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ABSTRACT.

In {Br], Bryant gave examples of torsion free connections on four-manifolds whose
holonomy is ezolic, i.e. is not contained on Berger’s classical list of irreducible ho-
lonomy representations [Ber]. The holonomy in Bryant’s examples is the irreducible
four-dimensional representation of SI(2,R) (Gi(2,R) resp.) and these connections are
called H3-connections (G3-connections resp.).

In this paper we give a complete classification of homogeneous G3-connections.
The moduli space of these connections is four-dimensional, and the generic homoge-
neous G-connection is shown to be locally equivalent to a left-invariant connection
on U(2). Thus, we prove the existence of compact manifolds with Ga-connections.
This contrasts a result in [Sch] which states that there are no compact manifolds
with an Hji-connection.

80 Introduction.

Since its introduction by Elie Cartan, the holonomy of a connection has played an
important role in differential geometry. Most of the classical results are concerned
with the holonomy of Levi Civita connections of Riemannian metrics. In 1955,
Berger [Ber] classified the possible irreducible Riemannian holonomies and much
work has been done since to study these holonomies and their applications. See
[Bes] and [Sa] for a historical survey and also [J] for more recent results.

At the same time, Berger also partially classified the possible non-Riemannian
holonomies of torsion free connections. However, his classification omits a finite
number of possibilities, which are referred to as ezotic holonomies. Until now, the
complete list of exotic holonomies is still not known.

The incompleteness of Berger’s list and therefore the existence of exotic holono-
mies was shown by Bryant [Br|. He investigated the irreducible representations of
S{(2,R). For each d > 1, we can regard S{(2,R) as a subgroup Hq C Gl(d+1,R) via
the (unique) (d + 1)-dimensional irreducible representation of S{(2,R). Moreover, if
we let G4 C Gl(d+1,R) be the centralizer of H4, then G4 may be regarded as a rep-
resentation of GI(2,R). For d > 3, these representations do not occur on Berger’s
list of possible holonomies and are therefore candidates for exotic holonomies.

In his paper, Bryant showed that in the case d = 3 torsion free connections
with holonomies H3z and G3 do exist. We shall refer to them as Hj3-connections
(G3-connections resp.).

1991 Meathematics Subject Classification. Primary 53A15; Secondary 53B05.
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The “moduli space” of Hy-connections is the union of a one-dimensional space
and six points. Moreover, there is exactly one homogeneous (non-flat) Hj-con-
nection with a five-dimensional symmetry group. For other global properties of
Hj3- connections see [Sch]. On the other hand, the moduli space of G3-connec-
tions is infinite dimensional; namely, the “generic” G3-connection depends on four
functions of three variables.

In this paper, we investigate certain “non-generic” Gs-connections. The generic
condition in [Br| implies that the connection does not admit any non-zero infin-
itesimal symmetries. In a sense, we assume the exact opposite and consider the
question if there exist any (locally) homogeneous Gj-connections besides the flat
and the (unique) homogeneous Hj-connection. The answer to this question which
had been raised in [Br] is affirmative. In fact, we shall arrive at a complete classi-
fication of homogeneous G3-connections.

At this point, we shall state some consequences of this classification.

Theorem 0.1. Any homogeneous G3-connection whose holonomy is not contained
in Hy 1s locally equivalent to a left-invariant connection on a four-dimensional Lie
group.

Theorem 0.2. Up to isomorphism, there are twelve distinct possibilities for the
Lie algebra of the symmetry group of a G3-connection satisfying the hypothesis of
Theorem 0.1. One of them is nilpotent, nine are solvable and the remaining two
are gl(2,R) and u(2).

Theorem 0.3. The modult space of homogeneous G3-connections is four-dimen-
sional. More specifically, the moduli space has one four-dimensional component,
seven one-dimensional components and fourteen points, including the flat connec-
tion and the homogeneous Hj-connection.

Theorem 0.4. The reduced holonomy of a homogeneous Gs-connection 18 either
trivial, equal to Hy or equal to all of Gs.

Here, the reduced holonomy stands for the identity component of the holonomy
group. This result follows from a case-by-case investigation of all entries of the
classification.

Theorem 0.5. Generically, the symmetry group of a homogeneous G3-connection
has Lie algebra u(2), i.e. the generic homogencous Gs-connection is locally equiva-
lent to a left-invariant connection on the (compact) Lie group U(2).

As a consequence, this yields the remarkable
Corollary 0.6. There are G3-connections on compact manifolds.

Corollary 0.6. contrasts a result in [Sch] which states that there are no Hj-
connections on compact four-manifolds.

In §1, we briefly recall the structure equations for a torsion free G3-connection,
following the notation of [Br].

In §2, the core of this paper, we first show that every connection other than the
flat and the homogeneous Hj-connection has a symmetry group of dimension at
most four. As a consequence, every homogeneous Gj-connection other than these
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two must be locally equivalent to a left-invariant connection on a four-dimensional
Lie group. These connections are then shown to be in one-to-one correspondence
with the orbit space of polynomials satisfying certain equations. Those polynomials
can be completely classified.

Finally, in §3 we explicitly present the different polynomials that yield homo-
geneous G3-connections. We also determine the Lie algebras of their symmetry
groups which essentially determine, of course, the underlying manifolds.

The main part of the work presented here has been completed while the author
was a visiting faculty member at Washington University in St. Louis, Mo, and he
wishes to thank the department of Mathematics there for its hospitality.

§1 The structure equations.
We begin with a brief description of the irreducible S{(2, R)-representations.
For d € N, let V4 C Rz, y] be the (d + 1)-dimensional subspace of homogeneous
polynomials of degree d. There is an Si(2,R)-action (GI(2, R)-action resp.) on Vy
induced by the transposed action of SI(2,R) (GI(2,R) resp.) on R?, ie. if p € Vy
and A € SI(2,R) (A € GI(2,R) resp.) then

(A-p)(z,y) == p(w,v)  with (u,v) = (z,y)A

It is well known that this action is irreducible for every d and moreover that -
up to equivalence - this is the only irreducible (d + 1)-dimensional representation
of Si(2,R) (Gl(2,R) resp.) (cf. [H]). We let Hy C GI(V;) (G4 C Gi(V4) resp.) be
the image of this representation and let hy C gl(V4) (ga C gl(V4) resp.} be the Lie
algebra of Hy (G4 resp.).

The Clebsch-Gordan formula [H] describes the irreducible decomposition of a
tensor product of irreducible SI(2, R)-modules:

vm ® vn = v|rn—n| ) vlm—nH—‘Z ®--- @ vm+n—-2 ) vm-}-n-

A convenient tool to compute the decomposition of polynomials into their irre-
ducible components are the bilinear pairings

( ) )p : 1/11 ® ‘/"1 — ‘/n-l-m—‘Zp

1 & P oPu OPv
(u vp— —'kz (k) GF 0Pty GrFz oty for uveV,veV,.

It can be shown that these pairings are S(2, R)-equivariant and therefore are the
projections onto the summands of the Clebsch-Gordan formula.

Now we shall describe the structure equations for GG3-connections. Let M be a
four-manifold and let = : § —+ M be the V;-coframe bundle, i.e. each u € §F is a
linear isomorphism u : Tp(,)M—3V3. Then § is naturally a principal right GI(Vs)-
bundle over M, where the right action R, : § — § is defined by R,(u) = g~ 'ou. The
tautological 1-form w on F with values in V; is defined by letting w(v) = u(m.(v))
for v € T,§. For w, we have the Gi(V;)-equivariance R;( w) =g lw.

A Gj-structure on M is, by definition, a G3-subbundle F C §. For any G3-
structure, we will denote the restrictions of 7 and w to F' by the same letters.
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We now turn to describe connections on F. Since Gj3 is canonically isomorphic
to GI(2,R), we may regard the GI(2,R)-representations Vg equally well as Gj-
representations. Moreover, it is easily seen that the map py: Vo ® Vo — End(Vy)
defined by pa(a® + a®)(a?) := (a®a?)  + (a?,a?), for all @' € V; establishes an
isomorphism V; @ Vo gq4. We will use this to regard a connection on F as a
G3-equivariant, V; @ Vg-valued 1-form ¢ = ¢ + A on F where ¢ and A take values
in V, and Vp resp. The torsion of ¢ is then represented by the Vj3-valued 2-form
T(p) = dw+{$,w), + (A, w), and the curvature of ¢ by the (Vo & Vo)-valued 2-form
R(p) = dp + 5 {p,0), = dA +dd + 5 (¢, 8),.

If we assume that ¢ describes a torsion free connection, then the first structure
equation T(p) = 0 reads

(1) dw=—-AAw—(¢,w), .
Differentiating (1) yields

1
dAAw + <d¢+ §(¢’¢)1 ,w> =0.
1
This equation, which is the first Bianchi identity, can be solved to show that there
is a (Vy @ V4)-valued function a = a? + a* on F with @' : F — V;, such that the
second structure egquations hold:

d)\ = <a4,(w,w)1)4,

1

2
2 d¢ = _% (¢,¢)1 + az(w,w>3 19 (az,(w,w)1>2 + '11—2 (a",(w,w)l)B.

Note that, in particular, we obtain as a formula for the curvature

() Rp) = (a's(w,0),), + a¥w,0)y — 15 (a%, (0,)y), + 75 (0, (0,00,

Differentiating these equations once again and solving for a we find that there is
a (V1 © Vs ® Vs @ Vr)-valued function b = b! + 8% +8° + b7 on F with b* : F = V;,
such that the third structure equations hold:

da® =2X\ A ad® - (qb, az)l + 10 (bl,w)] + (ba,w>2 + 14 (bs,w>3,

O dat —annat = (6at), +9 (B w), — 5 (5, w), + (B,

The function b represents the covariant derivative VR of the curvature. In
particular, we emphasize that (VR)(z) = 0 at some z € M if and only if b(u) =0
for all u € #~!(z).

We can also obtain formulas for db by differentiating (4). Since these formulas
are fairly involved we shall not write them in full. However, we can describe the
G3-equivariance of b by the equations

(5) db' =3AAb — (¢,b'), modw, fori=1,3,5,7.

A Gj-connection on M is, by definition, a G3-structure on M which carries

a torsion free connection. A manifold M with a G3-connection will be called a
G3-manifold.
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§2 Homogeneous Gs-structures.

Throughout this section, we shall assume that M is a connected G3-manifold.
We begin with some definitions.

Definition 2.1. Let M be a connected G3-manifold with connection V and let
7 : F = M be the associated G3-structure.

(1) A (local) symmetry on M is a (local) diffeomorphism @ : M — M such that
2, (VxY) =V, (x)a,(Y) for all X,Y € X(M).

(2) A (local) symmetry on F is a (local) diffeomorphism « : F' — F such that
o*(w) = w and a*(p) = .

There is a one-to-one correspondence between symmetries on M and on F. In
fact, given a (local) symmetry a on M, there is a unique (local) symmetry o on F
making the diagram

F —— F

commute, and vice versa.

Deflnition 2.2. Let M and n : F - M as before.

(1) An infinitesimal symmetry on M is a vector field S € X(M) such that
L£sV =0, ie [S,VxY] - Vis,x1¥ — Vx[S,Y]=0for all X,Y € X(M).

(2) An infinitessimal symmetry on F is a vector field § € X(F) such that Lsw =
Ls6 =0.

Again, there is a one-to-one correspondence between infinitesimal symmetries on
M and on F: in fact, given an infinitesimal symmetry S € X(M), then there is
a unique infinitesimal symmetry S on F s.th. § = 7,(S). Conversely, given an
infinitesimal symmetry S € X(F') then the vector field m,(S) is well defined and is
an infinitesimal symmetry on M.

Note that the flow along an infinitesimal symmetry on M (on F resp.) yields a
one-parameter family of local symmetries on M (on F resp.). In fact, the infinites-
imal symmetries form the Lie algebra of the group of (local) symmetries.

Due to the above mentioned one-to-one correspondences, we will frequently speak
of symmetries (local, infinitesimal symmetries resp.) of the G3-connection without
specifying whether they are regarded as symmetries (local, infinitesimal symmetries
resp.) on M or on F.

The group of (local) symmetries will be denoted by G and its Lie algebra of
infinitesimal symmetries by g.

It is worth remarking that as a consequence of the structure equations (2) and
(4) we have da(S) = db(S) = 0 for any infinitesimal symmetry S on F.

In this paper we will be concerned with homogeneous Gi3-manifolds, 1.e. those
G3-manifolds whose symmetry group acts transitively on M. First, we will prove
a Lemma which will yield some relation between the isotropy and the curvature at
a point of M.
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Lemma 2.3. Let M be a Gz-mansfold, let 7 : F — M as before and let ¢ € M be
a point such that neither the curvature R nor its covariant derivative VR vanish at
z, and let g, C g be the set of infinitessmal symmetries on M which vanish at z.
If gr # 0 then there ezists a point ug € 7~ (z) such that

either

a*(ug) = raz?, a'(uo) = razdy,
b (ug) =0, b (ug) = s3z®, b3(uo) = sszty, b (ug) = s72°y2,
or

a‘'(ug) = riz', fori=2,4 b(uo) = siz', fori=1,357T.
for some constants r;,s; € R.

Proof. The hypothesis that R and VR do not vanish at z implies that a(u) # 0
and b(u) # 0 for all u € n~!(z).

Now let 0 # S € g,, and let S € X(F) be the corresponding infinitesimal
symmetry on F. Clearly, 7.(S,) = 0 and hence w(S,) = 0 for all v € n~!(z).
Since ¢ + w is a coframe on F and S # 0, we have ¢(S) # 0. Moreover, since S is
an infinitesimal symmetry, we also have da(S) = db(S) = 0.

Applying (4) and (5) to S, we obtain that at any point u € 771 (z), we have

(6-1) 2X(S)a' — (¢(S),a’), =0 fori=2,4,
(6-2) BA(S)V' — (#(5),b'), =0 fori=1,35,7.

Now consider the following two cases:

(1) case 1: ¢(S) € V, factors into two independent linear factors over C. Then
there is some g € S1(2,C) such that p$(g) - $(S) = czy for some ¢ € C.

We deduce from (6-1) and a # 0 that 2A(S) = ke with k € {0, £2, +4}.
Likewise, from (6-2) and b # 0 we deduce that 3A(S) = kc with k €
{1, 43, +5,+7}.

The only possibility for these to hold simultaniously is that A(S) = *ec.
In particular, ¢ € R. From here we can conclude that ¢(S) factors over R,
hence at some point up € 7~ (z) we have ¢(Su,) = A(Suo )Ty and A(Sy,) #
0. From (6-1) and (6-2) we obtain that a(ug) and b(up) are of the first form
presented above.

(2) case 2: ¢(S) is the square of a linear polynomial. Then there is some
ug € 7~1(z) such that ¢(S,,) = z°.

We deduce from (6-1) and a # 0 that A(Sy,) = 0. Again, equations (6-
1) and (6-2) imply that a(uo) and b(ug) are of the second form presented
above.

(3) case 3: ¢(S) = 0. Then we deduce from (6-1) and a # 0 that A(S) =0, i.e.
@(S) = 0 which is impossible. O

Now we obtain the following remarkable

Theorem 2.4. Let M be a (locally) homogeneous G3-manifold. Then either
(1) the G3-connection s flat, or
(2) M 1is locally equivalent to the unique homogeneous Hz-manifold, or
(3) the isotropy group of the points of M 1s discrete, hence the (local) symmetry
group has dimension four.
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Proof. Let G denote the group of symmetries and suppose that G acts transitively
on M.

First of all, note that there cannot be a locally symmetric non-flat G3-connection:
the isotropy of a symmetric G3-connection contains all of G3. But the mapa: F —
V2 ® V4 must be invariant under the action of the isotropy group, therefore we must
have a = 0, i.e. the connection is flat.

We will now assume that the G3-connection is neither flat nor locally symmetric
and that the isotropy group at each point is at least one-dimensional. We shall
conclude from these assumptions that the holonomy is contained in Hj, and this
will complete the proof.

From Lemma 2.3. we conclude that there are GI(2,R)-equivariant functions
v; : F' = V) for ¢ = 1,2 such that (vi,v2); =1 and functions r;,s; : M — R such
that

either
2 _ 2 4 _ 3
(*) a® =Trqvy, a7 =T4V;V2,
Bl =0, b =s30), b5 =ssvive, b =s7vivd,
or
(**) a* =rjvy, fori=2,4 b =s;v}, for1=13,57,

where r; = r;om and s; = 5; o 7.

Since the connection is homogeneous we may assume that v; is G-invariant for
t = 1,2 and that r;, s; are constant for all 1. Thus, so are r; and s;.

If (*) holds, then the structure equations (4) imply that

2raduy = 2rAAv; — 212 (¢, 1),
+(3s3 + 5655 )ve (vf,w)a + 3(28s5 — s3)n (vaz,w>
2rorav1duy =—2rrg AMv1vg — 2rorav; (P, v2),
+(—9r483 — 60rzs5 — 168rys5 + 207287 )02 (vi’,w%
+{9r483 + 20res5 — 252r4s5 + 407257 )vyv2 (U%Ug,t&))
+1072(4s5 + s7)v? (vw%,w)a

3

3

Taking the latter equation modulo vy, we conclude that
—~9Or483 — 60rgss — 1687485 4 20r2s7 = 0.
If we furthermore assume that ror4 # 0 then we get for the exterior derivatives
353 + 56ss 3 28s5 — s3
5 Vg (vl ?"")3 +3 572
9r483 + 20r985 — 252r485 + 401257

21"2 T4

455 4 s
+557'—7U] (vw%,w)a
4

d‘U] = /\/\’Ul d (q’),vl)l +

2
U1 <‘U1 ’Ug,b.))a

2
U2 <'U1‘l)2,w>3

dvz =—AA v — (d),vg)l +

However, taking exterior derivatives of these equations we conclude that rory = 0
which is impossible.
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The remaining cases can be dealt with in a similar fashion: if ro = 0 then the
above equations imply that s3 = ss = 0. From (4) and the equation

0= (dvl;v2)1 + (‘Ul,dv'z>1 y

we can get explicit expressions for dv; and dv,. If we take exterior derivatives then
we conclude that r4 = 0, i.e. the connection is flat.

If we assume that r4 = 0 then we conclude that ss = s7 = 0, and from there it
follows that the holonomy group is contained in the subgroup Hz C Gj.

Finally, if (**) holds then, by a similar analysis, we can conclude that the holo-
nomy of the G3-connection is contained in Hy. O

We turn now to the problem of classifying the homogeneous G3-manifolds. By
the preceding Theorem, it will suffice to consider left-invariant G3-connections on
four-dimensional Lie groups. In fact, if M is a (locally) homogeneous G3-manifold
with a four-dimensional (local) symmetry group G then, for some fixed point p € M,
the map g — ¢ - p yields a local diffeomorphism from (an open subset of) G into M
which can be used to define a left-invariant G3-connection on G. By construction,
this connection is locally equivalent to the connection on M.

Now let us describe left-invariant G3-structures on a Lie group G.

Proposition 2.5. Let G be a four-dimensional Lie group with Lie algebra g. Then
there 13 a one-to-one correspondence between Gi-structures on G which are invari-
ant under the natural left-action of G, and the set of equivalence classes of linear
isomorphisms {1: g——V3}/ ~, where 1~ go for all g € G;.

Proof. Fix a linear isomorphism ¢ : g——V3. For any p € G and g € Gj3, we let
a(p,g) : TpG—V3 be the linear isomorphism a(, 4 := ¢! 010 (wg),, where wg
denotes the Maurer-Cartan form of G. Then F := {a(p 4) : T,G——Vslg € G3,p €
G} C § defines a left-invariant Gj-structure on G. Note that if we replace the
isomorphism 2 : g — V3 by g o: for any ¢ € G5 then the G3-structure remains
unchanged.

Conversely, given a left-invariant G3-structure 7 : F' — G, pick any 1 € 7~ 1(e)
and regard it as an isomorphism 1 : T.G = g——Vs. It is left to the reader to verify
that this establishes the desired one-to-one correspondence. [

Now suppose that we are given a left-invariant G3-connection on G. We want
to find explicit expressions for the tautological and the connection 1-forms.

Let = : F = G be the underlying G3-structure and let 1 : g——V3 be a corre-
sponding isomorphism. The map o : G x G3 —= F given by (p, g) — a(, 4 is clearly
a diffeomorphism, and we will use « as a coordinate system of F. Pulling back the
Maurer-Cartan form on G x G3 to F via a™!, we obtain a natural g & gs-valued
coframe on F. Using the isomorphism 14 p;' : g ®ga——V3 @V, ® Vo, with p; from
the previous section, we get a V3 @ V; @ Vy-valued coframe on F' which we denote
by w + ¢ where w and ¢ take values in V3 and V, @ Vg resp. We also let ¢ = ¢+ A
be the decomposition of @ into its components. In this notation the tautological
1-form w on F is given by w = g7 'w.

The connection 1-form ¢ := ¢ + A on F takes values in V, @ Vo, and w + ¢ + A
yields another Vi3 @V, @ Vp-valued coframe on F. In fact, the left-invariance of the
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connection implies that there is a linear map ¢o : V3 = Vo @ Vy such that at a
point ¢, 4) € F, we have the relations

Y oz

@ ¢ + 97 po ow).

We can decompose g = ¢o + Ao with ¢g € V3 @ Vo = V) & V3 @ Vs and
Ao € V3 @ Vo = V;. It follows that there is a polynomial r € V; & 2V; @ Vs
such that if we let r = v + 7% + % + s with »* € V; and s® € V; then do(v) =
(r',v), + (ra,v)z + (r°,v), and Ao(v) = (33,v>3 for all v € V;.

Note that if we replace the isomorphism1:g — V3 by go: for g € G5 then the
connection will be given by the polynomial g - r.

Let us now compute the torsion of the connection. We have

T(p)=dw+dAw
= g7 (dw + (do 0 w,w), + (Ao 0 w,w),)
= T e (), + (), ), + (G55, )

Thus, the connection is torsion free if and only if
(8) dw + ((r',w), + (r*0), + (+°,w),; ,w), + ((s*,w), ,w), = 0.
Taking the exterior derivative of (8), a calculation yields
1 0

where 8 = (w, {w,w), ), and

0 = (r s3> ,

t2 = —90(r') 2—15(1‘1 93 — s )l—3(r3,3r3+33>2—7(r5,9r3—33>3
(10) + 26 <7‘5,r5>4,

tt = —9r1(5r3—33)+3<r5,5r3—33>2+<r3,s3>1,

¢ = 60r'r® —3r3(3r% +5%) + 2 (r5,9r3 - 33)1 -9 (r‘r’,r5>2 :
If we define the map

T Vid2V30Vs — Vo Vo VB Vs
r — 10412 424 415

with t' as in (10) then it is easy to see that (9) is satisfied if and only if 7(r) = 0.
Conversely, given r € V; ® 2V; @ V5 with 7(r) = 0, then (8) determines a Lie
algebra structure on V3 and w and ¢ defined as in (7) establish a left-invariant
G3-connection on the Gi-structure 7 : G x G3 =: FF = G.
Thus, we have the following
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Proposition 2.6. There 13 a one-to-one correspondence between left-invariant G-
connections on connected, simply connected four-dimensional Lie groups and the set

of GI(2,R)-orbits of 7=1(0).

Of course, the condition that the Lie group be simply connected is only imposed
to make this correspondence one-to-one.

Let us now compute the curvature of the connection determined by r. The
second structure equation and a calculation yields

R(p) =dp+ohy
= ¢~ (d(do o w) + —;— (¢o 0 w, do o w),)

(11) (@), ), + 6 (),
<a< W), + 73 (@ (w@),), + 1),
where
@ = SO0 45 (P11 = ), — (5,10 - ),

+ (211‘3 +53,r5>3 -8 <1‘5,r5)4),

at = 1( —6r's® + (r®,s*), +2(r°,s%),), and

1 1
T= —4—t0 (w,w), + %ﬂ (w,w); + 4 (4, (w,w), ) 180 {t°, (w, g)])4 X
Clearly, if 7(r) = 0 then T = 0. Also, comparing (11) with (3) yields
(12) @ =g 'a' fori=24.

As we mentioned earlier, the holonomy of the connection is contained in Hy C G3
if and only if a®* = 0 . Therefore, we have as a consequence of Proposition 2.6.

Corollary 2.7. Letr € V, ®2V3 ® Vs such that (r) = 0 and —6r's? + <r3, .93)1 -
2(1‘5,33)2 # 0. Then the holonomy of the Gz-connection defined by r ts not con-
tained in Hy. In particular, the connection is not flat.

Thus, in order to classify the homogeneous G3-connections we have to classify
the G{(2,R)-orbits of r which satisfy the two conditions of Corollary 2.7. This can
be done by a careful case-by-case investigation.

The necessary calculations (all of which were performed by MATHEMATICA) are
not presented here. However, the author shall provide the interested reader with
copies of the MATHEMATICA files used to compile this classification. The results are
presented in the following section.
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§3 Classification of Homogeneous Gj-structures.

In this section we will state the result of the classification of homogeneous G3-
connections whose holonomy is not contained in H3. As it turns out, this implies
that the holonomy equals all of Gj.

Suppose that for a given r = r! + 7% 4+ r5 4+ 5% with r* € V;, s® € V3 we have
7(r) = 0 and a* # 0.

There are two cases to be distinguished.

Case A:r=r' +73 +r° + 5 and s® # 5r3.
In this case, the orbits of r can be parametrized as follows:

r rd 83
(A1) —Lup? 150 (3u? + tv?) —v?(6u + v)
(A2) u(Tv? F u?) —Zulv(v? £ u?) —15u(v? + u?)
(A3) tu(v? F 17u?) —2ulv(v? Fu?) 3u(7v? + u?)

(A4)  Lu(—u? + 2uv + v?) —-i]ﬁuzv(u +u)(u+3v)  u(u®+ 6uv + 3v?)

L (5u® — 45u%v Eu(v — u)(2v —u) 5u® — 21u?v

(45) +90uv? — 54v°) (8v — 2u)(3v — u) +30uv? — 18v*
Here we assume in each case that «,v € V; is a basis with (u,v); = 1, and also
that r! = v.
The Lie algebras of the symmetry groups can be represented as follows:

ta 6a 0 b
—4ta +a 12a c
(A1) e=| o 3¢ 14 d
0 0 0 0
3a b ¢
(A2) g = a d
0
5%¢ b ¢
(A3) g= 2a d
0
* 0 %
(A4), (A5) g= * ok
0

Thus, in all these cases the symmetry groups are solvable.
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Case B: r =r! + 7% + 7% + 50,
In this case, t° = ¢* = 0 follows immediately. The orbits of these r with 7(r) =0

and a* # 0 can be parametrized as follows:

(B6)
(B7)
(B8)
(B9)
(B10)

(B11)

(B12)

(B13)

(B14)

(B15)

T3

1,3
=37

T?’au(:i:u2 —v?)

— %u(2v2 + u?)

6 2
suv

—3u(49u? + 36uv + 6v?)

3 2
5‘!.!1)

u(v? £ u?)

3,02
S'H.T)

3u(2cu? + v?)

Lu((3c — 2)u? — Juv — v?)

du(cu? — 6uv — 20%)

11—011(—311,2 +(3- c)vQ)

25u((5 + c)u? + buv +v?)

%u((?&cz F 3)u?
+3ctuv — c?v?)

Tﬁl-cz—cgu(c% (600c2 + 360c;c2
—25c3cy — 15c5cq + 18c§C4)u2
—180c3(10 + 3cq)czequv

+1350c3v?)

10

3 .,2 2 2

guv(vt Fub)
3,23
Touv

ulv(v? £ 3u?)
ll—ou2(u3 + v?)

Tsut(6u® + 6cu’v +v°)

—u?(u + v)(cu? +uv 4+ v?)

5wl (du + 3v)(8u? + cu? + duv + v?)

sz (—u? = 2uv + (c — 1)v?)

(u3 + 3u?v + e+ 1)uv2 + (1 — 3c)v?)

fﬁ((c + l)uz + 2uv + v?)

((3 = c)u® + 3(3 + c)u?v + Juv? + 3v?)

il ((80¢? F 12)u? + 40c?uv + 5cPo?)
(32(£1 — 10c?)u® + 30(£1 — 8c*)u?v

—60c?uv? — 5cv?)

— L (c?(40c? 2 3. \,,2
24300¢2c3cA (c31(40c3 + Bcjeq + Beyeq)u

~120c; cacquv + 90civ?)
(10c3c3(~8c% + 3ckeq)u?

+9¢2¢4(40c3 — 5ckeq + 3cheq)ulv)

—540c; caciuv? + 270c3v?

Again, we assume in each case that u,v € V) is a basis with (u,v), = 1, and
that r! = v,
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The Lie algebras of the symmetry groups in each case are as follows:

(B4)

(B5)

(B6) — (B11)

(B12)

(B13)

(B14)

{ u(2) if =+
g =

g2 R) if £ ="

g = gl(2,R)

( u(2) if ¢ # 18

g =< 0 * =
* % ifc=18
L 0

( u(2) if c# —3

g:{ 0 = *
* ¥ ife=—
L 0

u(2) if 1210c2 # +189

g = 0 L I
x if 1210¢% = £189
0

H=] )

13
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( u(2) if 648¢2 + (3cz — 2)(6cz2 + 5)%ca # 0
0 « % if 64863 + (302 - 2)(662 + 5)264 =0
0 and 6c2 + 5 # 0
(B15) g=¢( fa+b 0 ¢
0 a—b d ifez =6cg+5=0andcy >0
0 0 a
a b ¢
-b a d ifeca=6cp+5=0andey <0
{ 0 0 @a

From this we can conclude that the “moduli space” of homogeneous Gs-con-
nections has one four-dimensional component (B15), seven one-dimensional com-
ponents (A1) and (B9) — (B14), and fourteen points, including the flat connection
and the homogeneous H3-connection.
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