A remark on the global indices of Q-Calabi-Yau 3-folds

Keiji Oguiso

Department of Mathematical Sciences	Max-Planck-Institut für Mathematik
University of Tokyo	Gottfried-Claren-Straße 26
Hongo, Tokyo 113	D-5300 Bonn 3
Japan	Germany

A REMARK ON THE GLOBAL INDICES OF \mathbb{Q}-CALABI-YAU 3-FOLDS

Keisi Oguiso

Faculty of Mathematical Sciences University of Tokyo, Hongo Tokyo 113 Japan, Max-Planck-Institut für Mathematik, Gottfried-Claren-Str. 26 Bonn 3 Germany

Introduction.

It is well known that so called Beauville number $B:=2^{5} \cdot 3^{3} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19$ is a universal bound of the global indices of \mathbb{Q}-Calabi-Yau 3 -folds, but it has been unknown whether this number is best possible or not.

In this short note, very much inspired by a recent paper of S. Kondo "Automorphisms of algebraic K3 surfaces which act trivially on Picard groups", we shall show the best possibility of this number:
Main Theorem. Beauville number $B:=2^{5} .3^{3} .5^{2} .7 .11 .13 .17 .19$ is best possible as a universal bound of the global indices of \mathbb{Q}-Calabi-Yau 3-folds. More precisely, for each i with $1 \leq i \leq 8$, there exists a (necessarily smooth) \mathbb{Q}-Calabi-Yau 3 -fold X_{i} whose global index $I(X)$ is p_{i}, where $p_{1}=2^{5}, p_{2}=3^{3}, p_{3}=5^{2}, p_{4}=7, p_{5}=11$, $p_{6}=13, p_{7}=17$, and $p_{8}=19$.

We should explain some terms in the main theorem and related known results. By a \mathbb{Q}-Calabi-Yau 3-fold (Q-C.Y. 3-fold, for short), we mean a complex projective 3 -fold with only terminal singularities and with numerically trivial canonical (Weil) divisor. For a \mathbb{Q}-C.Y. 3-fold X, it is shown by Kawamata [Ka 1] that there is a positive integer m_{X} such that $\mathcal{O}_{X}\left(m_{X} K_{X}\right) \simeq \mathcal{O}_{X}$ and the global index $I(X)$ of X is defined as $I(X):=\min \left\{m \in \mathbb{Z}_{>0} \mid \mathcal{O}_{X}\left(m K_{X}\right) \simeq \mathcal{O}_{X}\right\}$. Note that $I(X) \mid m$ if and only if $\mathcal{O}_{X}\left(m K_{X}\right) \simeq \mathcal{O}_{X}$. By a universal bound of the global indices of \mathbb{Q}-C.Y. 3 -folds, we mean a positive integer I such that $I(X) \mid I$ for all \mathbb{Q}-C.Y. 3-folds. The existence of a universal bound was first shown by Kawamata [K2]. On the other hand, in [B, Proposition 8, Problem 1 in page 612], Beauville found that Beauville number is a universal bound of the global indices of smooth \mathbb{Q}-C.Y. 3-folds, and after these results, Morrison [Mo] proved that we can take the number $120=2^{3} .3 .5$ as a universal bound of the global indices of \mathbb{Q}-C.Y. 3 -folds with at least one singular point and consequently that, apart from its best possibility, Beauville number is a universal bound of the global indices of all \mathbb{Q}-C.Y. 3 -folds.

We shall prove our main theorem by constructing a K3 surface S_{i} with a finite automorphism group whose representation on $H^{2,0}\left(S_{i}\right)=\mathbb{C} \omega_{S_{i}}$ is the p_{i}-th cyclic group $\left\{z \in \mathbb{C} \mid z^{p_{i}}=1\right\} \simeq \mathbb{Z}_{p ;}$ for each $1 \leq i \leq 8$, where p_{i} are the integers defined in our main theorem (cf. Proposition 2). For $i \geq 2$, such a K3 surface is already constructed in [Ko, §7]. But, for $i=1$, or equivalently, for $p_{1}=2^{5}$, previously
there seems to be no known examples of such K3 surfaces and our example seems to be new (cf. [Ko], [Ni], [Mu]). In fact, Kondo classified in [Ko] all the finite automorphism groups of K3 surfaces which act trivially on Picard groups, but the 2^{5}-th cyclic group never has such actions ([Ko, Lemma 6.3]).

Anyway, proof of our main theorem is extremally easy and short. But, our main theorem is still worth mentioning because this establishes a 3 -dimensional analogue of the following well known theorem on surfaces in a completely effective way:

Theorem. The number 12 is the best possible universal bound of the global indices of minimal algebraic surfaces with numerical trivial canonical divisor.

The author would like to express his thanks to Professor Dr. S. Roan for suggesting this topics, to Professor Dr. M. Furushima for his warm encouragement, and to Professor Dr. F. Hirzebruch for offering him an opportunity to visit Max-PlanckInstitut für Mathematik. This work was done during his stay in the institute.

Proof of the Main Theorem.

In what follows, we use the following notation:
$p_{1}=2^{5}, p_{2}=3^{3}, p_{3}=5^{2}, p_{4}=7, p_{5}=11, p_{6}=13, p_{7}=17$, and $p_{8}=19 ;$
$e_{m}=$ a primitive m-th root of unity in \mathbb{C}.
We describe an elliptic surface $\varphi: S \longrightarrow \mathbf{P}^{1}$ with a section by its affine equation $y^{2}=x^{3}+a(t) x+b(t)$. For a K3 surface S, we denote by ω_{S} a non-zero holomorphic 2 -form on S.

Lemma 1. Let S be an algebraic $K 3$ surface on which an automorphism group $<g>\simeq \mathbb{Z}_{m}$ acts as $g^{*} \omega_{S}=e_{m} \omega_{S}$. Let E be an elliptic curve and t_{m} a translation of order m on E. Then the quotient 3 -fold $X:=S \times E /<g \times t_{m}>$ is a (smooth) Q-C.Y. 3 -fold whose global index is m.

Proof. Since $<g \times t_{m}>\simeq \mathbb{Z}_{m}$ acts on $S \times E$ freely and since $\left(g \times t_{m}\right)^{*} \omega_{S \times E}=$ $e_{m} \omega_{S \times E}$ by definition, the natural etale quotient map $S \times E \longrightarrow X$ of degree m is nothing but the global canonical cover of X.

Now, in order to complete the proof, it is enough to show the following proposition.

Proposition 2. For cach $1 \leq i \leq 8$, there exists a $K 3$ surface S_{i} with an automorphism group $<g_{i}>\simeq \mathbb{Z}_{p_{i}}$ such that $g_{i}^{*} \omega_{S_{i}}=e_{p_{i}}^{a_{i}} \omega_{S_{i}}$, where $\left(a_{i}, p_{i}\right)=1$. More concretely, the following pairs (p_{i}, S_{i}, g_{i}) satisfy this requirement:
(1) $p_{1}=2^{5}$,

$$
\begin{aligned}
& S_{1}: y^{2}=x^{3}+t^{2} x+t^{11} \\
& g_{1}:(x, y, t) \mapsto\left(e_{32}^{18} x, e_{32}^{11} y, e_{32}^{2} t\right)
\end{aligned}
$$

(2) $p_{2}=3^{3}$,
$S_{2}: y^{2}=x^{3}+t\left(t^{9}-1\right)$, $g_{2}:(x, y, t) \mapsto\left(e_{27}^{2} x, e_{27}^{3} y, e_{27}^{6} t\right)$
(3) $p_{3}=5^{2}$,
$S_{3}:\left\{z^{2}=x_{0}^{6}+x_{0} x_{1}^{5}+x_{1} x_{2}^{5}\right\} \subset \mathbb{P}(1,1,1,3)$ (the finite double covering of \mathbb{P}^{2} ramified along the non-singular sixtic $\left\{x_{0}^{6}+x_{0} x_{1}^{5}+x_{1} x_{2}^{5}=0\right\} \subset \mathbb{P}^{2}$),

$$
g_{3}:\left[x_{0}: x_{1}: x_{2}: z\right] \mapsto\left[x_{0}: e_{25}^{5} x_{1}: e_{25}^{4} x_{2}: z\right]
$$

$$
\begin{align*}
& p_{4}=7, \tag{4}\\
& S_{4}: y^{2}=x^{3}+t^{3} x+t^{8}, \\
& g_{1}:(x, y, t) \mapsto\left(e_{7}^{3} x, e_{7} y, e_{7}^{2} t\right)
\end{align*}
$$

(5) $p_{5}=11$,

$$
S_{5}: y^{2}=x^{3}+t^{5} x+t^{2}
$$

$$
g_{5}:(x, y, t) \mapsto\left(e_{11}^{5} x, e_{11}^{2} y, e_{11}^{2} t\right)
$$

(6) $p_{6}=13$,
$S_{6}: y^{2}=x^{3}+t^{5} x+t$,
$g_{6}:(x, y, t) \mapsto\left(e_{13}^{5} x, e_{13} y, e_{13}^{2} t\right)$

$$
g_{7}:(x, y, t) \mapsto\left(e_{17}^{7} x, e_{17}^{2} y, e_{17}^{2} t\right)
$$

$$
\begin{equation*}
p_{7}=17, \tag{7}
\end{equation*}
$$

$$
S_{7}: y^{2}=x^{3}+t^{7} x+t^{2}
$$

$$
\begin{align*}
& S_{7}: y^{2}=x^{3}+t^{7} x+t \tag{8}\\
& g_{7}:(x, y, t) \mapsto\left(e_{19}^{7} x, e_{19} y, e_{19}^{2} t\right)
\end{align*}
$$

Remark. As was mentioned in the introduction, examples (2)-(8) already appeared in [Ko, §7] while an example (1) is new. In example (1), g_{1} acts on Pic S_{1} as an involution, while in (2)-(8) g_{i} acts on Pic S_{i} as the identity. Moreover, as was remarked in [Ko, 7.12], there does not exist an elliptic K3 surface with an automorphism group of order 5^{2} which acts faithfully on the space of holomorphic 2 -forms.

Proof. We shall prove that the pair (p_{1}, S_{1}, g_{1}) in (1) satisfies our requirement. One argues similarly for the remaining cases (2)-(8) and we leave details of (2)-(8) to the reader. Since the discriminant (resp. the j-invariant) of the elliptic surface $\varphi: S_{1} \longrightarrow \mathbb{P}^{1}$ is $t^{6}\left(4+27 t^{16}\right)$ (resp. $\frac{4}{4+27 t^{6}}$), by [Ne, page $\left.124-125\right]$, we know that φ has 16 singular fibers of type I_{1} over $4+27 t^{16}=0$, one singular fiber of type I_{0}^{*} over $t=0$, and one singular fiber of type II over $t=\infty$. Thus, $c_{2}\left(S_{1}\right)=16+6+2=24$ and S_{1} is a K3 surface. It is clear that g_{1} acts on S_{1} and $<g_{1}>\simeq \mathbb{Z}_{32}$ as an automorphism group of S_{1}. Moreover, since we can take $\frac{d x \wedge d t}{y}$ as $\omega_{S_{1}}$ and since $g_{1}^{*}\left(\frac{d x \wedge d t}{y}\right)=e_{32}^{9} \frac{d x \wedge d t}{y}$ by definition of g_{1}, the pair ($\left.p_{1}, S_{1}, g_{1}\right)$ in (1) actually satisfies our desired requirement.

References

[B] A. Beauville, Some remarks on Kähler manifolds with $c_{1}=0$, In Classification of algebraic and analytic manifolds., Progr. Math. 39, 1-26 (1983).
[Kal] Y. Kawamata, Minimal models and the Kodaira dimension of algebraic fiber spaces, J. Reine Angew Math. 363, 1-46 (1985).
[Ka2] Y. Kawamata, On the plurigenera of minimal algebraic 9-folds with $K \equiv 0$, Math. Ann. 275, 539-546 (1986).
[Ko] S. Kondo, Automorphisms of algebraic K3 surfaces which act trivially on Picard groups, J. Math. Soc. Japan 44, 75-98 (1992).
[Mo] D. Morrison, A remark on Kawamata's paper "On the plurigenera of minimal algebraic 3-folds with $K \equiv 0$ ", Math. Ann. 275, 547-553 (1986).
[Mu] S. Mukai, Finite groups of automorphisms of K3 surfaces and the Mathieu group, Invent. math. 94, 183-221 (1988).
[Ne] A. Néron, Modéles minimaux des variétés abéliennes sur les corps locaux et globaux, IHES 21, (1964).
[Ni] V.V. Nikulin, Finite groups of automorphisms of Kählerian surfaces of type K3, Moscow Math. Soc. 38, 71-137 (1980).

