H, — H; has dense range.

Proof. Our task is to prove that restrictions to o of elements in H*(D)N Sol(D)
are dense in H*(o) N Sol(o) in the H*(o)-norm. Since o has strong cone property,
Theorems 8.1.2 and 8.4.1 in Tarkhanov [16] show that the subspace Sol(7) is dense
in H*(c) N Sol(c) in the H*(o)-norm. On the other hand, as the complement of
o has no compact connected components in D, the subspace Sol(D) is, by the
Runge Theorem, dense in Sol(7) in the inductive limit topology of C'*°(7). Since
Sol(D) C H*(D) N Sol(D) and the inductive limit topology in Sol(7) is stronger
than the topology induced by the H*(o)-norm, we obtain even more than we wanted
to prove.

O

To describe the adjoint mapping for T' : Hy — H,, we denote by T* the adjoint
for T acting on the whole L, and by 7 the orthogonal projection of L, onto H;.
It follows from Subsection 4.2.8 of [15] that H, is a Hilbert space with reproducing
kernel. Therefore, 7 is an integral operator whose kernel is the reproducing kernel

K of the domain D with respect to H°(D) N Sol(D).
Lemma 2.3 For any up € Ly, we have
T ug (z) = (w0, K(2, ")) Ho(o), z€D.
Proof. Indeed,

™
WT Up

(T*UUJC(‘T’" '))Ll
= (uO)TK(x’ '))L:a

]

which establishes the formula.
O
A trivial verification shows that the adjoint mapping for T': H; — H; is given
by the restriction of the operator #7* to Hy. Hence, the composition #T*T, when
restricted to H,, is a selfadjoint operator in this space. (If s = 0, then 77T is a
Toeplitz operatorin L,.)



Bases with double orthogonality 5

As follows, the bases with double orthogonality are complete systems of eigen-
functions of the operator #7*T in H,.

To handle the corresponding eigenvalue problem, let us look more closely at the
properties of the restriction of T to H,.

Lemma 2.4 The operator T : H, — H; is injective.

Proof. Let u € H,; and Tu = 0. This means that u is a solution of the equation
Pu =0 in the domain D vanishing on the nonempty open subset o of D. Hence the
real analyticity of u implies that ¥ = 0 everywhere in D, as desired.
a
However, the most important property of T is the following.

Lemma 2.5 The operator T : Hy — H, is compact.

Proof. The task is to show, given any bounded set B C H,, that the image of
B by the mapping T is relatively compact in H;. °

Let B be a bounded subset of H,, i.e., there is a constant K > 0 such that
llx|lL, £ R for all v € B. The image of B by T (denoted by T'(B)}is relatively
compact in Hj if from any sequence {uo;} C T'(B) one can extract a subsequence
{uo,,} converging in H;.

However, if {up;} C T(B), then up; = u;|,, where {u;} C B. As the sequence
{u;} is bounded in the Hilbert space Hj, it contains a subsequence {u; } which
converges weakly to some element u € H,. Clearly, {u; } converges to u in the
topology of the space of distributions in D.

We now invoke the Stieltijes- Vitali Theorem (see Subsection 2.1.5 in [15]) to
conclude that {u;,}, converges to u together with all derivatives uniformly on com-
pact subsets of D. Setting ug = ul, and up;, = u; |,, we can assert that up € H,
and {uo;, } converges to ug in H.

This is the desired conclusion.

a

We can now formulate the main result concerning the existence of bases with
double orthogonality.

Theorem 2.6 Ifo is a subdomain of D such that D\ o has no compact connected
components, then there is an orthonormal basis {e,} in H*(D) N Sol(D) whose
restriction to o is an orthogonal basis in H*(¢) N Sol(o).

Proof. Consider the operator #7* T in H;. This operator is selfadjoint, injec-
tive and compact. According to the Spectral Theorem, #T* T has a complete system
of normalized eigenfunctions {e,}.—; 2 .. corresponding to eigenvalues {A,} C (0,1].
An easy computation shows that (Te,,Te,)r, = A, (e4,€.)L,, and so the system
{Te,} is orthogonal in L,. Since T': H; — H; has dense range, {Te,} is an
orthogonal basis in H,, which is our claim.

]

The concept of sequences of analytic functions which are pairwise orthogonal
simultaneously in two domains, one of which contains the other, is due to Bergman



6 Section 3

(see [4], p. 14-20). Shapiro [10] is convinced that Bergman knew well that the
phenomenon of double orthogonality was of general character. Krasichkov [9} showed
that a simple application of the spectral theorem leads to an abstract Bergman
theorem on the existence of bases with double orthogonality. Our account in this

section reproduces Bergman’s concept in general (see also Shlapunov and Tarkhanov
(12] and Tarkhanov [16, Ch.12]).

3 A basis of holomorphic monomials

Let P = 8/07 be the Cauchy-Riemann operator in the complex plane C = RZ.
Denote by B(0, R) the disk of center 0 and radius R in the plane, and by
Hol(B(0, R)) the space of holomorphic functions in the disk.

Lemma 3.1 For any 0 < R < oo, the system {7‘;R1+,‘,’ z”},., v=01,..., 1

an orthonormal basis in L*(B(0, R)) N Hol(B(0, R)), and an orthogonal basis in
L¥*(B)N Hol(B) where B is an arbitrary disk with center at the origin.

Proof. We begin by proving that the system {z*} is orthogonal in any ball
B(0, R). For this purpose, we use the polar coordinates z = re' in obtaining

(Z“vz”)m(s(o,n)) = / 7 27 dv(z)
B(0.R)

R 2m
/ plety dr / e =9 do
0 )

R‘2+#+u fﬂx ei(u-vw d(P
24+pu+v Jy ’

from which the desired conclusion follows.

We shall have established the lemma if we prove the following: for any disk B,
the restriction of the system {z”} to B is complete in the space L%(B) N Hol(B).
However, combining the contraction u(z) — u(t z), t € [0,1], with the Runge Theo-
rem we deduce that the holomorphic polynomials, when restricted to B, are dense in
L*(B) N Hol(B). On the other hand, any holomorphic polynomial is a finite linear
combination of the monomials z,. Hence our assertion follows.

a

We fix positive r < R, and set D = B(0, R), ¢ = B(0,r) so that ¢ C D. Then
Lemma 3.1 just amounts to saying that the restriction of the system

1L Vlitr
“=Ur B

v=01,...,

to D is a basis with double orthogonality in L*(D) N Hol(D).
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]

4 A basis of harmonic polynomials

Assume now that P = A is the Laplace operator in the space R".
Let {hf,’)} be a set of the homogeneous harmonic polynomials in R™ which
form a complete orthonormal system in the Lebesgue space L? on the unit sphere

{ly| = 1} (spherical harmonics). The index v means the degree of homogeneity, and
the index j runs through the number of polynomials of the degree v in the basis.

The dependence of the range of 7 on v is well-known, namely j = 1,..., J(v) where
_(n+2v =2)(n+v - 3)!
Jw)= vi(n —2)!

for n > 2. If n = 2, then, obviously, J(0) = 1 and J(v) = 2 for v > 1 (see Sobolev
[13, p. 453)).

Example 4.1 If n = 2, then, as a system of homogeneous harmonic polynomials
{hg‘”}, we can take the system {712?, 7%-;:”, 7'277”} where z = 2, + 1z,.
0

Denote by B(0, R) the ball of center 0 and radius R in the space, and by
Harm(B(0, R)) the space of harmonic functions in the ball. The main property of

the system {h(yj)} is established by our next lemma.

Lemma 4.2 For any 0 < R < oo, the system {\/Ff‘,il;—?,% h(j)} is an orthonormal
basis in L*(B(0, R))NHarm(B(0, R)), and an orthogonal basis in L*( B)N Harm(B)

where B is an arbitrary ball with center at zero.

Proof. We begin by proving that the system {hf;”} is orthogonal in any ball
B(0, R). For this purpose, we write

) B _ )(z) A0 (o)
02 oy = [, W) @) do

R ' _
/ Pty g / hLJ)(Z) hf,')(z) ds
0 |z|=1
= _RNE:_ (h(i)
n4+pu4v P F’

]

()
hy )LZ(aB(o,l)) )

which is the desired conclusion.
We shall have established the lemma if we prove the following: for any ball B,

the restriction of the system {th)} to B is complete in the space L*( B)N Harm(B).
However, combining the contraction u(z) — u(tz), t € [0,1], with the Runge The-
orem we deduce that the harmonic polynomials, when restricted to B, are dense in
L*(B)YN Harm(B). On the other hand, any harmonic polynomial is the sum of a fi-
nite number of homogeneous harmonic polynomials, and any homogeneous harmonic
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polynomial of degree v is a linear combination of the polynomials hf,l), ... ,hf,‘]("”
(cf. Sobolev [13]). Hence our assertion follows.
(]
We fix 0 < r < R, and set D = B(0,R), 0 = B(0,r) so that o C D. Then
Lemma 4.2 just amounts to saying that the restriction of the system

eG) = /22 16)

a1 v=0,1,...; 3=1,...,J(v),

to D is a basis with double orthogonality in L*(D) N Harm(D).

5 A Liouville theorem

From now on, fix a fundamental solution ® of the differential operator P. That such
a solution exists follows from a theorem of Malgrange (see also Theorem 4.4.3 in
Tarkhanov [16]. Moreover, ® is a pseudodifferential operator of order —p on X its
Schwartz kernel ®(z,y) is a distribution in the product X x X real analytic away
from the diagonal {z = y}.

We are aimed in extending Liouville’s Theorem to solutions of the equation
Pu=0in X. To this end, we need a suitable concept of the solution to Pu =0 at
infinity. However, this depends on a compactification of X.

We shall use the so-called one-point, or Aleksandrov, compactification of X,
denoted by X. This _means that X is the union of X and the symbolic point oo,
and the topology of Xis given by the following neighborhoods bases:

e If z € X, then we take the usual basis of neighborhoods of z (for example, the
family of all balls centered at z).

e If z = oo, then the basis of neighborhoods of z is defined to be the family
{U U oo}, where U is an open subset of X with compact complement.

If f is a distribution with compact support in X, then the potential u = ®(f)
satisfies Pu = 0 away from the support of f.

Definition 5.1 Let u be a solution of Pu = 0 on an open set U in X with

compact complement. Then u is said to be regular at infinity if in a neighborhood of
oo we have u = ®(f), where f € £'(X).

We emphasize that this definition depends in an essential way on the choice of
the fundamental solution ¢ to P.

Lemma 5.2 If u satisfies Pu = 0 on the whole manifold X and is regular at
infinity, then u = 0.
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This result is actually due to Grothendieck (see also Section 5.4 in Tarkhanov
[15]). Because the proof is simple, we present it for the convenience of the reader.
Proof. Let f € £'(X) be such that u = ®(f) in the complement of a compact
subset of X. Then v’ = u — ®(f) is a compactly supported distribution in X, and
so u' = ®(Pu’). Hence it follows that u = ®(f + Pu'). Applying the differential
operator P to both parts of this equality yields 0 = f 4+ Pu’ on X. Therefore, u =0
on X, as desired.
]

6 Instability phenomena

In what follows, we assume that D is a relatively compact domain in X with con-
nected boundary.

Let o be a subdomain of D whose complement has no compact connected com-
ponents in D. (Under the assumption above, the last condition just amounts to
saying that D\ o is connected.)

By Theorem 2.6, there is an orthonormal basis {e,} in H*(D) N Sol(D) whose
restriction to ¢ is an orthogonal basis in H*(¢) N Sol(o). We fix such a basis.

For fixed y € X \ 7, the fundamental solution ®(-,y) satisfies P ®(-,y) = 0
in a neighborhood of the closure of o. We denote by k,(y) the Fourier coeflicients
for the restriction of ®(,y) to o with respect to the orthogonal system {e,} in

H*(o)n Sol(a), i.e.,
(-, y), €)Hs(0
bty = Lt el
e (o)
Lemma 6.1 Forv =1,2,..., the coefficients k, satisfy the transposed equation
Pk, =0 away from the closure of o on X.

Proof. This is obvious because of the equality P'(y, D) ®(z,y) = é.(y) on X,
where 8, is the Dirac delta-function supported at z € X.

. v=12.... (6.1)

W]
Given a compact set KX C D\ 7 and a distribution f with support on K, we
consider the moments

¢, = /ku(y)f(y)dv(y), v=12.... (6.2)

_The set K is said to do not separate o from oo if o belongs to the component
of X \ K which contains oco.

Theorem 6.2 If
Z |ev]? < oo, (6.3)
v=1

and K does not separate o from oo, then ¢, =0 for all v.
Moreover, if K does separate o from 0o, then for each sequence {c,} satisfying
(6.8) there is a distribution f with support on K having {c,} as its moments, i.e.,

such that (6.2) holds.
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Proof. Suppose that K does not separate o and oo. Consider the potential

u'(z) = /Q(z,y) f(y) dv(y), r€ X\ K.

Clearly, u’ satisfies Pu’ = 0 in the complement of K in X, in particular, in a
neighborhood of the closure of . Expanding the restriction of v’ to & in a Fourier
series with respect to the orthogonal basis {e,} in H*(¢) N Sol(o), we find

[s ]

u'(z) = Zc., e.(z), z€o,

v=1

where the ¢, are given by (6.2).

If (6.3) holds, this series converges, by the Fischer-Riesz Theorem, in the norm
of H*(D) to a function u” satisfying Pu” = 0in D. Letting U denote the component
of X \ K which contains oo, we consider the function

(2) = u'(z), when z €U,
W=\ w(z), when z€D\U.

Obviously, u is an analytic extension of u' to the whole manifold X. It follows
that Pu=0on X.

On the other hand, u is regular at infinity. By Lemma 5.2, u vanishes identically
on X.

Souw' =0and ¢, =0for v =1,2,.... This proves the first part of the theorem.

Now suppose that K sepa.ra.tes o from oo. We denote by U the complement of
the closure of ¢ in X. Then U is a subdomain of X containing K.

Define the space CP~!(K) as the inductive limit of the sequence C22'(U;), where
{U;} is a sequence of neighborhoods of K with U;y; CC U; and N;U; = K. Tt is
easy to see that the dual space for C?~!(K') can be identified with the subspace of
distributions of order p — 1 on X consisting of those supported on K.

Let Sol(U, P') be the space of all classical solutions to the transposed equation
P’g = 0 on U which are regular at infinity (with respect to the fundamental solution
®’ of P'). We endow this space with the topology induced by C?~!(K).

Assume that {c,} is a sequence of complex numbers which satisfies (6.3). By the
Fischer-Riesz Theorem, the series u = E;’;l c, e, converges in the norm of H*(D)
to a function u satisfying Pu =0 in D.

Fix a Green operator Gp for P on X i.e., a bidifferential operator of order p—1
with values in the space of differential forms of degree n — 1 such that dGp(g,u) =
(g9 Pu — P'gu)dv pointwise on X, for all ¢ and u smooth enough. Now set

(Fu9) = / Gp(g,u), g€ Sol(U,P'), (6.4)

where O is a relatively compact subdomain of D with piecewise smooth boundary
such that & C O.

It follows from Stokes’ formula that the functional F, is independent of the
particular choice of the domain O. In particular, we may assume that K C O, for
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if not, then we enlarge O. So, applying Green’s formula for solutions of P'g = 0
regular at infinity shows that F, is a continuous linear functional on Sol(U, P').

By the Hahn-Banach Theorem, F, can be extended to the whole space CP~1(K).
Hence there is a distribution f of order p — 1 with support on K such that

(Fu 9) = /gfdv for all g € Sol(U, P). (6.5)

For every v = 1,2,.. ., the function k,(y) is, by Lemma 6.1, in Sol(U, P'). Thus,
applying (6.5) we get

(Fur k) = / ) f)doly), v=1,2,.... (6.6)
On the other hand, (6.4) and Green’s formula for u yield
(Fu, k) = —/ Gp(k,,u)
50
(_' fao GP(@(, y)r u(y)), ev)H.(d)

|]ey||§,,(a)
(u) 6:/)H'(a)
2
"el/"Ho(a)
= G,
forall v =1,2,....
Comparing the latter equalities with (6.6), we obtain the desired conclusion.

O
In the most favorable cases, it is possible to conclude from (6.3) that f = 0.

Corollary 6.3 Let K be a compact subset of D\ & of zero measure, and let the
complement of K is connected. For any distribution f of order p — 1 with support
on K, the condition (6.8) implies f = 0.

Proof. Consider the potential

o (z) = ] 8(z,9) () do(y), z€X\K.
As above,

u' (z) = ZC" e.(z), z€o,
v=1
where the ¢, are given by (6.2).

Since K does not separate ¢ from oo, Theorem 6.2 shows that ¢, = 0 for all v.
It follows that 4’ =0 in 0.

However, combining Theorems 5.3.2 and 6.3.1 in Tarkhanov [16] we deduce
that finite linear combination of the potentials ®(z,-), where z € o, are dense in
CP~!(K). For this reason, the equality ' = 0 in ¢ implies f = 0 on X, as desired.

a

We finish this section with an example showing that a regularity condition for

f is necessary for Corollary 6.3 be valid.
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Example 6.4 Given a smooth closed surface S in D\ 7, denote by és the func-
tional of integration over S (surface layer on S). This is a measure with support
S on X, and so f = Pég is well-defined to be a distribution supported in S. Since
®(f) = és, the potential v’ = ®(f) vanishes away from S. It follows that all of the
moments (6.2) are zero for f while f # 0.

O

7 Holomorphic moments

Assume that P is the Cauchy-Riemann operator in the complex plane, and {e,}
the basis with double orthogonality in L?(B(0, R)) N Hol(B(0, R)) constructed in
Section 3.

The sta.ndard fundamental solution of the Cauchy-Riemann operator in C is
@(Z C) 1r z-—(

The Fourier coeflicients of the restriction of ®(z,() to B(0,r), for fixed { away
from the closure of B(0,r), are given in our next lemma which is elementary.

Lemma 7.1 If (| > r, then

1 1 R L+v
kv(C)z——\/_——;—ﬁ—y (-C-) N U=O,I,.... (71)

Proof. Use the fact that in the cone C = {(z,{) € C x C: |(| > |z]} one has

Z v+1 ’
= C

the series converges together with all the derivatives in z and ( absolutely and
uniformly on closed subsets of C.

1

71'2-'-

=1[~

O
Given a distribution f with a compact support K in B(0, R) \ B(0,r), define
the holomorphic moments of f by

c.,=/k,,(()f(()dv((), y=0.1,....

Set

me= [ HO (O, v=01,...,

just as in (1.1). Then condition (1.2) is written as

limsup v/|m,| < R” (7.2)

V=00

where R’ = maxg |z]|.
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On the other hand, condition (6.3) becomes
ot R'J(]+v)

14 v

v=0

Im,|? < oo (7.3)

because of (7.1).

Let us now compare Theorem 6.2 in the case of holomorphic moments under
consideration to the result of Aizenberg and Zalcman [2] cited in Section 1.

If (7.3) holds, then there is a constant ¢ such that

and so

Since R’ < R, condition (7.2) follows.
Conversely, if (7.2) is fulfilled, then

' 1
I Vim,| < :
e Vimd < 7

for some ¢ > 0 small enough. Pick R such that " < R < R'+ €. For such an R,
the general term in (7.3) can be estimated by

R2(1+v) ) ' 1 R 2{1+v)

and hence (7.3) holds.
Therefore, the mentioned result of Aizenberg and Zalcman [2] is a consequence
of our Theorem 6.2.

8 Harmonic moments

Assume that P is the Laplace operator in the space R", and {ey)} the basis with

double orthogonality in L?(B(0, R)) N Harm(B(0, R)) constructed in Section 4.
The standard fundamental solution of the Laplace operator in R” is

= log |z —y when n = 2;
¥(zy) = { st

2t T eyl when n > 2,

The Fourier coefficients of the restriction of ®(z,y) to B(0,r), for fixed y away
from the closure of B(0,r), are given in our next lemma.

Lemma 8.1 [If |y| > r, then

1 Rn+2v th)(y)
n+2v—2Vn+2v |yrtv-2’

K (y) = -
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Proof. Use the fact that in the cone C = {(z,y) € R* x R" : |y| > |z]|} one
has
oo J(¥)

(9
2@ =200 - Y. o m B i0E; (s2)

v=l j=1

the series converges together with all the derivatives in =z and y absolutely and
uniformly on closed subsets of C.
O
Expansion (8.2) has been frequently used, beginning with the paper of Deny
[8]. There may well be an earlier source.
Given a distribution f with compact support in B(0, R) \ B(0,r), define the
harmonic moments of f by

cy)szl(;)(y)f(y)dv(y), y=01,...;5=1,...,J(»).

The condition

<_

h(J)
limsup max /f )lylnﬂu_, v(y)

is easily seen to imply

oo J(V)

ZZ lc(J)I < oo.

v=0 j=1

Thus, applying Theorem 6.2 yields the following result due to Aizenberg and
Zalcman {2]. (They proved it for f being a measure.)

Let K be a compact set in R™ which does not contain the origin, and let f be
a distribution supported on K with moments

m® = [ f(y () do(y), v=0,1,...;j=1,...,J(»). (83)
|y|n+2y_ 1 - VY ""1.?_ LA ] v). M

Corollary 8.2 If

<L (8.4)

@
maxg |z

limsup max {/|m
Y— 00 J

and K does not separate 0 from oo, then m{) =0 forallv, 3.
Moreover, if K does separate 0 from oo, then for each sequence {m(J)} satisfying

(8.4) there is a distribution f with support on K having {m{)} as its moments, i.e.,
such that (8.3) holds.
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9 Factorizations

Suppose that P is a first order homogeneous differential operator with constant
coefhicients in R® satisfying P*P = —A, where P* is the formal adjoint for P. Such
differential operators are known as factorizations of the Laplace operator in R2.

The standard fundamental solution ®(z,y) for P is obtained by applying the
differential operator —P*' in the variable y to the standard fundamental solution of
A.

If Pu=0in a ball B C R®, then u is obviously a harmonic function in B. For
this reason, H*(B) N Sol(B) is a closed subspace of H*(B) N Harm(B).

In the recent paper of Shlapunov [11], there was constructed an orthonormal
basis {ef;')} in H*(B(0, R)) N Harm(B(0, R)) consisting of homogeneous harmonic
polynomials.

More precisely, each el

is an eigenfunction of Green’s integral

U — Gp(®(z, ), u)
8B(0,R)
on H*(B(0, R)) corresponding to an eigenvalue 0 < A <1 (Tt is worth pointing
out that if an e corresponds to AY) = 0, then

(J)( )

ly[r+av-2 =

away from the origin.)

From what has already been proved, it follows that {ef,j)} is a basis with double

orthogonality in H*(B(0, R)) N Harm(B(0, R)), with ¢ an arbitrary ball B(0,r) of
smaller radius.

Those 69), which correspond to the eigenvalues DY 0, form a basis with
double orthogonality in H*(B(0, R)) N Sol(B(0, R)).

Our next objective is to evaluate the Fourier coefficients of the restriction of
®(z,y) to B(0,r), for fixed y away from the closure of B(0,r).

Lemma 9.1 If [y| > r, then

. 1 Rnt+2v e(j)(y)

(J) = Y = e sy ) = .

k7 (y) n+2u_2\/n+2UP|y|ﬂm_2, v=0,1,...;j=1,...,J(»),
(9.1)

up to a multiple of v* (the constant being in a range depending only on n and s).

Proof. It is sufficient to apply the differential operator —P*' in the variable y
to both sides of decomposition (8.2) and make use of Lemma 1.4 in Shlapunov [11]
which states that

e v |€ 2o, < 1eP N m-(Brory < €2 v 1€ Lm0,
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with ¢; and ¢y constants depending only on n, s.
()

For a distribution f with compact support in B(0, R) \ B(0,r), we consider the
moments

e =fk£j)(y)f(y)dv(y), v=0L..57=1...,J(v).

The condition

(J) ) 1
lim sup max /f = dv(y)| < I
is easily verified to imply
oo J(v)
S <o
vr=0 j=1

Thus, Theorem 6.2 leads to the following result which sheds some new light on
Corollary 8.2.

Let K be a compact set in R™ which does not contain the origin, and let f be
a distribution supported on K with moments

(J)
m(’)—/f . IMUL do(y), v=01,.;5=1,...J0).  (9.2)
Corollary 9.2 If

< _ (9.3)

(7)
14
maxg |z

limsup max {/|m
v—00 J

and K does not separate 0 from oo, then m¥ =0 forallv, 3.
Moreover, if K does separate 0 from oo, then for each sequence {m(")} satisfying

(9.8) there is a distribution f with support on K having {m(’)} as its moments, t.e.,
such that (9.2) holds.
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