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NORMAL FORM AND 2-DIMENSIONAL CHAINS OF AN
ELLIPTIC CR SURFACE IN Ci

VLADIMIR V. EZOV AND GERD SCHMALZ

ABSTRACT. We suggest a construction of a normal form of areal analytic surface
of codimension two in C4 with elliptic Levi form which generalizes Chern·Moser
normal form of a hypersurface.

1. INTRODUCTION

We eonsider some properties of real generic CR surfaees of eodimension 2 in C4 with
nondegenerate Levi form. Loeally, any C2 smooth surfaee of such kind belongs to one
of three types, corresponding to the type of its Levi fo~m, namely elliptie, hyperbolie
and parabolie. The elliptie and hyperbolie are the types of general position, the
parabolie type is exeeptional in many senses. A normal form of a hyperbolie surfaee
was eonstrueted by A. Loboda [Lob88]. We give a construetion oI a normal form
of elliptie surfaces (Theorem 1). This normal form is analogous to Chern-Moser's
normal form of a hypersurface [MS74]. For example, there are as many normal
forms at a fixed point as there are isotropie automorphisms of the tangent elliptie
quadrie (Theorem 2) since the group of germs of "normalizations" of a hypersurfaee
is isomorphie to tbe isotropy group of the tangent hyperquadric.

Normal forms use to be the most efficient tool in the proof of the extension of
loeal holomorphic maps of hypersurfaees and in equivariant linearization of their au­
tomorphisms ([EKV84], [Vit85], [Ez083], [Kru83]). All these results involve a family
of ehern-Moser ehains, - a special biholomorphically invariant dense family of eurves
on a surface. We introduce a biholomorphieally invariant family of 2-dimensional
surfaees on an elliptie surfaee whieh we also eall ehains. Geometrieally, the chains
are the solutions of certain systems of linear partial differential equations. Up to
terms of higher order they admit an approximation by the ehains on the tangent
elliptie quadrics, being tbe interseetions of the quadrie with so ealled "matrix lines" .

Anotber analogy with ehern Moser's normal form which might be very helpful
in the analysis of local holomorphic maps is the fact that the ehain-preserving nor-
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malizations of a hypersurface being already given in the normal form has to be a
fractional linear transformation ultimately (Theorem 3). ce

2. RESULTS

Let z = (Zl, Z2), W = (w1 = u 1 + iv1 , w 2 = u 2 + iv2
) coordinates in C" = C2 X C2.

Let

(
(z Z)l = zlH1z)

(z, z) = (z: z) 2 = Z'H2Z -

a nondegenerate R2-valued Hermitian form in C2. (z' is the transposed vector of
z.)

There are only three types of nonequivalent Hermitian forms (up to the action of
the group G2,'2 = GL(2, C) X GL(2, R) given by

(C,p) 0 (z,z) = p(C-1Z,C-1Z)).

These types are represented by

(z, zh (Re Zl Z2)- Im Zl z'2

(z,zh (IZI1
2
)- Iz212

(Z,Z)3 = ( Iz l
12 )Rez1z'2 .

These three forms are called elliptic, hyperbolic and parabolic, respectively, ac­
cording to the distribution of the roots of the polynomial invariant

Pk(t) = det(H~ + tH:), k = 1,2,3,

where H~ is the Hermitian matrix related to (z, z){.
In particular, 'P1(t) = t2+ 1, 'P2(t) = t, P3(t) = t2 (up to the sign).
The stable cases are the first and the second so far.
A hyperbolic form is also called strictly pseudoconvex since it is the only one which

admits a positive definite linear combination of (z, zH and (z, zH.
Consider the group 0 0 of the germs of local biholomorphic isomorphisms of C4

preserving the origin and let us consider the orbit Oo(M) of a surface M = M 6 C C4

with nondegenerate Levi form.
Of course, Oo(M) has infinite dimension. The purpose of a normal form is to

decompose the space :F of formal vector power series of the form Im w - G(z, z, Re w);
G(O) = 0, 8(8G -10 = 0 with nondegenerate Hermitian term in (z, z) into the sum

w,w
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where Oo(M) nN' '10 has finite dimension for any M.
The normal form for strictly pseudoconvex surfaces was found by A. Loboda

[Lob88]. V. Beloshapka [Bel89],[BeI90] suggested the way to define the 'R space
in the general case. But it might lead to divergent normal forms if we do not care
about the choice of N', the direct complement to 'R.

A convergence theorem can be proved if we explidtly define.N and the projection
7r: F ---+ N.

We now describe a normal form of real analytic surfaces M with elliptic Levi form.

It is convenient to write down tbe equation of M in coordinates (z, V, V, '1, 11),
wbere w1 := w1 + iw2 = 1] + iV, w2 := w1

- iw2 = Ti + iV, where 1] = u 1 + iu2
,

V = VI +iv2
• The equation of M takes then the form

(1) V 1-2 += Z Z •••

Let K.k1(Z, z, 1], ij) be a polynomial in (z, i) of degree k,l respectively, with coeffi.­
dents being formal power series in (1], ij), representing the right hand sides of equation
(1) of elliptic surfa.ces.

We set

n = {RI'I +~ Rk,o +~ Ro,k +

+ ERk,I +ERI,k + R22 + R32 + R23 + R33 , }

where Rk,o (Ra,k) are arbitrary holomorphic (antiholomorphic) polynomials of de­
gree k in z (z), and
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R1,I(Z, Z, 0, 0) - 0

R2,1 tP ( -) 1 2 -1 +R ( -)-2- 21 T},T} Z Z Z 2,0 Z,T},T} Z

R1,2 = tPU(T} , ij)Z2Z1Z2 +~,2(Z, T}, ij)ZI

Rk,l = RkO(z, T}, ij)Z2, k2:3
R1,k = ZI ~k(Z, T}, ij), k2:3
R2,2 = tP22(T}, ij) 1z1

1
2

]z2
1
2 + tP22( T}) (ZI Z2)2

R32 - tP32( T} )ZI (ZI Z2)2,

R2,3 - tP23( T} )(ZIZ2)2 Z2

R3,3 - 4>33(T})(ZI Z2)3

Let V = ZI Z2, : ... = aS~jj. Then the space}/ is defined as

N = {ZI Z2+N21 +N12 +E(Nk1 +Na) + E Nkl },
k,I:2: 2

where

(2)

k2:3

(8V)28T} ij=O N22 = 0

(aV)~Zla'1lij=O N32
- (av)~zla'1lij=o N23 = 0

(a~a'1Lo N33
- 0

It follows that F = 'R EB}/.
Remark. Let F p be the subspace of F consisting of the polynomials in z, z, T}, ij.

Then in Fp a scalar product (,) can be defined by the property that the monomials
form an orthonormal basis in Fa.

It follows that N n Fp= ('R, n Fp)J. with respect to (,).
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Now let M be a real·analytic eR surface of codimension 2 in C4 with elliptic
Levi form, passing through the origin.

Theorem 1. In some neighbourhood 0/ the origin there exist coordinates (wi , zi),
j = 1,2 such that the equation 0/ M takes the form

(3) v = N(z, z, '7, ij),

where N(z, i, '7, ij) E N.
Equation (3) is called a normal form of M (at the origin).
Suppose that M is given in a normal form. How many different representations in

normal form at the origin does M admit?
Let ON(M) be the group of germs tPN(M) of holomorphic transformations at the

origin preserving the normal form of M.
We consider the isotropy group Io(Qe) of the elliptic quadric

Q V 1-2e: = Z Z •

It was shown in [ES92] that Io(Qe) consists of fractional linear transforma.tions
having the form

«I> = «1>0 0 «I>t,

where «1>0 is a (C, p)-transformation defined by

where -X, p, rP, () E IR.

(4) «1>1 : (Z·)1
Zl + a1w1

=
1 - 2iz1ä2 - (r +ia1ä 2)w1

(Z·)2
z2 +a2w2

= 1 - 2iz2(il - (f + ia2(jl )w2

(W·)l
w 1

=
1 - 2iz1ä2- (r + ia1( 2)w1

(w·)2
w2

-
1 - 2iz2ä1 - (f + ia2ä 1 )w2'

where a1 ,a2 ,r E C.



6 VLADIMIR V. EZOV AND GERD SCHMALZ

Hence, Io(Qe) rv R4 ~ C~ ~ C.

Theorem 2. The group ON(M) is isomorphie to Io(Qe) rv R,4 e< C~ e< C. This
isomorphism is given as folIows: Let VJN(M) : z· = !(z,w), w· = g(z,w), then

r =

(5)
ß/
ßz 0

afl

ßw l
O

a!~

aw~ o

1 ( a~gl I . 82g~ I)2 (8w l P 0 + /overhne(8w~)~ 0

If M is already given in normal form then it is easy to see that the 2-dimensional
R-plane f o : z = 0, V = 0 belongs to M. This observation provides us with a notion
of chains:

A 2-dimensional real submanifold f c M is called a chain if there is a transfor­
mation ,pN E ON(M) such that tPN(f) C f o• Such tPN we can a normalization of M
straightening r or a normalization of M along f.

The following questions occur: How many chains pass through a fixed point on
M? What are the chain-preserving normalizations of M?

Let ~ E M and f e be the family of chains passing through ~.

Theorem 3. ( i.) r e is a C~ -parameter /amily 0/ f-dimensional sur/aces on M,
being transversal to the eomplex tangent space to M in any point.

(ii.) Let ,pN be a normalization 0/ M and f o be ,pN-invariant, i.e. "pN(rO c f o.

Then ,pN is an element of Io(Qe) having the form (4) with a l = a 2 = O.

Corollary 1. There is a family {1Jr}r 0/ normal parametrizations 0/ the chain r.
Any normal parameter can be obtained from another normal parameter by a projective
transformation.

(6)

3. SCHEME OF THE NORMALIZATION

Since any transformation of the type cIJo preserves the normal form (3), we shall
construct a normalization having identical differential at the origin.

We consider achain f passing through the origin and being given by the equation
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Zl - pl(tt,t~)

Z~ - p~(tt, t~)

W
1 = ql(tl,t~)

W~ = q~(tt, t~),

7

'th &1 - ~jWl 8t. 0 - U 6 '

We represent a normalization VJ straightening r as a composition of 4 eonsecutive
transformations .,pI,'" , tP.. , Each of these Wj preserves the form of the equation of
M being obtained at the previous step Wj-l and gives its own eontribution to the
normalizatioo of the equation.
Step 1. (Straightening the ehaio, determination of the initial parametrization on r
and elimination of the harmonie terms)

We look for VJl having the form

(7)
00

Zl = (Z·)l +pl((W*)l, (w·)2) +2i E Tl(z"w·)
k=~

00

z~ = (Z·)2 + p~((w*)~, (W·)l) + 2i L: Tf(z·,w*)
k=2

00

w1 = ql((w·)\ (w*)2) + 2i E gl(z" w·)
k=l
00

w2 = q2((w·r~, (W·)l) + 2i L: g~(z., w·),
k=1

where Tl and ~ are polynomials of degree k in Z with eoefficients being analytie
funetioDs of W,

,pI has the following properties:

(i.) ,p~ maps ~he germ of r at the origin onto the germ of the plane z = 0, V = 0,
(ii.) gfc and Tt are chosen to eliminate the harmonie terms (FkO and FOk ) in the

new equation of M,

Step 2, (Normalization of the terms FkI and Fa for k ;;::: 1 and of F23 and F32 )

tP2 is a so ealled (C, p)- transformation

(8) Z = C(w·)z·
w - p(w*)w·,

having the following properties:

(i.) After applying ,p2 the term Fl1 takes the form ZI Z2 and
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(ii.) tbe terms Fu , Fa, F32 , F'J3 belong to tbe space N.
Tbe normalizing of F'Jl, Fu ,F3'J, F23 in the new equation of M completely deter­

mines the family of cbains r passing through the origin in the chosen parametrization.
Step 3. (Normalization of the term F22 )

tP3 ia a (C, id) transformation having the form

(9)

where Imp(l1,ij) = Imtjl(l1,7J) = O.
After applying ,pa we get F2'J E N.

Step 4. (Normalization of the term F33 • Normal parametrization on r. The family
of normal parameters.)

tP4 is a transformation of the form

(10)
( e;8(w)

e-~(W)) zz· - e"(w)
0

• (h1 (w))
W - h(w) = h2 (w) ,

where

ßh (e 2(.\(W)+i6(W)) 0 )
ß(w1 , w2) = 0 e2(.\(w)-i8(w))'

and, Im..\(l1,ij) = ImB(l1,ij) = O.
This is the general form of a transformation with identical differential at tbe origin

and preserving the partial normalization obtained at the steps 1-3.
We will find ..\ and B such that in the new equation tbe term F33 E N.
One can consider t/J. as a reparametrization of r. If we suppose that F33 E N,

from tbe very beginning, then 1/;4 is a fractionallinear transformation:

(11) (Z·)l
Zl

= 1 - rw1

(Z·)2
Z2

= 1-fw2

(W·)l w1

= 1- rw1

(w·?
w2

- 1 - fw2 '
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corresponding to some normal parameter on r.

4. INITIAL PARAMETRIZATION ON r
In this section we give a construction of ,pI. The condition reM implies that

1
2i [ql(71, ij) - q2(71,ij)] - pI (7], ij)p2(71, ij) +

1 2 -1 -2 1 1 -2 1 2 -1+G(p,P,P,P'2[q +q]'2[q +q]),

where

9

(12) v = Zl z2 +G(z, z, 7], ij)

is the initial equation of M.
After we insert the expression for ,pI ioto equation (12) and solve it with respect

to V and V (we remove the star indices) we fix the parameter on r taking into
consideratioD the coefficients at V and V only.

By the expression Q' ---+(-y) ß we mean that the contribution of the term Q' of the
old equation into the term of type I in the new equation of M equals to ß or to the
contribution of ß into ""(.

The contribution of the left hand aide in (12) into the terms being linear with
respect to V and V is:

;i (ql(7J + iV, ij + iV) -l( 7J - iV, ij - iV)] ---+/in(V,t")

1 [1 -2] 1 - [1 -2]
~2Vqtj+qif +2VQif+Qtj =
= Ql +Q2,

W here Q1 and Q2 are the components of the vector

(Ql) = .!. (ql ql) (~) .
Q2 2 q~ q~ V

The contribution of the right hand side is:

pI (7] + iV, fj + iV)p2 (7J - iV, fj - iV) ----'lin(V,ti)

---+ i V (p~p2 _ p~pl ) + i V(p~p2 _ p~pl) =

= 2i(pl _ P2),

where
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The contribution of the function G on the right hand side is

G{ZI + pl(1J + iV, ij + iV), Z2 +p2{ij + iV, 1J + iV),
ZI +pl(ij - iV, 1J - iV), z2 + fi'J(1J - iV, ij - iV),

~[q'(I) + iV, ij + iV) +q2(I) - iV, ij - iV)],

~[q2(ij + iV, I) + iV) +q'(ij - iV, I) - iV)]) --->/in(V,V)

t
2V[G'1q~ + Gijq~ - G'1q~ - Gijq~l +

I - [1 'J -2 -1]+2V G'1qij + Gftqij - G'1q'1 - GijQ'1 +
+iV[GIP~ + G2P~ - GiP~ - G:lfi~] +
+iV[GIP~ + G'JP~ - GIP~ - G2P~] =
=~(Q' _ cl) +i(P' - p\

where

Collecting all the linear terms in V,V on the left hand side of the new equation of
M we get

where
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Here,

Consider the matrix

H= (hu h1'l) = 2'('d _ 'B)-l ( 8p )h21 h22 tl 1 X 8(7],Tj) .

In order to choose the parametrization of the chain we set

(13)
aql

aij
8q'J

87]

8q11 8q'J I- - = 1 and
87] 0 8ij 0 '

aB (q~ - hll ) - ;_ (q~ - h22 ) = 0
fJ ij=O 7] '1=0

These equations uniquely determine q when pis given. Thus, they define the initial
parametrization on r.

Now we express the functions 9~ in terms of T, using the condition that the new
equation of M does not eontain harmonie terms.

We start with 9: (z, 7], ij) and 9~ (z, 7],11). Consider the terms F lO and Fot.
The left hand side of the equation (12) eontributes

9:(Z, 7], 11) +g:(z, 1], Ti)·

The right hand side eontributes
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Zlp'J + Z'Jpl + z;G; + z;G; +
'G 1 'G ~ '-G'J '-G1

+1 ,,91 + 1 ,,91 - 1 '191 - 1 ff91 .

Collecting all the terms of the type (0,1) and (1,0) at the left hand side, we get
Gt +Gf, where

Finally, we set

(14)

We continue by evaluating 9~ and 9~. The left hand side contributes to the terms
of type (2,0) and (0,2)

the right hand side:

. ]-2 .~ .; .,-. 1 . '2 .~ .--r
21T~ p - 2tT2pI +2lT2G; - 2zT] Gi + IG'I92 + tGij9'2 - IG'I92 - IGij9'2 +

+~(Gkizkzi +2iGi.zig: +2iGiijZig: - G""(g:)2 - Gilij(g:? - 2G.ijg:gD +

+~(Gl;:;zkzi + 2iG,ijzigi + 2iG,.zig~ - Gijij(gD2 - G""(gl)2 - 2G,ijglgl).

Collecting these terms on the left hand side we get

where

(G~) ('d 'B) (g~) 2' (TJ) 1 'QG1 = 1 -I g~ - IX Ti - '2z 'JZ.

Thus, in order to eliminate the (2,0)-term, we set
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(15) (~D = 2i(id -iBttx (H) - ~(id -iBtt
Z'Q2 Z ,

Analogously, we evaluate FkO for k ;::: 3. The left hand side contributes to the terms
of type (0, k) and (k, 0)

gl(z, 7], 11) +g~(z, 7], 11),
the right hand side:

2iT~p'J - 2iT~pl +2iTlGj - 2iTlG; +
+iG'lgl + iGfJg~ - iG'lg~ - iGfigl + Qk(Z),

where Qk(Z) is a k-form which does not depend on Tl org(
Collecting the (k,O) and (0, k)-tenns at the left hand side we obtain

where

(~:) = (id-iB) (~D -2ix (~~) -Qk(Z),

Henee, we ean eliminate the harmonie terms in the equation of M, setting

(16)

After we have fixed the ehain-parameter and have eliminated the harmonie terms,
the veetor equation of M takes the form:

(17)

where

is a veetor-valued Hermitian form, and
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with

In terms of g{ and pi we have:

5. NORMALIZATION OF THE LEVI FORM (CONSTRUCTION OF t/12)

After performing the transformation ,pI the equation of M has the form (17). We
write down the explicit expression of A:

z'l\.lz = ZlZ2 + ziGikzl- - iZiCirj9: - iZiCiiJ9: + iziC;119: +
+9:G11rj9: + 9:GiJij9: +G11iJ(9:9: + 9:9~},

respectively,

Z'(j\I)'Z _ Z2Z1 + zkGiTeZi + ig~ärjiZi + i9:OiiJZi - iziä;rjGt +

+9:011rj9: +g:Oijijg~ +011ij(9:9: +9:9~).

We look for t/12 being a (C, p}-transformation of the form (reftwo):

z - C(w·)z·
w = p(w·)w·,

where

It follows then that

Let
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By normalization of the Levi form we mean that after applying ,p'J the equation of
M takes the form

v = Zl z~ + L FkI,
.II:,I~l

.II:+1~3

The corresponding equation in C and p is

(19)

where

j1=(~ ~).
Equation (19) does not determine C and p uniquely. As an additional condition

we set

(20)

I t follows that

and therefore,

(21) (C-1)'Jh = _1_(0(1 _ IßI'J)Jh _ 101'J ßJl )0-1
101'J

Combining (19), (20), and (21) we obtain

Respectively,



16 VLADIMIR V. EZOV AND GERD SCHMALZ

Thus,

Al + AI. _ L+(C-lfl,
Al _ AI. = L_«]-1)2,

where

Hence,

C'J = (Al + (Al)')L:;:l
L+L: l = (Al+AI.)(Al_AI.)-t

This system uniquely determines (C, a, b, 0', ß).

6. NORMALIZATION OF THE TERMS Fk1 , k ~ 2

At first we compute F12 and F'Jl after performing ,pI'
The terms containing Td arise from the right hand side and have the form

where

(
FT ) ( 'AlT-)12 _. Z _.,-

(Fl~t - 2t Z'AI.f - 2r.z AT.

We collect the terms that do not contain Td hut contain derivatives of p and q at
the left hand side:

9:(Z,w) +g:Cz,w) - (Zl + pl(Wt,W2))(z'J + p'J(W2,W1))_
1 1

-G(z +p, Z +p, 2[ql + q2] + ig: - ig~, 2[q2 +ql])

Using (14) for g: and g~ we have:
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(gI(z,w)) ('d 'B)-1 (ZI)
g~(Z,W) --'(2,1)(1,2) 1 -1 X Z2 =

X (~~) + iB(id -iB)-lX (~~) •

The contribution of (ZI + pI )(Z2 + p2) +G we represent as

Hence, we obtain at the left hand side

where X and X are the matrices with the following entries:

Xn = p2(1] + iV, 7] + iV) +GI (pI (1] + iV, 7] + iV), p2(i] + iV l 1] + iV),
pl(ij + iV,1] + iV),p2(1] + iV,i] + iV)),

~[ql(1] + iV, fi + iV) + ij2(1] + iV, ij + iV)],

~[l(ij+ iV, I] + iV) + ijl(ij + iV, I] + iV)]).

We will write this expression as

17

where hol and holI~ mean the indicated distribution of signs and bars of the vari­
ables in brackets,

Analogously,
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X:l1 = GI(pl(ij + iV,71 + iV),p2(71 + iV,ij + iV),
pI (71 + iV, ij + iV), p2(ij + iV, 71 + iV)),
1 1 - 2-
"2[q (ij + iV, 71 + iV) +q (ij + iV, 71 + iV)],

~[ih'7 + iV, ij + iV) +ql('7 + iV, ij + iV)]) =

= Ch(holI'J)'
X'J'J = ji(hoI) +G1(hoII'J)·

The matrix X has entries with a different distribution of the variables which we
call regular

Xn = fi2(71 - iV, ij - iV) +Gdpl(71 + iV, ij + iV), p2(ij + iV, 7J + iV),
pl(ij _ iV,7J - iV),p'J(7J - iV, ij - iV)),
1 1 - -
"2[q (71 + iV, ij + iV) +q2(7J - iV, ij - iV)],

1 2 - 1-2[q (ij + iV, 7J + iV) +q (7] - iV, '1 - iV)]) =

- p2(reg) + GI (regI2)

X12 - G'J(reg12)
X21 - Gi(pl(ij - iV, 7J - iV),p2(7J - iV, ij - iV),

pl(7J + iV, Jj + iV),p'J(ij + iV, '1 + iV)),
1 1 - 2-
"2[q (ij - iV, 71 - iV) +q (Jj + iV, 7J + iV)],

1 2 - 1 -"2[q ('1 - iV, Jj - iV) +q (7J - iV, ij + iV)]) =

- Gi(re912),
-1 -

X22 - P (reg) + G2(regi'J).

For the matrices Band E we obtain:

Bn = G7](hoI12 )j En = G7](regl~)

Bu = Gij(hoII2 )j E12 = Gij(regl~)

Bu = Gij(holI'J); B'Jl = Gij(regl'J)
B'J'J = Grj(holi'J); E'J'J = G,,(regi'J)

We denote
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Then we have for X - x:

(X - Xhl . -I -2
--+(1,1) 21[GII(Dp) +GI2 (Dp) +

1 - 2 1 - 1 "'fC\2
+2G1fJ(Dq) +2G1i/(Dq) +(Dp) ]

-I -2
--+(1,1) 2i[G2I(Dp) +G22(Dp) +

1 -2 1 -1
+2'G2fJ (Dq) + 2'G2if(Dq)

. - -1 - -2
--+(1,1) 21[Glt (Dp) + GI'J(Dp) +

1- -1 1- ~2
+2'GlfJ(Dq) + 2'Glf7(uq)

- -1 - -2
--+(1,1) 2i[Gn(Dp) + G~2(Dp) +

+~ä:i"(Dq)l +~ä:iij(Dq)1 + (Dp)l]

The entries of B - B in terms of Dp and Dq are:

(B - B)11 . -1 -2
- 2t [GfJI (Dp) +GfJ2(Dp) +

1 - 'J 1 - 1+2"GfJfJ (Dq) + '2GfJij(Dq)

(B - B)12 = 2i[GiJI(Dp)1 +Gfj2(Dp)2 +
1 -2 1 -1

+'2GijfJ(Dq) + 2'Gfjij(Dq)

(B - Ehl = 2i[Gijl(Dp)1 +Gij2(Dp)2 +
10 - 1 1 - - 2

+2' iJt)(Dq) +2GiJij (Dq)

(B - Bh2 = 2i[Gt)I(Dp)1 +ä fJ2 (Dp)2 +
1- -1 1- -2

+2"GfJfJ(Dq) +2'GfJfj(Dq) ].

Hence,
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ZI 1
(X - X)z2 - 2i(zjGj~(Dp)k + "2zjGjfJ(Dq)2 +

+~ziGi/j(Dq)l + zl(Dp)2) X

x2i(Z2(Dp)1) + ziäk;(Dp)k + ~ziä;.(Dq)l +
1 . - ~2

+2'zJG'ij(uq) ,

and,

i(B - 13)(id -iB)-lX (;:) = (B - 13) (:D
is the vector with the first component

-k 1 1- 2 1
2i[i(Dp) Gl1~91 +"2(Dq) Gl1fJ 91 +

. .
1 - 1 1 . -)k 2 1 ("'R':\2 2+"2(Dq) Gl1fj91_ + t(Dp Gfjr.91 +"2 uq) GfffJ91 +
1 -1 2

+2"(Dq) Gffff91]

and the second component

-k- 1 1 - 1 - 1
2i[i(Dp) Gfjk91 + 2"(Dq) G fffJ 91 +

. .
t- 2 - 1 -k- 2 %-1- 2

+2"(Dq) Gffff91 + i(Dp) Gl1k91 +2'(Dq) Gl1fJ91 +
1 - 2 - :2

+2(Dq) Gl1fj91]'

Inserting into the latter expression

(Dq )1 = -2i.g~(Dp) + ~11 (fj, Tl )z'AI Z
(Dq)2 _ -2ig~(Dp)+~22(Tl,fj)z'Ahi,

and collecting the terms with derivatives of p we obtain:
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(x X)z + i(B - B)91 =

= 2i [::~ll.%] +...

where the omitted terms do ·not depend on the derivatives of p.
Finally,

F'JI - 2i(T:/AI z- z'A~Dp) +F:l1
F- 2'("'" 'Ah - 'Ahr\") F"::;.12 - I.J. 2 Z - Z L!p + 12

where F21 and F12 do not depend on T and the derivatives of p.
Thus, before applying the transformation ,p2 the equation of M has the form

Po (n = z'Ai +2i{T2' Ai) - 2i (z'A8{~~ij) (~) +...

After applying tP2 it takes the form

PoP (~) = Pop(z, z) + 2i((C-1T2 )'C'ACz-

2i (Z'C'ACC- 1
) 8(:~ij)P (~) + ...

Plugging into the latter formula

8p 8p -1

8(77,;;) - 8(77·,fj·) =p ,

we get

(V) ....V = (z, z) +21( (T2 )z) - (z, O(z, z})) +...

Here, t = C-1T2 and n = C-1
8 ( ~p_.)' (z, z) = z'Jz, or, in terms of V:

~ ,~

21

v = Zl Z2 + 2i(Trz2 - W22(Zl)2 Z2 - W21 Z1 Z2 Z 1 -

,,::-2
-2i(zI T 2 - Wl1(ZI)(z2)2 - W12Z2z1Z2

To normalize F21 we choose Ti eliminating any terms which contain Z2 in F21 0 Ti
will be chosen to eliminate all terms containing ZI in F12 in (22):
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.... 1 - 1 1(23) T = W12(Z) +...

.... 2 -' 1 2
T = W11(Z) +...

We denote (C- 1
)11 = 1+hn , (C-1hl = h21 , (C-1)U = hu , (C-1h2 = 1 +h22 •

Then

and,

The coefficient at ZI Z2 ZI in F21 equals to

-2iw21 + ... = -2i(821P~ + (1 + 622)P~) + ...
We choose P~ to eliminate this term

(24)

Then we choose P~ to eliminate the term at Z2Z122 in Fn which equals to

(2 '- + ) 2-1-2 2'((1+~ )-1+~ )-2+ ) 2-1-2lWn . .. z z Z = 1 un Pi'j on Pij . .. Z Z Z •

This implies

(25) fJn 2

" Pi'j+'"1+On

We have omitted the terms which do not depend on the derivatives of p.
The convergence of the solutions of the system (24), (25) follows from some argu­

ment used by Loboda in [Lob88], section 4.
Thus, after performing ,pI and tP2 the terms Fn and F21 take the form
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Fl'J = tPllj(Zl)2Z1+ 4>~2I(Z~)2Z1

F21 = tP2IIZ2(Zl? + 4>2~(Z2)(Z2)2.

These polyno~als belong to the space.N.
Now, we ahall normalize the terms Fk], Fa for k ;::: 3.
Since u1. are expressed in terms of Tl, we have ooly to determine the T1.
After applying tPl we observe that the terms in Fk1 and Fa containing Tk are equal

to F~ + (fit)·, where

( F'[;.) 2' '/\.T-(F'&). = IZ k·

Analogously,

( Flt) 2'T' /\.-
(F~t = I k z.

After performing Z = Cz· and dropping the stars

( Fl"t) .((C-1Tk)'C'/\.lCZ)
(Fl't). = 2% (C-1Tk)'C'/\.hCz .

Multiplying the left hand side by (POp)-l we get:

2iti Z2 - 2it;Zl ,

where Tk = C-1Tk •

Since the only freedom we have to normalize Fk1 is the choice of Ti, one can
eliminate at most the coefficients at Z2, Le. the oormalized form of Fkl is

Fkl = Ak(z)ZI,

and the normalized form of Fa is, analogously,
2-­

Fa = Z Bk(z).

Since among Tk , k ;::: 2 only T2 and T3 contribute to the terms being related to
tbe special conditions of the normal form, for our purposes we need a more or less
explicit expression only for T3 .

The contribution of the right hand side of (12) ioto the term of F31 (we consider
the highest order terms with respect to the derivatives of p) equals

-2i(2iTW15jj) -+ -2i (2ii"C'A1Cn (;:;:)
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After cancelling PoP we obtain

-2i(2itl(W~l1Z2Zl+ W22 Z1 Z2)).

Thus, the pure term in TJ in Ti equals to

where Ti (TJ ), Ti (TJ ), W22 ( TJ) denote the the pure terms in TJ in Ti, Ti, and W22, re­
spectively.

The corresponding contributioo ioto Fl3 equals to

-2i(2iT1' 1\10Dp) = -2i(2iT~C'A1·Cn (::n
---+ -2i(2iTi(WllZ2z1 + W12 z1z2 )).

Thus, the pure component in fj in Ti equals

and, sioce

then

(26)

and, since

then

(27)

This completes the normalization of the terms Fltl and F1k for k ~ 2.
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7. NORMALIZATION OF THE TERM F'J'J

In this section we give a construction of the transformation tP3 having the form (9):

•w = w,

where Jl('1, in and </J('1, ij) are both real functions.
At first, we study what changes in the term F'J'J in the equation of M can be

reached by applying tP3.
We set Jl{w1 , w'J) + i</J(w1 , w'J) = 8(W1 , w'J), thus

JJ('1,ij)
1

- 2(8('1, ij) + 3(ij, '1))

</J{'1,ij)
1

- 2i (8{'1, ij) - 8(ij, '1))

1
</J('1,ij) = 2i(8(ij,'1) - 8('1,ij))

Therefore,

1 - -
= "2(8('1 + iV, ij + iV) + 8(ij + iV, '7 + iV))

1 - -
- 2{8('1 - iV, ij - iV) +s(ij - iV, '1 - iV))

1 - -
- 2i (8('1 + iV, ij + iV) - 8(ij + iV, '1 + iV))

1 - -
= 2i(8(ij - iV,'1- iV) - 8('1- iV,ij - iV))

Tbe terms of the type (2,2) may arise from F'J'J itself and from the Levi form a.s
weIl.

The latter is

Zl z'J -t Zl z'J exp[JL(w1 , w'J) - JJ(w1 , w'J) +
+i(</>(w1

, w2
) - </J(w1 , w'J))].

In the brackets we have then
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Jl{w1,w2) - J.l(w1,w2) + i(q.(wt,w2) - q.(w1,W2)) =

S(1] + iV, ij + iV) - s{1] - iV, ij - iV) -+

2i(sfJ V + si;V).

Thus, S will be uniquely determined, if we require that after applying tP3 the
coefficient at 1z 1121z212 in the term F22 vanishes as weH as the coefficient at the pure
term in 1] at (Zl )2(Z2)2.

Let s(1], ii) = so( '1) + ijs(1], ij).
Before writing down the equations deterrnining So and s, we have to evaluate the

leading terms in F22 after applying tP2 0t/11. These terms equal to the surn:

4(T2 )'AIT2 -+ 4(T2)'C'A1tT2 =
= 4((1 + 622)~(1], ij) + 62dp~{ij, 1])) x

((1 +Sl1)P~(1], ij) +Snp~(ij, 1] ))(Zl )2{Z2)2 +... =
,01,-. ( 1)2(-2)2= 'tW22Wl1 Z Z •

The component of the latter term pure in 1J equa.ls to

= 4((1 + 622('1,0)1I"~(1]) +621 (11, O))pA(O, fl)) x

((1 +811 (11, 0) )1r~ (11) + Sn(11, O)p~(O, 1J))(zl )2( z2)2,

where 1r
1 = pI (11,0), 11"2 = p2(ij, 0) - the pure components of pI and p2, respectively.

Analogously,
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Thus, the leading terms in F'l'l can be written as

Hence, the contribution to F22 available for normalization is

2(WllW'l1 + w12w22)lz1I:;1lz2rjl +
+6( (1 + 822)~(7J, ij) + 82dp~(71, 7J)) x

«1 + 811)P~(7J, ij) + 012p~(ij, TJ))(Zl)2(;Z2)2 + ... =
4- ( 1)2(-:;1)2= W22W11 Z Z •

After setting

27

(28)

(29) S~(7J) - 3i [(1 + 622)p~(7J, 71) + 82dp~(71, 11)) x

«1 + 811)P~(7J, 71) + oup~(71, 7])]

we normalize F'l'l'

The convergence of s follows again from Loboda's argument in [Lob88] applied to
(28). (29) is just an ordinary equation.
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8. NORMALIZATION OF F23 AND F32 • THE EQUATION OF THE CHAIN.

We have alredy obtained the equations determining p~ and P~ after normalizing
F21 and F12 •

The normalization of F23 and F3'J leads to some ordinary second order differential
equations determining the functions 1r

1(,.,) = pl(,." 0) and 1l'"2(ij) = p2(ij, 0).
At first we select the terms in F23 and F32 which might contain second derivatives

of 7r
1 and 7r

2 :

where

where we omitted the terms of degree ::; 2 in p-derivatives.
They give the following contribution into F'23:

~2 1 'J-l ~'J 1 'J-2
---+(2,3) -2((T2)fJZ Z Z + (T2);J( Z ) Z ) =

= -2 {:'1 [(1 + .511)p~(ij, '1) + .512P~('1, ij)lIz112Iz212z2+

~ [(1 + .511)p~(ij, '1) + .512P~('1, ij)](Zl?(Z2)3} .

The pure contribution in ,., equals:

(30)

where we omitted the terms of degree ::; 2 in p-derivatives.
Analogously for F32 :
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-+(3,2) -2((Ti )'lZI (Z2)2 + (1'21)ij(Z2)ZlZ2) =

= -2 { :;; [(1 + 822)P~(1),;;) + 821p~(;;, I))]zl lzl I2Iz2
1
2+

{:I)[(1 + 822)p~(I), ij) + 821P~(ij, '1))(Zl)3(Z2)2}

-2(1 + 622)(7f2)"(7])(ZI)3(z2? +.0 ..

29

Thus, we use the remaining freedom in 1r
1 and 11'"2 to eliminate the pure terms in 7]

(fl) in F23 (F32 ), respectively.
To give an appropriate approximation of 11"1 and 1r2 , we a.re going now to determine

the leading terms in the equations of the 1I'"-s. The leading terms will be those of
degree 3 in the first order derivatives of the p-s. They arise from 4T~AT2 and the
contribution of F22 0

We have:

4T~A1f'2 = 4(C-1T3 )C'AlCC-IT2 ----+

-I ~2
----+ 4T3 T 2

----+ 8iw~2Wll (Zl )3(Z2)2

----+ (3,2) 8i(1 +622)2(7f~(7]) )2(1 +611 )11'"~ (7])(ZI)3 (Z2)2 ,

4T~AhT3 - 4(C-1T2 )C'AhCC-IT3 ----+

-I ~2

----+ 4T2 T3

----+ -8iw22W~1 (ZI )2(z2)3

----+(2,3) -8i(1 + 61l)2(1I"~(fJ)?(1 + 622)7f~(fJ)(ZI)2(Z2)3,

The contribution of F22 eaquals to

. 'Al 8p
-+(3,2) -21Z 8(7], ij)
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Within the matrix in brackets:

-2 -::; 1 - 1 2 2 2 1 2
2T2 T 2 --+ 2(1 +On)i'1(ij)(1 +622)1l'"ij(ij)(z ) (z ) .

And, the whole contribution into F3 ,2 eaquals to

--+(3,2) -12i(1 +622 )2(1 +6n )(i~( 71 ))27r~( 71 )(zl )3(Z2)2 +...
Analogously,

--+(2,3) 12i(1 +on?(1 +822)(7r~(71))2;r~(71)(zl?(z2)3 +...
Collecting all the leading terms, both in F23 and F32 , we get:

--+(2,3) 4i(1 +On(71,0))2(1 + J22(0,71))(1r~(71))21r~(71)(zl)2(Z2)3

-+(3,2) -4i(1 +622 )2(1 +On)(i~(71))27r~(71)(zl)3(z2)2.

Combining these formulas with (30) and (31) and taking into account the condition
that the coefficient at (Z1)2 (Z2)3 in F23 and the coefficient at (Zl )3(Z2)2 in F32 vanish,
we obtain the second order equations determining 1r

1 and 1f'2:

(32) (11'1)"(,,) = 2i(1 +on(", 0))(1 +822(0, "))7r~(,,);r~(")1r~(") + .
(7r2)"(ij) = 2i(1 + 022(0, ij))(1 + on(ij, O))1t'~(ij)1r~(ij)7r~(ij) + .

These equations completely define the chain r up to the parameters

a 1 = (1f'1 )'(0)

The normalized terms F32 and F'},3 satisfy the conditions:

er
F32 0,=

8v28z187J
iFO

82~281 F23 - 0.
V z 7J ij=O
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9. NORMALIZATION OF F33

Any transformation ,p. preserving the pre-normalized form of the equation obtained
in the previous sections has the form (10)

where

8h (e2P(W)+i9(W)) 0 )
8(wt, w2 ) = 0 e2(,\(w)-i9(w)) '

and, ImA(1], ij) = Im6(1], iJ) = O.
Ir A and 8 are constants then 1/14 is an linear (C, p)-automorphism of the elliptic

quadric. Therefore, we presume that A(O,O) = 6(0,0) = O.
The Levi-form in *-coordinates is

Zl* Z2* = e2(.\+i9) zl Z2

Z2* Zh _ e2(.\-i9) Z2 Zl.

The form of the Jacobian a(J~w:l) implies that

8h1

0- =8w2

8h1
e2(.\+i9)(w) and=8w1

8h2

0=
8w1

8h2
e2(.\-i9)(w)- =8w2

We denote

(1(W1) _ ((w1)= (A+i8)(w)

(2(w2) = ((w2) = (A - i8)(w).

Consequently,
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A -

8 =

(1(W1) + (l(W2)
2

(1(W1) _ (2(W2)

2i

And, since «(11) = A(11,ij) + i8(77,ij), we get for.\ and 8:

and, finally in terms of (:

'\(77,ij) ­

(}(77,ij) =

((77) + ((ij)
2

((77) - ((7])
2i

A(Wt, w2
)

((77 + iV) + ((11 + iV)
= 2

O(wt, w2
)

((77 + iV) - ((ij + iV)
= 2i

(h1)'(W1) = e2(",1) ,
(h 2 )(w)'(w2

) - e2(t.?) •

Now we are ahle to compute the contribution to F33 after performing tP4' The
"new" Levi form contributes into the "old" equation of M:

For the expression in the brackets we have:

Similarly,
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. [((7] + iV) - ((ij + iV) ((ij - iV) - ((7] - iV)]
1 - ---+

2i 2i

--+ 2((7]) - 27-("(7]) - 2((;;) - 2y("(ij)
2

_ V2 _
--+ ((7]) - ((ij) - 2"(("(7]) - ("(1])).

Hence, the contribution of the *-Levi form equals to

The contribution of the *-left hand side:

33

v... =

And, since

(h1 )' = e2«'l)

(h1 )" = 2('(7])e2«'l)

(h1)''' - (2("(7]) +4((' (7]) )2)e2«'l) ,

we get for the left hand side:

(34)

Combining (33) and (34), and cancelling e2
( we get in the right hand side:

-> (-("('1) + ~("('1) + ~(('('1))2) Vz2)3 =

= -~(("('1) - (('('1))2)(h2f
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This means, tbat in order to obtain tbe normal form of F33 we ean eliminate the
71-pure term at (ZlZ2)3. Ir this 71-pure term in the pre-normalized form equals to
4>( '1 )(z1z2)3 then the equation for ( takes the form:

(35) ("(7/) - (('(7/))2 + ~<p(7/) = 0,

with (0) = O.
This equation defines ( up to ('(0), tbat gives a CI, or R2 ,-freedom in the initial

data related to the parameter r (see (5)).
Now we eompute the leading terms of degree 4 in the first derivatives of the 1l'-s.

Since,

4T~Alt3 - 4(C-1T3)'C'A I CC-IT3 ---+

I -;;2 2 2 1 2 3
---+ 4T3 T 3 ---+ 16W22 (7], O)Wll (71, O)(z z) ---+

---+ 16(1 +822 (7],0))2(1 +811 (71,0))2«;r2)'(71))2«1l'1)'(71))2(zlz2)3

and, as was shown in [ES93], the leading terms of F33 have eertain proportiooality
with respeet to the eontribution of different terms, the contribution of 4T~At3 is
(-24)-times the a.ctual value of the leading term at 4>(7]). Therefore,

Hence, the sO-called parametrization equatioo defioing (71) takes the form:

(36)
("(71) - «(' (" ))2 - (1 +822 (71, 0))2(1 +811 ( 71, 0))2((;r2)'(71 ))2

( ( 7t"
1)' (" ))2

( Z
1
Z2

)
3 +...= 0,

where the dots iodieate the terms of lower degree in if-derivatives.

The normalized F33 satisfies the condition

This eompletes the proof of Theorem 1.
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10. PARAMETRIZATION OF THE NORMALIZATIONS BvAutoQ. THE FAMILV OF

NORMAL PARAMETERS ON r.
We prove Theorems 2 and 3 in this seetion.

Proof of Theorem 2. Following the proof of Theorem 1 step by step we see that the
only freedom, we have in the normalization with identieal differential at 0 relates to
the parameters

a1 =
a1 -
r -

(1t'1 )'(0),

(1t'1)'(O),

('(0).

It is easy to observe that any linear (C, p)-automorphism preserving the Levi form
(a linear (C, p)-automorphism of Qe) preserves the normal form of M as weH. There­
fore, removing tbe eondition that the differential of the normalization ,p at 0 is iden­
tieal, we obtain the freedom

C - 8zo1
8z 0'

8w·
p = ,

8w 0

where (Cz, Cz) = p{z, z), as weIl.
Sinee the entire set of parameters (C, p, a, r) arises from the first and one of the

seeond derivatives of ,p, the multiplieation law for the set of parameters is the same
as in the ease of Qe.

This statement makes sense in the ease when the original M is already given in
normal form (One ean presume this aeeording to Theorem 1).

Thus, we obtained the group N(M) of normalizations of M at the origin whieh is
actuaHy isomorphie to Auto Qe.

This eompletes the proof of Theorem 2.

Proof of Theorem 3. Suppose that M is giveo ·in normal form in whieh r is the plane
ro : z = 0, v = O. Since any linear (C, p)-transformation from Auto Qe preserves f o
aod the normal form we ean represent ,p as a composition 'l/J = ,pe o,po, where tPo has
identical differential at 0, and 'l/Je is a linear (C, p)-transformation.

Since ,po keeps r0 and the normal form of M it has to be a transformation of
type ,p4' Sinee tbe term F33 has normal form botb in original aod *-coordinates, the
corresponding equation (36) defining the function ('7) does not contain 4>('7)' Thus,
it is tbe homogenious equation:

(" _ «(')1 = 0,



36 VLADIMIR V. EZOV AND GERD SCHMALZ

with ((0) = O.
Set ('(11) =: X(11), then X' = X2

, and, consequently, X = C' = - '1~c'

Setting C := -: and integrating tbe equation above we obtain

h1 (11) = 11 .
1- r11

(We used that h1(0) = 0.)
This implies

(37)

rE C.

Theorem 3 has been proved.

11. FINAL REMARKS

In this work we do not cover tbe following questions concerning a nonquadric (i.e.
not locally equivalent to Qe) elliptic eR surface M in C4 •

(i.) Wbat is the sbarp estimate of the order of contact of the chains passing tbrougb
tbe origin of an elliptic surface M given in normal form and the chains on tbe
tangent elliptic quadric being intersections of Qe with so-called "matrix lines".

(ii.) Since N(M) has a structure of Auto Qe, we obtain a faithful representation
Auto(M) C--t N(M) ~ Auto(Qe), as in tbe hypercase. Now, the question is
whether this embedding is uniquely defined by the eR projection of the au­
tomorphism? We caB this effect "Lobodization", after A.Loboda, who proved
the corresponding result for codimension 1 [Lob82].

(iii.) In the case of an affirmative answer to tbe question (ii.) the following questions
arise: Has any element of Auto(M) an invarinat chain? Does there exist a
chain r passing through the origin being invariant with respect to the entire
Auto(M)?

We hope that the construction of a normal form developped in this paper rnight
help to find the answers to the questions stated above.
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