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SYMMETRIC MONOIDAL NONCOMMUTATIVE SPACES AND
SPECTRA AND (CO)LOCALIZATIONS WITH RESPECT TO

STRONGLY SELF-ABSORBING C∗-ALGEBRAS

SNIGDHAYAN MAHANTA

Abstract. Continuing our earlier work we construct symmetric monoidal ∞-categorical
models for separable C∗-algebras SC∗∞ and noncommutative spectra NSp using the framework
of Higher Algebra due to Lurie. We study localizations of SC∗∞ and colocalizations of NSp
with respect to any strongly self-absorbing C∗-algebra. We analyse the homotopy categories
of the localizations of SC∗∞ and characterize them by a universal property. We also describe
the colocalized subcategories of hNSp spanned by the stabilizations of C∗-algebras in the
purely infinite case. As a consequence we compute the noncommutative stable cohomotopy
of the ax+ b-semigroup C∗-algebra arising from any number ring.

Introduction

In [15] we constructed a stable presentable ∞-category of noncommutative spectra NSp.
It is an ideal framework to carry out stable homotopy theory of noncommutative spaces.
It was used to show that the triangulated noncommutative stable homotopy category NSH

constructed by Thom [20] is a topological triangulated category as defined by Schwede [19].
Nevertheless, a very important part of the homotopy theory package, viz., the symmetric
monoidal structure was left out of the discussion in [15]. In the present article we use Lurie’s
Higher Algebra [12] to construct a symmetric monoidal stable presentable ∞-category of
noncommutative spectra NSp (see Theorem 1.5).

Toms–Winter introduced a class of simple C∗-algebras called strongly self-absorbing C∗-
algebras [21], which play a pivotal role in Elliott’s Classification Program. Prominent ex-
amples of such C∗-algebras, which are also purely infinite, are Cuntz algebras O2, O∞, and
tensor products of UHF algebras of infinite type with O∞. In the sequel we construct smash-
ing localizations of the ∞-category of separable C∗-algebras SC∗∞ with respect to arbitrary
strongly self-absorbing C∗-algebras. We describe the homotopy categories of the localized
∞-categories (see Proposition 2.8) and derive several useful results. At the level of homotopy
categories we also obtain a univeral characterization in this setting (see Theorem 2.13).

In the stable setting we colocalize the stable ∞-category of noncommutative spectra NSp

with respect to the stabilization of any strongly self-absorbing C∗-algebra. In the purely in-
finite case we describe the homotopy category of the colocalized∞-category spanned by the
stabilizations of C∗-algebras (cf. Theorems 3.4, 3.8, and 3.10). As a consequence we prove
that the canonical map from noncommutative stable cohomotopy to topological K-theory
is an isomorphism for O∞-stable C∗-algebras. Using the results of [5, 11] this isomorphism
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enables us to complete the computation of noncommutative stable cohomotopy (see Disam-
biguation 3.11) of ax + b-semigroup C∗-algebras arising from number rings (see Theorem
3.12).

The Z-stable situation, where Z is the Jiang–Su algebra, is the most interesting case from
the viewpoint of classification but it is not covered by the results in this article. We also
include an appendix on (potential) Quillen model structures in the context of C∗-algebras.

Notations and conventions: Throughout this article ⊗̂ will denote the maximal C∗-tensor
product. All C∗-algebras are assumed to be separable unless otherwise stated. For any ∞-
category C we denote by hC its homotopy category. A functor between ∞-categories will
implicitly mean an ∞-functor, i.e., a map of underlying simplicial sets.

Acknowledgements: The author would like to thank T. Nikolaus and W. Winter for
helpful discussions. The author is also grateful to S. Barlak for his feedback. Part of this
research was carried out during the author’s visit to Max Planck Institute for Mathematics,
Bonn, whose hospitality is gratefully acknowledged.

1. The symmetric monoidal structure and localizations of SC∗∞

Recall from [15] that there is an∞-category of noncommutative pointed spaces NS∗ as well
as a stable∞-category of noncommutative spectra NSp, which is obtained after a localization
of the stabilization of the∞-category NS∗. In this section we construct a symmetric monoidal
structure on NS∗ (resp. NSp) generalizing the smash product of pointed spaces (resp. spectra).

Let Fin∗ denote the category, whose objects are pointed sets ⟨n⟩ = {∗, 1, · · · , n} with ∗
being the basepoint and whose morphisms are pointed maps. Let N(Fin∗) denote its nerve.
A symmetric monoidal ∞-category C⊗ is a coCartesian fibration of simplicial sets p : C⊗ →
N(Fin∗) with the property: for each n > 0 there is an equivalence C⊗

⟨n⟩ ≃ (C⊗
⟨1⟩)

n induced

by the maps {ρi : ⟨n⟩ → ⟨1⟩}16i6n. One should regard C := C⊗
⟨1⟩ as the ∞-category, which

is symmetric monoidal. It is customary to work with the underlying symmetric monoidal
category C, leaving out the rest of the structure as implicitly understood. A symmetric
monoidal ∞-category can also be regarded as a commutative monoid object in Cat∞, which
is the ∞-category of ∞-categories. For further details the readers may consult [12].

Proposition 1.1. The categories SC∗∞ and NS∗ := Ind(SC∗∞
op) are symmetric monoidal ∞-

categories. Moreover, the tensor product functor ⊗ : NS∗ × NS∗ → NS∗ preserves small
colimits in each variable separately and j : SC∗∞

op → NS∗ is symmetric monoidal.

Proof. It is well-known that the topological category SC∗ is symmetric monoidal under the
maximal C∗-tensor product ⊗̂. As a consequence its topological nerve SC∗∞ is a symmetric
monoidal ∞-category. The symmetric monoidal structure on SC∗∞ endows SC∗∞

op with a
symmetric monoidal structure ⊗ that is uniquely defined up to a contractible space of choices
(see Remark 2.4.2.7 of [12]). Since the symmetric monoidal structure extends to the Ind-
completion NS∗ := Ind(SC∗∞

op) and ⊗ commutes with finite colimits in SC∗∞
op, all other

assertions follow from Corollary 6.3.1.13 of ibid.. �
Lemma 1.2. The stabilization Sp(NS∗) is a symmetric monoidal stable ∞-category and the
∞-functor Σ∞ : NS∗ → Sp(NS∗) is symmetric monoidal.

Proof. Thanks to the previous Lemma, one way to argue is via the identification of stable
∞-categories Sp(NS∗) ≃ NS∗ ⊗ Sp := FunR(NS∗

op, Sp) (see Example 6.3.1.22 of [12]; here the
2



tensor product is taken in the category PrL). Using the stabilization Σ∞ : S∗ → Sp of pointed
spaces, the stabilization of noncommutative pointed spaces can be regarded as

NS∗ ≃ NS∗ ⊗ S∗ → NS∗ ⊗ Sp ≃ Sp(NS∗).

�

Recall from [15] that there is an∞-functor Πop : SC∗∞
op → NSp. This arises as a composition

of the following ∞-functors

SC∗∞
op j→ NS∗

Σ∞
→ Sp(NS∗)

L→ S−1Sp(NS∗) =: NSp.

Here S is a strongly saturated collection generated by the image of the set of morphisms
S0 = {C(f) → ker(f) | f : A → B surjective in SC∗} in SC∗∞

op under Σ∞ ◦ j. Let T be the
strongly saturated collection generated by j(S0) inside NS∗. Thus we obtain an accessible
localization LT : NS∗ → T−1NS∗ with respect to T .

Proposition 1.3. The localization functor LT : NS∗ → T−1NS∗ is a symmetric monoidal
∞-functor between symmetric monoidal ∞-categories.

Proof. By Proposition 2.2.1.9 and Example 2.2.1.7 of [12] we need to verify that for any
LT -equivalence g : X → Y and any Z ∈ NS∗ the induced map g ⊗ idZ : X ⊗ Z → Y ⊗ Z is
also an LT -equivalence. Since T is by construction a strongly saturated collection, the LT -
equivalences precisely coincide with T (see Proposition 5.5.4.15 of [13]). Using the exactness
of the maximal C∗-tensor product one can check that if θ(f) : ker(f)→ C(f) is the canonical
map in SC∗∞ for any surjection f : A→ B in SC∗, then for any C ∈ SC∗ the map θ(f)⊗ idC :
ker(f)⊗̂C → C(f)⊗̂C is the same as θ(f ⊗ idC) : ker(f ⊗ idC)→ C(f ⊗ idC). Thus we have
shown that for any θ(f)op ∈ j(S0) and any C ∈ SC∗∞

op the map θ(f)op ⊗ idC ∈ j(S0) ⊂ T .
Since ⊗ commutes with small colimits in NS∗ the same holds for all Z ∈ NS∗, i.e., for any
g ∈ j(S0) and any Z ∈ NS∗ the map g ⊗ idZ ∈ T . The rest follows from the explicit
construction of the strongly saturated collection T from j(S0). �

Corollary 1.4. The stable∞-category T−1NS∗⊗Sp is symmetric monoidal and the canonical
∞-functor NS∗ ⊗ S∗ → NS∗ ⊗ Sp→ T−1NS∗ ⊗ Sp is symmetric monoidal.

Theorem 1.5. There is an equivalence of stable ∞-categories NSp ≃ T−1NS∗ ⊗ Sp.

Proof. Using Corollary 1.4.2.23 of [12] one obtains the dotted ∞-functor F (unique up to
equivalence) making the following diagram commute

NS∗

LT

��

Sp(NS∗)
Ω∞

oo

F
���
�
�

T−1NS∗ Sp(T−1NS∗).
Ω∞

oo

Using the characterization of localization (see Proposition 5.2.7.12 of [13]) one concludes

that the there is a factorization Sp(NS∗)
LS→ S−1Sp(NS∗)

F→ Sp(T−1NS∗) ≃ T−1NS∗ ⊗ Sp so
that F = F ◦ LS with F exact. Using the same characterization of localization one obtains
the dotted ∞-functor G (unique up to equivalence) making the following diagram commute
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NS∗
Σ∞

//

LT

��

Sp(NS∗)

LS

��
T−1NS∗

G //______ S−1Sp(NS∗).

Now we obtain an ∞-functor G = G ⊗ id : T−1NS∗ ⊗ Sp → S−1Sp(NS∗) ⊗ Sp ≃ S−1Sp(NS∗)
using the fact that Sp is the tensor unit in PrL. Observe that S−1Sp(NS∗) = NSp and the
∞-functors F and G are inverse equivalences of stable ∞-categories. �
Remark 1.6. Using the above identification NSp ≃ T−1NS∗⊗ Sp we are going to regard NSp

as a symmetric monoidal stable ∞-category.

Corollary 1.7. The homotopy category of noncommutative spectra hNSp is a tensor trian-
gulated category, containing NSHop (the opposite of the noncommutative stable homotopy
category) as a full tensor triangulated subcategory. It also contains (NSHf )op (the opposite
of the category of noncommutative finite spectra NSHf ; see Definition 2.1 of [16]) as a full
tensor triangulated subcategory.

2. Localizations of SC∗∞

A separable unital C∗-algebra D (D ̸= C) is called strongly self-absorbing if the there is
an isomorphism ϕ : D→ D⊗̂D that is approximately unitarily equivalent to idD ⊗ 1D [21].
In ibid. the authors introduced and conducted an elaborate study of strongly self-absorbing
C∗-algebras mainly with applications to the Elliott’s Classification Program in mind. We are
going to use these C∗-algebras to construct interesting (co)localizations of noncommutative
spaces and spectra.

Remark 2.1. In [7] the authors showed the for any strongly self-absorbing C∗-algebra D

the map idD ⊗ 1D is homotopic to an isomorphism ϕ : D → D⊗̂D. In ibid. the result
was asserted under the K1-injectivity condition, which later turned out to be redundant (see
Remark 3.3. of [23]).

Let C be a symmetric monoidal ∞-category with unit object 1. Then a map e : 1 → E
exhibits E as an idempotent object if idE ⊗ e : E ≃ E ⊗ 1 → E ⊗ E is an equivalence in C

(see, for instance, Definition 6.3.2.1 of [12]). We immediately observe

Lemma 2.2. Any strongly self-absorbing C∗-algebra D is an idempotent object in SC∗∞.
The same assertion holds for K.

Proof. For a strongly self-absorbing C∗-algebra D the canonical unital ∗-homomorphism
C→ D exhibits it as an idempotent object in SC∗∞ (see Remark 2.1). For K the map C→ K
sending 1 7→ e11 exhibits K as an idempotent object in SC∗∞. �
Remark 2.3. If E ∈ C is an idempotent object, then LE : C→ C of the form LE(X) = −⊗E
is a localization. In [8] the authors called localizations LE : C→ C of the form LE(X) = −⊗E
for some E ∈ C smashing localizations in keeping with the terminology prevalent in stable
homotopy theory. Any smashing localization LE : C→ C is compatible with the symmetric
monoidal structure on C and, in fact, LEC inherits a symmetric monoidal structure from
C, such that LE : C → LEC becomes symmetric monoidal (see Proposition 2.2.1.9 and
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Proposition 6.3.2.7 of [12]). By abuse of notation we are sometimes going to drop the object
E from the smashing localization LE and denote it simply by L.

Example 2.4. Smashing localizations of the∞-category of separable C∗-algebras SC∗∞ pro-
duces interesting results. By definition SC∗∞ is opposite to the∞-category of noncommutative
pointed compact Hausdorff spaces. We present a few pertinent examples here.

(1) If L(A) = A ⊗ K, then we denote the smashing localization LSC∗∞ by SC∗∞[K−1]. It
is the ∞-category of C∗-stable C∗-algebras. For finite pointed CW complexes (X, x)
and (Y, y) the homotopy set hSC∗∞[K−1](L(C(X, x)), L(C(Y, y))) is the connective E-
theory group denoted by kk((Y, y), (X, x)) in [6] (see Remark 2.11 below).

(2) If L(A) = A ⊗ D, where D is a strongly self-absorbing C∗-algebra, then we denote
the smashing localization LSC∗∞ by SC∗∞[D−1]. We refer to it as the ∞-category
of D-stable C∗-algebras. From the perspective of Elliott’s Classification Program
the ∞-category SC∗∞[Z−1] would be the most interesting localization, where Z is the
Jiang–Su algebra. We call it the ∞-category of Z-stable C∗-algebras.

(3) If D = O∞ we call SC∗∞[O−1
∞ ] the ∞-category of strongly purely infinite C∗-algebras.

The suspension stable version of this category will be analysed in the next section.

Proposition 2.5. Let us suppose that there is a unital embedding ιD : D→ D′ of strongly
self-absorbing C∗-algebras. Then D′ is an idempotent object in SC∗∞[D−1].

Proof. Consider the following commutative diagram in SC∗

D′ idD′⊗1D′ //

idD′⊗1D ##G
GG

GG
GG

GG
D′⊗̂D′

D′⊗̂D.
idD′⊗ιD

99sssssssss

Since D′ is strongly self-absorbing idD′ ⊗ 1D′ is homotopic to an isomorphism D′ → D′⊗̂D′.
It follows from Proposition 5.12 of [21] that idD′ ⊗ 1D is homotopic to an isomorphism
D′ → D′⊗̂D demonstrating that D′ is D-stable. It follows that idD′ ⊗ ιD is a homotopy
equivalence. Observe that the unit object in SC∗∞[D−1] is D. Thus the unital embedding
ιD : D→ D′ exhibits D′ as an idempotent object in SC∗∞[D−1]. �

Corollary 2.6. In the localized ∞-category SC∗∞[Z−1] every strongly self-absorbing C∗-
algebra is an idempotent object.

Proof. The assertion follows from the characterization of Z as the initial object in the ho-
motopy category of strongly self-absorbing C∗-algebras with unital ∗-homomorphisms (see
Corollary 3.2 of [23]). �

Remark 2.7. In view of the above Corollary one may construct SC∗∞[D−1] for any strongly
self-absorbing C∗-algebra D as a localization of SC∗∞[Z−1]. Thus isomorphisms in SC∗∞[Z−1]
contain the most refined information amongst all smashing localizations with respect to
strongly self-absorbing C∗-algebras.

For any A,B ∈ SC∗ we denote by [A,B] the homotopy classes of ∗-homomorphisms A→ B.
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Proposition 2.8. For any A,B ∈ SC∗ and any strongly self absorbing C∗-algebra D there
is a natural isomorphism

hSC∗∞[D−1](L(A), L(B)) ∼= [A,B⊗̂D].

Proof. Let us first observe that there is an identification

hSC∗∞[D−1](L(A), L(B)) ∼= hSC∗∞(A⊗̂D, B⊗̂D).

There is an element θA = idA⊗1D ∈ SC∗(A,A⊗̂D) sending a 7→ a⊗1D. This induces a map

K : hSC∗∞(A⊗̂D, B⊗̂D)→ hSC∗∞(A,B⊗̂D)

by precomposing with [θA] (here [−] denotes the homotopy class). Using the fact that
idD ⊗ 1D : D → D⊗̂D is homotopic to an isomorphism γ : SC∗(D,D⊗̂D), we deduce that
the map idB ⊗ idD ⊗ 1D is homotopic to an isomorphism γB ∈ SC∗(B⊗̂D, B⊗̂D⊗̂D). Now
we define a map

L : hSC∗∞(A,B⊗̂D)→ hSC∗∞(A⊗̂D, B⊗̂D)

as follows: L([ϕ]) = [γ−1
B ◦ (ϕ ⊗ idD)]. Observe that K ◦ L([ϕ]) = [γ−1

B ◦ (ϕ ⊗ idD)] ◦ [θA] =
[γ−1

B ◦ (idB ⊗ idD ⊗ 1D) ◦ ϕ]. Since [idB ⊗ idD ⊗ 1D] = [γB] the composition K ◦ L = id :
hSC∗∞(A,B⊗̂D)→ hSC∗∞(A,B⊗̂D).

Now L ◦ K([ψ]) = L([ψ ◦ θA]) = [γ−1
B ◦ ((ψ ◦ θA) ⊗ idD)]. Let τD : D → D denote the

tensor flip map, which is also homotopic to the identity. A verification on the simple tensors
demonstrates that [(idB ⊗ τD) ◦ ((ψ ◦ θA) ⊗ idD)] = [γB ◦ ψ]. It follows that L ◦ K = id :
hSC∗∞(A⊗̂D, B⊗̂D) → hSC∗∞(A⊗̂D, B⊗̂D). It remains to observe that hSC∗∞(A,B⊗̂D) ∼=
[A,B⊗̂D] (see [15]). �
Observe that the subset {sis∗j | i, j ∈ N} ⊂ O∞ generates a copy of the compact operators K
inside O∞. Let ι : K→ O∞ denote the canonical inclusion.

Proposition 2.9. In the C∗-stable ∞-category SC∗∞[K−1] the map ι : K→ O∞ exhibits O∞
as an idempotent object.

Proof. Consider the diagram O∞
θ→ O∞⊗̂K

ϕ→ O∞⊗̂O∞ in SC∗. The map θ sends a 7→ a⊗e11
and the map ϕ = idO∞⊗ι. The composite ϕ◦θ is homotopic to idO∞⊗1O∞ : O∞ → O∞⊗̂O∞,
whence it is an equivalence in SC∗∞. The map θ is an equivalence in SC∗∞[K−1]. It follows
that ϕ = idO∞ ⊗ ι is an equivalence in SC∗∞[K−1]. �
Corollary 2.10. The ∞-category SC∗∞[O−1

∞ ] can be obtained as a localization of SC∗∞[K−1].

Remark 2.11. It is well-known that hSC∗∞[K−1](A,B) ∼= [A,B⊗̂K]. Isomorphisms in
hSC∗∞[K−1] between C∗-algebras of the form C(X, x)⊗̂K, where (X, x) is a finite pointed
CW complex, can be detected in terms of connective kk-theory (see Theorem 2.4 of [6]).
The connective kk-theory should not be confused with Cuntz kk-theory for m-algebras (or
locally convex algebras).

Corollary 2.12. Consider the following problem: Given two finite pointed CW complexes
(X, x) and (Y, y) are the C∗-algebras C(X, x)⊗̂O∞ and C(Y, y)⊗̂O∞ homotopy equivalent? In
view of the above Remark 2.11 a sufficient criterion can be obtained in terms of connective
kk-theory. Homotopy equivalences of matrix bundles can also be detected by connective
E-theory [20].
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Now we demonstrate that the homotopy category of the smashing localization hSC∗∞[D−1]
admits a universal characterization much like KK-theory. The localization ∞-functor LD :
SC∗∞ → SC∗∞[D−1] induces a canonical (ordinary) functor LD : SC∗ → hSC∗∞[D−1]. Recall that
a functor F : SC∗ → C (C an ordinary category) is called D-stable if F sends the morphism
A→ A⊗̂D mapping a 7→ a⊗ 1D to an isomorphism in C for all A ∈ SC∗.

Theorem 2.13. The functor LD : SC∗ → hSC∗∞[D−1] is the universal homotopy invariant
and D-stable functor on SC∗.

Proof. Let us first show that functor LD is homotopy invariant and D-stable. It is easy to
verify that it is homotopy invariant. It follows from the arguments in the proof of Proposition
2.8 that the map hSC∗∞[D−1](LD(A⊗̂D), LD(B)) → hSC∗∞[D−1](LD(A), LD(B)) induced by
A→ A⊗̂D is an isomorphism for all B ∈ SC∗. For any B ∈ SC∗ the map

hSC∗∞[D−1](LD(B), LD(A))→ hSC∗∞[D−1](LD(B), LD(A⊗̂D))

is equivalent to that map [B,A⊗̂D] → [B,A⊗̂D⊗̂D] once again by Proposition 2.8. This
map is induced by A⊗̂D → A⊗̂D⊗̂D sending a ⊗ d 7→ a ⊗ 1D ⊗ d. Since D is strongly
self-absorbing one easily sees [B,A⊗̂D] → [B,A⊗̂D⊗̂D] is an isomorphism. Since LD is
surjective on objects we conclude that LD is D-stable.

Let Fi : hSC∗∞[D−1] → C with i = 1, 2 be two functors making the following diagram
commute

SC∗
LD //

F   A
AA

AA
AA

A hSC∗∞[D−1]

Fiyyt
t
t
t
t

C.

(1)

On objects they are both determined by D-stability Fi(A⊗̂D) ∼= F (A⊗̂D) ∼= F (A). Simi-
larly, on each morphism ϕ : A⊗̂D→ B⊗̂D the value of Fi(ϕ) is uniquely determined by the
following diagram:

Fi(A⊗̂D)
Fi(ϕ) // Fi(B⊗̂D)

F (A)
F (ϕ)

//

∼=

OO

F (B).

∼=

OO

For the existence note that for any homotopy invariant and D-stable functor F : SC∗ → C

there is a functor F : hSC∗∞[D−1] → C sending A⊗̂D to F (A⊗̂D) ∼= F (A) that makes the
above diagram (1) commute (up to a natural isomorphism). �

3. Coidempotent objects and colocalizations of NSp

Let us remind the readers that the ∞-functor Πop : SC∗∞
op → NSp arises as a composition

of the following ∞-functors

SC∗∞
op j→ NS∗

Σ∞
→ Sp(NS∗)

L→ S−1Sp(NS∗) =: NSp.
7



For any separable C∗-algebra A one ought to regard Πop(A) as its suspension spectrum after
localization with respect to S. Hence we are going to reset Σ∞

S A := Πop(A). Owing to
the symmetric monoidal structure on NSp that we established earlier, one may consider the
endofunctor −⊗ Σ∞

S A : NSp→ NSp for any A ∈ SC∗∞
op.

Let C be a symmetric monoidal ∞-category with unit object 1. We say that a map
e : E → 1 exhibits E as a coidempotent object in C if the dual map eop : 1 → E exhibits E
as an idempotent object in Cop. Recall that the symmetric monoidal structure on C endows
Cop with a symmetric monoidal structure that is uniquely defined up to a contractible space
of choices.

Lemma 3.1. If D is a strongly self-absorbing C∗-algebra, then j(D) is a coidempotent
object in NS∗. The same assertion holds for K, i.e., j(K) is a coidempotent object in NS∗.

Proof. Let X stand for D or K. Since X is an idempotent object in SC∗∞, it becomes a
coidempotent object in SC∗∞

op. Consequently, j(X) becomes a coidempotent object in NS∗
(since j : SC∗∞

op → NS∗ is a fully faithful symmetric monoidal ∞-functor). �
Lemma 3.2. For any strongly self-absorbing C∗-algebra D, the stabilization Σ∞

S D is a
coidempotent object in NSp. The same assertion holds for K, i.e., Σ∞

S K is a coidempotent
object in NSp.

Proof. Since Σ∞ : NS∗ → Sp(NS∗) and L : Sp(NS∗) ≃ NS∗ ⊗ Sp→ T−1NS∗ ⊗ Sp ≃ S−1Sp(NS∗)
are both symmetric monoidal ∞-functors, the assertion follows from the previous Lemma.

�
Recall that an ∞-functor R : C → C is called a colocalization if R : C → RC is the right
adjoint to the inclusion RC ⊂ C; in particular, the inclusion is the left adjoint to R and
hence preserves all small colimits.

Proposition 3.3. Let A be a strongly self-absorbing C∗-algebra or K. The ∞-functors
R1 : NS∗ → NS∗ and R2 : NSp → NSp given by R1(X) = X ⊗ j(A) and R2(X) = X ⊗ Σ∞

S A
are colocalization functors.

Proof. The assertions follow from the dual of Proposition 6.3.2.4 of [12]. �
3.1. Colocalizations and purely infinite strongly self absorbing C∗-algebras. The
list of known examples of strongly self-absorbing C∗-algebras is rather limited. The list
includes Cuntz algebras O2 and O∞, the Jiang–Su algebra Z, UHF algebras of infinite type,
and tensor products of O∞ with UHF algebras of infinite type. It follows from the results of
Kirchberg that strongly self-absorbing C∗-algebras are either stably finite or purely infinite.
In the purely infinite case Toms–Winter completely classified all strongly self-absorbing C∗-
algebras satisfying UCT (Corollary page 4022 [21]), viz., they are O2, O∞ and tensor products
of O∞ with UHF algebras of infinite type. We are particularly interested in the purely infinite
ones since ax + b-semigroup C∗-algebras of number rings are all purely infinite (Corollary
8.2.11 of [5]). Among the strongly self-absorbing purely infinite C∗-algebras O∞ plays a
distinguished role in the classification program. The C∗-algebra A⊗̂O∞ is purely infinite for
any A ∈ SC∗ [10]. Deviating slightly from the predictable pattern the colocalization of NSp
by the∞-functor RΣ∞

S D(−) = −⊗Σ∞
S D is denoted by NSp[D−1] (and not by NSp[(Σ∞

S D)−1]).
In what follows we are going to drop the object Σ∞

S D from the colocalization functor RΣ∞
S D

and denote it simply by R.
8



Thanks to Proposition 3.3 above one can study colocalizations of both NS∗ and NSp with
respect to a strongly self-absorbing C∗-algebra D or K. We are mostly interested in the (sus-
pension) stable situation. Let us call the full ∞-subcategory of NSp (or of its colocalization)
spanned by Σ∞

S A for all A ∈ SC∗∞ (or Σ∞
S A followed by the the colocalization functor) the

C∗-core. In the sequel we describe the homotopy category of the C∗-core of the colocalization
of NSp when D is a purely infinite strongly self-absorbing C∗-algebra. We leave out the cases
involving the stably finite ones for a future project.

Theorem 3.4. For any A,B ∈ SC∗ there is a natural isomorphism

hNSp[O−1
∞ ](R(Σ∞

S A), R(Σ
∞
S B)) ∼= E0(B,A).

Proof. By construction there is a natural identification

hNSp[O−1
∞ ](R(Σ∞

S A), R(Σ
∞
S B)) ∼= hNSp(Σ∞

S (A⊗̂O∞),Σ∞
S (B⊗̂O∞)),

where we used the fact that Σ∞
S : hSC∗∞

op → hNSp is symmetric monoidal (see Corollary 1.4).

Now consider the canonical composition of ∗-homomorphisms K ↪→ O∞
θ→ O∞⊗̂K. Here

θ : O∞ → O∞⊗̂K is the corner embedding a 7→ a⊗ e11. We ought to view this as a diagram
K← O∞ ← O∞⊗̂K in SC∗∞

op. Tensoring the diagram with A and applying Σ∞
S (−) leads to

the following diagram in hNSp

Σ∞
S (A⊗̂K)← Σ∞

S (A⊗̂O∞)
Θ← Σ∞

S (A⊗̂O∞⊗̂K).

Now we apply the functor hNSp(−,Σ∞
S (B⊗̂O∞)) to this diagram and use Theorem 4.25 of

[15] to obtain

hNSp(Σ∞
S (A⊗̂K),Σ∞

S (B⊗̂O∞))

��

∼= // NSHop(A⊗̂K, B⊗̂O∞)

��

hNSp(Σ∞
S (A⊗̂O∞),Σ∞

S (B⊗̂O∞))

Θ
��

∼= // NSHop(A⊗̂O∞, B⊗̂O∞)

��

hNSp(Σ∞
S (A⊗̂O∞⊗̂K),Σ∞

S (B⊗̂O∞))
∼= // NSHop(A⊗̂O∞⊗̂K, B⊗̂O∞).

Observe that for any E,F ∈ SC∗ there is a natural map NSH(E,F ) → E0(E,F ), which
becomes an isomorphism as soon as F is stable (see Theorem 4.1.1. of [20]). Thus we may
modify the above diagram as follows:

hNSp(Σ∞
S (A⊗̂K),Σ∞

S (B⊗̂O∞))

��

∼= // Eop
0 (A⊗̂K, B⊗̂O∞)

��

hNSp(Σ∞
S (A⊗̂O∞),Σ∞

S (B⊗̂O∞))

Θ
��

// Eop
0 (A⊗̂O∞, B⊗̂O∞)

��

hNSp(Σ∞
S (A⊗̂O∞⊗̂K),Σ∞

S (B⊗̂O∞))
∼= // Eop

0 (A⊗̂O∞⊗̂K, B⊗̂O∞).

Since the diagram K ↪→ O∞
θ→ O∞⊗̂K produces a E-equivalence, the right vertical composi-

tion is an isomorphism. It follows that the left vertical composition is also an isomorphism,
9



i.e., the natural map

Θ : hNSp(Σ∞
S (A⊗̂O∞),Σ∞

S (B⊗̂O∞))→ hNSp(Σ∞
S (A⊗̂O∞⊗̂K),Σ∞

S (B⊗̂O∞))

induced by θ : O∞ → O∞⊗̂K is split surjective.

Now consider the composition of ∗-homomorphisms O∞
θ→ O∞⊗̂K

κ→ O∞ with κ(a⊗ eij) =
sias

∗
j . Since κ ◦ θ is homotopic to an isomorphism in SC∗, the composition in the induced

diagram in hNSp (after tensoring with A and applying Σ∞
S (−))

Σ∞
S (A⊗̂O∞)← Σ∞

S (A⊗̂O∞⊗̂K)← Σ∞
S (A⊗̂O∞)

is an isomorphism in hNSp. Applying the functor hNSp(−,Σ∞
S (B⊗̂O∞)) we see that the

dotted composite

hNSp(Σ∞
S (A⊗̂O∞),Σ∞

S (B⊗̂O∞))
Θ //

,,XXXXXXXXXXXX
hNSp(Σ∞

S (A⊗̂O∞⊗̂K),Σ∞
S (B⊗̂O∞))

��

hNSp(Σ∞
S (A⊗̂O∞),Σ∞

S (B⊗̂O∞))

must be an isomorphism. It follows that Θ is split injective and consequently an isomorphism.
Now in the commutative diagram

hNSp(Σ∞
S (A⊗̂O∞),Σ∞

S (B⊗̂O∞))

Θ
��

// Eop
0 (A⊗̂O∞, B⊗̂O∞)

��

hNSp(Σ∞
S (A⊗̂O∞⊗̂K),Σ∞

S (B⊗̂O∞))
∼= // Eop

0 (A⊗̂O∞⊗̂K, B⊗̂O∞)

the right vertical arrow is an isomorphism due to the C∗-stability of E-theory, whence the
top horizontal arrow must also be an isomorphism. Finally, we observe that

Eop
0 (A⊗̂O∞, B⊗̂O∞) ∼= E0(B,A)

due to the O∞-stability of E-theory in both variables and all the identifications made thus
far were natural. �
Remark 3.5. The above Theorem demonstrates that the colocalized ∞-category NSp[O−1

∞ ]
produces an ∞-categorical model for an enlarged version of the opposite of bivariant E-
theory category. Of course, if the separable C∗-algebras in sight are nuclear, then one can
replace E-theory by KK-theory.

Remark 3.6. An inspection of the proof of Theorem 3.4 demonstrates that actually a
stronger result holds, viz.,

hNSp(Σ∞
S (A⊗̂O∞),Σ∞

S B) ∼= NSH(B,A⊗̂O∞) ∼= E0(B,A)

for any A,B ∈ SC∗.

Corollary 3.7. The nonconnective algebraic K-theory of O∞-stable separable C∗-algebras
factors through hNSp[O−1

∞ ].

Proof. It was shown in [14] that the nonconnective algebraic K-theory of O∞-stable C∗-
algebras agrees naturally with their topological K-theory. The assertion now follows since
topological K-theory factors through hNSp[O−1

∞ ]. �
10



Now let Q denote any UHF algebra of infinite type, so that O∞⊗̂Q is a purely infinite strongly
self-absorbing C∗-algebra.

Theorem 3.8. For any A,B ∈ SC∗ there is a natural isomorphism

hNSp[(O∞⊗̂Q)−1](R(Σ∞
S A), R(Σ

∞
S B)) ∼= E0(B⊗̂Q, A⊗̂Q).

Proof. As before we first observe that

hNSp[(O∞⊗̂Q)−1](R(Σ∞
S A), R(Σ

∞
S B)) ∼= hNSp(Σ∞

S (A⊗̂O∞⊗̂Q),Σ∞
S (B⊗̂O∞⊗̂Q)).

Arguing as in the previous Theorem one then proves that

hNSp(Σ∞
S (A⊗̂O∞⊗̂Q),Σ∞

S (B⊗̂O∞⊗̂Q)) ∼= E0(B⊗̂Q, A⊗̂Q).

�

Example 3.9. If Q is the universal UHF algebra, then the C∗-core of the colocalization of
NSp by the ∞-functor − ⊗ Σ∞

S (O∞⊗̂Q) produces an ∞-categorical model for the opposite
of rationalized bivariant E-theory category. Indeed, it is well known that tensoring with the
universal UHF algebra rationalizes E-theory, e.g., it follows from the Theorem in Section 3
of [7] that

Ei(O∞⊗̂Q, A⊗̂Q) ∼= Ei(A)⊗Z Q for i = 0, 1.

Now we show that the colocalization of NSp by −⊗̂Σ∞
S O2 annihilates its C∗-core.

Theorem 3.10. For any A,B ∈ SC∗ there is a natural isomorphism

hNSp[O−1
2 ](R(Σ∞

S A), R(Σ
∞
S B)) ∼= 0.

Proof. Once again we first observe that

hNSp[O−1
2 ](R(Σ∞

S A), R(Σ
∞
S B)) ∼= hNSp(Σ∞

S (A⊗̂O2),Σ
∞
S (B⊗̂O2)).

We also know from Theorem 4.25 of [15] that

hNSp(Σ∞
S (A⊗̂O2),Σ

∞
S (B⊗̂O2)) ∼= NSH(B⊗̂O2, A⊗̂O2).

Since O2 is properly infinite one can again find a diagram in SC∗

O2 → O2⊗̂K→ O2,

such that the composition is homotopic to an isomorphism (see Proposition 1.1.2 of [18]).
Tensoring the diagram with A we get another one

A⊗̂O2 → A⊗̂O2⊗̂K→ A⊗̂O2,

such that the composition is again homotopic to an isomorphism. Applying the homotopy
functor NSH(B⊗̂O2,−) to the above diagram we find that NSH(B⊗̂O2, A⊗̂O2) is a summand
of NSH(B⊗̂O2, A⊗̂O2⊗̂K) ∼= E0(B⊗̂O2, A⊗̂O2⊗̂K) ∼= E0(B⊗̂O2, A⊗̂O2). It suffices to show
that E0(B⊗̂O2, A⊗̂O2) vanishes. Since O2 is KK-contractible, so is B⊗̂O2 and hence it
satisfies UCT. Thus one may identify E0(B⊗̂O2, A⊗̂O2) ∼= KK0(B⊗̂O2, A⊗̂O2) and the group
KK0(B⊗̂O2, A⊗̂O2) evidently vanishes. �
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3.2. Noncommutative stable cohomotopy of ax+b-semigroup C∗-algebras of num-
ber rings. Number rings are central objects of study in number theory. To any number ring
one can associate an ax + b-semigroup C∗-algebra that possesses very intriguing structure
[4]. It is an important task to ascertain (co)homological invariants of these C∗-algebras. We
begin with a disambiguation.

Disambiguation 3.11. In [15, 16] the author decided to call the groups NSH(C,−) (resp.
NSH(−,C)) the noncommutative stable homotopy (resp. noncommutative stable cohomo-
topy) groups. The terminology was motivated by the fact that NSH(C,−) is covariant and
NSH(−,C) is contravariant. However, it was observed in ibid. that NSH(C,−) generalizes
stable cohomotopy, whereas NSH(−,C) generalizes stable homotopy of finite pointed CW
complexes. In order to align the theory with the terminology familiar to topologists, we
rename as follows:

NSH(C,−) = noncommutative stable cohomotopy

NSH(−,C) = noncommutative stable homotopy

We also extend the terminology predictably to their graded versions.

Recently Li showed that for a countable integral domain R with vanishing Jacobson radical
(which is, in addition, not a field) the left regular ax+ b-semigroup C∗-algebra C∗

λ(RoR×)
is O∞-stable, i.e., C∗

λ(R o R×)⊗̂O∞ ∼= C∗
λ(R o R×) (see Theorem 1.3 of [11]). Cuntz–

Echterhoff–Li computed the topological K-theory of such ax + b-semigroup C∗-algebras in
[5] as follows:

K∗(C
∗
λ(RoR×)) ∼= ⊕

[X]∈G\I
K∗(C

∗(GX)),(2)

where I is the set of fractional ideal of R, G = K oK×, and GX is the stabilizer of X under
the G-action on I. The orbit space G \ I can be identified with the ideal class group of K.

Theorem 3.12. The noncommutative stable cohomotopy of the left regular ax+b-semigroup
C∗-algebra of the ring of integers R of a number field K is 2-periodic and explicitly given by

NSH(C, C∗
λ(RoR×)) ∼= ⊕

[X]∈G\I
K0(C

∗(GX)).

and

NSH(C,ΣC∗
λ(RoR×)) ∼= ⊕

[X]∈G\I
K1(C

∗(GX)).

Proof. Since C∗
λ(R o R×) is O∞-stable, there is an identification of noncommutative stable

cohomotopy NSH(C, C∗
λ(RoR×)) ∼= NSH(C, C∗

λ(RoR×)⊗̂O∞). By Remark 3.6 we conclude
that NSH(C, C∗

λ(R o R×)⊗̂O∞) ∼= E0(C, C∗
λ(R o R×)). One may identify the E-theory of

C∗
λ(RoR×) naturally with its topological K-theory (of course, C∗

λ(RoR×) is itself nuclear).
The results now follow from Equation (2) (the second one after suspension). �

4. Appendix

The symmetric monoidal presentable ∞-category of noncommutative spaces NS∗ con-
structed here is well-suited for unstable homotopy theory of noncommutative pointed spaces.
Indeed, by a general result one can produce a combinatorial simplicial model category, whose

12



underlying∞-category is equivalent to NS∗ (see Proposition A.3.7.6 of [13]). This model cat-
egory will definitely contain all separable C∗-algebas as objects. However, it will also contain
many other objects, which are needed to have a category large enough on which a model
structure can be constructed. Although these extra objects are quite meaningful from the
viewpoint of homotopy theory, they can be rather cumbersome for operator algebraists.

The above comment also applies to the model structure constructed by Østvær for unstable
homotopy theory of C∗-algebras [17]. Andersen–Grodal had earlier observed that one cannot
expect a model category structure that conforms with some reasonable expectations by
restricting one’s attention only to the category of C∗-algebras [1] (see also Appendix of
[22]). One natural approach is to consider the category of pro C∗-algebras if one wants
to stay close to analysis. Joachim–Johnson adopted a strategy roughly along these lines to
produce a model structure, whose homotopy category (restricted to the subcategory spanned
by separable C∗-algebras) is equivalent to Kasparov’s KK-category [9]. Their work was
motivated by the Cuntz picture of KK-theory [3]; however, to the best of the author’s
knowledge a model structure on objects similar to pro C∗-algebras modelling the unstable
homotopy theory is still absent in the literature. This issue will be addressed in our upcoming
work [2].
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