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NORMAL FORM AND 2-DIMENSIONAL CHAINS OF AN
ELLIPTIC CR SURFACE IN C*

VLADIMIR V. EZOV AND GERD SCHMALZ

ABSTRACT. We suggest a construction of a normal form of a real analytic surface
of codimension two in C* with elliptic Levi form which generalizes Chern-Moser
normal form of a hypersurface.

1. INTRODUCTION

We consider some properties of real generic CR surfaces of codimension 2 in C* with
nondegenerate Levi form. Locally, any C? smooth surface of such kind belongs to one
of three types, corresponding to the type of its Levi form, namely elliptic, hyperbolic
and parabolic. The elliptic and hyperbolic are the types of general position, the
parabolic type is exceptional in many senses. A normal form of a hyperbolic surface
was constructed by A. Loboda [Lob88]. We give a construction of a normal form
of elliptic surfaces (Theorem 1). This normal form is analogous to Chern-Moser’s
normal form of a hypersurface [MS74]. For example, there are as many normal
forms at a fixed point as there are isotropic automorphisms of the tangent elliptic
quadric (Theorem 2) since the group of germs of "normalizations” of a hypersurface
is isomorphic to the isotropy group of the tangent hyperquadric.

Normal forms use to be the most efficient tool in the proof of the extension of
local holomorphic maps of hypersurfaces and in equivariant linearization of their au-
tomorphisms ({[EKV84], [Vit85], [Ez083], [Kru83]). All these results involve a family
of Chern-Moser chains, - a special biholomorphically invariant dense family of curves
on a surface. We introduce a biholomorphically invariant family of 2-dimensional
surfaces on an elliptic surface which we also call chains. Geometrically, the chains
are the solutions of certain systems of linear partial differential equations. Up to
terms of higher order they admit an approximation by the chains on the tangent
elliptic quadrics, being the intersections of the quadric with so called "matrix lines”.

Another analogy with Chern Moser’s normal form which might be very helpful
in the analysis of local holomorphic maps is the fact that the chain-preserving nor-
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malizations of a hypersurface being already given in the normal form has to be a
fractional linear transformation ultimately (Theorem 3).

2. RESULTS

Let z = (2%, 2?), w = (w! = u' + iv', w? = u? + iv?) coordinates in C* = C? x C2.

Let
(2,2) = ((z,z>1 - Z’le) )

(2,2)? = 2H*z

a nondegenerate R*-valued Hermitian form in C?. (2’ is the transposed vector of

z.)

There are only three types of nonequivalent Hermitian forms (up to the action of
the group G*? = GL(2,C) x GL(2,R) given by

(C.5) 0 (2,2) = p(C12,C72)).
These types are represented by

(Zaz)l = (Eﬁi:;:)
(Z,Z)z = (I;{Z)
o = (giaks).

These three forms are called elliptic, hyperbolic and parabolic, respectively, ac-
cording to the distribution of the roots of the polynomial invariant

Pi(t) = det(H} + tHE), k=1,2,3,

where H] is the Hermitian matrix related to (z, z)}.

In particular, Py(t) = t? + 1, Py(t) = t, Pa(t) = t* (up to the sign).

The stable cases are the first and the second so far.

A hyperbolic form is also called strictly pseudoconvex since it is the only one which
admits a positive definite linear combination of (z,z)} and (z, z)3.

Consider the group O of the germs of local biholomorphic isomorphisms of C*
preserving the origin and let us consider the orbit Oy(M) of a surface M = M® Cc C*
with nondegenerate Levi form.

Of course, Op(M) has infinite dimension. The purpose of a normal form is to
decompose the space F of formal vector power series of the form Imw—G(z, Z, Re w);
G(0) = 0, %h) = 0 with nondegenerate Hermitian term in (z, Z) into the sum
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F=N&R,

where Og(M) NN # @ has finite dimension for any M.

The normal form for strictly pseudoconvex surfaces was found by A. Loboda
[Lob88]. V. Beloshapka [Bel89],[Bel90] suggested the way to define the R space
in the general case. But it might lead to divergent normal forms if we do not care
about the choice of N, the direct complement to R.

A convergence theorem can be proved if we explicitly define A and the projection
m:F — N.

We now describe a normal form of real analytic surfaces M with elliptic Levi form.

It is convenient to write down the equation of M in coordinates (z,V, V,n,7),
where w! 1= w! +1w? = p+ iV, W 1= W —1w? = {7+ iV, where 5 = u! + 1u?,
V = v! +iv? The equation of M takes then the form

(1) V=234, ..

Let Kyi(z,2,7,7) be a polynomial in (z, Z) of degree k,! respectively, with coeffi-
cients being formal power series in (5, 7j), representing the right hand sides of equation
(1) of elliptic surfaces.

We set

R = {Rl,l + ZRk,O‘l'ERO,k +

k=1 k=1

+ Y Rei+ ) Ris+Ra+Ry+ R+ RSSa}

k=3 k=3

where Ry (Ro) are arbitrary holomorphic (antiholomorphic) polynomials of de-
gree k in z (Z), and
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Ry4(2,2,0,0) = 0
Raq $a1(n,7)z' 22" + Ryo(z,7,7)2°
Riz = ¢n(n,7)2*2' 2 + Roa(2,7,7)2
Rey = Rwolzmm)z, k23
Rl,k ZlRok(E:ﬂ:ﬁ): k>3
Ray = éua(m@)|2'1P|221° + thaa(n)(2'2*)"

3 = ¢a(n)z (212 )
R2,3 = ¢23( )(le )
Rz = ¢33(’7)( 2)3

Let v =2'22, & = -5?%;. Then the space A is defined as

N ={2'2" + Na1 + Nia + D_ (N + Nui) + Y_ Nu},

&
!

k1>32
where
d d
(2) ﬁNn = gNu—O
8 9
585" = pmapr =0
P 9
ﬁNn = a‘,‘N:k—U, k>3
62
Gop = 0
&
Ny = 0
(Ov)n),_,
8 a
@ason| " = Goparan| 00
&
2| Ny =0
(@v)an| _,

It follows that F = RO N.

Remark. Let F, be the subspace of F consisting of the polynomials in z,z,7,7.
Then in F, a scalar product (,) can be defined by the property that the monomials
form an orthonormal basis in Fy.

It follows that N’ N F, = (RN F,)* with respect to (,).
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Now let M be a real-analytic CR surface of codimension 2 in C* with elliptic
Levi form, passing through the origin.

Theorem 1. In some neighbourhood of the origin there ezist coordinates (w’,z7),
7 = 1,2 such that the equation of M takes the form

(3) V = N(z’f,n7f-’)’
where N(z,2z,7,7) € N.

Equation (3) is called a normal form of M (at the origin).

Suppose that M is given in a normal form. How many different representations in
normal form at the origin does M admit?

Let On(M) be the group of germs yn(M) of holomorphic transformations at the
origin preserving the normal form of M.

We consider the isotropy group Ip(Q.) of the elliptic quadric

Q.:V =27

It was shown in [ES92] that Io(Q.) consists of fractional linear transformations
having the form

o= (I’o (o) @1,
where &, is a (C, p)-transformation defined by

. ; e.u+i9 0
“ = eA+¢( 0 e'(u+ia)) 2,

. e2(\+i6) 0
w = 0 e3A—i0) | &

14 1,
+aw
4 ®,: () = — -
4) 1: () 1 —2iz'a? — (r + ta'a?)w!
() 2? + a%?
VA =
1 —2i22a! — (7 4 ta%al)w?
1
1 w
W) = 1 —2i2'a% — (r + ta'a?)w!
(W) = w?

1 — 2i22a@! — (¥ + ia%a!)w?’

where a!,a?,r € C.
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Hence, I)(Q.) 2 R* x C? x C.

Theorem 2. The group On(M) is isomorphic to I)(Q.) = R* x C* x C. This
isomorphism is given as follows: Let Yn(M) : 2* = f(z,w), w* =g(z,w), then

i 8#+w 0 3f
(5) e Mtie ( 0 e—(#+59)) = = D
oo Of

a =
ouw?

: o OF
ow?|,

_ (9 g

T T 2\ (ew) (@w?)?,

If M is already given in normal form then it is easy to see that the 2-dimensional
R-plane I'p : z =0,V = 0 belongs to M. This observation provides us with a notion
of chains:

A 2-dimensional real submanifold I' C M is called a chain if there is a transfor-
mation ¥n € On(M) such that Yn(I') C T'g. Such ¥y we call a normalization of M
straightening I' or a normalization of M along T.

The following questions occur: How many chains pass through a fixed point on
M? What are the chain-preserving normalizations of M?

Let £ € M and T be the family of chains passing through £.

0

2,2
+ /overline

0

Theorem 3. (i.) T¢ is a C*-parameter family of 2-dimensional surfaces on M,
being transversal to the complez tangent space to M in any point.
(ii.) Let ¢n be a normalization of M and Ty be Yy-invariant, i.e. Yn(Fo C To.
Then ¥n is an element of Io(Q.) having the form (4) with a' = a? = 0.

Corollary 1. There is a family {nr}r of normal parametrizations of the chain T.
Any normal parameter can be obtained from another normal parameter by a projective
transformation.

(6) (n) = —

=1—rr)'

3. SCHEME OF THE NORMALIZATION

Since any transformation of the type ®, preserves the normal form (3), we shall
construct a normalization having identical differential at the origin.
We consider a chain I' passing through the origin and being given by the equation
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zl = pl (t‘,t’)
2 = Pl 1Y)
W' o= g7
w? = qa(tlitg)'o
with 22| = 6.
We represent a normalization ¥ straightening I' as a composition of 4 consecutive
transformations #y,...,%4. Each of these ¥; preserves the form of the equation of

M being obtained at the previous step 1;_, and gives its own contribution to the
normalization of the equation.
Step 1. (Straightening the chain, determination of the initial parametrization on T
and elimination of the harmonic terms)

We look for 3, having the form

) J = (z')'+p1(<w*)‘,(w*)*)+2=‘§Tz(z~,w-)
2 o= (V4 @)) + 2 ?% T (" w")
W= W) (W) + 2 k)"_fg;(z-,w

P )+ 2 S ),

where T! and gl are polynomials of degree & in z with coefficients being analytic
functions of w.
1, has the following properties:
(1.) 11 maps the germ of I at the origin onto the germ of the plane z =0,V = 0.
(1#1.) gi and T} are chosen to eliminate the harmonic terms (Fio and Fg) in the
new equation of M.
Step 2. (Normalization of the terms Fi; and Fy for £ > 1 and of Fy3 and Fiy)
13 is a so called (C, p)-transformation

(8) z = Cw')"
plw”)w?®,

w

having the following properties:
(i.) After applying 1, the term F}; takes the form 2'2z? and
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(11.) the terms Fy,, Fiy, Fa, Faa belong to the space N.

The normalizing of Fy, Fi3, Fs3, F23 in the new equation of M completely deter-
mines the family of chains I passing through the origin in the chosen parametrization.
Step 3. (Normalization of the term Fj;)

¥ is a (C,1d) transformation having the form

i(w! C“(wl'w’) 0 -
(9) : = ¥ 'uj)( 0 eslwwn)]?

w = w,
where Im (7, 7) = Im (7, 7) = 0.
After applying 3 we get Fay € N.
Step 4. (Normalization of the term Fi3;. Normal parametrization on I'. The family
of normal parameters.)
¥, is a transformation of the form

. 3 ciG(u) 0
(10) ¢ = M )( 0 e_;e(w))z
" hl w
o = 4= ().
where
Oh [ eXMwHibw) 0
A(w',w?) 0 e2(Aw)-i8(w) |

and, ImA(n,7) = Im6(n,7) = 0.

This is the general form of a transformation with identical differential at the origin
and preserving the partial normalization obtained at the steps 1-3.

We will find A and 8 such that in the new equation the term Fi; € V.

One can consider 1, as a reparametrization of I'. If we suppose that Fi3 € N,
from the very beginning, then 1), is a fractional linear transformation:

1

V4
11 L] 1 —

(11) (%) 1 —rw!

2

=3 __ z
(%) = 1 —rw?

1

=31 w
W) = 1—rwl!

Wy =

1 - Fw?’
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corresponding to some normal parameter on T

4. INITIAL PARAMETRIZATION ON T

In this section we give a construction of ;. The condition ' C M implies that

élflql(n,ﬁ) —@(ma = PP (n.7) +

1 2 1 gy 1 _
+G(pl)P2,Pl)P27 E[q] + q2]s §[q2 + qll))

where

(12) V =2'2"+G(z,7,7,7)

is the initial equation of M.

After we insert the expression for ¥, into equation (12) and solve it with respect
to V and V (we remove the star indices) we fix the parameter on I' taking into
consideration the coefficients at V and V only.

By the expression @ —(,) § we mean that the contribution of the term « of the
old equation into the term of type 4 in the new equation of M equals to 8 or to the
contribution of A into «.

The contribution of the left hand side in (12) into the terms being linear with
respect to V and V is:

Sl (1 4V, 447) = = V3~ V)] —nr)
— %V[q; + &l + %V[qé + @l =
=Q'+ Q%
where Q! and Q? are the components of the vector
Q! 1{q ¢\ (V
(Q’) T2 (93 qg) (V) |

The contribution of the right hand side is:

pl(q + IV, 77 + ﬂ_/)ﬁz(r’ - tv)ff - l‘7) —Hin(V,V)
— iV (p,p" — pap') +iV(pip® — plp') =
= 2(P" - P?),

where
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The contribution of the function G on the right hand side is
G(* + p'(n + iV, 5+ iV), 2% + p*({i +iV,n +iV),
24—V, —iV), 22+ P (n — iV, —iV),

1 . - S
Sla' 0+ V7 +4V) + @(n = iV, 7 - V)],
1 5 . A= E :
§[q2(ﬁ + 1V, n+ t‘/) + ql(ﬂ - tVv7 n-— t‘/)]) —in(V, V)
i — -
3V [Gny + Gagy — o — Gals) +
i
+5V[Gag; + Gag; — Gl — Gay] +

+iV[G1p), + Ga2p} — Gipy — Gapy) +
+iV[G1p; + Gapj — Gipy — G3p3| =

=2(Q' - Q) +i(P - P,

where

&) - @ &E D).
(B) =& o@D,

Collecting all the linear terms in V, V on the left hand side of the new equation of
M we get

S(5'+5%),

where
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(%)

]
et e,
Lol
.
-,
P
QD
e
Q8
™
N————
)
8
=~
E e
~———

L ) ~
A9 B 2)0)-
i ) -2 (3055)) ()

Here,

Consider the matrix

_ (P hua) _ .0 oo dp
H_(hn hn)—Zz(ld iB) x(a(ﬂ,ﬁ))'

In order to choose the parametrization of the chain we set

a 1
(13) a—'% = h,
8 2
6_(; = h21!
dq' dq’
—| = —| =1, and
dn a7 |,
4 1 _ 9 _
a_q =0 (qn - hll) B a_ﬁ n=0 (Qﬁ - hzz) B 0

These equations uniquely determine ¢ when p is given. Thus, they define the initial
parametrization on TI'. _

Now we express the functions gi in terms of T, using the condition that the new
equation of M does not contain harmonic terms.

We start with g} (z,7,7) and ¢?(z,n,7). Consider the terms Fyo and Fp,.

The left hand side of the equation (12) contributes

91(z,m,7) + §1(Z,m, 7).
The right hand side contributes
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257 + 2351 + szj + 2iG; +
+iGog; +iGagi — iGagt — iGrgl.

Collecting all the terms of the type (0,1) and (1,0) at the left hand side, we get
G} + G}, where

(&) = ta-iten a0 @) G-
(6 #)+(& E)GH) G-

1
= (id—iB) (g%) ~x (z,) :
Finally, we set

(14) (gg) = (id—iB)'x (z;)

We continue by evaluating g and g2. The left hand side contributes to the terms
of type (2,0) and (0,2)

92 + 93
the right hand side:
UT)p? — AT + 2T} G5 — 21T G; + iGogs + 1G98 — iGrg? — iGagl +
1 . : , :
+5(Giz'7 +2iGn2’ gl + UGz g} — Gan(91)' — Gaa(91)” — 2Gmgigr) +

1— —————— ——— = = -
+5(Gr3z* 27 + 2iG5027g1 + 26502798 — Gianl(91)? — Ga(91)? — 2Gmagigd)-
Collecting these terms on the left hand side we get
G; + G,

() -0 5) - ) -

Thus, in order to eliminate the (2,0)-term, we set

where
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(15) (g%) = 2i(id —iB) 'y (%;) - %(id —iB)"12'Q,z.

Analogously, we evaluate Fio for £ > 3. The left hand side contributes to the terms
of type (0, k) and (k,0)

9x(z,m,7) + Gk(2,m, 7),
the right hand side:

ATIP? — 2TPp + 2T(G; — 2T G; +
+iGagi + 1Gagi — iGogt — iGrgi + Qi(2),

where Qi(z) is a k-form which does not depend on T} org].
Collecting the (k,0) and (0, k)-terms at the left hand side we obtain

Gl + G,

() = 6a- (6) -2 (%;) ~ Qi)

Hence, we can eliminate the harmonic terms in the equation of M, setting

where

9k

(16) (gé) = 2i(id—iB)"'x (;::) — (id—iB)™'Qu(2)

After we have fixed the chain-parameter and have eliminated the harmonic terms,
the vector equation of M takes the form:

1) w(f) =ene+ X A

k,i>1
k4153

- (4)

is a vector-valued Hermitian form, and

9o = (id-—i (G_',,(an — én) Gyldn - '{611))) _
0 2 \Gi(d22 — é11) Gu(én —¢23)/) )’

where
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with

¢11(’L7_7) 0 — aq _
( 0 ¢22(’790))_3(q,ﬁ) H.

In terms of g} and p’ we have:

<

)

9 , 7] M7 o
09 525 (7) =0 oy + (014 Suln, DV + i, n)V)
’ g a_(,,% V yTh 1

5. NORMALIZATION OF THE LEVI FORM (CONSTRUCTION OF %)

-

After performing the transformation ¥, the equation of M has the form (17). We
write down the explicit expression of A:

ZA'z = 7+ szj,;Ek — 127 Ggt — 122Gy +12° G590 +
+91Gndi + 91Gmadh + Gun(9191 + 9191),
respectively,
ANz = 222+ G +iglG;7 +ig)GipE — i27G;,Gh +
+91Gmd1 + 91Gandi + Gonl9151 + 9191)-
We look for 1; being a (C, p)-transformation of the form (reftwo):

z = Cw")z"

where

It follows then that

Let
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a a
Pop = (5 E)'

By normalization of the Levi form we mean that after applying 1; the equation of
M takes the form

V=24 E Fu,
ki1
K433

The corresponding equation in C and p is

(19) C'(n, MA'C(7,n) = aJ* + bJ™,

where
1 {01
=(§))

Equation (19) does not determine C and p uniquely. As an additional condition
we set

(20) (C™YJI' = (aJ" + BJ™)C!
It follows that
Jluc"v-l = (C—l)r(aJlm + BJ1)$

and therefore,

(21) (C7YT* = —(a(1 - |B})T" - |ef BT

lof?

Combining (19), (20), and (21) we obtain

A = o(CTVYICT +HCT)INCT =
(a0 = 222) s+ (a4 2200 ] oy

|of?
Respectively,

Alax '6(0—1)1']10-1 + &(C-I)IJI-CV-I =

- [(fo-222) s s+ 2O ] oo

|a]?
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Thus,
AI_I_AI- = L+(C'—l)2’
Al_Alt = L-(C—l—l)ﬂ’
where
baf ba(l —
b = [(“"" )7+ (o )
- aalf - 1=
b= (o) 7 (e 00 )
Hence,

CZ = (Al + (AI)I)LII
L+L:1 — (Al + Alt)(Al _Alt)—l

This system uniquely determines (C, a, b, a, §).

6. NORMALIZATION OF THE TERMS Fyq, k> 2

At first we compute Fi, _and F3, after performing 1.
The terms containing T3 arise from the right hand side and have the form

F 12+ (Fu)",

FI | ZNT .
((Fl};),) =2 (;AI‘T) = 2t2'AT.

We collect the terms that do not contain TJ but contain derivatives of p and ¢ at
the left hand side:

where

91(z,w) + 1 (£,®) — (2" + p (W', w?))(2 + P (W%, ")) —
1 ) P | _
—G(z+p 247,300 + 3 +iq 31, 5la" + 7))

Using (14) for g] and g? we have:



NORMAL FORM 17

l 1
(ﬁﬁgzﬁ) — (2,1y(1,2) (id —1B) 1 (i*)
) 1
X (ﬁ;) +iB(id —iB) 'y (;2) .

The contribution of (2! + p')(£? + p?) + G we represent as

1 . o 1
X (ﬁ,) +iB(id-iB) 'y (z,) .

Hence, we obtain at the left hand side

1

=0 (3) +i8 - Bia-im)x (7).

where x and x are the matrices with the following entries:

xn = P+iV,i+iV)+ G (n+iV,7+iV), (7 +iV, 0 +iV),
P+ iV, n +iV), 5 (n + iV, +iV)),
1 e _ .
S+ Vi +iV) + @ + iV, 7 +4V)],
S+ iV, +iV) + 3 (1 +iV,n +V))).

We will write this expression as

x11 = p*(hol) + G, (hol,3),

where hol and hol;3 mean the indicated distribution of signs and bars of the vari-
ables in brackets.

Analogously,

X12 = Gz(’wlﬁ),
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xn = Gi(P'([+iV,n+iV),p*(n +iV,i +iV),
p'(n +iV, i +iV), p* (i + iV,n + iV)),
1 o o
ST +iV,n +iV) + (7 +iV,n +iV)),
1 : - : -
S+ iV, T+ V) + ¢ (n +iV, 7 +iV)]) =

= Gi(holyy),
x22 = P (hol)+ Gs(holy,).

The matrix x¥ has entries with a different distribution of the variables which we

call regular

X =

P — iV, 5 — iV) + Gi(p'(n + iV, 7 +iV), p*(7f + iV, 9 +iV),
p'(7—iV,n—iV),p'(n — iV, —iV)),

1 . - , -

3la'(n+ Vi +iV) + ¢ (n — Vi — V)],

1 - . U .
E[q’(ﬁ +iV,n+iV)+ @ (7 -V, —iV)]) =

= p'(reg) + Gi(rega)

X12 =
,‘7(21 =

Gz(""-.‘hi) .

Gi(p' (7 — iV,n = V), 5 (n — iV, 7 —1V),
p(n+iV,7+iV),p* (7 +iV,n +iV)),

1 27 . .y -
@' —iV,in = iV) + (7 +iV,n +iV)],

1 o N
@ —iVia—iV) + ¢'(n— iV, +:iV))) =

= C_;i (regiﬂ))

X22 =

7' (reg) + Gi(regia).

For the matrices B and B we obtain:

We denote

By, = G (holy3); By = Go(regis)
Bu = C_;ﬁ(ho“li); ?12 = C_;ﬁ(regli)
By = Gy(holiz);  Bn = Gy(regis)
Ba; = Gy (holyy);  Baz = Gp(regisz)
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o = () (7):

)¢
o= (i) (1)

Then we have for xy — x:

(x =X

(X— )2)12

(X - )'()21

(x — X)a2

— ) 2i[Gi1(Dp)* + Gia(Dp)? +
+%Gln(D_9)2 + %Gw(m)' + (Dp)?)
— 1) 2i[Ga1(Dp)' + Goa(Dp)* +
+3G30(D9)* + 3Gan(Da)'

—a1) 2[Gn(Dp)' + G1,(Dp)* +
+5C1,(D9)" + 5Gi1o(DD)*

— ) 2[Gn(Dp)' + Gu(Dp)* +
+360(D0) + 56m(D9) + (Dp))

The entries of B — B in terms of Dp and Dy are:

(B-B)n

(B - B)u

(B - B)g]

Hence,

= 2[G,i(Dp)! + G,:(Dp)* +
+5Gn(D0)? + 5Gon(DO)’
= 2i[Gs(Dp)' + Gaz(Dp)* +
+5G3(D) + 5Ga(Da)'
= 2i[Gq(Dp)! + Ga2(Dp)* +
+-;—G,;,,(D_q)1 + %Gﬁﬁ(D_q)2
= 2(G,1(Dp)* + G,2(Dp)* +
+20m(D) + 5Cmn(DaY).

19
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(x= D7 = 2(HCx(Dp) +57Gn (D9 +
+37G;3(Da)! + #(DP) x
x2i(X(Dp)") + #*Gus(Dp)* + 5235, (Da)! +
+%Zié3ﬂ(m)2,

and,

o - oy (3) = - ) ()

is the vector with the first component

Jpp— t —

2[i(Dp)*G g1 + 5(Dq)* Gy +
P

+5(Dq)'Gusgy +1(Dp) Gzl + D_)’Gangl
P

+§(DQ)‘GM9?]

and the second component

2i[i(Dp)*Ggt + (DQ) Gang1 +
+2(D2)'Gag} + i(DP)Cuu? + (D7) Grng? +
+£(D4)" Gl

Inserting into the latter expression

(Dq)' = —2igi(Dp) + du(h,n)z'A'z
(Dq)* = —2igi(Dp) + ¢n(n, 7)z'AVZ,

and collecting the terms with derivatives of p we obtain:
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(x = X)z+i(B—B)g =

| 2A'Dp
= 2 [Z,AI‘D_p] + ...

where the omitted terms do not depend on the derivatives of p.
Finally,

(22) Fn = 2i(Ty'A'z — ZA'Dp) + Fy
Fm = 2!:(T3,Altf - Z’AI-EB) + Fn

where £y, and Fy; do not depend on 7T and the derivatives of p.
Thus, before applying the transformation t; the equation of M has the form

Po (g) = /A% + 2(Ty'AZ) — % (:’Aa-(%% (g) ) +..

After applying 1, it takes the form

pop (5) = poplz,2) +2i((CT'T2YC'ACE —

2 (z’C'AC‘C‘") O (g) .

30, 7)"
Plugging into the latter formula
dp ap -1

am,m) o) !

we get

(1‘—;) = (z,2) + 2£((T2)2) —{z, Yz, z)}) +...

Here, T = C~'T; and 0} = C'lmﬁ%, (2,2} = 2'J%, or, in terms of V:

V o= '3 4 2i(T12* — aa(2")?2° — gy 2 275" —
—2i(2'T; — wiy(2")(3%)? = wyp2%21 5
To normalize Fy, we choose T} eliminating any terms which contain z? in Fy,. T3
will be chosen to eliminate all terms containing z! in Fy; in (22):
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(23) T' = n")+...

-~

T = op(')+...

We denote (C~ 1)1 =14 611, (C7 Va1 = 621, (C™ 1z = b1z, (C™ )22 = 1 + b2a.
Then

ap! op?
W' = (1+511) P +5126p,
3 2
w22 = 621 ap_ +(1+612)—BT

and,

- dp
Tl = ((1'*'611)6 +612 )(1)2+,..,

82
on
. a 0
T = (6116”_ +(1+61,)ai)( Ny,

The coefficient at 2'2z?2! in Fy; equals to
—2idy + -+ = —2i(bnpy + (1 + 6)p%) + ..

We choose p? to eliminate this term

én
1+ 23

Then we choose p} to eliminate the term at 22z'2? in Fy; which equals to

(24) Py=—T—Pp+.

(21'(;)12 + ... )222152 = 21((1 + Sll)ﬁ% + Elﬁ)ﬁ; +. )222122
This implies

)
2 p= - Pl
( 5) pn 1+ 6upﬁ +
We have omitted the terms which do not depend on the derivatives of p.
The convergence of the solutions of the system (24), (25) follows from some argu-
ment used by Loboda in [Lob88], section 4.
Thus, after performing 1, and %, the terms Fy; and Fj; take the form
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Fia = ¢nilz')*2' + ¢ga1(2%)*7
Fy = ¢ai2’(2')? + dam(2®)(27)%.

These polynomials belong to the space N.

Now, we shall normalize the terms Fyy, Fy; for k > 3.

Since gl are expressed in terms of T}, we have only to determine the T7.

After agglxlng Y, we observe that the terms in Fj; and Fj; containing Tk are equal

to FL + (Ff)*, where
F . -
= 2i2'AT;.
(( FLy ) e

(( o+ T) ) — 2T Az,

After performing z = C'z* and dropping the stars

( FZ ) o ((C“IT,,)'C’AICLE).

Analogously,

(Fkl) (C7'T)C'A™Cz
Multiplying the left hand side by (pop)~! we get:
2T}z — QszE‘,

where T} = C~T;.
Since the only freedom we have to normalize F; is the choice of T}, one can
eliminate at most the coefficients at 2%, i.e. the normalized form of F}, is

Fiy = Ak(z)il,
and the normalized form of Fy; is, analogously,
Flk = zsz(z).

Since among T, k£ > 2 only T; and T; contribute to the terms being related to
the special conditions of the normal form, for our purposes we need a more or less
explicit expression only for T;.

The contribution of the right hand side of (12) into the term of F3; (we consider
the highest order terms with respect to the derivatives of p) equals

. _ 12
—2i(2iT'A'Dp) — —2i | 2T'C'ACOR(5,%) .
2z
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After cancelling pyp we obtain
—21(2iT (w1 2% 2" + wga2'7%)).
Thus, the pure term in 5 in f},‘ equals to
T3(n) = 22" T} (n)@2a(n),
where T2(n), TX(1), @22(n) denote the the pure terms in 5 in T}, T}, and @y, re-

spectively.
The corresponding contribution into F}3 equals to

e e -~ - 152
—2(2Ty' A" Dp) = ~2(2%TIC'ACQ (:2;)

— —2i(2T3(@1,227" + &r3232)).
Thus, the pure component in 7 in T2 equals

T3 () = 2i2° T (man (@) + -,

and, since
[} (n) = (2'Y’on(m) + ...,
then
(26) T3(n) = 2(z" ey +...,
and, since
T3(1) = (") ’an () + ..,
then
(27) T3(7) = 2i(2*)@4(7) + -

This completes the normalization of the terms Fy; and Fy; for k& > 2.
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7. NORMALIZATION OF THE TERM Fi,

In this section we give a construction of the transformation 15 having the form (9):

. id(wtw? e“(wl'w:) 0 -
z = ‘e"( )( 0 g ) z

w = W
where u(7,7) and ¢(n,7) are both real functions.
At first, we study what changes in the term Fj; in the equation of M can be
reached by applying 1.
We set p(w!,w?) + i¢(w!,w?) = s(w!,w?), thus

u(n, 1) = %(S(n,ﬁ)+§(ﬁ,n))
¢(n, ) = %(S(n,ﬁ)—i(ﬁ,n))

o) = 5:(5m0) - s(n,7)

Therefore,

1 _ - }
pwhw?) = S(s(n+iV,i +iV) +3(7 +iV,n +iV))
Rhwh) = (a(n— iV, — V) 4 57— iV,1 = V)
(w',w?)

—_— 1 _ ; . -
FH) = 531 —iV,n—iV) - s(n = iV, 7 - iV))

1 . - -
2 (s(n+iViq +iV) = 3(7 + iV, 9 +1V))

The terms of the type (2,2) may arise from Fj; itself and from the Levi form as
well.
The latter is

7172 — 2'Zexp[p(w’,w?) — p(w!,w?) +

+Hi(g(w',w?) — $(w!,w?))].

In the brackets we have then
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p(w', w?) — plw!,w?) + i(P(w!,w?) — d(w!,w?)) =
= s(n+iV,7+iV) —s(n -V, - V) —

— 2i(s,V + s5V).

Hence,

152 152 ;152 152 2;1
2128 — 1) 22) 22+ 2027 28,2120 + 55277 ) =

= 2'7% 4 2is,(2")*(2%)® + 2is4|2" |*| 22|

Thus, s will be uniquely determined, if we require that after applying 153 the

coefficient at {2'|?|2%|? in the term Fj; vanishes as well as the coefficient at the pure
term in 7 at (2!)%(z%)%.

Let s(1,7) = so(n) + 75(1, 7).
Before writing down the equations determining 3¢ and 3, we have to evaluate the
leading terms in Fj,; after applying 13 o 1;. These terms equal to the sum:

2((Dp) A Dp) + 4(T2) A'T;.

A(Ty) ATy — 4(Ty)YC'A'CT, =

= 4((1 + 822)P3(n, ) + )P} (71, m)) X

(1 + 511)?37(71,17) + 613;3,2,(77,1;))(21)2(22)2 4=
= 40220-’11(21)2(22)2.

The component of the latter term pure in 7 equals to
= 4((1 + 832(n, 0)7(n) + 821(n, 0))p}(0, 7)) x
(1 + 611(n, 0))m7(n) + 612(n, 0)p} (0, 7))(=")* (%)%,

where 7! = p'(n,0), #? = p*(7,0) - the pure components of p' and p?, respectively.
Analogously,
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2(Dp)’'A'Dp) =

dp _ 2153 '
-1 1
2(0 o(r, )" ”()) i

153
><C"'1'\IC_"(C"1 (3 plp (z zl)) =

11—

(o2 T -

z'z?
233!
2(wi@22(2")2(2%)? + (wn@n + wia@n)|2'?12°)° +
).

w1a@y (2 )( )

Thus, the leading terms in F,; can be written as

6w11@22(2")%(2%)? + 2{wn@n + wi@n)|2' PP + ...,

Hence, the contribution to F,; available for normalization is

2(wn @ :I- w£Q22)|zl|2|22|2_+
+6((1 + &22)P2 (7, 7) + 21)PL(7, 1)) ¥
(1 + 6n)pi(n,7) + 612P2(7, M) (2" (2%) +

= 4@22&)11(21)2(22)2.
After setting
0s
(28) an = 2(“11(&’21 + wuwgg) +...

to eliminate the coefficient at |2!|?|2?|?, and

(29) so(n) = 3 [(1 + 522)@(’]:’7) + 521)1’_.15(’7,'?))"
(1 4+ 80)pL(m, 7) + 61292 (7, )]

we normalize Fj,.
The convergence of s follows again from Loboda’s argument in [Lob88] applied to
(28). (29) is just an ordinary equation.
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8. NORMALIZATION OF Fy3 AND F3. THE EQUATION OF THE CHAIN.

We have alredy obtained the equations determining p} and p} after normalizing
Fgl and Fl?-

The normalization of Fy3 and Fj; leads to some ordinary second order differential
equations determining the functions #'() = p'(5,0) and =*(77) = p*(7,0).

At first we select the terms in Fy3 and F5; which might contain second derivatives
of 7! and 7%

—2(z'A'DT; + A DTy),

where

— —2(z'C'AC'C'1DT3 + 2’C'ACC-'DT, —

= = 1)
—_— =9 (ZI(DT2)2 + ZQ(DTg) +... )

where we omitted the terms of degree < 2 in p-derivatives.
They give the following contribution into Fijs:

=2 =2
—@a) —2((T3)n2' 22" + (T,)4(2")?2%) =

= —2 {{%l(l + &11)B (71, m) + 81283 (0, D] 2" [*|2*1* 22+
21+ Bl + 312ﬁ§(nn7)](2')’(5’)3} -

The pure contribution in 5 equals:

(30) =21+ 61 (n, ON(*)" (M) *(Z*)° + ...,

where we omitted the terms of degree < 2 in p-derivatives.
Analogously for Fj;:
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—%(3,2) —2((7”".-1)1:5-'1("-"2)2 + (Tzl)ﬁ(zz)flzg) =

7] - _ = 1.
- {a—ﬁ[(l +E)B (0, 7) + EnPh(5,m) 2 Pl

{6%[(1 + 822)p%(n, 7) + 52113%(?!,0)](21)3(52)2}
(31) —=2(1 + &) (7*)" (m)(2")*(2*)* + ...

Thus, we use the remaining freedom in 7! and #? to eliminate the pure terms in 5
(7) in Fa3 (F3;), respectively.

To give an appropriate approximation of 7! and 72, we are going now to determine
the leading terms in the equations of the 7-s. The leading terms will be those of
degree 3 in the first order derivatives of the p-s. They arise from 47%AT; and the

contribution of Fi,.

We have:

4T:;A1T2 = 4(C*IT3)C'AIC-’C_1T2 —
— 8imdwy (21)3(2%)?

—(a,2) 841 + &)X (F2())*(1 + 811)w2(n)(2")*(2%),

ATIAVT;, = 4(CT'T)C'A"CCT; —
— 4TI,
b —SiGQQWfI(Zl)a(EQ)a
—2,3) =8i(1 4 611)* (mp ()’ (1 + 822)73(n)(2")*(2)°,

The contribution of F3; eaquals to

dp Ezvlz
a(ﬂ‘r T-]) F222

. =2 1 z2\\! 1 s2\\?

TR

—~412" (2 2T2§~,1 0 Az 2 L1 52 1
243+ 22 3l Q 22 3

—r(a'z) —ZI'Z'AI
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Within the matrix in brackets:
272, — 2(1 + §u)my (M1 + baz)mi(7)(2*)* (2)*.
And, the whole contribution into F33 eaquals to

23T, — 21 + B)FHAN(L + ) (D) (2.

—r(a,2) —12i(1 + 822)* (1 + 611 )(F3(n))*mp () (2" (2%)* + . ..
Analogously,
—2,9) 1261 + 611)*(1 + &32)(my ()7 5(n) ()2 () + ..
Collecting all the leading terms, both in Fy3 and Fj,, we get:
g g 3 312, g

—(2,3) 44(1 + 812(n,0))*(1 + &22(0, n)) (mh ()73 (n )"} (2%)°
— 32y =441 + 622)* (1 + 611 )(72(n)) 7p(n) (21)° (%)

Combining these formulas with (30) and (31) and taking into account the condition
that the coefficient at (2')?(2%)3 in Fy3 and the coefficient at (2')3(2%)? in Fi; vanish,
we obtain the second order equations determining 7! and =%

(32)  (=")"(n) = 2i(1 + 611(n,0))(1 + 822(0, 7)) 75 ()7 2(n)m s (n) + ..
(7?)" (i) = 2i(1 + 622(0, D1 + 801 (7, 0)) w3 (Do (W72 + ...

These equations completely define the chain T' up to the parameters

1
a' = (=')(0) = %%- , and
o
2
a® = (z?)(0) = f;lr_’ .
0

The normalized terms F3,; and F); satisfy the conditions:

lin

—alﬂazlaﬂ reo F32 - Oa
ot

__302322371 o Faz = 0.
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9. NORMALIZATION OF Fjy,

Any transformation 1, preserving the pre-normalized form of the equation obtained
in the previous sections has the form (10)

18{w) 0
. Alw ¢
Z = € () ( 0 8-"9(”)) V4

o = 1= (1)),
where

oh (eﬁ(f\(w)ﬁe(w)) 0 )
Y

8(w?, w?) = 0 e2(Mw)=i8(w))

and, Tm (7, 7) = Im0(7,7) = 0.

If A and @ are constants then 3, is an linear (C, p)-automorphism of the elliptic
quadric. Therefore, we presume that A(0,0) = 6(0,0) = 0.

The Levi-form in *-coordinates is

21-22- = e2().+10)zl§2

z?t 21- — eQ(A—sﬂ)zZEl.

The form of the Jacobian aﬁ’:‘—wﬁ implies that

oh?
oot =0
g_:; = 2O+HNW) 14
oh?
st =0
g_hz = HA-i8)w)
W
We denote
(W) = (W)= +i)w)
(W) = (W)= (A -if)(w)

Consequently,
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v = S+
2 b

_ O - W)
0 = 5 .

[

And, since {(7) = A(n,7) + t0(y,7), we get for A and 6:

A7) = C(n);f(ﬁ)’
o,7) = S2=E0),

and, finally in terms of (:

At w?) = C(n+=‘V);rE(ﬁ+iV)

9w, w?) C(n+1V)

w,w

(RY(') = eXth,
(B)(w)(@?) = &4,

Now we are able to compute the contribution to F33 after performing 4. The
"new” Levi form contributes into the "old” equation of M:

L1752, AW)HB)N@HEW) 152

For the expression in the brackets we have:

C+iV)+{T+iV)  F=iV) +Ln—iV)

2 2
_, Xn) = 2%¢"(n) + 2 () ~ 25 (@)
2
— ¢+ E7) — () + ).

Similarly,



NORMAL FORM

i) - LG +iV) _ G =iV) = ¢ = V)

2 2 -
L, Xm) =25 (m) - 20() — 25 (")
_ V32 2 _
— Cln) = T) ~ (¢ () ~ T3
Hence, the contribution of the *-Levli form equals to
(33) 272 — exp(2((n) = V("(n))2'2* — €¥(1 - V¥("(n))2'2’

The contribution of the x-left hand side:

w'*—&*  RlY(p+4iV) = hl{(y—iV) _
2t - 21
AV(RY(n) V3 s
1y V3 1\
(BY(n)V = = ()"(0).

Ve =

And, since

(hl)l — 62((11)
(B = 2('(g)e™
(R)" = (2"(n) +4(C'(m))")e¥™,

we get for the left hand side:

(34) Ve = X0 (V2 (") + 2 )V + )

Combining (33) and (34), and cancelling e¥ we get in the right hand side:

— (=" + 3¢ + 5 (7 =
= ~2(¢"() - (P

33
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This means, that in order to obtain the normal form of F33 we can eliminate the

n-pure term at (z'z2?)3. If this n-pure term in the pre-normalized form equals to
#(n)(2*2?)3 then the equation for { takes the form:

(35) ()~ (C'm)) + 38(m) =,

with ¢(0) = 0.
This equation defines ¢ up to ¢'(0), that gives a C!, or R?,-freedom in the initial
data related to the parameter r (see (5)).

Now we compute the leading terms of degree 4 in the first derivatives of the -s.
Since,

4T:;A1T3 = 4(C—IT3)'C’AIC,C-1T3—F
— s ATIT, — 160, (n, 0w, (7, 0) (21 22)° —>
—5 16(1 + Sza(n, 0))2(1 + 611 (, 0))*(F2)' () (7YY ()3 (= 22)°

and, as was shown in [ES93], the leading terms of Fa3 have certain proportionality
with respect to the contribution of different terms, the contribution of 4T{AT5 is
(—24)-times the actual value of the leading term at ¢(5). Therefore,

¢(n) = *-%(1 +80(1,0)*(1 + 8u(n, 0)*((F2) () (=) (m))*(2"2%).
Hence, the so-called parametrization equation defining () takes the form:
(36) )
() = (') = (14 82, 0))* (X + 81 (m, 0)*(F*) (M)* (=Y (m))* (2 27)* + -~ = 0,

where the dots indicate the terms of lower degree in w-derivatives.
The normalized F3; satisfies the condition

at
—-——-—-—ausan i Fa3 = 0.

This completes the proof of Theorem 1.
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10. PARAMETRIZATION OF THE NORMALIZATIONS BYAuty J. THE FAMILY OF
NORMAL PARAMETERS ON ['.

We prove Theorems 2 and 3 in this section.
Proof of Theorem 2. Following the proof of Theorem 1 step by step we see that the
only freedom, we have in the normalization with identical differential at 0 relates to
the parameters

a' = (x')(0),
a? = (7)(0),
ro= ('(0).
It is easy to observe that any linear (C, p)-automorphism preserving the Levi form
(a linear (C, p)-automorphism of Q.) preserves the normal form of M as well. There-

fore, removing the condition that the differential of the normalization 1 at 0 is iden-
tical, we obtain the freedom

—

0z |,
_aw"
P— awoi

where {Cz,Cz2) = p(z, z), as well.

Since the entire set of parameters (C, p,a,r) arises from the first and one of the
second derivatives of ¥, the multiplication law for the set of parameters is the same
as in the case of Q..

This statement makes sense in the case when the original M is already given in
normal form (One can presume this according to Theorem 1).

Thus, we obtained the group A'(M) of normalizations of M at the origin which is
actually isomorphic to Autg Q..

This completes the proof of Theorem 2.

Proof of Theorem 3. Suppose that M is given in normal form in which I is the plane
Io: z=0, v=0. Since any linear (C, p)-transformation from Autg @, preserves I'y
and the normal form we can represent ¢ as a composition ¥ = t), 0 1y, where 1) has
identical differential at 0, and ¥, is a linear (C, p)-transformation.

Since %0y keeps I'y and the normal form of M it has to be a transformation of
type 4. Since the term Fj; has normal form both in original and *-coordinates, the
corresponding equation (36) defining the function {(n) does not contain ¢(n). Thus,
it is the homogenious equation:

CH _ (Cl)'l — 0’
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with ((0) = 0.
Set {'(n) =: x(n), then x’ = x?, and, consequently, x = (' = —==.
Setting C := —! and integrating the equation above we obtain
R (g) = —1—.
() =1= p
(We used that A'(0) = 0.)
This implies
RY(! w'
e W = T
2
20,2\ _ w
h(w) - 1—7_'0.’2, TGC-

Theorem 3 has been proved.

11. FINAL REMARKS

In this work we do not cover the following questions concerning a nonquadric (i.e.
not locally equivalent to Q.) elliptic CR surface M in C*.

(i.) What is the sharp estimate of the order of contact of the chains passing through
the origin of an elliptic surface M given in normal form and the chains on the
tangent elliptic quadric being intersections of ¢}, with so-called "matrix lines”.

(#.) Since N (M) has a structure of Auto @., we obtain a faithful representation
Auto(M) — N (M) = Auto(Q.), as in the hypercase. Now, the question is
whether this embedding is uniquely defined by the CR projection of the au-
tomorphism? We call this effect "Lobodization”, after A.Loboda, who proved
the corresponding result for codimension 1 [Lob82].

(iii.) In the case of an affirmative answer to the question (ii.) the following questions
arise: Has any element of Auto(M) an invarinat chain? Does there exist a
chain I' passing through the origin being invariant with respect to the entire
Auto(M)?

We hope that the construction of a normal form developped in this paper might

help to find the answers to the questions stated above.
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