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Abstract. We study the connection between the Goodwillie tower of the

identity and the lower central series of the loop group on connected spaces.

We define the simplicial theory of homotopy n-nilpotent groups. This notion
interpolates between infinite loop spaces and loop spaces. We prove that the

set-valued algebraic theory obtained by applying π0 is the theory of ordinary

n-nilpotent groups and that the Goodwillie tower of a connected space is de-
termined by a certain homotopy left Kan extension. We prove that n-excisive

functors of the form ΩF have values in homotopy n-nilpotent groups.

1. Introduction

The aim of this article is to explore the connection between the Goodwillie
tower of the identity functor and the lower central series of Kan’s loop group of a
connected space. We express it with the aid of simplicial algebraic theories. We
expect the reader to be familiar with the basic notions of homotopical algebra and
Goodwillie’s calculus of homotopy functors. We define the notion of homotopy n-
nilpotent groups. The main theorems explain their relation to loop spaces 4.8, to
infinite loop spaces 4.13, to ordinary nilpotent groups 6.8, to the Goodwillie tower
of the identity 7.4, and tell us that n-excisive functors of the form ΩF take values
in the category of homotopy n-nilpotent groups 8.2.

Let us introduce some notation valid for the rest of the article. Let S∗ be the
category of pointed simplicial sets. Let S0 be the category of reduced simplicial
sets, i.e. simplicial sets with exactly one 0-simplex. Let X be an object in S0.
Further let F denote the S∗-category of S∗-functors from finite pointed simplicial
sets to S∗. A homotopy functor in F is a functor that preserves weak equivalences.

For a homotopy functor Xe in F Goodwillie [14] constructs a tower of functors

Xe → ...→ PnXe → Pn−1Xe → ...→ P1Xe → P0Xe = Xe (∗),

where the n-th stage is the universal n-excisive homotopy functor under Xe . Here,
n-excision is a higher version of excision; a 1-excisive functor is a homotopy functor
with a Mayer-Vietoris sequence. For Xe = id the Goodwillie tower converges on
simply connected spaces to the identity [13], but on connected spaces it converges
to the Bousfield-Kan completion [1]:

holim
n

Pn(id)(X) ' Z∞X
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We have P1(id) ' Ω∞Σ∞, the stable homotopy functor. So the Goodwillie tower
interpolates between stable and unstable homotopy. The map X → Pn(id)(X) is
roughly (n+ 1)c-connected, if X is c-connected.

Let sGr denote the category of simplicial groups. Kan’s loop group functor G is
part of a Quillen equivalence

G : S0 � sGr :W.

The homotopy category of S0 and of connected spaces are equivalent, see [12, V].
The lower central series filtration of GX defined in 5.1 was studied by Curtis [8]
who proved that for simply connected spaces the connectivity of the map

GX → GX/Γn+1GX

increases logarithmically with n. The tower {GX/Γn+1GX}n≥1 associated to the
filtration converges to the identity on simply connected spaces. As noted by Kan:

πs−1(GX/[GX,GX]) ∼= HsX for all s ≥ 1

Since the n-th stage of the lower central series tower is n-excisive there is a map
from the looped version {ΩPn(id)(X)}n≥1 of the Goodwillie tower of the identity
at X to the lower central series tower of GX.

Algebraic theories were introduced by Lawvere [21] to obtain categorical de-
scriptions of algebraic structures like groups, rings, Lie algebras, etc. An algebraic
theory is a category T having the natural numbers k ≥ 0 as objects such that k is
the product in T of k copies of 1. The maps from k to 1 are to be thought of as
the k-ary operations of T . They can be canonically identified with the free objects
on k generators. Algebras over T are product preserving functors from T to sets.

For purposes in homotopy theory we need to consider simplicial algebraic theories
where T -algebras have values in simplicial sets. These were first considered by
Reedy [24] and more recently by [25] and [3]. It is convenient to study pointed
versions where algebras are functors from T to pointed simplicial sets and the
category T itself will be enriched over S∗. If the theory has only one constant – as
in our case – there is no loss in generality. We also need a weaker notion of algebra:
homotopy T -algebras were introduced by Badzioch [3]. They are functors from T
to S∗ that commute with products up to homotopy.

Loop spaces and infinite loop spaces can be described as homotopy algebras over
certain simplicial theories P∞ and P1. The free objects on k generators of these
simplicial theories are given by

Ω(
k∨
i=1

S1) ' ΩΣ
∨
k

S0 and ΩP1(id)(
k∨
i=1

S1) ' Ω∞Σ∞
∨
k

S0.

We define for 1 ≤ n ≤ ∞ new theories Pn with free objects given by

ΩPn(id)(
k∨
i=1

S1).

Homotopy n-nilpotent groups are defined as homotopy Pn-algebras. For n =∞ we
get back loop spaces 4.8 and for n = 1 infinite loop spaces 4.13. Our next result
says that by applying π0 we get back the ordinary theory of n-nilpotent groups 6.8.

We obtain morphisms of theories

P∞ → ...→ Pn → Pn−1 → ...
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induced by the maps in the Goodwillie tower and pullback functors

ϕn : SPn
∗ → SP∞∗ ,

with left adjoints
λn : SP∞∗ → SPn

∗ .

For a connected space X we have ΩX ' Xe (1+) where Xe : P∞ → S∗ is a
homotopy ∞-algebra. Our second result 7.4 exhibits the Goodwillie tower of the
identity ΩPn(id)(X) as the homotopy left Kan extension along ϕn:

ΩPn(id)(X) ' (LλnXe )(1+).

This means that ΩPn(id)(X) is the free homotopy n-nilpotent group on ΩX.
Finally we prove in 8.2 that functors of the form ΩF where F is n-excisive,

naturally take vakues in the category of homotopy n-nilpotent groups. It follows
8.3 that functors of this form are naturally enriched in homotopy n-nilpotent groups.
This justifies a closer study of the notion.

Acknowledgments: We would like to thank André Joyal and Gerald Gaudens
for several stimulating discussions and Bernard Badzioch for explaining us theorem
2.8. The research for this paper was started while both authors were guests at the
Thematic Program on Geometric Applications of Homotopy Theory at the Fields
Institute for Mathematics, Toronto. The first author was a post-doctoral fellow at
the University of Western Ontario, London, Ontario. The paper was finished while
the first author was guest at the Max-Planck-Institut für Mathematik in Bonn.

2. Simplicial algebraic theories

We will consider theories enriched over the category S∗ of pointed simplicial sets
and algebras with values in S∗. As it turns out in our case 4.6, the resulting notion
is equivalent to the unpointed version. Let us recast the definitions in the pointed
version. For a simplicial category C we will refer to its simplicial set of morphisms
by C( , ).

Definition 2.1. Let Γ be the opposite of the category of finite pointed sets. The
category Γ has all products and every object is isomorphic to an object of the form

k+ = {1, ..., k} ∪ {+}.

Here + acts as the base point. For every 1 ≤ s ≤ k we have maps iks : k+ → 1+

given by the inclusion of the pointed set 1+ to k+ where the non basepoint of 1+

maps to s ∈ k+. These maps induce an isomorphism

k∏
s=1

iks : k+ ∼=
k∏
s=1

1+.

We can view Γ as a discrete simplicial category.

Definition 2.2. A simplicial pointed algebraic theory is a category T enriched over
pointed simplicial sets S∗ having the same discrete set of objects as Γ together with
a functor Γ→ T , which is the identity on objects and preserves products. We will
abbreviate this as simplicial theory. Morphisms of simplicial theories are product
preserving S∗-functors under Γ.
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The category T is usually given as a full subcategory of some other category. So
the morphisms in T are often left understood, and we will often confuse the objects
k+ of T with their images under this full inclusion. If we want to emphasize a
particular theory T , we will denote the objects by T (k+).

Definition 2.3. A strict T -algebra is a simplicial functorXe : T → S∗ that preserves
products strictly. This means that the map

k∏
s=1

Xe (iks) : Xe (k+)→ Xe (1+)k

is an isomorphism. A homotopy T -algebra is a simplicial functor from T to S∗ that
preserves products up to weak equivalence. This means that the above map is a
weak equivalence.

The category of strict T -algebras is a reflexive subcategory of the category of
S∗-functors ST∗ from T to S∗ and carries a model structure where fibrations and
weak equivalences are detected by the forgetful functor to ST∗ . This is explained in
the unpointed case in [3]. We will examine, how to relate these situations.

Definition 2.4. The constants of a simplicial theory are the 0-ary operations, i.e.
the simplicial set

A0 = T (0+, 1+).
A simplicial theory with one constant is a simplicial theory such that A0

∼= ∗.

An example of an ordinary algebraic theory that has more than one constant, is
the theory of rings with A0 = Z. However, the theories of groups and n-nilpotent
groups for n ≥ 1 have only one constant.

Remark 2.5. Let T be a simplicial algebraic theory. Then the forgetful functor
u : S∗ → S induces a functor

u∗ : ST∗ → ST .
This restricts to a functor

u∗ : AlgT,∗ → AlgT
from the category AlgT,∗ of pointed T -algebras to T -algebras AlgT .

Lemma 2.6. If T is a simplicial theory with one constant, the functor

u∗ : AlgT,∗ → AlgT
is an isomorphism of model categories.

Proof. Given an unpointed T -algebra X, we can always supply it with a canonical
basepoint

∗ ∼= X(0+)→ X(1+),
induced by the unique constant 0+ → 1+ in T . We obtain an inverse functor for u∗.
Because weak equivalences and fibrations are given in both model categories by the
ones on underlying simplicial sets, we have an isomorphism of model categories. �

Now we want to consider homotopy T -algebras. The category ST∗ can be equipped
with a model structure where the objectwise fibrant homotopy T -algebras are ex-
actly the fibrant objects. This model structure is a localization of the projective
model structure on ST∗ .
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Definition 2.7. We will call the category ST∗ together with this localized model
structure the homotopy algebra model structure

(
ST∗
)

halg
.

It is shown in [3] that there is a Quillen equivalence between strict T -algebras
and homotopy T -algebras. This striking result tells us that – independently of the
theory T – any homotopy T -algebra can be rigidified.

Theorem 2.8 (Badzioch). Let F : S → T be a morphism of simplicial theories.
If F is a weak equivalence of simplicial categories then pulling back along F is
the right adjoint of a Quillen equivalence between the associated homotopy algebra
model categories.

Proof. In theorem 2.1 of [11] it is shown that F ∗ : ST∗ → SS∗ is the right adjoint
of a Quillen equivalence between the projective model structures. The homotopy
algebra model structures are left Bousfield localizations. This process preserves
Quillen equivalences by theorem 3.3.20 from [16]. �

3. The n-excisive model structure

Definition 3.1. We denote by F the category of S∗-enriched functors from finite
pointed simplicial sets Sfin

∗ to pointed simplicial sets S∗.

The category F is enriched, tensored and cotensored over S∗ where both tensor
and cotensor are given objectwise. It carries a projective model structure where
weak equivalences and fibrations are given objectwise.

For an introduction to Goodwillie’s calculus of homotopy functors and in par-
ticular for the notion of n-excisive homotopy functor we refer to [14] and [20].

In [5] and [10] the projective model structure on F was localized to obtain
the n-excisive model structure where the fibrant objects are exactly the n-excisive
homotopy functors. A map Xe → Ye is an n-excisive weak equivalence if and only if
it induces an objectwise weak equivalence

PnXe → PnYe .
Here PnXe denotes the n-th stage in the Goodwillie tower of the functor Xe h which
is the functor Xe pre- and postcomposed with an objectwise fibrant replacement
functor in S∗. However it is more convenient for us to consider the injective model
structure on F constructed by Joyal [19] and Jardine [17] where cofibrations are
given by all inclusions. This model structure is also proper and simplicial with the
advantage that all objects are cofibrant. The same techniques as in [5] apply to
arrive at an n-excisive model structure on F where a map Xe → Ye is an n-excisive
equivalence as above and an an n-excisive fibration if and only if it is an injective
fibration such that the square

Xe //

��

PnXe
��

Ye // PnYe
is an objectwise homotopy pullback square. We have:

Theorem 3.2. The injective n-excisive model structure on F is a cofibrantly gen-
erated proper simplicial model structure. All objects are cofibrant.
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Corollary 3.3. Let Ye be an injectively fibrant n-excisive homotopy functor. Then
for every Xe in F we have a natural weak equivalence

F(PnXe , Ye ) ' F(Xe , Ye ).

4. Homotopy n-nilpotent groups

We will now describe the simplicial theory of homotopy n-nilpotent groups.

Definition 4.1. In the category F let ( )inj be a fibrant replacement functor with
respect to the injective model structure.

Definition 4.2. We define a full subcategory Pn of the category F , which has for
each natural number k ≥ 0 exactly one object given by

Pn(k+) =
k∏
i=1

Ω(Pn(id))inj.

We also define for n =∞ the category P∞ with objects given by

P∞(k+) =
k∏
i=1

Ω(id)inj.

We employ the convention that the empty product is the final object ∗, and so we
have for all 1 ≤ n ≤ ∞ and 0 ≤ k <∞:

Pn(k+) ∼=
k∏
i=1

Pn(1+).

We let In : Pn → F be the inclusion functor.
We also define a functor γn : Γ → Pn on objects simply by k+ 7→ Pn(k+). For

a morphism fop : `+ → k+ in Γ which is represented by a map f : k+ → `+ of
pointed sets we define γn(fop) on the i-th factor of Pn(`+) as follows:

Pn(k+) =
∏
k Ω(Pn(id))inj

prf(i)

// Ω(Pn(id))inj

we project to the f(i)-th factor of Pn(k+), then take the inclusion to i-th factor of
Pn(`+).

The natural transformation id→ Pn(id) induces a morphism of theories

pn : P∞ → Pn.
Obviously we have the equation pnγ∞ = γn.

Remark 4.3. As a full subcategory of F the category Pn for 1 ≤ n ≤ ∞ is enriched
over S∗. The category Pn constitutes a simplicial theory as discussed in section
2. Therefore we can consider Pn-algebras and homotopy Pn-algebras. Objectwise
fibrant homotopy Pn-algebras are the fibrant objects in (SPn

∗ )halg.

Definition 4.4. A homotopy n-nilpotent group is a space weakly equivalent to
Xe (1), for some homotopy Pn-algebra Xe .

Lemma 4.5. For all n ≥ 1 and k, ` ≥ 0 we have canonical weak equivalences

Pn(k+, `+) '

(
ΩPn(id)(

k∨
i=1

S1)

)`
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Proof. Recall that F from 3.1 is endowed with the injective n-excisive model struc-
ture where all objects are cofibrant. We compute:

Pn(k+, `+) ∼= F(
∏
k

Ω(Pn(id))inj,
∏
`

Ω(Pn(id))inj)

' F(Ω(id)k,Ω(Pn(id))inj)`

∼= F(mapS∗(
∨
k

S1, ),Ω(Pn(id))inj)`

∼=

(
Ω(Pn(id))inj(

∨
k

S1)

)`

'

(
ΩPn(id)(

∨
k

S1)

)`
The weak equivalence in step 2 comes from 3.3. We also use the enriched Yoneda
lemma. �

Remark 4.6. By 4.5 the theory Pn has only one constant. So by lemma 2.6 we
can work in the pointed setting without losing information.

Corollary 4.7. The free homotopy n-nilpotent group on k generators is given by

ΩPn(id)(
k∨
i=1

S1).

Proof. The free algebra Ak on k generators in any simplicial theory T can be
obtained by the following formula:

Ak ∼= T (k+, 1+).

Now the statement follows from 4.5. �

If Fk is the free group on k generators then we have the following canonical weak
equivalences:

(4.1) P∞(k+, 1+) ' Ω
∨
k

S1 ' ΩBFk ' Fk

It follows that the theory P∞ is weakly equivalent as a simplicial category to the
discrete theory of groups.

Theorem 4.8. The category (SP∞∗ )halg is Quillen equivalent to the category of
simplicial groups. In particular, the homotopy category of homotopy ∞-nilpotent
groups is equivalent to the homotopy category of loop spaces.

Proof. Follows readily from the equivalences (4.1) and theorem 2.8. �

In [4] the authors define a theory Tn such that its homotopy algebras are exactly
n-fold loop spaces.

Definition 4.9. Set Tn(k+) =
∨
k S

n and take as morphisms the derived mapping
space

Tn(k+, `+) = mapder
S∗ (
∨
`

Sn,
∨
k

Sn).
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So Tn is the opposite of the full subcategory of S∗ given by the finite wedges of
n-spheres. The suspension functor induces a morphism tn : Tn → Tn+1 of simplicial
theories:

Tn(k+, `+) = (Ωn
∨
k

Sn)` → (Ωn+1
∨
k

Sn+1)` ∼= Tn+1(k+, `+).

Theorem 4.10 (Thm 1.1, [4]). A pointed space X is an n-fold loop space if and
only if there exists a homotopy Tn-algebra Xe with Xe (1+) ' X.

Definition 4.11. We obtain a morphism of theories ϑn : Tn → P1 induced by the
maps

Tn(k+, `+) = (Ωn
∨
k

Sn)` → (colim
s

Ωn+s
∨
k

Sn+s)` ' P1(k+, `+)

together with the equation ϑn+1tn = ϑn.

Remark 4.12. The theory P1 is canonically weakly equivalent to the colimit of
the sequence

. . . // Tn
tn // Tn+1

tn+1 // . . .

in the category of simplicial categories (with fixed set of objects N) and hence in
the category of simplicial theories.

Theorem 4.13. A pointed space X is an infinite loop space if and only if there
exists a homotopy P1-algebra Xe with Xe (1+) ' X. The homotopy category of
homotopy 1-nilpotent groups is equivalent to the homotopy category of infinite loop
spaces.

Proof. Recall theorem 4.10. By 2.8 and remark 4.12 a space X is an infinite loop
space if and only if the associated functor

Xe : Γ→ S∗, k+ 7→ Xk

extends via the maps tn to a product-preserving functor from Tn for all n ≥ 0. The
existence of the morphism ϑn shows that X is a homotopy P1-algebra if and only if
Xe restricts to a homotopy Tn-algebra for each n ≥ 0. The equivalence of homotopy
categories now also follows. �

5. The lower central series of the loop group

Definition 5.1. Let G be a group. For subgroups H and K of G let [H,K] denote
the normal subgroup generated by elements of the form h−1k−1hk where h ∈ H
and k ∈ K. The lower central filtration for G is defined in the following inductive
way: Let

Γ1G = G and Γn+1G = [G,ΓnG].
We obtain a filtration of G by normal subgroups with an associated tower:

G/Γ2G G/Γ3Goo G/Γ4Goo ...oo

G/[G,G] Γ2G/Γ3G

OO

Γ3G/Γ4G

OO

This is the lower central series of G. A group G is called n-nilpotent if Γn+1G = 0.
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Definition 5.2. For an abelian group A let

Lie∗A =
⊕
n≥1

LienA

be the free graded Lie algebra on A.

Remark 5.3. The Poincaré-Birkhoff-Witt theorem [26, I.4.3] says that there is a
natural isomorphism of abelian groups

Lien(G/[G,G]) ∼= ΓnG/Γn+1G

for every free group G. In fact, this group is free abelian on generators given by a
Hall basis of basic commutators of weight n over the generators of G [15].

Remember that S0 denotes the category of reduced simplicial sets and sGr the
category of simplicial groups. Let G : S0 → sGr be Kan’s loop group functor. We
can apply the functors from the lower central series degreewise.

Definition 5.4. Let Γn : S0 → S∗ be the functor given by

ΓnX = B (GX/Γn+1GX) .

The functor Γ
n

: S0 → S∗ will be given by

Γ
n
X = B (ΓnGX/Γn+1GX) .

Remark 5.5. The loop group is a free simplicial group. It follows from a theorem
by Dold [9] that both functors Γn and Γ

n
preserve weak equivalences. Moreover

with 5.3 we have a formula:

Γ
n
X ∼= BLien(Z̃X)

Here Z̃X = ZX/Z∗ is the reduced free simplicial abelian group on X.

Remark 5.6. It is proved by Curtis [8] that for a simply connected space X the
map

GX → GX/ΓnGX = Γn−1X

is {log2 n}-connected where {a} is the least integer ≥ a. If X is merely connected,
the tower {Γn(X)}n∈N converges to the Bousfield-Kan completion Z∞(X). Com-
pare 6.1 about the Goodwillie tower of the identity.

For n = 1 we have Γ
1
X = BZ̃X. This functor is linear, because we have for all

s ≥ 0:
πsBZ̃X ∼= H̃sX

Here H̃∗X is the reduced singular homology of the reduced spaceX. More generally,
there is the following lemma.

Lemma 5.7. The functor Γ
n

is n-excisive.

Proof. Consider for free abelian groups A1, ..., An+1 the cubical diagram

P (n+ 1)→ FrAb, S 7→
⊕

i∈n+1−S
Ai,

where the maps are induced by collapsing summands. The (n+ 1)-st cross effect of
the functor Lien : FrAb→ Ab is given by H0 of the associated complex

k 7→
⊕
|S|=k

Lien(
⊕

i∈n+1−S
Ai) =: Lk.
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But the map L0 → L1 is clearly injective. It follows that the composition

Γ
n
X = BLien(Z̃X)

is n-excisive. �

Remark 5.8. It is not true though that the functor Γ
n

is n-homogeneous. By
Curtis’ result 5.6 the tower {Γn}n≥0 converges to the identity on simply connected
spaces. This shows that the layers of the tower have to contribute something to
the linear part given by reduced homology H̃∗ in order to make it up to the first
derivative of the identity given by stable homotopy πst

∗ .

Corollary 5.9. The functor Γn is n-excisive.

Proof. There is a fiber sequence

Γn → Γn−1 → BΓ
n

of functors. By induction the statement follows from 5.7. �

6. Relation to ordinary nilpotent groups

Before we talk about ordinary nilpotent groups, we need to gather some remarks
on the Goodwillie tower of the identity.

Remark 6.1. The identity functor is 1-analytic [13], which shows that its Good-
willie tower converges on simply connected spaces to the identity. However, on
connected spaces X it converges to the Bousfield-Kan completion of X:

(6.1) holim
n

Pn(id)(X) ' Z∞X

This is proved on the last page of [1].

Definition 6.2. Let Dn(id)(
∨
k S

1) be the homotopy fiber of the map

Pn(id)(
∨
k

S1)→ Pn−1(id)(
∨
k

S1)

in the Goodwillie tower. Then Dn(id)(
∨
k S

1) = Ω∞En for the following spectrum(
∂n(id) ∧ (

∨
k

S1)∧n
)
hΣn

=: En,

where ∂n(id) is the n-th derivative of the identity.

Lemma 6.3. The rational homology of En is concentrated in degree 1.

Proof. There is a Serre spectral sequence

Hi(Σn, HQj(∂n(id) ∧ (
∨
k

S1)∧n)) =⇒ HQi+j(En)

The homology of Σn with coefficients in a rational vector space vanishes for i > 0
and gives the formula:

HQ∗En ∼= HQ∗(∂n(id))⊗Q[Σn] HQ∗((
∨
k

S1)∧n).

The homology of (
∨
k S

1)∧n is concentrated in degree n. By the work of Johnson
[18] and Arone-Mahowald [2] we know that the spectrum ∂n(id) is non-equivariantly
equivalent to

∨
(n−1)! S

1−n and so has homology concentrated in degree 1 − n. So
1− n+ n = 1, and the statement follows. �
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Lemma 6.4. The group π1Pn(id)(
∨
k S

1) is nilpotent of degree n.

Proof. We can settle the case n = 1 right away:

π0ΩP1(id)(
∨
k

S1) ∼= π1(Ω∞Σ∞
∨
k

S1) ∼= Zk ∼= Fk/Γ2Fk

In particular, this group is nilpotent of degree 1. We proceed by induction on n.
¿From the Goodwillie tower we have for each n ≥ 1 the following exact sequence of
groups:

π1Dn(id)(
∨
k

S1)→ π1Pn(id)(
∨
k

S1)→ π1Pn−1(id)(
∨
k

S1)

→ π0Dn(id)(
∨
k

S1) ∼= 0
(6.2)

The last group vanishes because of 6.3. By Goodwillie’s results [14] the spaces
Dn(id)(

∨
k S

1) are infinite loop spaces and the map in the Goodwillie tower is a
principal fibration, i.e. there is a homotopy pullback square

Pn(id)(
∨
k S

1) //

��

∗

��
Pn−1(id)(

∨
k S

1) // BDn(id)(
∨
k S

1)

where BDn(id)(
∨
k S

1) is a delooping of Dn(id)(
∨
k S

1) and therefore simply con-
nected. Let

Kn = im

[
π1Dn(id)(

∨
k

S1)→ π1Pn(id)(
∨
k

S1)

]
.

Then the short exact sequence

0→ Kn → π1Pn(id)(
∨
k

S1)→ π1Pn−1(id)(
∨
k

S1)→ 0(6.3)

is a central extension. It follows inductively that the group π1Pn(id)(
∨
k S

1) is
nilpotent of degree n. �

Lemma 6.5. The groups πsPn(id)(
∨
k S

1) are finite for s ≥ 2.

Proof. These groups are finitely generated. So it is enough to prove that the groups
πsPn(id)(

∨
k S

1) are torsion above degree s = 1. We will prove this by induction
along the Goodwillie tower where the case n = 0 is obvious, because the space is
contractible. Next we know by 6.3 that the rational homology of Dn(id)(

∨
k S

1) is
concentrated in degree 1. SinceDn(id)(

∨
k S

1) is an infinite loop space, a form of the
Hurewicz theorem [27, thm. 9.6.20] tells us that also the groups πsDn(id)(

∨
k S

1)
are torsion for s > 1. The result now follows from the long exact homotopy sequence
of the Goodwillie tower. �

Corollary 6.6. There is an isomorphism of groups:

π1 holim
n

Pn(id)(
∨
k

S1) ∼= lim
n
π1Pn(id)(

∨
k

S1)



12 GEORG BIEDERMANN AND WILLIAM G. DWYER

Proof. There is the Milnor exact sequence:

0→ lim
n

1π2Pn(id)(
∨
k

S1)→ π1 holim
n

Pn(id)(
∨
k

S1)→ lim
n
π1Pn(id)(

∨
k

S1)→ 0

By 6.5 the lim1-term vanishes. �

The following conjecture is related to the vanishing of lim1 π2Pn(id)(
∨
k S

1).

Conjecture 6.7 (Arone-Mahowald-Kuhn). For each prime p the map

πsPpn(id)(S1)(p) → πsPpn−1(id)(S1)(p)

is null for s ≥ 2.

Now we can describe the relation of Pn to the set-valued theory of ordinary
n-nilpotent groups Niln, whose k-ary operations are given by the free n-nilpotent
group on k generators:

Niln(k+, 1+) = Fk/Γn+1Fk

Here Fk is the free group on k generators. We can exhibit this theory by applying
π0 to the theory of homotopy n-nilpotent groups. First observe that for the case
n =∞ the statement

π0P∞(k+, 1+) = π1(
∨
k

S1) ∼= Fk ∼= Nil∞(k+, 1+)

follows from the Seifert-Van Kampen theorem. This isomorphism has an analogue
for finite n. There is a map

Fk ∼= π1(
∨
k

S1)→ π1Pn(id)(
∨
k

S1) ∼= π0Pn(k+, 1+)

induced by the natural transformation id→ Pn(id), which factors through

αn : Fk/Γn+1Fk → π1Pn(id)(
∨
k

S1),

because the target is n-nilpotent by 6.4.

Theorem 6.8. We have an isomorphism of groups:

αn : Niln(k+, 1+) = Fk/Γn+1Fk
∼= // π1Pn(id)(

∨
k S

1) ∼= π0Pn(k+, 1+)

This induces an isomorphism of categories Niln ∼= π0Pn.

Proof. We show first that αn is injective by constructing a left inverse βn. According
to 5.9 the functor Γn is n-excisive. So there is a natural transformation Pn(id) →
Γn under the identity functor. If we evaluate this diagram on

∨
k S

1 and apply
π1
∼= π0G, we obtain a map bn making the following diagram commutative:

Fk
γn+1 //

∼=

��

Fk/Γn+1Fk

∼=fn

��

αnttiiiiiiiiiiiiiiiii

π1Pn(id)(
∨
k S

1)

bn **UUUUUUUUUUUUUUUU

π0G(
∨
k S

1) //

66mmmmmmmmmmmm
π0

[
G(
∨
k S

1)/Γn+1G(
∨
k S

1)
]
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Let βn = f−1
n bn. It follows that βnαnγn+1 = γn+1. Since γn+1 is the universal map

into an n-nilpotent group, we have βnαn = id.
But the map αn is also surjective. Let Qn be the quotient of αn, i.e. the pointed

set of left cosets. We obtain a short exact sequence of towers:

...

��

...

��

...

��
0 // Fk/Γn+1Fk

αn+1 //

��

π1Pn(
∨
k S

1) //

��

Qn //

��

0

0 // Fk/ΓnFk
αn //

��

π1Pn−1(
∨
k S

1) //

��

Qn−1
//

��

0

...
...

...

¿From (6.2) it follows that the vertical maps are surjective for n ≥ 1. So all lim1-
terms vanish. In the limit we obtain a short exact sequence:

0→ lim
n
Fk/Γn+1Fk → lim

n
π1Pn(id)(

∨
k

S1)→ lim
n
Qn → 0

We can combine the weak equivalence (6.1) with the isomorphism from 6.6 to
conclude that limnQn ∼= ∗. In turn we have Qn = ∗ for all n ≥ 1, since all tower
maps are surjective. So each αn is an isomorphism. �

7. The Goodwillie tower of the identity

The natural coaugmentation id→ Pn(id) induces a functor

pn : P∞ → Pn
of simplicial theories.

Definition 7.1. We will denote the functor obtained by pulling back along the
functor pn by

ϕn : SPn
∗ → SP∞∗ .

This is just the forgetful functor. It has an S∗-left adjoint λn : SP∞∗ → SPn
∗ .

Remark 7.2. One can easily prove that the pair (ϕn, λn) forms a Quillen pair for
the homotopy algebra model structures on both sides.

Definition 7.3. We let
Lλn : SP∞∗ → SPn

∗

be the enriched homotopy left Kan extension, which is obtained by precomposing
λn with a projective cofibrant replacement functor on SP∞∗ .

Theorem 7.4. Let Xe be a local homotopy P∞-algebra with Xe (1+) ' ΩX for some
reduced simplicial set X. Then there is a natural weak equivalence

(LλnXe )(1+) ' ΩPn(id)(X).
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Proof. In the case X =
∨
k S

1 the associated homotopy P∞-algebra Xe is given by

Xe [`] = Ω(
∨
k

S1)` ' P∞(k+, `+),

while
Pn(k+, 1+) ' ΩPn(id)(

∨
k

S1).

Enriched left Kan extension preserves representable functors, so we have an iso-
morphism:

LλnP∞(k+, ) ∼= Pn(k+, )
This proves the case X =

∨
k S

1. Now we observe that every reduced finite sim-
plicial set X is weakly equivalent to the realization of a bisimplicial set X•, which
consists degreewise of a finite wedge of copies of the circle S1. The statement now
follows from the next theorem 7.6 applied with F = ΩPn(id) and r = k = 1. �

Remark 7.5. The previous theorem can be viewed as stating that ΩPn(id)(X) is
the free homotopy n-nilpotent group on the loop space ΩX.

The condition En(k) in the next theorem is defined in [13, Def. 4.1]. The
theorem itself is taken from the unpublished version [22] of Mauer-Oats’ thesis.
The published version is [23].

Theorem 7.6. Let F be a reduced finitary analytic functor from spaces to spaces
satisfying condition En(rn − c) for all n ≥ 1. If X• is a simplicial k-connected
space with k ≥ max(r,−c) then

F |X•| ' |FX•|.

A sketch of the proof goes as follows: First one observes that homogeneous
functors with connective coefficient spectrum commute with realizations. Then the
theorem follows by induction up the Goodwillie tower. All along one checks that
the connectivity estimates allow one to apply theorem [6, B.4] that gives sufficient
conditions for the realization functor to commute with pullbacks.

8. Values of n-excisive functors

Finally we will prove that functors of the form ΩF with F n-excisive naturally
take values in the category of homotopy n-nilpotent groups. We take this as a
justification of the usefulness of the notion of homotopy n-nilpotent groups.

We need to compose functors. But two functors F and G in F cannot be com-
posed directly. However, we can extend the functor F : Sfin

∗ → S∗ to a functor
S∗ → S∗ by enriched left Kan extension. By abuse of language we will denote this
functor again by F . Then the composition F ◦G is well-defined.

Observe that the functor ◦G : F → F commutes with finite limits. And there
is a functor

Pn( ◦G) : F → F , F 7→ Pn(F ◦G),
which also commutes with finite limits. The map F → PnF induces a map

(8.1) Pn(F ◦G)→ Pn((PnF ) ◦G)

under F ◦G.

Lemma 8.1. The map (8.1) consists of objectwise weak equivalences.
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The proof is taken from Michael Ching in [7, Prop. 6.1(1)], who formulates the
statement for functors from spectra to spectra. But the proof goes through for our
case of functors from pointed spaces to pointed spaces.

Theorem 8.2. Let F be a functor of the form F = ΩG with an n-excisive functor
G in F . Then for any X in Sfin

∗ the space F (X) is a homotopy n-nilpotent group.

Proof. Recall the full inclusion functor In : Pn → F , which obviously commutes
with products. The same applies to the functor Pn( ◦G) : F → F . Observe also
that both functors commute up to homotopy with Ω. We arrive at the conclusion
that for any F = ΩG the functor Pn → S∗ given by∏

k

ΩPn(id) 7→ Pn((
∏
k

ΩPn(id)) ◦G)

'
∏
k

ΩPn(Pn(id) ◦G) '
∏
k

ΩPn(G) ' F k

preserves products up to weak equivalence by 8.1. For any space X the evaluation
functor EvX : F → S∗ also preserves products. Hence F (X) is a homotopy n-
nilpotent group. �

The following theorem is formal.

Theorem 8.3. Let G be a functor of the form G = ΩH with an n-excisive functor
H in F . Let F be an arbitrary functor in F . Then F(F,G) is a homotopy n-
nilpotent group naturally in F and G.
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