
HIGHER ORDER TRACK CATEGORIES AND THE ALGEBRA

OF HIGHER ORDER COHOMOLOGY OPERATIONS
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Abstract. We describe a conjecture on the algebra of higher cohomology
operations which leads to the computations of the differentials in the Adams

spectral sequence. For this we introduce the notion of an n-th order track cat-
egory which is suitable to study higher order Toda brackets and the differen-
tials in spectral sequences. We describe various examples of higher order track
categories which are topological, in particular the track category of higher co-

homology operations. Also differential algebras give rise to higher order track
categories.

1. Deformation categories

We first recall properties of cylinders of spaces. Let I = [0, 1] be the unit interval.
For a subspace A ⊂ B we define the relative cylinder IAB by the pushout diagram
in Top

I ×B
p

IAB

I ×A

I×i

p A

i

where i : A ⊂ B is the inclusion and p is the projection of the product space I ×A.
We have inclusions

i+, i− : B → IAB

by i+(x) = p(1, x), i−(x) = p(0, x), x ∈ B. We call the union

∂(IAB) = B− ∪B+ with B− = i−B, B+ = i+B

the boundary of IAB with B− ∩B+ = iA. We also have a projection q : IAB → B
with qp = p and

qi+ = 1 and qi− = 1

A map H : IAB → C in Top is termed a homotopy H : f ≃ g rel A where f = Hi−

and g = Hi+. The map

ε(f) = fq : IAB → B → C

is the constant homotopy ε(f) : f ≃ f rel A. Moreover the map I → I which carries
t to 1− t induces for H : f ≃ g rel A the opposite homotopy

Hop : g ≃ f rel A

By pasting homotopies H : f ≃ g rel A and G : g ≃ h rel A one gets

G � H : f ≃ h rel A
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Let Top be a convenient category of topological spaces and let Top∗ be the
category of pointed spaces (X, ∗). For pointed spaces X,Y we have the smash
product X ∧Y = X×Y/X ∨Y where X ∨Y = X×∗∪∗×Y . If A is a non-pointed

space then A+ = A
.
∪ ∗ is the disjoint union with a base point and we have

A+ ∧X = A×X/A× ∗

We call a map f : A+ ∧X → Y in Top∗ an A-map X → Y . We can identify the
A-map f with a map f : A → (Y, ∗)(X,∗) where (Y, ∗)(X,∗) is the function space of
pointed maps X → Y .

Definition 1.1. Let C(A) be the category of A-maps. Objects are pointed spaces
X,Y and morphisms are A-maps. Composition gf of A-maps is determined by the
composition

A×X
∆×X
−−−→ A×A×X

A×f
−−−→ A× Y

g
−→ Z

where ∆ is the diagonal of A. The identity of X in C(A) is given by the projection
A×X → X.

A map i : A→ B in Top induces a functor

i∗ : C(B)→ C(A)

which is the identity on objects and carries a B-map f to the A-map i∗f given by
the composite f(i × X) : A × X → B × X → Y . The category C(A) has a zero
object ∗ (that is, an initial and final object) given by the basepoint ∗.

We now consider the category of IAB-maps for a relative cylinder IAB.

Proposition 1.2. Let C1 = C(IAB) and C0 = C(B). Then C0,C1 are categories
with a zero object together with functors

C0
ε
−→ C1

∂+

⇉
∂−

C0,

op : C1 → C1,

� : C1 ×∂ C1 → C1

which are the identity on objects. Here C1 ×∂ C1 is the category of pairs (G,H)
of maps X → Y in C1 satisfying ∂+H = ∂−G. The functors satisfy the equations
(where id denotes the identity functor)

∂+ε = ∂−ε = id,

∂+op = ∂−, op ◦ ε = ε,

op ◦ op = id,

op(G � H) = Hop
� Gop

We call such a pair (C0,C1) a deformation category.

Proof. With the structure maps of the relative cylinder we define ε = q∗ for q :
IAB → B, ∂+ = (i+)∗, ∂− = (i−)∗. Moreover op and � are given by the opposite
homotopy and by pasting respectively. �

In a deformation category (C0,C1) we write H : f ≃ g if H is a morphism in
C1 with ∂−H = f and ∂+H = g.

Deformation categories form a category. Morphisms are pairs of functors F0 :
C0 → C′

0, F1 : C1 → C′
1 which are the identity on objects and which are compat-

ible with ε, op, ∂+, ∂− and �.
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2. Track categories

A track category by definition is a groupoid enriched category with a strict zero
object. In this section we compare track categories and deformation categories. We
consider examples of abelian track categories and triple Toda brackets.

Lemma 2.1. A track category is a deformation category.

Proof. Let C be a track category. Then we define the category C0 by the cate-
gory of 1-cells f in C. The category C1 has the morphisms X → Y which are
triples (f, g,H) where H : f ⇒ g is a 2-cell (also termed track). Composition
(f, g,H)(f ′, g′,H ′) is defined by (ff ′, gg′,H ∗H ′) where H ∗H ′ is the horizontal
composition of tracks defined by

H ∗H ′ = (g′)∗H � f∗H
′ = g∗H

′
� (f ′)∗H

Here � is the composition of 2-cells (termed pasting of tracks). We define ε(f) =
(f, f, 0f ) where 0f is the identity 2-cell of f . Moreover ∂−(f, g,H) = f, ∂+(f, g,H)
= g and op(f, g,H) = (g, f,H−1) where H−1 is the inverse of the 2-cell H in the
Hom-groupoid Hom(X,Y ). �

Lemma 2.2. A deformation category is a track category if and only if the following
equations hold:

H � ε(f) = H where f = ∂−H,

op(H) � H = ε(f)

(H � G) � F = H � (G � F ),

HH ′ = Hε(g′) � ε(f)H ′ where g′ = ∂+H ′.(∗)

Here the last equation is required by the horizontal composition of tracks. The
category of track categories is a full subcategory of the category of deformation
categories.

Lemma 2.3. A deformation category (C0,C1) yields a natural equivalence relation
≃ on the category C0 so that the homotopy category C0/≃ is defined.

Proof. For morphisms f, g : X → Y in C0 we write f ≃ g if and only if there exists
H : X → Y in C1 with ∂−H = f and ∂+H = g. �

Example 2.4. Let B be a point and let A be the empty set. Then IAB is the
interval I. The category C0 = C(point) coincides with Top∗ and the morphisms
in C1 = C(I) are homotopies of pointed maps. The category C0/≃ coincided with
the homotopy category Top∗/≃. Homotopies between homotopies yield a natural
equivalence relation ≃ on C1 = C(I) such that (C0,C1/≃) is the track category
associated to Top∗/≃. This is a quotient of the deformation category (C0,C1).

A track category C = (C0,C1) is abelian if all automorphism groups in hom-
groupoids are abelian groups. We denote such automorphism groups by Aut�(f)
where f is a morphism in C0 and H ∈ Aut�(f) is of the form H : f ≃ f .

Example 2.5. Let X be a class of co-H-groups in C = Top∗ or let X be a class of
H-groups in Top∗. Let Top∗[[X]] be the track subcategory of (C(point),C(I)/≃)
consisting of objects in X. Then Top∗[[X]] is an abelian track category.

The example has a generalization concerning “under” and “over” categories re-
spectively which play the role of “left” resp. “right” modules.

Definition 2.6. Let C be a category and let X be a class of objects in C yielding
the full subcategory C{X} of C. Let W be an object in C. Then the under
category C{W → X} consists of the objects in X and the object W . Morphisms
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are all morphisms in C{X} and all morphisms W → Y in C with Y ∈ X. Also the
identity of W is a morphism of the under category. The over category C{X→W}
is defined in a dual way as a subcategory of C.

Example 2.7. Let X be a class of co-H-groups in Top∗ and let Top∗[[X → W ]]
be the track category given by the over category Top∗{X→W}. Then Top∗[[X→
W ]] is an abelian track category. Dually for a class X of H-groups the under track
category Top∗[[W → X]] is abelian. These are again full track subcategories of
(C(point),C(I)/≃).

Given a category K we define the category FK of factorizations in K. Objects
in FK are morphisms f in K and a morphism f → g in FK is a pair (a, b) of
morphisms with bfa = g. We have morphisms (b, 1) : f → bf and (1, a) : f → fa.
A functor D : FK → Ab is termed a natural system of abelian groups. We write
Df = D(f) and (b, 1)∗ = b∗ : Df → Dbf and (1, a)∗ = a∗ : Df → Dfa. In [BW]
the cohomology Hn(K,D) is defined.

Let (C0,C1) be an abelian track category. Then there is an associated natural
system D on C0/≃ together with a natural isomorphism of abelian groups

σ : D{f}
∼= Aut�(f)

for f in C0, see [BJ,Cl]. Here {f} denotes the homotopy class of f in C0/≃. We
call (C0,C1) a linear track extension of C0/≃ by D. It is proved in [BD], [P] that
equivalence classes of such linear track extensions are in 1-1 correspondence with
elements in the cohomology H3(C0/≃,D), [BW].

We now describe the natural system associated to the abelian track category
in the above examples of 2.5 and 2.7. Here X is a class of co-H-groups or of H-
groups. For pointed spaces X,Y let X∨Y be the coproduct in Top∗ with inclusions
i1, i2 and let X × Y be the product of spaces with projections p1, p2. For a map
f : X → Y in Top∗/≃ with X,Y ∈ X we define in the co-H-case

∇f : X → Y ∨ Y

∇f = −i2f + f(i2 + i1).

in Top∗/≃,

Since p2(∇f) = 0 the partial suspension (n ≥ 1)

En∇f : ΣnX → (ΣnY ) ∨ Y

is defined, see [B,Ob]. In the H-case we get

∇f : X ×X → Y

∇f = −fp2 + (p2 + p1)f.

in Top∗/≃,

Since (∇f)i1 = 0 the partial loop operation (n ≥ 1)

Ln∇f : (ΩnX)×X → Y

is defined, see [B,Ob]. In [B,Ob] we describe rules to compute En∇f and Ln∇f
explicitly, see also [B,Al].

Definition 2.8. Let X be a class of co-H-groups. Then we define a natural system
Dn

Σ on the over category K = Top∗{X → W}/≃. If X is a class of H-groups
we define a natural system Dn

Ω on the under category K = Top∗{W → X}/≃.
Consider maps

X ′ a
−→ X

f
−→ Y

b
−→ Y ′

in K. In the co-H-case we define

Dn
Σ(f) = [ΣnX,Y ]
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and for α ∈ Dn
Σ(f) let b∗(α) = bα and a∗(α) = (α, f)(En∇a). Moreover in the

H-case we define

Dn
Ω(f) = [X,ΩnY ]

and for β ∈ Dn
Ω(f), let b∗(β) = (Ln∇b)(β, f) and α∗(β) = βa.

We point out that in general Dn
Σ and Dn

Ω are not given by the bifunctors [ΣnX,Y ]
and [X,ΩnY ] respectively. In [BJ] we prove for the examples above:

Proposition 2.9. The natural systems associated to the abelian track categories
Top∗[[X→W ]] and Top∗[[W → X]] are D1

Σ and D1
Ω respectively.

Next we describe triple Toda brackets in abelian track categories (C0,C1) with
natural system D on C0/≃. Let

W
α
←− X

β
←− Y

γ
←− Z

be morphisms in C0/≃ with αβ = 0 and βγ = 0. Here 0 = 0(Y,W ) : Y → ∗ → W
is the trivial map given by the zero object ∗. Then we can choose representatives
f, g, h of α, β, γ respectively and H : Y →W,G : Z → X in C1 with

∂+H = 0, ∂−H = fg, ∂+G = 0, ∂−G = gh

Hence the element

c(H,G) = (Hε(g)) � (ε(f)Gop) ∈ Aut�(0(Z,W )) = D0(Z,W )

is defined. The collection of all such elements yields the Toda bracket in the quotient
group

〈α, β, γ〉 ∈ D0(Z,W )

/

γ∗D0(Y,W ) + α∗D0(Z,X)

3. The indexing set of balls

We introduce the indexing set of balls which generalizes the set of cubes, but has
more properties concerning relative cylinders. The category B of such balls yields
the B-sets generalizing cubical sets. We consider B-categories.

A ball B of dimension n is a finite regular CW-complex together with a subcom-
plex ∂B such that (B, ∂B) is homeomorphic to the Euclidean ball (En, Sn−1) with
En = {x ∈ R

n, ‖x‖ ≤ 1} and Sn−1 = {x ∈ R
n, ‖x‖ = 1}. We say that the ball B

is elementary if the CW-complex B has exactly one open n-cell. If B is a ball then
the relative cylinder (as a quotient complex of I ×B)

J(B) = I∂BB

is a ball of dimension dim(B) + 1. Moreover if B and B′ are balls then the product
CW-complex B×B′ is a ball of dimension dim(B)+dim(B′). A ball pair (B,A) is
a ball B together with a subcomplex A ⊂ ∂B which is a ball such that there exists
a homeomorphism of pairs (J(A), A−) ≈ (B,A) extending the identity of A. If Aop

is the closure of ∂B−A then also (B,Aop) is a ball pair which we call the opposite
of (B,A). If (B,A) and (B′, A) are ball pairs then the gluing

B ∪B′ = B ∪A B′

is again a ball of dimension dim(B) = dim(B′).

Definition 3.1. The indexing set B of balls is the smallest set of balls with the
following properties:

(1) point ∈ B,
(2) If B ∈ B then J(B) ∈ B,
(3) If B,B′ ∈ B then B ×B′ ∈ B,
(4) If (B,A) is a ball pair with B ∈ B then A ∈ B,
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(5) If (B,A) and (B′, A) are ball pairs with B,B′ ∈ B then B ∪A B′ ∈ B.
Conversely if B ∪A B′ ∈ B then also B,B′ ∈ B.

We now describe some examples of balls in B. Since {point} ∈ B also the interval
from 0 to 1 is a ball

I = [0, 1] = J(point) ∈ B.

Moreover inductively Jn, In ∈ B, n ≥ 0, where J0 = I0 = point and J1 = I1 = I
and for n ≥ 1

Jn+1 = J(Jn)

In+1 = I × In

Here In is the n-cube and Jn is the n-globe with hemispheres i−(Jn−1), i+(Jn−1).

J2 = bb , I2 =

Let B
n be the set of n-dimensional balls in B. Then B

0 contains only the
point. Moreover B

1 is given by all long intervals [0, n] ⊂ R with 0-cells given
by 0, 1, . . . , n ∈ R. Next B

2 consists of balls J2, I2,∆2 (where ∆2 is the 2-simplex)
and the balls obtained by a regular sequence of gluings of these balls, for example

T 2 =

is such a ball, see section 5 below.
Let B be the full subcategory of Top with objects in the indexing set of balls. Let

B∂ be the subcategory of pair maps f : (B, ∂B) → (A, ∂A) with A,B ∈ B and let
B∂/≃ be the homotopy category relative the boundary with f ≃ g ⇔ f |∂B = g|∂B
and f ≃ g rel ∂B.

Remark 3.2. Given a small category D a D-object X in a category U is a con-
travariant functor X : D → U. This is a D-set if U is the category of sets.
Moreover let O be a fixed class of objects with ∗ ∈ O and let cat(O) be the cate-
gory of categories for which the class of objects is O with zero object ∗. Morphisms
are functors which are the identity on O. Then a D-category is a D-object in
cat(O). For the category B of balls we shall considers B-sets and B-categories.
They generalize cubical sets and cubical categories respectively since the category
of cubes is a subcategory of B.

For B ∈ B we have the category C(B) of B-maps defined in 1.1. Moreover
f : B → A in B induces a functor f∗ : C(A) → C(B) in cat(O) where O is the
class of pointed spaces. Hence

C = {C(B), B ∈ B}

is a B-category which we call the topological B-category. The morphism sets C(X,Y )
of B-maps X → Y for B ∈ B form a B-set.

For any B-category C and a ball pair (B,A) let

∂A = (iA)∗ : C(B)→ C(A)
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be induced by the inclusion iA : A ⊂ B. We also write ∂Af = f |A. For example
for (JB,B±) we get

∂± = ∂B± : C(JB)→ C(B)

and for H in C(JB) we write H : f ≃ g if ∂−H = f and ∂+H = g.

4. B-categories with unions

Since the union of balls is defined in B we can consider unions and gluings in a
B-category.

Let C be the B-category of B-maps defined in section 3. Given ball pairs (B,A)
and (B′, A) with B,B′ ∈ B one obtains the gluing functor

∪ : C(B)×C(A) C(B′)→ C(B ∪A B′).

Here the pullback category is given by pairs (F : X → Y ) ∈ C(B), (G : X → Y ) ∈
C(B′) with ∂AF = ∂AG and F ∪G is defined by

(B ∪A B′)×X = (B ×X)A×X(B′ ×X)
F∪G
−−−→ Y.

The gluing functor is natural with respect to pair maps f : (B,A) → (B1, A1), g :
(B′, A)→ (B′

1, A1) in B which coincide on A, f |A = g|A. Then

f∗F ∪ g∗G = (f ∪ g)∗(F ∪G)

We now describe the gluing rule in the B-category C.
Let B be a ball and let M be a set of balls B which are subcomplexes of B

and dimB = dimB. Moreover assume that for B,B′ ∈ M with B 6= B′ we have
(B − ∂B) ∩ (B′ − ∂B′) = ∅ and

⋃

B∈M

B = B

Then we say that B is a union of balls in M . A regular sequence of balls in B is a
bijection {B1, . . . , Bk} ≈M (where k is the number of elements in M) such that

B≤i =
⋃

j≤i

Bj , 1 ≤ i < k,

is a ball and (B≤i, Ai), (Bi+1, Ai) are ball pairs with Ai = B≤i ∩ Bi+1. If B-maps

fB : X → Y in C(B) are given for B ∈ M then each regular sequence in B yields
the iterated gluing operation

(. . . ((fB1
∪ fB2

) ∪ fB3
) . . . ∪ fBk

)

which is a B-map X → Y . The gluing rule is the fact that this B-map is indepen-
dent of the choice of the regular sequence in B.

Lemma 4.1. Let C be a B-category with unions. Then for B ∈ B the pair
(C(B),C(JB)) is a deformation category with structure ε, op,�. This yields the
homotopy category C[B] = C(B)/≃ and C[−] = {C[B], B ∈ B} is a (B∂/≃)-
category.

Proof. The maps ε′ : JB → B, i± : B → JB, op′ : JB → JB,�′ : JB → JB ∪ JB
are maps in B. They induce ε = (ε′)∗, op = (op′)∗, ∂± = (i±)∗. Moreover �′

yields � by the union property, that is

(�′)∗(F ∪G) = F � G.

�
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Since i+iA = i−iA we have ∂A∂+ = ∂A∂− and therefore there is a commutative
diagram

C(B)

∂A

q
C[B]

∂A

C(A)

for each ball pair (B,A). Here q is the quotient map.
The topological B-category C has the property termed quotient property that

there is also a well defined gluing functor ∪ on homotopy categories C[B] = B/≃,
that is, the following diagram commutes where q is the quotient functor.

C(B)×C(A) C(B′) ∪

q×q

C(B ∪A B′)

q

C[B]×C(A) C[B′] ∪
C[B ∪A B′]

Definition 4.2. A B-category with unions is a B-category C with a gluing functor,
which is natural and satisfies the union rule and the quotient property.

The topological B-category is an example of a B-category with unions.

Remark 4.3. The quotient property can not be deduced from the properties of an
abstract B-category since JJB ∪B JJB is not a ball.

Lemma 4.4. Let C be a B-category with unions. Then for B ∈ B the pair
(C(B),C[JB]) is a deformation category which is a quotient of the deformation
category (C(B),C(JB)). Moreover for objects X,Y the morphism sets

(C(B)(X,Y ),C[JB](X,Y ))

form a groupoid.

For the proof below we use thin fillers obtained as follows. If s, t : B → B′ are
maps in B with s|∂B = t|∂B then there exists T : JB → B′ with ∂+T = t, ∂−T =
s. We can find T since B′ is contractible. Hence T ∗ : C(B′) → C(JB) satisfies
∂−T ∗ = s∗, ∂+T ∗ = t∗. We call T ∗(x) : s∗(x) ≃ t∗(x) a thin filler for the pair
(s∗(x), t∗(x)).

Proof. We have to show that the equations in Lemma 2.2 are satisfied, that is, there
exist elements ε, op,� in C(JJ(B)) which are homotopies

ε : H � ε(f) ≃ H for ∂−H = f in C(B)

op : op(H) � H ≃ ε(f)

� : (H � G) � F ≃ H � (G � F )

We obtain these homotopies by use of thin fillers. We consider the diagram

JB

�
′

1

JB ∪ JB
i−ε′∪1

JB

Here �′ induces � and ε′ : JB → B induces ε. Using a thin filler for the induced
operators one gets ε. In a similar way one gets op,�. �
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5. B-categories with ⊗-products

Let C be the topological B-category of B-maps in section 3. Since products of
balls are defined in B we can define ⊗-products in B-categories as follows.

For B,B′ ∈ B and for a B′-map g : Y → Z and a B-map f : X → Y we have
the B′ ×B-map g ⊗ f : X → Z induced by the composite

B′ ×B ×X
B′×f
−−−→ B′ × Y

g
−→ Z.

This yields the ⊗-product in C which has properties as described in the next Lem-
mas.

Lemma 5.1. The operation ⊗ has the following properties:

(1) ⊗ is associative.
(2) For B-maps f : X → Y, g : Y → Z the composite gf in C(B) satisfies

∆∗(g ⊗ f) = gf

where ∆∗ : C(B ×B)→ C(B) is induced by the diagonal B → B ×B.
(3) Let 0B

X,Y be the trivial map X → ∗ → Y in C(B). Then we have for

(g : Y → Z) ∈ C(B′), (f : X → Y ) ∈ C(B),

g ⊗ 0B
X,Y = 0B×B′

X,Z ,

0B′

Y,Z ⊗ f = 0B×B
X,Z .

The point is the final object in B and the unique map ε′0 : B → point induces
the functor

ε0 : C(point)→ C(B)

with f∗ε0 = ε0 for all f : B → B′ in B.

Lemma 5.2. For g : Y → Z in C(B′) and f : X → Y in C(B) we have g ⊗ f :
X → Z in C(B′ ×B). If B′ is the point then f ⊗ g = fε0(g) in C(B) and if B is
the point then f ⊗ g = ε0(f)g in C(B′).

Moreover we have the following naturality of ⊗-products.

Lemma 5.3. For maps g1 : B′
1 → B′, f1 : B1 → B in B one has

(g∗1g)⊗ (f∗
1 f) = (f1 × g1)

∗(g ⊗ f)

In particular, for all ball pairs (B,A) the product (B′ × B,B′ × A) is again a
ball pair and we have

g ⊗ ∂Af = ∂B′×A(g ⊗ f)

Definition 5.4. An abstract B-category C with ⊗-products is defined by ⊗-pro-
ducts which satisfy the properties in the Lemmata above.

6. B-deformation categories

Let C be the topological B-category. Then we have seen that C has unions and
⊗-products. Moreover the following formulas are satisfied.

Let g : Y → Z in C(B′) and f : X → Y in C(B). Then g ⊗ f : X → Z in
C(B × B′) is defined. Now let B = B1 ∪ B2 or B′ = B′

1 ∪ B′
2 be unions of ball

pairs. Then for f = f1 ∪ f2 one has the compatibility of ⊗ and ∪

g ⊗ (f1 ∪ f2) = (g ⊗ f1) ∪ (g ⊗ f2)

and for g = g1 ∪ g2 one has

(g1 ∪ g2)⊗ f = (g1 ⊗ f) ∪ (g2 ⊗ f)
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Definition 6.1. An abstract B-deformation category C is a B-category C with
unions ∪ and ⊗-products such that these formulas on the compatibility of ⊗ and
∪ hold.

The next Lemma extends the corresponding Lemma 4.4.

Lemma 6.2. Let C be an abstract B-deformation category. Then for B ∈ B

the deformation category (C(B),C[JB]) is a quotient of (C(B),C(JB)) and this
quotient is a track category.

Proof. We have to find R in C(JJB) such that

R : HE ≃ (Hε(e′)) � (ε(f)E)

where H : f ≃ f ′, E : e ≃ e′. Here HE is the composite in the category C(JB).
Now R is obtained by the diagram

JB
∆

�
′

JB ∪ JB
H′∪E′

JB × JB

Here ∆ is the diagonal and we define

E′ = (i−ε′, 1) : JB → JB × JB,

H ′ = (1, i+ε′) : JB → JB × JB.

Then ∆∗(H ⊗E) = HE and ((H ′ ∪E′)�′)∗(H ⊗E) = (Hε(e′)) � (ε(f)E). Hence
a thin filler yields R. �

Let C be an abstract B-deformation category and let (B,A) be a ball pair in B.
Then we can choose a map

�
′
A : B → B ∪A JA

which is the identity on the boundary. The union is the pushout of iA and i+. We
call �′

A the action map which induces the action functor

�A : C[B]×C(A) C[JA]→ C[B]

�A(F,G) = F �A G = (�′
A)∗(F ∪G)

Here �A does not depend on the choice of �′
A. For B = JA the functor �A = �

is given by the track category (C(A),C[JA]) above.

Lemma 6.3. Let C be an abstract B-deformation category. Then �A satisfies the
equations

F �A ε(f) = F for ∂AF = f,

F �A (G � H) = (F �A G) �A H,

∂Aop
(F �A G) = ∂Aop

F,

∂A(F �A G) = ∂−G.

Moreover given F ∈ C[B] with ∂AF = f, ∂Aop
F = g, the group Aut�(f) in the

track category (C(A),C[JA]) acts transitively and effectively on the set

{F ′ ∈ C[B], ∂AF ′ = f, ∂Aop
F ′ = g}

by F ′ �A α for α ∈ Aut�(f)

The Lemma describes the action property of �A.
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7. Abelian B-deformation categories

For all B ∈ B one has the projection functor

∂0 : C(B)→ C(point)/≃

which is induced by any map f : point→ B and which by thin fillers is independent
of this choice.

Definition 7.1. An abstract B-deformation category C is pre-abelian if the track
categories

(C(B),C[JB])

are abelian for all B ∈ B and if the associated natural systems DB are composites
of the form

DB : F (C(B)/≃)
∂0−→ F (C(point)/≃

Dn

−−→ Ab

Here Dn with n = dim(B) depends only on n and not on B.

Now let C be pre-abelian with natural systems Dn, n ≥ 1. Then we have for a
ball pair (B,A) and f : X → Y in C(A) the group Aut�(f) in the track category
(C(A),C[JA]) and we have the isomorphism, n = dim(A) + 1, (see section 2)

σA = σ : Dn
∂0f
∼= Aut�(f)

which is natural in f . Hence the �A-action of Aut�(f) on the set {F ∈ C[B], ∂AF =
f} yields an action of α ∈ Dn

∂0f on this set by F �A α = F �A σ(α). Here we have
∂0f = ∂0∂AF = ∂0F .

Definition 7.2. Let or(B) be a manifold orientation of the topological manifold
B ∈ B. there are two such orientations, or(B) and or(B). Now or(B) yields a
manifold orientation or(∂B) on the boundary ∂B. If (B,A) is a ball pair or(∂B)
yields by restriction a manifold orientation or(A). Now the product I × A, where
I is the oriented interval from 0 to 1, yields a manifold orientation or(JA). If
or(B) ∪ or(JA) define a manifold orientation of B ∪A JA we write ε(B,A) = +1
and ε(B,A) = −1 otherwise.

Definition 7.3. Let C be pre-abelian and consider for a ball pair (B,A) and
F ∈ C[B], ∂AF = f the element

F �or(A) α = F �A (ε(B,A)α) ∈ C[B]

where α ∈ Dn
∂0F . We call C an abelian B-deformation category if this element does

not depend on the ball pair (B,A) but only on F, or(B) and α. For the opposite
orientation or(B) we have the formula

F �or(B) α = F �or(B) (−α)

Moreover the abelian union property is satisfied, that is, for a union B = B1∪. . .∪Bk

of balls and or(Bi) induced by or(B), i = 1, . . . , k, we have for Fi ∈ C[Bi] the
formula

F1 ∪ . . . ∪ (Fi �or(Bi) α) ∪ . . . ∪ Fk = (F1 ∪ . . . ∪ Fk) �or(B) α

where ∂0(Fi) = ∂0(F1 ∪ . . . ∪ Fk).

Let C be the topological B-category and let X be a class of objects in Top∗ and
let W be a space in Top∗. For each B ∈ B we obtain the over category

C(B){X→W} ⊂ C(B)

and dually the under category C(B){W → X}. Then the collection of over cate-
gories

C{X→W} = {C(B){X→W}, B ∈ B}
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is again a B-deformation category. The same holds for the under category C{W →
X}.

Proposition 7.4. Let X be a class of co-H-groups. Then C{X → W} is an
abelian B-deformation category with natural systems Dn = Dn

Σ, n ≥ 1. Dually, if X

is a class of H-groups then C{W → X} is an abelian B-deformation category with
natural system Dn = Dn

Ω, n ≥ 1.

Compare section 2 where Dn
Σ and Dn

Ω are defined.

8. Higher order track categories

Let C be a B-deformation category. Then we define for n ≥ 1 the collection of
categories Cn, termed the n-truncation of C, by

Cn(B) =

{

C(B)/≃ = C[B] if dim(B) = n,

C(B) if dim(B) < n

with B ∈ B. Hence only in dimension n we take the homotopy category.
The following definition of an “n-th order track category” is motivated by those

properties of a B-deformation category which remain visible in the truncation Cn.
Moreover these properties should be minimal to allow the definition of higher order
Toda brackets and certain spectral sequences below (see section 10), and they should
be fulfilled by algebraic examples given by chain complexes (see section 12).

Let B(n), n ≥ 0 be the subcategory of B consisting of balls B with dim(B) ≤ n
and which is generated by the maps:

• ball pair inclusions iA : A ⊂ B,
• projections ǫ′ : JA→ A,
• trivial maps ε′0 : B → point.

Let B∂(n), n ≥ 0, be the subcategory of B consisting of balls B with dim(B) ≤ n
and which is generated by the following maps:

• The opposite map op′ : JA→ JA,
• For a ball pair (B,A) we have the ball B ∪A JA by pushout of iA, i+. The

boundary satisfies ∂(B ∪A JA) = Aop ∪ A− = Aop ∪ A = ∂B. Then there
is a map

�
′
A: B → B ∪A JA in B∂(n)

which is the identity on the boundary. We call �′
A an action map. Also

1 ∪ ε : B ∪A JA→ B is a map in B∂(n).
• There is a map hA : A → Aop which extends the identity on ∂Aop = ∂A.

This map is called a comparison map.

All the maps of B∂(n) are isomorphisms in the homotopy category B∂(n)/≃ ⊂
B∂/≃.

As above we use only functors in cat∗(O) which are the identity on objects.

Definition 8.1. An n-th order track category K is a B(n)-category given by cat-
egories K(B) with zero object and functors f∗ : K(B) → K(A) for f : A → B in
B(n) such that the following properties hold:

(1) The relation ≃ on K(B), defined by

f ≃ g ⇔

{

f = g if dim(B) = n,

∃F ∈ K(JB) with ∂−F = f, ∂+F = g if dim(B) < n,

is a natural equivalence relation. Here the functor ∂± = (i±)∗ is induced
by the ball pair inclusion i± : B ⊂ JB.
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Let K[B] = K(B)/≃ be the homotopy category with quotient functor
q : K(B) → K[B]. Then ∂A = i∗A induces ∂A : K[B] → K(A) with
∂Aq = ∂A since ∂A∂− = ∂A∂+.

(2) The categories K[B] have the structure of a B∂(n)-category given by func-
tors f∗ : K[B] → K[A] for f : A → B in B∂(n). Moreover f, g : A → B
in B∂(n) with f |∂A = g|∂A and f ≃ g rel ∂A satisfy f∗ = g∗ so that K[−]
is actually a 〈B∂(n)/≃〉-category. The induced functors f∗ are compatible
with the restriction functors ∂A (as in a B-deformation category).

(3) For ball pairs (B,A), (B′, A) in B(n) a gluing functor ∪ is given for which
the following diagram commutes

K(B)×K(A) K(B′) ∪

q×q

K(B ∪A B′)

q

K[B]×K(A) K[B′] ∪
K[B ∪A B′]

The gluing functor is natural with respect to maps in B(n), resp. B∂(n),
and the gluing rule is satisfied, see section 4

(4) For a ball pair (B,A) we have the action functor

�A : K[B]×K(A) K[JA]→ K[B]

defined by �A(G,F ) = (�′
A)∗(G ∪ F ). For B = JA the tuple

(

K(A),K[JA], ε = q∗(ε′)∗, op = (op′)∗,� = �A, ∂±
)

is a track category with associated homotopy category K[A]. The action
functor has the action property in section 6.

(5) Given a ball pair (B,A) and f in K(A). Then f ≃ 0 if and only if there
exists F in K(B) with ∂AF = f and ∂Aop

F = 0. This is the extension
property of K.

(6) For B′ × B in B(n) and g : Y → Z in K(B′) and f : X → Y in K(B) the
⊗-product

g ⊗ f : X → Y in K(B′ ×B)

is given. We also write q(g⊗ f) = g⊗ f in K[B ×B′]. The tensor product
is associative and natural and g⊗0 = 0, 0⊗f = 0. Moreover for ε0 = (ε′0)

∗

we have f ⊗ g = fε0(g) if B′ = point and f ⊗ g = ε0(f)g if B = point.
Also g⊗ ∂Af = ∂B′×A(g⊗ f), (∂A′g)⊗ f = ∂A′×B(g⊗ f) and ⊗ and ∪ are
compatible.

(7) Let dim(B × B1) ≤ n − 1 for balls B,B1 in B. We consider the boundary
of the product JB × JB1 which is the following union of balls

∂(JB × JB1) = Uop ∪ U

U = B+ × JB1 ∪ JB ×B+
1

Uop = B− × JB1 ∪ JB ×B−
1

and we use a comparison map hU : U → Uop in B∂(n). Let G ∈ K(JB), F ∈
K(JB1), then we have in K[U ] the following boundary formula,

(∗) h∗
U

(

(∂−G)⊗ F ∪G⊗ (∂−F )
)

= (∂+G)⊗ F op ∪Gop ⊗ (∂+F )

For dim(B × B1) = 0 this corresponds to formula (∗) in a track category,
compare the horizontal composition in section 2.

Lemma 8.2. Given a B-deformation category C one has for n ≥ 1 an n-th order
track category Cn by truncation of C, see the definition of Cn(B) above. Similarly
the truncation Kn−1 of an n-th order track category K is an (n− 1)-st order track
category.
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Definition 8.3. A map α : K→ K′ between n-th order track categories is given by
functors α : K(B) → K′(B), α : K[B] → K′[B] with qα = αq. They are natural
with respect to B(n) and B∂(n) respectively. Moreover α is compatible with gluing
and ⊗-products. A map α is a weak equivalence if α : K[point] → K′[point] is an
isomorphism and α induces isomorphisms of groups

Aut�(f) ∼= Aut�(αf)

for all f in K(B), dim(B) ≤ n.

Remark 8.4. There is also a notion of pseudo functor and pseudo equivalence
between higher track categories, see [BM] for n = 1.

Composites of inclusions of ball pairs yield for B in B(n) maps {point} → B in
B(n) which induce a well defined functor

∂0 : K(B)→ K(point)/≃ = K[point].

Definition 8.5. An n-th order track category K is abelian if all track categories
(K(B),K[JB]), dim(B) ≤ n−1, are abelian and the associated natural system DB

is a composite of the form

F (K[B])
∂0−→ F (K[point])

Dk

−−→ Ab

where Dk depends only on k = dim(B). Moreover the �A-action yields a well
defined action �or(B) which satisfies the abelian union property, see section 7.

The truncation of the abelian B-deformation categories in section 7 yield exam-
ples of abelian n-th order track categories.

Example 8.6. A first order track category K is the same as a track category in
section 2. In fact, iterate composites of action maps yield a map h : I → [0, n] =
I(n) inducing the isomorphism

h∗ : K[I(n)] ≈ K(I(n))
≈
−→ K(I) ≈ K[I]

which does not depend on h. Now unions are defined by

K(I(n))×∂ K(I(m))

∪

K(I)×∂ K(I)

�

K(I(n + m)) K(I)

and ⊗-products are composites ε(f)H,Hε(g) with H in K(I) and f, g in K(point).
Of course K is abelian iff the associated track category (K(point),K[I]) is abelian.

Remark 8.7. Let K be an abelian n-th order track category. Then the truncation
Kn−1 is an abelian (n− 1)-st order track category. We consider K as a linear track
extension of Kn−1. The set of equivalence classes of such extensions is denoted by
Hn+2(Kn−1,Dn). This leads to a cohomology which for n = 1 coincides with the
cohomology in section 2, [BW].

9. Higher order Toda brackets and higher order chain complexes

The properties of an abelian n-th order track category are chosen in such a way
that it is possible to define higher order Toda brackets generalizing the triple Toda
brackets in a track category of section 2.

Proposition 9.1. Let C be an abelian n-th order track category with natural system
Di, i = 1, . . . , n and let

Y = X0
α1←− X1

α2←− X2 ←− · · ·
αn+2

←−−− Xn+2 = X
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be a sequence of morphisms αi in C(point)/≃. Then the higher Toda bracket is
defined as a subset

〈α1, . . . , αn+2〉 ⊂ Dn
0(X,Y )

For n = 1 this is the triple Toda bracket in the abelian track category (C(point),
C(I)/≃). The set 〈α1, . . . , αn+2〉 is possibly empty. If C ∼ K is a weak equivalence
then the brackets coincide, that is 〈α1, . . . , αn+2〉C = 〈α1, . . . , αn+2〉K.

Definition 9.2. Let C be an abelian n-th order track category. Let B be a ball
in B and let F ∈ C(B), F : X → Y , be trivial on the boundary (that is, for any
ball pair (B,A) we have ∂AF = 0 and ∂Aop

F = 0) then there is a unique element

α ∈ Di
∂0F , i = dim(B), with

0 �or(B) α = {F} in C[B]

Here ∂0F = 0(X,Y ) in C[point]. We call

ob(F ) = α ∈ Di
0(X,Y )

the obstruction associated to F . If (E,B) is a ball pair the extension property
shows that ob(F ) = 0 if and only if there is F ∈ C(E) with ∂B(F ) = F and
∂Bop

(F ) = 0.

We now consider the ball pair (In+1, Tn) where Tn is the union of all n-dimen-
sional faces of In+1 which contain the origin 0 = (0, . . . , 0) ∈ In+1. Let (In+1, Tn

op)

be the opposite ball pair. Hence Tn
op is the union of all faces of In+1 which contain

the point (1, . . . , 1) ∈ In+1. We shall construct F : X → Y in C(Tn) such that F
is trivial on the boundary and such that

ob(F ) ∈ 〈α1, . . . , αn+2〉

In fact, all possible choices of F yield this way the set 〈α1, . . . , αn+2〉. If F is not
constructable then this set is empty.

The element ob(F ) is the zero element in the abelian group Dn
0(X,Y ) if and only

if there exists F in C(In+1) with F |Tn = F and F |Tn
op = 0(X,Y ) ∈ C(Tn

op).

Here we call F a cubical extension of F . We shall see that F is constructible if
and only if inductively certain cubical extensions exist.

We start the induction by choosing representatives fi of the homotopy class
αi, i = 1, . . . , n + 2. Then we choose

f1
i ∈ C(I), f1

i : fifi+1 ≃ 0.

Assume now fk
i ∈ C(Ik), 1 ≤ k < n, i ≤ n − k + 2, are chosen. Then we define

fk+1
i ∈ C(Ik+1) as follows, in fact, fk+1

i is a cubical extension of

F k
i ∈ C(T k)

where F k
i is obtained by the following gluing. The faces of Ik+1 in T k are of the

form Ik × 0, Ik−1× 0× I, Ik−2× 0× I2, . . . , 0× Ik and this is a regular sequence
of balls in T k. Then F k

i is given by the restrictions

F k
i |I

k × 0 = fk
i ε0(fi+k+1)

F k
i |0× Ik = ε0(fi)f

k
i+1

F k
i |I

r × 0× Ik = fr
i ⊗ fk

i+r+1, r + s = k, 1 ≤ r < k.

One can check that by the inductive construction this gluing, defining F k
i , is

well defined. Now let F = Fn
0 ∈ C(Tn). All possible choices of F yield the set of

elements ob(F ) defining 〈α1, . . . , αn+2〉.
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We now consider higher order chain complexes. Let C be an n-th order track
category and let

(X,α) =
(

· · · ←− Xi−1
αi←− Xi ←− · · · , i ∈ Z

)

be a sequence of morphisms in the homotopy category C[point]. A C-chain complex
(X, f, F ) associated to (X,α) is defined in the same way as a representation of a
higher Toda bracket. In fact, (X, f, F ) consists of the following data. For i ∈ Z the
element fi in C(point) is a representative of αi. Then

f1
i ∈ C(I), f1

i : fifi+1 ≃ 0

Assume now fk
i ∈ C(Ik), 1 ≤ k < n, is given. Then fk+1

i ∈ C(Ik+1) is a cubical
extension of F k

i ∈ C(T k) where F k
i is obtained by gluing as above, that is, F k

i has
the restrictions

F k
i |I

k × 0 = fk
i ε0(fi+k+1)

F k
i |0× Ik = ε0(fi)f

k
i+1

F k
i |I

r × 0× Ik = fr
i ⊗ fk

i+r+1,

where r + s = k, 1 ≤ r ≤ k − 1. Now fk
i and F k

i , 1 ≤ k ≤ n, describe (X, f, F ).
This is a C-chain complex if the obstruction ob(Fn

i ) = 0 vanishes for i ∈ Z, see 9.2.

Remark 9.3. For n = 1 we have the track category C and in this case a C-
chain complex is the same as a secondary chain complex in [BJ,Se]. Secondary
chain complexes form a category but C-chain complexes in general do not though
morphisms between C-chain complexes can be defined.

10. Higher order cohomology operations and the Adams spectral

sequence

Let p be a prime and let F = Z/p be the field of p elements. Let Zn = K(F, n)
be the Eilenberg-MacLane space which is an H-group.

Definition 10.1. The track theory of n-th order cohomology operations is the
abelian n-th order track category

Cn{Z}

where C is the topological B-category and Z is the set of all products Zn1×. . .×Znr

with n1, . . . , nr ≥ 1 and r ≥ 1. For a pointed space X let

Cn{X → Z}

be the under category in section 7 which is also an abelian n-th order track category.
Here Cn{X → Z} is considered as a left module over Cn{Z}.

Remark 10.2. The homotopy category Cn{Z}[point] is the theory of Eilenberg-
MacLane spaces constructed in [B,Se, 1.1.5]. Models of this theory are connected
unstable algebras over the Steenrod algebra A. For example C{X → Z}[point] is
such a model which is equivalently given by the cohomology H∗(X, F). Given a
sequence

X
β
−→ X0 α0

−→ X1 α1

−→ · · ·
αn

−−→ Xn+1

in Top∗/≃ with Xi ∈ Z the associated Toda bracket
〈

αn, . . . , α0, β
〉

is termed a
higher matrix Massey product in the A-module H∗(X). If X ∈ Z this is a higher
Massey product in the Steenrod algebra.
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Remark 10.3. It is possible to describe the analogue of the topological B-deforma-
tion category C in Top∗ in the stable homotopy category of spectra. For example
the stable track theory of Eilenberg-MacLane spaces in [B,Se, 2.2.6] uses Eilenberg-
MacLane spectra. The use of spectra, however, leads to technical complications
which we want to avoid in this paper. We therefore use the “stable range” in the
next definition.

Definition 10.4. For a “large” number N let ZN be the subset of Z above con-
sisting of all products Zn1 × . . . × Znr with N ≤ ni < 2N, i = 1, . . . , r. This is a
stable range of Z. Accordingly we get the stable theories

Cn{ZN}, Cn{ΣNX → ZN}

where ΣNX is the N -fold suspension of a CW -complex X with dim(X) < N .

Let X and Y be finite CW -complexes. Then the Adams spectral sequence
(En, n ≥ 2) with

E2 = ExtA(H∗X,H∗Y )

converges to the p-local part of the stable homotopy set {Y,X}. For the computa-
tion of Ext we choose a resolution of the left A-modules H∗ by finitely generated
free modules Mi

H∗X ←M0 ←M1 ← · · ·

Let Bi be a basis of Mi and let

Xi = ×
b∈Bi

ZN+|b|

Then a finite part H∗X ← M0 ← · · · ← Mn of the resolution corresponds to a
sequence

(X,α) =

(

ΣNX
α−1

−−→ X0 α0

−→ X1 α1

−→ · · · −→ Xm

)

which for large N lies in the homotopy category K[point] with K = Cn{W →
ZN}, W = ΣNX ∨ ΣN+sY . Moreover an element β ∈ Extr

A(H∗X,H∗Y )s gets
represented by a cocycle c ∈ Hom(Mr,Σ

−sH∗Y ) which corresponds to a map β in
the following diagram which for N large lies in K[point].

ΣNX X0 α0

· · · Xr αr

· · ·
αr+n

Xr+n+1, r + n + 1 ≤ m,

ΣN+sY

β

We use this diagram for the determination of the differential

dn+1 : Er,s
n → Er+n+1,s+n

n

Proposition 10.5. There is a K-chain complex (X, f, F ) associated to (X,α)
above. Moreover since β represents an element in Er,s

n there is a Kn−1-chain com-
plex (Y, g,G) associated to

(Y, β) =
(

Σn+sY
β
−→ Xr αr

−−→ · · · −→ Xr+n+1
)

.

Here the restriction of (Y, g,G) to (Xr → · · · → Xr+n+1 is given by (X, f, F )
and Kn−1 is the truncation of K. Since (Y, β) is a Kn−1-chain map we can
choose a cubical extension defining Gn

0 ∈ K(Tn). The obstruction ob(Gn
0 ) ∈

[Σn(ΣN+sY ),Xr+n+1] yields an element in Extr+n+1
A (H∗X,H∗Y )n+s which rep-

resents dn+1{β} ∈ Er+n−1,n+s
n .

This result is proved for n = 1 in [BJ].
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Corollary 10.6. Let K′ be an n-th order track category quasi isomorphic to K =
Cn{W → ZN}, W = ΣNX ∨ΣN+sY . Then the differential dn can be computed in
K′.

For n = 1 this is proved in [BJ,Se, 5.1].

11. ∆-balls

The diagonal ∆ of a CW -complex X is not a cellular map but is homotopic to
a cellular map ∆ which is called a diagonal approximation. Then ∆ = ∆X induces
a chain map

∆∗ : C∗X → C∗(X ×X) = C∗X ⊗ C∗X

where C∗X is the cellular chain complex with CnX = Hn(Xn,Xn−1). We say that
(C∗X,∆∗) is a coalgebra if ∆∗ is coassociative and the augmentation ε0 = (ε′0)∗ :
C∗B → C∗(point) = R satisfies (1 ⊗ ε0)∆∗ = 1 = (ε0 ⊗ 1)∆∗. In general it is not
possible to find a diagonal approximation ∆ such that (C∗X,∆∗) is a coalgebra,
but we consider CW -complexes with the following nice properties.

Definition 11.1. A ∆-CW -complex X is a regular CW -complex together with
a diagonal approximation ∆ and a homotopy D : ∆ ≃ ∆ in Top such that the
following properties are satisfied.

(a) Each subcomplex Y of X admits a commutative diagram

X
∆

X ×X

Y
∆Y

Y × Y

and the homotopy D induces a homotopy DY : ∆Y ≃ ∆Y .
(b) The cellular chain complex (C∗X,∆∗) is a coalgebra.

We have the following properties of ∆-CW -complexes.

(c) The interval I is a ∆-CW -complex using ∆ in I × 0 ∪ 1× I.
(d) The product X × Y of ∆-CW -complexes is a ∆-CW -complex given by

∆ = (1× T × 1)(∆X ×∆Y ), Dt = (1× T × 1)(Dt
X ×Dt

Y ), t ∈ I,

where T : X × Y → Y ×X is the interchange map.
(e) A subcomplex Y of a ∆-CW -complex X is a ∆-CW -complex.
(f) Let X,X ′ be ∆-CW -complexes and let Y ⊂ X and Y ⊂ X ′ be the inclu-

sions of ∆-CW -subcomplexes. Then the union X∪Y X ′ is a ∆-CW -complex
with ∆ = ∆X ∪∆X′ .

(g) Let X,X ′, Y be ∆-CW -complexes and let Y ⊂ X be the inclusion of a
∆-CW -subcomplex. Then the pushout P as in the diagram

X ×X ′ P

Y ×X ′
q X ′

is a ∆-CW -complex. Here q is the projection. For example a relative
cylinder is such a pushout.

Definition 11.2. A ∆-ball is a ∆-CW -complex for which the underlying CW -
complex is a ball, see section 3.

Proposition 11.3. Each ball B in the indexing set B of balls in section 3 has the
canonical structure of a ∆-ball.
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This follows from the properties of ∆-CW -complexes above, compare the defi-
nition of B in section 3.

12. Track categories associated to truncated chain algebras

Let R be a commutative ring with unit. We use the category of R-modules with
tensor product ⊗ = ⊗R.

A chain algebra Q is a non-negatively bigraded R-module Q = {Qr
s; r, s ≥ 0}

with unit 1 ∈ Q0
0, associative multiplication

µ : Qr
s ⊗Qr′

s′ → Qr+r′

s+s′ , µ(x⊗ y) = x · y,

and differential d : Qr
s → Qr

s−1 satisfying d ◦ d = 0 and

d(x · y) = (dx) · y + (−1)sx · (dy).

(If Q is concentrated in upper degree 0 then Q is a chain algebra in the usual
sense.) A Q-module is a non negatively bigraded R-module M = {Mr

s ; r, s ≥ 0}
with a differential d : Mr

s →Mr
s−1, d ◦ d = 0, and an action

µ : Mr
s ⊗Qr′

s′ →Mr+r′

s+s′ , µ(x⊗ y) = x · y,

satisfying the formula for d(x · y) above. (If M is concentrated in upper degree 0
then M is a chain complex in the usual sense.) A Q-morphism f : M → N between
Q-modules is a map f : Mr

s → Nr
s with df = fd and f(x · y) = f(x) · y.

Below we shall consider Q-modules of the form

C ⊗ L⊗Q

where C is a chain complex and L is a finitely generated free graded R-module.
Here C and L are concentrated in upper degree 0.

Definition 12.1. A chain algebra Q is n-truncated if Qr
s = 0 for s > n. The n-th

truncation Q(n) of a chain algebra Q is given by

Q(n)r
s =











0 for s > n

Qr
n/dQr

n+1 for s = n

Qr
s for s < n

Then Q(n) is an n-truncated chain algebra.

We now define for an n-truncated chain algebra Q the n-th order track category
KQ associated to Q by the properties in (1), (2) and (3) below.

(1) The objects of KQ are the finitely generated free graded R-modules; they
form the set O of objects. The zero object 0 ∈ O is the trivial module.
For B ∈ B(n) let KQ(B) be the category with objects in O and morphisms
f : L→ L′ with L,L′ ∈ O given by Q-morphisms

C∗(B)⊗ L⊗Q
f
−→ L′ ⊗Q

Composition of such morphisms gf : L → L′ → L′′ is defined by the
composite

C∗B ⊗ L⊗Q
∆∗−−→ C∗B ⊗ C∗B ⊗ L⊗Q

C∗B⊗f
−−−−−→ C∗B ⊗ L′ ⊗Q

g
−→ L′′ ⊗Q

Since (C∗B,∆∗) is a coalgebra this is a well defined category. The identity
1 : L → L is given by C∗(B) ⊗ L → L induced by (ε′0)∗ : C∗(B) →
C∗(point) = R. Let j : A → B be a morphism in B(n) then j induces
a coalgebra morphism j∗ : C∗A → C∗B and the functor j∗ : KQ(B) →
KQ(A) carries f to f ◦ (j∗ ⊗ L⊗Q).

Lemma 12.2. The relation of ≃ defined by KQ is a natural equivalence relation.
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Proof. For the ball JB we know that C∗(JB), as a quotient of C∗I ⊗ C∗B, is a
relative cylinder in the category of chain complexes. �

Hence the category KQ[B] = KQ(B)/≃ is well defined.

Lemma 12.3. If dim(A) = n then ≃ on K(B) is the trivial relation so that K(B) =
K[B].

This follows readily by the assumption that Q is n-truncated.

(2) Let j : A→ B be a map in B∂(n). Then ∂j : ∂A→ ∂B induces a coalgebra
map j∂ = C∗(∂j) in the commutative diagram

C∗∂A

T

j∂

C∗∂B

T

C∗A
j

C∗B

Here we can choose a chain map j extending j∂ since B is contractible. We
now define

j∗ : K[B]→ K[A]

by j∗{f} = {f(j ⊗ L⊗Q)}

Lemma 12.4. j∗ is a functor which does not depend on the choice of j.

Proof. j∂ is a coalgebra map but j is only a chain map extending j∂ . This yields
the diagram

C∗A
j

∆∗

C∗B

∆∗

C∗A⊗ C∗A
j⊗j

C∗B ⊗ C∗B

which commutes on the boundary C∗∂A. Since B is contractible there is a homo-
topy (j ⊗ j)∆∗ ≃ ∆∗j rel C∗∂A. This shows that j∗(gf) = (j∗g)(j∗f). �

(3) We now consider the gluing functor in KQ. Given ball pairs (B,A) and
(B,A′) in B(n) we have

C∗(B ∪A B′) = C∗B ∪C∗A C∗B
′

where the right hand side is a pushout of chain complexes. Given F in
KQ(B) and G in KQ(B′) with δAF = δAG we get F ∪G by

C∗(B ∪A B′)⊗ L⊗Q = C∗B ⊗ L⊗Q ∪C∗A⊗L⊗Q C∗B
′ ⊗ L⊗Q

F∪G
−−−→ L′ ⊗Q

(4) Finally we obtain ⊗-products in KQ as follows. Let g : Y → Z ∈ KQ(B′)
and f : X → Y ∈ KQ(B). Then g ⊗ f : X → Z ∈ KQ(B′ × B) is the
composite

C∗(B
′ ×B)⊗X ⊗Q = C∗B

′ ⊗ C∗B ⊗X ⊗Q
C∗B′⊗f
−−−−−→ C∗B

′ ⊗ Y ⊗Q
g
−→ Z ⊗Q.

Theorem 12.5. The data in (1) . . . (4) above describe a well-defined n-th order
track category KQ with all the properties in section 8. Moreover for the (n − 1)-
truncation we get

(KQ)n−1 = KQ(n−1).
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The homology H0 = H∗
0 (Q) is a graded algebra. Let mod(H0) be the category

of finitely generated free right H0-modules L ⊗ H0, L ∈ Ab. Then we get the
bifunctor

Dk : mod(H0)
op ×mod(H0)→ Ab

Dk(L,L′) = HomH0
(L⊗H0, L

′ ⊗H0 ⊗H0
Hk)

where Hk = H∗
k(Q) is an H0-bimodule.

Theorem 12.6. The n-th order track category KQ is abelian with homotopy cate-
gory

KQ[point] = mod(H∗
0Q)

and natural systems Dk defined above 1 ≤ k ≤ n.

Remark 12.7. Higher order Toda brackets in the abelian n-th order track category
KQ coincide with higher order matrix Massey products in the differential algebra
Q.

Let MN be the set of finitely generated free graded R-modules concentrated in
degree < N . Then KQ defines the n-th order track category (KQ(MN ))op with
objects inMN which is formally dual to KQ(MN ).

Conjecture 12.8. There exists a bigraded differential algebra Q over R = Z/p2

such that for n ≥ 0 the truncation Q(n) of Q yields an n-th order track category
(

KQ(n)(MN )
)op

which is weakly equivalent to the stable track category Cn{ZN}
of higher cohomology operations. We call Q the “ algebra of higher cohomology
operations”.

Theorem 12.9. The conjecture is true for n = 0 and n = 1. For n = 0 we
get the Steenrod algebra Q(0) = A. For n = 1 we get the pair algebra Q(1) = B
of secondary cohomology operations. The weak equivalence of track categories is
established for n = 1 in [B,Se, 5.5.6].

If the algebra Q is computed one has by the conjecture and section 10 a direct
way to compute the differentials in the Adams spectral sequence which then allows
the computation of stable homotopy groups of spheres.
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