Max-Planck-Institut fur Mathematik
Bonn

Differential overconvergence

by

Alexandru Buium
Arnab Saha

Max-Planck-Institut fir Mathematik
Preprint Series 2010 (54)






Differential overconvergence

Alexandru Buium

Arnab Saha
Max-Planck-Institut fir Mathematik University of New Mexico
Vivatsgasse 7 Albuquerque, NM 87131
53111 Bonn USA

Germany

MPIM 2010-54






DIFFERENTIAL OVERCONVERGENCE

ALEXANDRU BUIUM AND ARNAB SAHA

ABSTRACT. We prove that some of the basic differential functions appearing
in the theory of arithmetic differential equations [6], especially some of the
basic differential modular forms in that theory, have a remarkable “differential
overconvergence” property. One can also go in the opposite direction by using
“differentially overconvergent” series to construct “new” differential functions.

1. INTRODUCTION

This paper is a continuation of the study of arithmetic differential equations
begun in [3, 5]; cf. the Introduction and bibliography of [6]. For the convenience
of the reader the present paper is written so as to be logically independent of the
above references; we will instead quickly review here the main concepts of that
theory and we will only refer to [3, 5, 6] for various results as need.

The purpose of the theory in [3, 5, 6] is to develop an arithmetic analog of
ordinary differential equations. Analytic functions z(t) are replaced in our theory
by integer numbers n € Z (or, more generally, by integers in number fields and their
p-adic completions). The derivative operator z(t) — %£(t) is replaced by a Fermat

n—m

quotient operator which, on Z, acts as n — d,n = > ” . Non-linear differential
operators z(t) - F(z(t), %£(t), ..., %(t)), with F analytic, are replaced by what
is being referred to as d,-functions. The latter have a series of purely arithmetic
applications for which we refer to [4, 5, 11]. What we discover in this paper is that
some of the most important d,-functions appearing in this theory have a remarkable
“differential overconvergence” property: they come from “d.-functions”, m = 1—(p,
where (, denotes, in this paper, a root of unity of order p. We will call this property
dr-overconvergence; cf. the definitions below. Conversely one can use bad reduction
phenomena to construct é,-functions whose traces, then, are “new”, interesting d,-
functions.

In the rest of the introduction we will define our main concepts and state (in
a rough form) our main results. We shall refer to the main body of the paper for
detailed statements and for the proofs of our results.

1.1. Review of notation and terminology [3, 5, 6]. Throughout this paper
p > 5 is a fixed prime and we denote by R, = iZT the completion of the maximum
unramified extension of Z,. We set K, = R,[1/p] (fraction field of R,) and k =
R,/pR, (residue field of R,,); so k is an algebraic closure of F,,. Let 7 be a root of an
Eisenstein polynomial of degree e with coefficients in Z,. (Recall that Q, () is then
a totally ramified extension of QQ,; conversely any finite totally ramified extension of
Qy is of the form Q, () with 7 a root of an Eisenstein polynomial with coefficients in
Zy.) In order to simplify some of our exposition we will assume in what follows that
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2 ALEXANDRU BUIUM AND ARNAB SAHA

Qp(m)/Q, is a Galois. (A typical we have in mind for our applications is 7 = 1 —¢,
in which case e = p —1.) Consider the ring Ry := Ry[n] = R, ®z, Zp[r]. Then R,
is a complete discrete valuation ring with maximal ideal generated by 7 and with
fraction field K of degree e over K. If v, : KX — R is the p-adic valuation with
vp(p) = 1 then v,(m) = 1/e. The ring R, possesses a unique ring automorphism
¢ such that ¢(m) = 7 and ¢ lifts the p-power Frobenius of k = R, /mR,. Clearly
¢ sends R, into itself and is a lift of the p-power Frobenius of k = R,/pR,. Also
throughout the paper ~ denotes p-adic completion. For R, -algebras the p-adic
completion " is, of course the same as the m-adic completion.

Our substitutes for “differentiation” with respect to p and 7 respectively are the
Fermat quotient maps [3] 0, : R, — Ry, and ér : Rx — R, defined by

Opxr = W, x € Ry,
Orx = ¢(I)7mp, x € Ry,

respectively. In particular, for z € R, we have

_
drx = Lipm,

2z = g_z(sgﬂ(%_—ngl)((spx)p,...

Let V' be an affine smooth scheme over R, and fix a closed embedding V' C A?
over R,. (The concepts below will be independent of the embedding.) A function
fp : V(Rp) = R, is called a d,-function (or order r > 0) if there exists a restricted
power series Fj, with Rp-coefficients, in (r 4+ 1)d variables such that

(1.1) fp(x) = Fy(2,0pm, ..., 60x), x€V(R,)C R

Here and later a power series is called restricted if its coefficients tend to 0. (If V
is not necessarily affine f, is called a §,-function if its restriction to the R,-points
of any affine subset of V' is a d,-function.) A function fr : V(R.) — R, is called
a Orp-function (or order r > 0) if there exists a restricted power series F, with
R.-coefficients, in (r + 1)d variables such that

(1.2) fr(x) = Fr(z,652,...,6"2), =€ V(R;)C R

(If V' is not necessarily affine f, is called a d,-function if its restriction to the
R -points of any affine subset of V' is a d,-function.)

1.2. d -overconvergence. The main concept we would like to explore (and ex-
ploit) in this paper is given in the following definition. Let f, : V(R,) — R,
be a d,-function. We will say that f, is d--overconvergent if one of the following
equivalent conditions is satisfied:

1) There exists an integer v > 0 and a d,-function f, making the diagram below
commutative:

V(R,) "%t R,
(1.3) Ll +Tr
V(R:) 1= R,

(Here ¢ stands for the inclusion and T'r stands for the R./R,-trace.)
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2) There exists an integer v > 0 and a (necessarily unique) §.-function f, making
the diagram below commutative:
V(R,) "% R,
(1.4) Ll It
V(R:) 1= R.

The equivalence between conditions 1 and 2 above is trivial to check; cf. also
Proposition 2.3.

Our terminology above is motivated by the following link with the classical con-
cept of overconvergence introduced in the work of Dwork, Monsky, and Washnitzer.
Indeed one can show (as we will later) that if V' = A9 is the affine space, say, and
fp : V(Rp) = R% — R, is a §,-function as in (1.1) which is dr-overconvergent and
has order r < e — 1 then the series F}, appearing in (1.1) is overconvergent (in the
classical sense) in the variables d,z, ..., oz (but of course not necessarily overcon-
vergent in the variables x). Also, if f, is d-overconvergent of order r > e then it
does not follow that F}, is overconvergent in the variables dpz, ..., d,z. Finally note
that if f, has order O (which is the same as saying that f;, comes from a global func-
tion on the p-adic completion V of V') then f, is automatically dr-overconvergent
but, of course, F, will not generally be overconvergent.

1.3. Main results. The interaction between J,-functions and §,-functions turns
out to be a two way avenue as follows:

1) From d-functions to d,-functions. Given a d-function fr : V(R,) — R, the
function f, defined by the diagram (1.3) with v = 0 turns out to be a J,-function.
In this paper we will construct “interesting” d,-functions using bad reduction phe-
nomena and then we will apply trace constructions (a geometric trace construction
and also the R,/R,-trace construction in diagram (1.3) which can be referred to
as an arithmetic trace) to get “new” J,-functions. Cf. Theorem 1.1.

2) From dp-functions to dr-functions. In this paper we discover that some of the
basic “old” §,-functions that played a role in [3, 5, 6] are dr-overconvergent. Cf.
Theorem 1.2.

We will apply the above considerations mainly to the theory of differential mod-
ular forms [5, 6]. To explain this recall the modular curve X;(N)g, over R, with
(N,p) =1, N > 4. This curve is smooth and carries a line bundle L such that
the spaces of sections H(X1(N)g,, L") identify with the spaces of modular forms
on I't (V) defined over R, of weight x; cf. [15], p. 450, where L was denoted by
w. The curve X;(NN)g, contains two remarkable (disjoint) closed subsets: the cusp
locus (cusps) and the supersingular locus (ss). On Y1(N) = X1(INV)\(cusps) the line
bundle L identifies with u*QE/Yl(N) where u : E — Y1(N) is the corresponding uni-
versal elliptic curve. Next consider an affine open set X C X1(N)g, and consider
the restriction of L to X which we continue to denote by L. We can consider the
affine X-scheme V := Spec (®nEZ L®") — X. Then a d,-modular function (on X,
of level N and order r) is simply a d,-function V(R,) — R, (of order r). Similarly
a dz-modular function (on X, of level N and order r) is a d,-function V(R,) — R,
(of order 7). There is a natural concept of weight for a d,-modular function or a
d--modular function; weights are elements in the ring Z[¢] of polynomials in ¢ with
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Z-coeflicients; cf. the body of the text for the definition of weight. §,-modular func-
tions (respectively dr-modular functions) possessing weights are called d,-modular
forms (respectively d.-modular forms). Now, as we shall review in the body of
the paper, d,-modular functions f (and hence forms) possess d,- Fourier expansions
denoted by FE(f) which are restricted power series in variables d,q, ..., d,¢, with
coefficients in the ring R,((¢))".

Our first main result is a construction of some interesting “new” J,-modular
forms as R./R,-traces of some d,-modular forms. In their turn, these d,-modular
forms will be constructed using the bad reduction of modular curves. Here is the
result (in which X is assumed to be disjoint from the supersingular locus):

Theorem 1.1. Let f =" anq™ be a classical normalized newform of weight 2 and
level To(Np) over Z. Assume ap, = 1 and let # = 1 — (,. Then there exists a
Op-modular form fg of level N, order 1, and weight 0 which is é,-overconvergent
and whose dp,-Fourier expansion satisfies the following congruence mod p:

an )
E(fp)=| > Pl > ang™ qu-
(n,p)=1 n>1

Cf. Proposition 4.11 in the paper. Note that the condition a, = 1 is equiva-
lent to the condition that the elliptic curve attached to f via the Eichler-Shimura
construction have split multiplicative reduction at p. The §,-modular form fg in
Theorem 1.1 should be viewed as a bad reduction analogue of the d,-modular forms
fi = fg of level N, order < 2, and weight 0 that were attached in [7] to classical
normalized newforms f = 3 a,,¢" of weight 2 and level I'y(N) over Z. For such an
f on T'o(N) that does not have CM (in the sense that the elliptic curve attached
to it via the Eichler-Shimura construction does not have CM) the forms flg have
order exactly 2 and were shown in [11] to have d,-Fourier expansions satisfying the
following congruence mod p:

(079 ) 2 1) P
5 22) (5 a5 () (2]
(n,p)=1 m>1 m>1

Similar results are available for f on I'g(N) having CM; cf. [7, 11]. Unlike the
forms fg for f on T'g(Np) the forms fg for f on I'g(IV) were defined for any X (not
necessarily disjoint from the supersingular locus).

Our second main result is a construction of §r-modular forms from certain d,-
modular forms. Indeed, a key role in the theory in [5, 1, 6] was played by certain
dp-modular forms denoted by f,, f2, f3,... of weights —1 — ¢, =1 — ¢, =1 — ¢%, ...
and by a d,-modular form denoted by fg of weight ¢ — 1 (where the former are
defined whenever X is disjoint from the cusps while the latter is only defined if
X is disjoint from both the cusps and the supersingular locus). The definition of
these forms will be reviewed in the body of the paper. Our second main result (cf.
Theorems 5.1, 5.3, and 5.5 in the body of the paper) is the following:

Theorem 1.2. Assume vy(m) > p—il. Then the 0p-functions fz?, z}’ 5, p3,... are
0 -overconvergent. Also fg is 0 -overconvergent for any classical normalized new-
form f of weight 2 and level To(N) over Z.

By the way the forms f}, f2, f3,... and f¢ “generate” (in a sense explained in

[5, 1, 6]) all the so called isogeny covariant §,-modular forms (in the sense of loc.cit.).

E(f})
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We refer to loc.cit. for the role of these forms in the theory and for the significance
of the theory itself (in relation, for instance, to the construction in d,-geometry of
the quotient of the modular curve by the action of the Hecke correspondences);
reviewing this background here would take as too far afield and is not necessary for
the understanding of our second main result above.

1.4. Summary of the main forms. We end our discussion by summarizing (cf.
the table below) the main d.-overconvergent d,-modular forms appearing in this

paper.

form | attached to | order | weight | domain X

i r>1 r —1—¢" | X disjoint from (cusps)

i fonTo(N) |1lor2 0 X arbitrary

fg f on To(Np) 1 0 X disjoint from (ss)
fz? 1 ¢ —1 | X disjoint from (cusps) and (ss)

1.5. Plan of the paper. We begin, in section 2, by revisiting our main set the-
oretic concepts above from a scheme theoretic viewpoint; 6,-functions and §,-
functions will appear as functions on certain formal schemes called p-jet spaces
and 7-jet spaces respectively; cf. [3, 4]. We shall review some of the properties of
the latter and we shall analyze the concept of §r-overconvergence in some detail.
Section 3 is mainly devoted to reviewing some basic aspects of modular param-
eterization and bad reduction of modular curves, following [13, 12, 15]; so this
section is exclusively concerned with “non-differential” matters. In section 4 we go
back to arithmetic differential equations: we will use modular parameterizations
and bad reduction of modular curves to construct certain d,-modular forms and
eventually the “new” d,-modular forms in Theorem 1.1. In section 5 we prove d,-
overconvergence of some of the basic J,-functions of the theory, in particular we
prove Theorem 1.2.

1.6. Acknowledgment. While writing this paper the first author was partially
supported by NSF grant DMS-0852591 and by the Max Planck Institut fur Math-
ematik in Bonn.

2. ,-OVERCONVERGENCE

As expained in the Introduction we begin in this section by presenting d,-
functions and §,-functions from a scheme-theoretic viewpoint (which is equivalent
to the set-theoretic viewpoint of the Introduction). The scheme-theoretic viewpoint
is less direct than the set-theoretic one but is the correct viewpoint when it comes to
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proofs so will be needed in the sequel. We then introduce and examine the concept
of § -overconvergence in a general setting.

2.1. p-jet spaces and 7-jet spaces [3]. Let C,,(X,Y) € Z[X,Y] be the polyno-
mial with integer coefficients

XP+YP—(X+4+Y)P
Cp(X,Y) = 2 p( VP

A p-derivation from a ring A into an A—algebra B, ¢ : A — B,isamapd, : A = B
such that d,(1) = 0 and

op(z+y) = opz+opy+ Cplz,y)

Op(zy) = aP-dpy+yP-dpx+p-opx - 5py,
for all z,y € A. Given a p—derivation we always denote by ¢ : A — B the map
() = p(x)P 4+ pdpx; then ¢ is a ring homomorphism. A §,-prolongation sequence
is a sequence S* = (S™),>¢ of rings S™, n > 0, together with ring homomorphisms
(still denoted by) ¢ : S™ — S™*! and p—derivations &, : S™ — S™! such that
dp0p = pod, on S" for all n. We view S™T! as an S"—algebra via ¢. A morphism
of d,-prolongation sequences, u* : S* — S* is a sequence u™ : S™ — S™ of ring
homomorphisms such that &, o u™ = v 0§, and p ou™ = u"*' o . Let W be
the ring of polynomials Z[¢] in the indeterminate ¢. For w = 3~ a;¢" (respectively
for w with a; > 0), S* a d,-prolongation sequence, and z € (S°)* (respectively
z € S%) we can consider the element 2% := []/_, ¢" "¢ (x)% € (S")* (respectively
v e ST).

Recall the ring R, := ZZT, completion of the maximum unramified extension of
the ring of p-adic integers Z,. Then R, has a unique p—derivation 6, : R, = R,
given by

bp2 = (6(z) — ) p,
where ¢ : R, — R, is the unique lift of the p—power Frobenius map on k = R,/pR,,.
One can consider the d,-prolongation sequence Rj where R} = R, for all n. By a §,-
prolongation sequence over R, we understand a prolongation sequence S* equipped
with a morphism R; — S*. From now on all our §,-prolongation sequences are
assumed to be over R,,.

Let now 7 be a root of an Eisentein polynomial with Z,-coefficients and let
Cr(X,Y) € Zy[n][X,Y] be the polynomial

XP4+YP— (X +Y)P
s

Cr(X,Y) = =Lox,v).
e

A m-derivation from an Zp[r]-algebra A into an A—algebra B, ¢ : A — B, is a map
dr + A — B such that 6,(1) = 0 and

57r(x+y) = 57r$+57ry+c7r(xvy>
57r(1'y) = aP. 57ry +yP- On + 7 Opt - 57ry7

for all z,y € A. Given a w—derivation we always denote by ¢ : A — B the
map ¢(x) = @(x)? + wdrx; then ¢ is a ring homomorphism. A §.-prolongation
sequence is a sequence S* = (S™),>0 of Zy[n]-algebras S™, n > 0, together with
Zy|r]-algebra homomorphisms (still denoted by) ¢ : S™ — S™*! and w—derivations
dr : 8™ — S+ such that 6, 0 ¢ = @ o d; on S™ for all n. A morphism of &,-
prolongation sequences, u* : S* — S* is a sequence u" : S™ — S™ of Zy[r]-algebra
homomorphisms such that §; ou”™ = u"t! o6, and pou™ = vt o . Let W
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be, again, the ring of polynomials Z[¢] in the indeterminate ¢. For w = 3" a;¢’
(respectively for w with a; > 0), S* a d,-prolongation sequence, and x € (S°)*
(respectively z € S°) we can consider the element z* := [[,_, ¢" " ‘¢"(x)* € (8")*
(respectively % € S™).

As above we may consider R, = R,[r] and the m—derivation 6, : Rx — Rx
given by

On = (p(x) — a¥)/m.

One can consider the d-prolongation sequence R} where R} = R, for all n. By
a dr-prolongation sequence over R, we understand a prolongation sequence S*
equipped with a morphism R} — S*. From now on all our §,-prolongation se-
quences are assumed to be over R,.

We note that if S* = (S™),>¢ is a dp-prolongation sequence such that each S™
is flat over R, then the sequence S* ®g, Rr = (S™ ®g, Rx)n>0 has a natural
structure of §,-prolongation sequence. Indeed letting ¢ : S* — S™t! denote, as
usual, the ring homomorphisms ¢(z) = «” + pd,x one can extend these ¢s to ring
homomorphisms ¢ : S"®p, Ry — S"T'@p, Ry by the formula ¢(x®@y) = ¢(z)@¢(y)
where ¢ : Rp — R; is given, as usual, by ¢(y) = y? + 7dry. Then one can
define m-derivations 6r : S™ ®g, Rx — S"™! @p, Rx by 6(2) = (¢(2) — 2P)/m
for z € S™ ®pg, Ry. With these d,s the sequence S* ®pr, Ry is a dr-prolongation
sequence.

For any affine R,-scheme of finite type X = Spec A there exists a (unique)
dp-prolongation sequence, A* = (A"),>0, with A° = A such that for any 4,-
prolongation sequence B* and any R,-algebra homomorphism u : A — B° there
exists a unique morphism of §,-prolongation sequences u* : A* — B* with u® = u.
We define the p-jet spaces J;'(X) of X as the formal schemes J(X) := Spf Ar.
This construction immediately globalizes to the case X is not necessarily affine
(such that the construction commutes, in the obvious sense, with open immer-
sions). For X smooth over R, the ring of d,-functions X (R,) — R, naturally
identifies with the ring of global functions O(J}(X)): under this identification any
function f € O(J; (X)) gives rise to a d,-function X (R,) — R, sending any point
P e X(R,), P: Spec R, — X into the Ry-point of the affine line A}zp defined by

Spf R, % 7r(x) L AL,

here P™ is the morphism induced from P via the universality property of the p-jet
space. If X is a group scheme over Iz, then

foIMX) = Gar, = Ak

is a group homomorphism into the additive group of the line if and only if the
corresponding map X (R,) — R, is a group homomorphism; such an f is called a
dp-character of X.

As a prototypical example if X = Agp = Spec R,[z] is the affine space (where z
is an N-tuple of variables) then J;'(X) = Spf Rz, dpx, ..., 0y x]" (Where 6z, ..., 0 @
are new N-tuples of variables).

We will need, in this paper, a slight generalization of the above constructions as
follows; cf. [5]. First note that the p-jet spaces J;'(X) only depend on the p-adic
completion of X and not on X. This immediately implies that one can introduce
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p-jet spaces Jg(é\f ) attached to formal p-adic schemes X over R, which are locally p-
adic completions of schemes of finite type over R,,; the latter association is functorial
in X.

Similarly, for any affine R,-scheme of finite type ¥ = Spec A there exists a
(unique) §.-prolongation sequence, A* = (A™),,>0, with A° = A such that for any
d-prolongation sequence B* and any R,-algebra homomorphism u : A — B° there
exists a unique morphism of d,-prolongation sequences u* : A* — B* with u% = u.
We define the m-jet spaces J*(Y) of Y as the formal schemes J?(Y) := Spf An. This
construction immediately globalizes to the case Y is not necessarily affine (such that
the construction commutes, in the obvious sense, with open immersions). Again,
for Y smooth over R, the ring of ,-functions Y (R.) — R, naturally identifies
with the ring of global functions O(J?(Y)). If Y is a group scheme over R, then
f:JNYy) — A}%ﬂ is a group homomorphism into the additive group of the line if
and only if the corresponding map Y (R,;) — R, is a group homomorphism; such
an f is called a d,-character of Y.

As a prototypical example if Y = A%ﬂ = Spec R,[z] is the affine space then
JMNY) = Spf Rz, 0z, ..., 00 x]" (where 0, ..., 022 are new N-tuples of variables).

As in the case of p-jet spaces, note that the m-jet spaces J?(Y) only depend
on the m-adic completion of Y and not on Y. This immediately implies that one
can introduce m-jet spaces J()) attached to formal m-adic schemes ) over R,
which are locally m-adic completions of schemes of finite type over R;; the latter
association is functorial in ).

For any scheme X/R, we write Xp_:= X ®g, Rr. Let X/R, be a smooth affine
scheme. The §,-prolongation sequence (O(J™(X)))n>0 induces a structure of .-
prolongation sequence on the sequence (O(J"(X))®gr, Rx)n>0. By the universality
property of the d-prolongation sequence (O(J2(Xr.)))n>0 We get a canonical
morphism of §,-prolongation sequences

(2.1) O(J7 (Xr,)) = O(J) (X)) @r, Rx.
The following is trivial to prove by induction:

Lemma 2.1. For any n > 1 there exists a polynomial F,, € R[t1,...,t,] without
constant term with the property that for any f € O(X) we have

(2.2) S f s i—n(sgf 4 amex{enO B (5, f, ., 50 f)
under the map (2.1).

In particular, for instance,

orf = Lo, f
(2.3) , i

2 o BEf 4 (B - ) G
Note that for 1 <n <e—1and f € O(X) the image of 6; f in O(J (X)) ®r, Rx is
always in the ideal generated by 7. Also note that for f € O(X) the image of §¢ f
in O(J} (X)) ®g, Rx is not always in the ideal generated by m; indeed the image
of 65p in O(J} (X)) ®@r, Rx belongs to RX. For X not necessarily affine we get a
morphism (2.1) and a canonical morphism of m-adic formal schemes

(2.4) TN (X) @n, Re — T2 (Xn,)-
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Note that the map (2.1) is an isomorphism if n = 0. For n > 1 the map (2.1) is
not surjective and its reduction mod p is not injective. Nevertheless, we have:

Proposition 2.2. The map (2.1) is injective.

We will usually view the map (2.1) as an inclusion.

Proof. Indeed it is enough to prove this for X affine and sufficiently small. So
let us assume that X has étale coordinates i.e. there is an étale map R[z] — O(X)
with z a tuple of variables. Then by the local product property of w-jet spaces [3],
Proposition 1.4, (2.1) becomes the natural map

(2.5) O(Xr,)[0xz; ..., 07x]” = O(X)[0p, ..., 6 7]" @R, Rn.

Now let L be the fraction field of the m-adic completion of O(Xg,). (The latter
is an integral domain by the smoothness of X/R,.) Then the left hand side of
(2.5) embeds into L[[0rz,...,07z]] while the right hand side of (2.5) embeds into

L[[6px, ..., 6, x]] (the latter because Ry is finite over R,). Finally we claim that we
have a natural isomorphism

(2.6) L[[6x, ..., 05 x]] = L[[8px, ..., 0, 2]]

that induces (2.1); this of course will end the proof that (2.1) is injective. To prove
the claim note that there is natural homomorphism

(2.7) L6z, ..., 052] = L[opz, ..., 0, 7]

which is trivially seen by induction to be surjective by the formulae (2.2). Since the
rings in (2.7) have both dimension n it follows that (2.7) is an isomorphism. Since
(2.7) maps the ideal (0, ...,d7x) into (and hence onto) the ideal (0,7, ...,d, ) we
get an isomorphism like in (2.6) and we are done. O

Let now Tr : R — R, be the (R,-linear) trace map. We may consider the
R,-linear map

(2.8) L@ Tr: 0} (X)) ®r, Rx = O(J}) (X)) ®r, R, = O(J}(X)).
Composing (2.1) with (2.8) we get an R,-linear arithmetic trace map:
(2.9) T O(J7 (Xg,)) = O(J7(X)).

(Later we will encounter another type of trace maps which will be referred to as
geometric trace maps.)

Proposition 2.3. Let X be a smooth scheme over R, and f € O(J}(X)). The
following conditions are equivalent:

1) f times a power of p belongs to the image of the trace map (2.9).

2) [ times a power of p belongs to the image of the inclusion map (2.1).

Proof. The fact that condition 2 implies condition 1 is trivial.

In order to check that condition 1 implies condition 2 let ¥ be the Galois group
of Qu(m)/Q, (and hence also of K,/K,) and let us consider the action of ¥ on
O(J; (X)) ®r, Rx via the action on the second factor. We will prove that X acts
on the image of O(J;(Xg,)) = O(J,; (X)) ®r, Rr; this will of course end the proof
of the Proposition. Let o € ¥ and ZF =: u € Zp[n]*.

Claim 1. ¢ and o commute on R,. Indeed ¢ o o and o o ¢ have the same effect
on R, and on 7.
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Claim 2. ¢ o0 = oo ¢ as maps from O(J)(X)) ®r, R to O(J;T (X)) @r,
R.. Indeed it is enough to check this for X = Spec R,[z] the affine space, z a
tuple of variables. So it is enough to check that ¢ and ¢ commute as maps from
R:[z,0px, ..., 5;',30]A to Rx[z, dpx, ..., 6;')+1x]ﬂ This is clear because ¢ and o commute
on R, and on each tuple 5}{30.

Claim 3. 006, = +-6-00 as maps from O(Ji(X))®g, Rx to O(Ji (X))@, Rx.
This follows trivially from Claim 2.

Now to conclude it is enough to show that for any 1 <i <r, and any f € O(X)
we have that o (% f) is obtained by evaluating a polynomial P; with R.-coefficients

at 6. f,...,0L f. We proceed by induction on i. The case i = 1 is clear. Assume our
assertion is true for . Then

o6 f = 00, (0Lf)
= +16:(0(0Lf))

and we are done. O

Definition 2.4. A function f € O(J} (X)) is called d.-overconvergent if it satisfies
one of the equivalent conditions in Proposition 2.3.

Remark 2.5. The set of §r-overconvergent elements of O(J}}(X)) is a subring con-
taining all the elements of the form 4, f with i < n and f € O(X). In partic-
ular if X is affine then the subring of d,-overconvergent elements of O(J; (X))
is p-adically dense in O(J;'(X)) and it is sent into itself by any R,-derivation
O(Jy (X)) = O(J; (X))

Remark 2.6. Under the identification of d,-functions (respectively ¢,-functions)
with elements of the ring O(J(X)) (respectively O(J}(Xr,))) the definition of
dr-overconvergence above corresponds to the definition of d,-overconvergence given
in the Introduction.

Remark 2.7. Let us note that d,-overconvergence is preserved by precomposition
with regular maps. Indeed, if v : ¥ — X is a morphism of smooth R,-schemes and
if A- f is in the image of (2.1) for some A € R, and some f € O(J) (X)) then if f
is identified with the corresponding map f : X(R,) — R, it follows that A - fou
is in the image of O(J}!(Yr,)) — O(J;(Y)) ®@r, Rx. (Here f owu is identified with
u* f where u* is the naturally induced map O(J (X)) — O(J;(Y)).

The next Proposition shows that the trace map 7 in (2.1), although not injective,
is “as close as possible” to being so.

Proposition 2.8. The map
e—1
(210)  OCF(Xr,) = DO (X)), f 5 (T(F)7a(mf), oo 7w )
=0
18 injective.
Proof. Indeed if the image of f in O(J} (X))®r, Rx is Zf;& fi®m® and the image
of f via the map (2.10) is 0 then we get Zf_ol Tr(xt3)fi=0forall j =0,..,e—1.
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Now det(Tr(m*+7) # 0 which implies fo = ... = fo_1 = 0 hence, by Proposition 2.2,
f=o. 0

Example 2.9. Consider the multiplicative group G, g, = Spec Ry[z,2~'] and
the standard J,-character

Yp € O(J,(Gm,r,)) = Rplz, 27", 6pa]
in [3] defined by
. ccl ¢($) ” L o nflpnil (SP_:C "
Yp = plog <—$P ) = 7;( 1) — )

Assume vy, (7) > p—il, eg. m=1—(y. Then clearly py, = mp, where 9 is the
Sx-character ¢, € O(JL(G, r,)) defined by

(2.11) U = Z(—U"—l%_l ((Zf—f)n

n>1

(which is well defined because if v, (7) > ﬁ then v,(7"~!/n) is > 0 and — oo as
n — 00). S0 ¥, is dz-overconvergent. Moreover

T (Ym) =T (%) - PYp-

By the way, if 7 =1 — (, then Tr($) = p=l,

The above global concepts and remarks have a local counterpart as follows. Let
q be a variable and 6’¢, 5;')11 corresponding variables. Then exactly as above we
have that the natural map

(2.12) Re((0)[0x4, - 07a]” = Rx((0))[6pg; -, 6 a”

is injective. We shall view this map as an inclusion. On the other hand there is a
natural trace map

(213) 7 ¢ Re((2))[0r0, -, 67a)” = Ru((9))[0pa; -, 5pa)” =5 Rp((2))[0p3, ., Tyl

where the first map is the inclusion (2.12) and the second map T'r is induced by
the trace map T'r : R — R, on the coefficients of the series. As in the global case
we have that:

Proposition 2.10. For a series f in R,((q))[0pq; -, 6,q]" the following conditions
are equivalent:

1) f times a power of p belongs to the image of the trace map (2.13).

2) f times a power of p belongs to the image of the inclusion map (2.12).

So as in the global case we can make the following:

Definition 2.11. A series in R,((¢))[0pq, -, 6, q]" is dx-overconvergent if it satisfies
one of the equivalent conditions in Proposition 2.10.

Example 2.12. Assume v,(7) > p—il, e.g. m =1 — (. Then the series

211) W=ty (@) =S () e Ryl

qp n>1 " qp
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is §r-overconvergent. Indeed we can write p¥, = mW¥, where the series
n—1 ) n
R o n—1T Lq .
v S ()
n>1
is in R, ((q))]0xq]" because v, (7"~ /n) is > 0 and — oo.
2.2. i -overconvergence versus classical overconvergence. We would like to
compare the concept of d-overconvergence introduced above with the classical
concept of overconvergence as it was introduced in the work of Dwork, Monsky,
and Washnitzer. The material in this subsection will not be used in the rest of
the paper. Let us recall the classical concept of overconvergence of power series or,

more generally the concept of overconvergence of series with respect to a subset of
variables.

Definition 2.13. Let = and y be tuples of variables and F' € R,[z,y]" C Ry[[z, y]]
a restricted power series, F' = Y a, s2%y? (where a, 8 are multiindices). Then F'
is called overconvergent in the variables y if there exist positive real numbers Cy, Cs
such that for all «, 8 one has v,(aa,g) > Ci|f] — Cs.

Here |3] is, of course, the sum of the components of 3.
Then we have the following:

Proposition 2.14. Let F € O(J}(A%) = Ry[z,6pz, ..., 60x]" where x is a d-tuple
of variables. Assumen < e — 1. Assume furthermore that F' is 0,-overconvergent.
Then F is overconvergent in the variables épz, ..., 5;},7:.

Proof. By hypothesis p”F' is in the image of
Relz,07,...,002] — Rylz,6px, ..., 0, 7] @R, Rx
for some v. We may assume v = 0. Write

F(x,0px, ..., 0,x) = Z Gag...an 0 (072) . (Opx) ™,

with @aq..a, € Rx. By (2.2) one can find polynomials G; € Ry[t1, ..., t;] such that
Sha =m-Gi(0px,...,00m), 1<i<e—1.
We get that
F(2,0p2, .00, 002) = 3 g0 700200 (G (8,2))° (G 0y, ..., 67) )0
Let Dy, := max{deg(G1), ..., deg(Gp)}. Then clearly the coefficient of the monomial
z*(6,z)" ...(5gx)5"'
in F' is going to be divisible by
Bi+.--+8n
71'[ Dn ]

in R, and we are done. (]

Remark 2.15. Proposition 2.14 fails if we do not asssume the order n is strictly less
than the ramification index e. Here is a typical example. Let m = /p; so e = 2 and

2x = p(é'gz) +u(dpz)?, u=1 —p®=1/2 Let a, € Ry, vp(an) — 00, vp(an) < n°,
0 < e <1, let z be one variable, and let

F =F(x,0,x,0,x) := Z an(p(622) + u(d,2)P)" € Ry[z, 0y, 622] .



OVERCONVERGENCE 13

Then (the map R, — R, defined by) F is §,-overconvergent because
F= Zan(éix)" € Rz, 62, 622].

On the other hand F(z,d,z,02x) is not overconvergent in d,x,d7x. Indeed if this
were the case then

F(0,y,0) =) anu™y"™
would be overconvergent in the variable y which is clearly not the case.
2.3. p-jets and m-jets of formal groups. In what follows we recall from [6],
section 4.4, the construction of p-jets of formal groups and we also introduce the
m-jet analogue of that construction.
Start with a formal group law F € S[[T1, T2]] (in one variable T') over S = O(X),

where X is a smooth affine Rj-scheme. For r > 1 we let S} := O(J;(X)). Let T
be the pair of variables T7,T». One has a natural p-prolongation sequence

(SHIT, 6T, ..., 8, T r>0
(where 6, T, 512)T, ... are pairs of new variables). Then the r + 1-tuple
F0pF s O F

defines a commutative formal group in 7+ 1 variables T', 6,7, ..., e Setting T =0
in the above series, and forgetting about the first of them, we obtain an r-tuple of
series

F1 = {51,‘/_'.}"1':0, ...,FT = {5;-7}|T:O
This r-tuple belongs to S;[d,T, ..., d,T]" and defines a group

(2.15) (A%, [+)
in the category of p-adic formal schemes over S7. Now let
UT) =) a.T" € (S @ Q)[T]]
n>1

be the logarithm of F. Recall that na, € S for all n. Define

(2.16) Ly 1= {7 0T }ir—a € (S} © QBT . 5T

Then L}, actually belong to S} [6,T,...,6,T]" and define group homomorphisms
Ly (A, [+]) = (A, +) = Gas;.

For all the facts above we refer to [6], pp. 123-125.
Now let S := O(J;(Xr,)) C S} ®r, Rx; cf. Proposition 2.2. We have the
following

Proposition 2.16.
1) For some integer n(r) > 1, p* (" F. belongs to the image of the natural homo-
morphism
Sy[0T, ..., 0, T]" = (S, ®r R[7])[6,T, ..., 6, T] .
2) If vp(m) > %1, e.g. if m =1—(p, then L7 := EL7 belongs to the image of
the natural homomorphism

ST6xT, s SUT] = (S @1 R[F))[S,T, ..o, 55T
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Proof. Since ¢"(T) = TP mod © in R[6,T, ...,65T] we have {¢"(T)}r—o = 0
mod 7 in the same ring. Set G, = 1{¢"(T)}r=0. We claim that for any F €
S[[T]] with F(0) = 0 we have
YU F Y o € SEI5AT, .o 85T

for some N. Indeed since some power of p times 67 F is a polynomial with Z-
coefficients in F, ¢(F), ..., ¢" (F) it is enough to show that {¢" (F)}r—o is a restricted
power series in 8,7, ..., 67T for any r. But {¢"(F)}r=o is a power series with S} -
coefficients in {¢*(T)}7—9 = 7Gix, i < 7, and our claim is proved. The same
argument works for 7" replaced by and tuple of variables; this ends the proof of

assertion 1. To check assertion 2 note that
1

ik
Ly =" élnan) =Gz,

n>1

and we are done because na, € S and v,(7"~!/n) is > 0 and — oco. O

2.4. Conjugate operators. Recall from [6], Proposition 3.43, that if X/R, is a
smooth affine scheme and 0 : O(X) — O(X) is an R,-derivation then for each
r > 1 there is a unique R,-derivation

(2.17) 9, O(J5(X)) = O(J5(X))

with the properties that 8, vanishes on O(J;~'(X)) and 8, 0 8] = ¢" 0 on O(X).
(By uniqueness this construction extends, in its obvious sheafified version, to the
case when X is not necessarily affine.) The operators 0, are a special case of what is
called in [6] conjugate operators and were introduced, in a special case by Barcau in
[1]. By Remark 2.5 0, : O(J, (X)) — O(J, (X)) sends the ring of §,-overconvergent
elements into itself. We would like to slightly strengthen this as follows. Note that
O, uniquely extend to Ry-derivations 0, : O(J} (X)) ®r, Rx — O(J} (X)) ®g, Rx.
View O(J;(Xr,)) as a subring of O(J; (X)) ®g, Rr. Then we have:

Proposition 2.17. 0,.(0(J5(Xgr,)) C O(JE(XR,))-

Proof. Since O(JI(Xg.)) contains, as a dense subring, the O(JI=1(Xg_))-
algebra generated by all the elements of the form 67 f with f € O(X) it is enough
to show that 0,0 f € O(JL(Xr,)) for f € O(X). Since ¢%f is a polynomial with
Ry-coefficients in 8, f, ..., 0, f it is enough to show that 0,0, f € O(J7(Xr,)). But
the latter equals ¢"0f which is obviously in O(J%(Xg,)). O

3. REVIEW OF BAD REDUCTION

This section is entirely “non-differential” and represents a review of essentially
well-known facts about bad reduction of modular curves. These facts will play a
role later in the paper.

3.1. Modular parameterization. Consider the following classes of objects:
(1) Normalized newforms
(3.1) f= Z anq”
n>1
of weight 2 on T'g(M) over Q; in particular a; = 1, a,, € Z.
(2) Elliptic curves A over Q of conductor M.
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Say that fin (1) and A in (2) correspond to each other if there exists a morphism
(3.2) D Xo(M)— A

over Q such that the pull back to Xo(M) of some 1-form on A over Q corresponds
to f and L(A4,s) = a,n"°. We have the following fundamental result:

Theorem 3.1.
i) For any f as in (1) there exists an A as in (2) which corresponds to f.
ii) For any A as in (2) there exists f as in (1) which corresponds to A.

The first part of the theorem is due to Eichler, Shimura, and Carayol; cf. [17]
for an exposition of this theory and references. The second part of the Theorem is
the content of the Tanyiama-Shimura conjecture proved, in its final form, in [2].

From now on we fit M = Np with (N,p) =1, p>5, N >5, and we fix f and
A corresponding to each other, as in Theorem 3.1. We further assume a, =1 or,
equivalently, A has split multiplicative reduction at p.

Recall from [17], p.282, that amn, = ama, for (m,n) =1, agras = apr+1 + Lage—
for ¢ /Np, and agr = aj for ¢|Np; in particular a,» = 1 for all r.

3.2. Model of X;(Np) over Z[1/N,(p]. Recall that the modular curve X;(Np)
over C has a model (still denoted by X7(Np) in what follows) over Z[1/N, (,] con-
sidered in [15], p. 470; this is a version of a curve introduced by Deligne and Rap-
poport [12] and the two curves become canonically isomorphic over Z[1/N, (n, (p)
if (i is a fixed primitive N-th root of unity. Recall some of the main properties
of X7 (Np). First X;(Np) is a regular scheme proper and flat of relative dimension
1 over Z[1/N,(,] and smooth over Z[1/Np,(,]. Also the special fiber of X;(Np)
over F,, is a union of two smooth projective curves I and I’ crossing transversally
at a finite set ¥ of points. Furthermore I is isomorphic to the Igusa curve Iy (V)
in [15], p. 160, so I is the smooth compactification of the curve classifying triples
(E, a, B) with E an elliptic curve over a scheme of characteristic p, and « : uy — E,
B : pp — E are embeddings (of group schemes). Similarly I’ is the smooth com-
pactification of the curve classifying triples (F, a, b) with F an elliptic curve over a
scheme of characteristic p, and « : py — F, b: Z/pZ — E are embeddings. Finally
3 corresponds to the supersingular locus on the corresponding curves.

3.3. Neron model of A over R,. Let m = 1 — (, and consider a fixed embedding
of Z[(n, (p, 1/N] into R, (hence of Z[(n,1/N] into R,.]

Let Ag, be the Neron model of Ax_ = A ®q K, over Rr; cf. [20], p. 319.
Then the 7-adic completion (A% )" of the connected component A% of Ag, is
isomorphic to the m-adic completion (G,,)" of G,, = Spec Rr[z,r~1]. Indeed by
[20], Theorem 5.3, p. 441, Ak is isomorphic over K to a Tate curve E,;/ K, with
g € TR,. By [20], Corollary 9.1, p. 362, A%W is the smooth locus over R, of a
projective curve defined by the minimal Weierstrass equation of Ax_. Now the
defining Weierstrass equation of the Tate curve ([20], p. 423) is already minimal
(cf. [20], Remark 9.4.1, p. 364). The isomorphism (A% )" ~ (G,,)" then follows
from the formulae of the Tate parameterization [20], p. 425.

On the other hand recall that the modular curve X;(N) over C has a natural
smooth projective model (still denoted by X;(N)) over Z[1/N] such that

Y1(N) := X1(N)\(cusps)
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parameterizes pairs (E, «) consisting of elliptic curves E with an embedding « :
un — E. The morphism X;(Np) — X;(N) over C induces a morphism

€: X1(Np)r, \X = X1(N)r, \(s5)

over R, where (ss) is the supersingular locus in the closed fiber of X1 (N)g,. Indeed
the morphism X;(Np) — X;(N) — J1 (V) over C (where J;(N) is the Jacobian of
X1(N) over C and X;(N) — J1(N) is the Abel-Jacobi map defined by co) induces
a morphism from X;(Np)g, \X into the Jacobian J1(N)g. of X1(N)g, (by the
Neron property, because the latter Jacobian is an abelian scheme and hence is the
Neron model of its generic fiber). But the image of X;(Np)r \X — J1(N)r,
is clearly contained in the image of the Abel-Jacobi map X;(N)gr, — J1(N)r,
which gives a morphism X;(Np)g, \X — X;1(V)g, and hence the desired morphism
€: Xi(Np)r,\X = X1(N)g,\(ss). Let X C X1(N)g,\(ss) be an affine open set,
Xp, = X ®g, Rx C X1(N)g, \(ss) its base change to Ry, and X, := ¢ 1 (Xg,).
Denote by X'r_ the m-adic completion of Xr_. Also note that the m-adic completion
of X has two connected components; let X} be the component whose reduction mod
7 is contained in J\X. We get a morphism ¢ : X\ — Xg_ .

3.4. Igusa curve and lift to characteristic zero. It will be useful to recall
one of the possible constructions of the Igusa curve I. Let L be the line bundle
on X;(N)g, such that the sections of the powers of L identify with the modular
forms of various weights on I'; (N); cf. [15] p. 450 where L was denoted by w. Let
E,_1 € H°(X1(N)g,,LP~") be the normalized Eisenstein form of weight p — 1 and
let (ss) be the supersingular locus on X1(N)g, (i.e. the zero locus of £,_1). (Recall
that F,_; is normalized by the condition that its Fourier expansion has constant
term 1.) Take an open covering (X;) of X such that L is trivial on each X; and
we let z; be a basis of L on X;. Then E,_; = gpizf_l where ¢; € O(X;). Set
T = Ui, ui; € OF(Xy5), Xij = Xy N X;. Consider the R,-scheme X obtained
by gluing the schemes Xy; := Spec O(X; g, )[t:i]/ ("' — ¢i) via t; = u;jltj (where
XiR, = X;QR, R;). Note that tf - ; are monic polynomials whose derivatives
are invertible in O(X; r.)[t:]/(t?"" — ¢;). Denote in the discussion below by an
upper bar the functor ®k. Note that the scheme Xn=X1®kis isomorphic to
X\ = X ® k; indeed X is clearly birationally equivalent to I (cf. [15], pp. 460,
461) and is the integral closure of X in the fraction field of X;. We claim that:

Proposition 3.2. The isomorphism Xy ~ X, lifts uniquely to an isomorphism
(X[!)A ~ /‘U .

Proof. Indeed this follows immediately by applying the standard Lemma 3.3
below to S := O(XZ), X, = X, S = O()(IJ, X = 671(.)(1'). [l

Lemma 3.3. Let S — S\ be a morphism of flat w-adically complete R, -algebras, let

[ € St] be a monic polynomial and assume we have an isomorphism & : S[/(f) —

S\ such that df /dt is invertible in S[t]/(f). Then @ lifts uniquely to an isomorphism
o: S[t]/(f) = S

Proof. The homomorphism o exists and is unique by Hensel’s Lemma; it is an
isomorphism because 7 is one and 7 is a non-zero divisor in both S and S). (I
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3.5. Review of diamond operators. Recall from [15] that G := (Z/pZ)* acts
on the covering X;(Np) — X1(INV) over Z[1/N, (;] via the diamond operators (d),,
d € G; this action preserves the Igusa curve I and induces on I the usual diamond
operators. In particular I/G — X;(N)p, is an isomorphism. So G acts on the
covering € : Xy — Xp. and hence on the isomorphic covering (X))” — Xg,; cf.
Proposition 3.2. It is easy to explicitly find the latter action. Indeed any G-action

on a covering (X1;)" — X; g, must have the form
(3.3) d-t; =, ded,

for some homomorphism x : G — Z/(p — 1)Z, where (,_1 is a primitive root of
unity of order p — 1. Now we claim that y must be an isomorphism. Indeed if
X was not surjective then the G-action on the Igusa curve I would be such that
I/G — X1(N)p, has degree > 1, a contradiction.

3.6. Classical and p-adic modular forms. We end by reviewing some more
terminology and facts, to be used later, about classical modular forms and their
relation with the p-adic modular forms of Serre and Katz. Let M be any positive
integer. (In applications we write M = Np¥, (N,p) = 1.) In what follows a
classical modular form over a ring B, of weight k, on I'y (M) will be understood
in the sense of [12, 16, 15] as a rule that attaches to any B-algebra C' and any
triple consisting of an elliptic curve E/C, an embedding pyc — E[M], and an
invertible one form on E an element of C satisfying the usual compatibility rules
and the usual holomorphy condition for the Fourier expansion (evaluation on the
Tate curve). We denote by

M(B, k, M) = M(B,r,I'1(M))
the B-module of all these forms. We denote by
M(B, k,To(M))

the submodule of those forms which are invariant under the usual diamond oper-
ators. In particular any newform as in (3.1) is an element of M(Z,2,T(Np)); cf.
[13], p.113. Also by [14], p. 21, the spaces M (R, x, Np”) embed into Katz’s ring
of generalized p-adic modular forms W = W(N, R,) parameterizing trivialized el-
liptic curves I over p-adically complete I2,-algebras, equipped with an embedding
un C E[N]; if f € M(Rp, k, Np”) then f, as an element of W, satisfies A - f = A" f
for X € Z)Y, A =1 mod p”. (Here A - f denotes the action of Z; on W induced by
changing the trivialization.) If f is actually in M (R, k,To(Np¥)) then X- f = A" f
for A € Z,5. In particular any newform f as in (3.1) on I'g(Np) defines an element
(still denoted by f) of W such that A- f = \2f, A\ € Z). By [14], p.21, any f as in
(3.1) on I'y(Np) is a p-adic modular form of weight 2 over R, in the sense of Serre,
ie. it is a p-adic limit in W (or equivalently in Ry[[¢]]) of classical modular forms
over R, of weight k,, € Z on I'1 (N) with &, =2 mod p"(p—1). Soif f =3 ang”
isasin (3.1) on T'g(Np) then, by [14], p. 36, >_ a,q"? is also a p-adic modular form
of weight 2 in the sense of Serre. In particular the reduction mod p of 3 a,¢"? is
the expansion of a modular form over k on I'y (V) of weight = 2 mod p — 1. Finally
recall from [15] that the Serre operator 6 := dd% : k[[g]] — k[[g]] increases weights
of classical modular forms over k by p + 1. We conclude that the image in k[[q]] of

> gt e Rylld]

(n,p)=1
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is the expansion of a modular form over k on I'1 (V) of weight = 0 mod p — 1.

We end by recalling a few basic facts about Hecke operators. Throughout the
discussion below the divisors of a given non-zero integer are always taken to be
positive, the greatest common divisor of two non-zero integers m,n is denoted by
(m,n), and we use the convention (m,n) = n for m = 0, n # 0. Fix again a positive
integer M and let eps : Zso — {0,1} be the “trivial primitive character” mod M
defined by ep(A) = 1if (A, M) =1 and ep;(A) = 0 otherwise.

For each integers n > 1, k > 2 and any ring C define the operator Ty ar(n) :
Cllg]] — CJlg]] by the formula

T,%M(n)f = Z Z EM(A)Anila% q".

m>0 \ A|(n,m)

Recall (cf., say, [17]) that if f =" -, amq™ € C[[q]] is the Fourier expansion of a
form in M(C,k,To(M)), k > 2, then the series Ty, pr(n)f is the Fourier expansion
of the corresponding Hecke operator on f. Note that if M = Np”, (N,p) = 1,
(n,p) = 1 then T, y = Ty ar as operators on C[[¢]]. Now if f is as in (3.1) then
To np(n)f = an f for all n > 1; so, for (n,p) = 1 we have T n(n)f = anf. On the
other hand, going back to an arbitrary f =Y a,,¢™ € C[[g]], we have

Ten(p)f = Z ampq"™ + Pkﬁl Z amq™",

Tn,Np(p)f = Z ampqm-

So Ty n(p) = T, np(p) mod p as operators on C[[g]]. Specializing again to f € Z[[q]]
as in (3.1) on I'o(Np) we have Tb np(p)f = apf = f so we get To n(p) f = f mod p
in Z{[q]]-

4. 5p—MODULAR FORMS ARISING FROM BAD REDUCTION

In this section we return to “differential matters”. We will use bad reduction
of the modular curve X;(Np) at p to construct certain d,-functions on this curve.
These functions will then induce (via a geometric trace construction) certain new
interesting d,-modular forms on the modular curve X (N). By further applying the
arithmetic trace from R, down to R, we will obtain certain new J,-modular forms
on X1 (). We will then analyze the d,-Fourier expansions (respectively d,-Fourier
expansions) of these forms. On our way of doing this we will review the concepts
of dp,-modular form and é,- Fourier expansion following [5, 6].

4.1. dp-modular forms and J,-modular forms. Let L be the line bundle on
X1(N)g, such that the spaces of sections H°(X1(N)g,, L®") identify with the
spaces M(R,, K, N) of classical modular forms over R, of weight x on I'y(N); cf.
[15] p. 450 where L was denoted by w.

Let X C X;(N)r an affine open subset. (In [6, 10, 9] we always assumed that X
is disjoint from the cusps; we will not assume this here because we find it convenient
to cover a slightly more general case.) The restriction of L to X will still be denoted
by L. Consider the X-scheme

(4.1) V = Spec (@ L®"> .

neZ
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By a dp-modular function of order r on X [10] we understand an element of the
ring M} = O(J;(V)). If we set, as usual, Vg, :=V ®g, R then by a d,-modular
function of order r on X we will understand an element of M! := O(JZ(Vg,)).
The formation of these rings is functorial in X. Also if L is trivial on X with basis
x then M) identifies with O(J(X))[z,z™",dpx, ..., 0px]" and M identifies with
O(JL(X )|z, 271, 8z, ...,67x]". Recall the ring W := Z[¢] of polynomials in ¢; it
will play in what follows the role of ring of weights. By a 6,-modular form of order r
and weight w € W on X we mean a d,-modular function f € M} such that for each
i, f € O(J5 (X)) - z}; cf. [10]. We denote by My (w) the Ry-module of §,-modular
forms of order r and weight w on X. For w = 0 we set S) = M (0) = O(J;(X)).
By a .-modular form of order r and weight w on X we will mean a d,-modular
function f € M such that for each i, f € O(JL(X; r,)) - z}. We denote by M:(w)
the R,.-module of §,-modular forms of order r and weight w on X. For w = 0
we set ST = MZ(0) = O(J(Xg,)). In view of (2.1) and (2.9) we have natural
R,-algebra homomorphisms

(4.2) My — M, ®r, Rx
preserving weights, i.e. inducing R,-linear maps
M7 (w) = My(w) ®r, Rz, weW.

Also we have R-linear trace maps
(4.3) Tr My — M,
that preserve weights i.e. induce maps
(4.4) Tt My (w) — My(w), weW.
In particular we have R, -algebra homomorphisms

ST — S; ®r, Rx
and R-linear trace maps

Te 1 S) — S; .
When applied to the scheme V', Definition 2.4 translates into the following:

Definition 4.1. A J,-modular function f € M is called d-overconvergent if one
of the following equivalent conditions is satisfied:

1) f times a power of p belongs to the image of the map (4.2);

2) f times a power of p belongs to the image of the map (4.3).

4.2. z-modular forms from ¢.-functions on &i. Let X C X;(NN)g, be disjoint
from the supersingular locus (ss) (but necessarily from (cusps) !). There is a

canonical way of constructing d,-modular forms of weights 0,—1,...,—p+ 2 on X
from ,-functions on Aj. Indeed we will construct natural geometric trace maps
(4.5) T : O(JL(X)) = MI(—k), k=0,..,p—2,

as follows. The isomorphism (Xy)" ~ &} in Proposition 3.2 induces an isomorphism
JI(X) ~ Jr(Xy). Since Xy, := Spec O(X; g )[t:]/ (27" — ©i) is étale over X; .
and since the formation of 7-jet spaces commutes with étale maps it follows that
we have an identification

(4.6) O(J5(Xni)) = O(JL( X))t/ (71 = i),
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Let us denote the class of ¢; in the latter ring agaln by t; and let the image of
a € O(J7 (X)) = O(J5(Xy)) in O(J5(Xu)) be Y020 auwitf, s € O(J5(Xir,))-
Then define

Th,iQ 1= Oé,g,il';n S O(J;(XLR,,)) x;“

Note that from the equalities

7I€KI
E a,w] g a,” g QiU t

it follows that . ; = Uijom,j hence TriQ = Tr ;O for all ¢ and j. So the latter give
rise to well defined elements 7,,ac € M7 (—«) which ends the construction of the map
(4.5).

Proposition 4.2. The map
p—2

(4.7) O (X)) — @M:r(—ﬁ), a = (To, ..., Tp—2)
xk=0

is an isomorphism.

Proof. Injectivity is clear from construction. Surjectivity immediately follows by
reversing the construction of the trace maps above. 0.

On the other hand it will be useful to have a criterion saying when a J,-function
on A “comes from” a d,-modular form on X of weight 0, i.e. from a §,-function on
X. Indeed recall the G = (Z/pZ)*-action on A, induced by the diamond operators.
This action induces a G-action on O(JL(A1)) for all r > 1. Then we have:

Proposition 4.3. The ring O(J5(X))¢ of G-invariant elements of O(J- (X))
equals O(JE(XR,)).

Proof. This follows immediately from the identification (4.6) and the fact that
G acts on t; by the formula (3.3) where y is an isomorphism. O

4.3. dp-character composed with modular parameterization. We assume,
unless otherwise specified, that @ = 1 — ¢, and we fix, as usual an embedding
Z[1/N,(n,Cp] — Rr. Also recall our fixed elliptic curve A with modular parame-
trization (3.2) and the modular form f in (3.1). We continue to consider X C
X1(N)g, an affine open set disjoint from (ss). We shall freely use the notation
in our section on bad reduction. By the Néron property [20], p. 319, we get a
morphism ® : Xy - Agr_ over R;. We get an induced morphism from X into
the connected component (A% )* ~ (G,,)". This morphism ®° : X — (G,,)
induces a morphism ®! : J1(X)) — J1(G,,). Now take the standard d.-character
Ur € O(J3(Gy)), cf. (2.11), identified with a morphism b : JH(Gp) — (AR )"
By composition we get an induced morphism f* := ¢ 0 ®! : JH(X) — (AL ).
This morphism can be identified with an element

(4.8) fi € O(J (X))

(Here f in f% refers to the newform f = 3 a,q" (3.1).) Now, since f is a form
on I'g(Np) it follows that & : X — Apr,_ is invariant under the diamond operators
(d),, d € G. This implies that f2 is G-invariant. By Proposition 4.3 it follows that

(4.9) fi e O(JH(Xg,)) = Mx(0) = S;
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ie. f!is a d;-modular form of weight 0. Consequently its image via the corre-
sponding map (4.4) defines a §,-modular form of weight 0,

(4.10) o ft € M!(0) = SL.

4.4. 0p,-Fourier expansions and ¢§,-Fourier expansions. The R,-point co on
X1(N)g, induces d-Fourier expansion maps

E: O(Jz (X)) = Bx((9))[0xq; -+ 07q)"

Indeed to construct such a map we may assume X contains co; but in this case the
map arises because Xy — Xp_ is étale so the inverse image of co by this map is a
disjoint union of R;-points.

On the other hand there are d,-Fourier expansion maps

(4.11) E: M — R:((9)[0xq; -, 61q] .

compatible, in the obvious sense, with the previous ones and with the J,-Fourier
expansion maps in [6, 10]

(4.12) E: M = Ry((9)[6p0, 0]

We recall [6] the d,-Fourier expansion principle according to which for any w the
map

E: My(w) = Ry((9))[0p; -, 6,a]"

is injective and has a torsion free cokernel.

Remark 4.4. The maps (4.11) and (4.12) commute with the trace maps 7, : M} —
My zgjld T+ Re((9))[0r ¢, -, 074" — Ry((9))[0pg; -, 0,9]", in the sense that Eor, =
T 0 K.

Remark 4.5. Clearly if f € M of dr-overconvergent then its J,-Fourier expansion
E(f) is dz-overconvergent. Later we will prove the d,-overconvergence of a number
of remarkable §,-modular functions. By the present remark we will also get that
their §,-Fourier expansions are d,-overconvergent. However the d,-overconvergence
of these expansions can also be proved directly.

The next Proposition establishes a link between the d,-Fourier expansions of
dr-functions on X and J,-Fourier expansions of their geometric traces. Recall the
series FE,_1(q) := E(Ep_1) € R,][[q]] and the fact that E,_1(¢) = 1 mod p in R,[[q]]
[16]. So the series E,_1(g) has a unique (p—1)-root €(q) € Rp[[g]] such that e(¢) =1
mod p in R,[[q]].

Proposition 4.6. If a € O(JL(A))) then its 6,-Fourier expansion is given by

(o) = Y E(ra)e(a)".

Proof. Shrinking X we may assume X = X, for some i. From E,_; = (pixf_l
we get

Ep-1(q) = E(pi)E(z:)"~" = B(t;)" " B(z:)" ™"
So E(tiz;) = c-€(q), c € R, ¢! = 1. Now the birational isomorphism between

the Igusa curve I and Xy sends t;z; into the form a in [15], p. 460-461, and the



22 ALEXANDRU BUIUM AND ARNAB SAHA

Fourier expansion in k[[¢]] of the form a at co is 1. It follows that ¢ = 1. We get

E(O‘) = Z (a,“E(ti)”
= z%z;%E(aK,i)E( i) B (i) B (t)"

=0 B(rea)e(q)™.

O

Proposition 4.7. If fi € O(JL(X))) is attached to f = > anq™ an in (4.9) then
its 0, -Fourier expansion E(f%) € R,[[q]][0~q]" has the form:

E(ff) = 2(6-p) 2,5 5d"

3 |=

|\/
3 |:

\_/
P

(4.13) = = [(Zn>1 = (gP + morq)" ) (Z

(St %@+ 95,0)") ~p (S0 %0 )]-

Proof. Entirely similar to the proof of Theorem 6.3 in [7] O

3=

Remark 4.8. The series in the right hand side of Equation 4.13 are a priori elements
of

Kﬂ'[[q7 57\"1]] = Kﬂ[[Qv 5p‘]]]-
The Lemma says in particular that these series are actually in R.[[¢]][0r¢]". One

can also check the latter directly.
Proposition 4.9. The form 7. ff in (4.10) satisfies the following identity in the
ring Ry[[q]][6pq]":

-1 Ay, n an o,
E(r:f2) = pT > (" +popa)" | —p > "4

n
n>1 n>1

Proof. This follows from Proposition 4.7 by using Tr(%) = 172;1. O

One can get a more explicit picture mod 7 (respectively mod p) as follows.

Proposition 4.10. The form f}i in (4.9) satisfies the following congruence mod
in the ring Ry[[q]][0~q]":

n A
E(fﬁ') = Zanq P : Zanq : (_p)
n>1 n>1 q

Proof. Using Proposition 4.7 and the fact that am,, = ama, for (m,n) =1 and
api = 1 for all i [17], p.282, one gets immediately that

b Am m _
E(fﬁ')w,rqzo = T Z Eq =0 mod T.
(m,p)=1

Also the coefficient of the monomial ¢?("~1§,.q in FE(ff) equals a,. Finally fix
i > 2; the coefficient of the monomial ¢?("~% (5,q)" in E(f%) equals

ﬂ.i—l

(n—=1)(n=-2)...(n—i+1)a, € K,.

Cin °
e i!
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If i < p clearly vp(cin) > 0. If i > p or if i = p and (n,p) = 1 then
vp((n—1)n—-2)..(n—i+1)>1

TS i i1
AT ) =1 p—1  p—1

we get vp(c; ) > 0. Finally, assume ¢ = p and p/n. Then

and since

p—1
Cin = 71-—an = —a, mod m
because ) ) )
p = ™1+ +GHG) T+ + . +F79)
= ™ tp-1! mod T
= —1” ! mod 7
which easily concludes the proof because anp = ax. O

Proposition 4.11. The form 7. ff € S} in (4.10) belongs to pS). Moreover the
form

2
fﬁ = Z;wa}i € S;

is O -overconvergent and satisfies the following congruence mod p

n 5
B = Y | - | e |

(n.p)=1 n21 v
in the ring Rp[[q]][(qur'

Proof. By Proposition 4.9, one gets

p(p - 1) an
Bre )0 = -2 5 g
(n,p)=1

The coefficient of qp("’l)épq in B(7,ff) equals pa,. Also, for i > 2, the coefficient
of ¢?=9(8,q)" in E(7. f%) equals
—19pt
p _ ?_'an(n —1D(n—2)...(n—i+1).
i!
In particular E(7,f%) is divisible by p in the ring R[[q]][6,q]". By the d,-Fourier
expansion principle it follows that 7, f# is divisible by p in S; which proves the first
assertion of the Proposition. . -overconvergence follows from Proposition 2.3. The
rest of the Proposition then follows from the above coefficient computations. (I

Remark 4.12. Let f =3 amq™ € k[[g]], fCY =30, =1 %" € k[[g] and let V
be k-algebra endomorphism of k[[g]] that sends ¢ into ¢P. Then the series in k[[¢]]
obtained from the right hand side of the formula in Proposition 4.11 by reducing
mod p equals

g FOD V(?)% & k().

This series g is Taylor §,-p-symmetric in the sense of [9]. Also, recalling from [9] the
operators denoted by “pU” and “pTy(p)” acting on Taylor d, — p-symmetric series
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and using the fact that 75, N(p)? = f it is a trivial exercise (using the formulae in
[9]) to check that “pU”g = g and hence

PTo(p)"g =g+ V(fD).
In particular note that g is not an eigenvector of “pTy(p)”. On the other hand an
action of the operators Ty(n) (for level N) on k[[¢]][0,¢q] was introduced in [9]; using
the fact that To y(n)f = a,f for (n,p) = 1 it follows (using the formulae in [9])

that nTo(n)g = a,g for (n,p) = 1. So g is an eigenvector of all operators nTy(n)
with eigenvalues a,.

5. dx-OVERCONVERGENCE OF SOME BASIC 0,-MODULAR FORMS

In this section we prove the d-overconvergence of some of the basic d,-functions
of the theory in [3, 5, 1, 6, 7, 11].

5.1. Review of the d,-modular forms f; [6]. We start by reviewing the con-
struction of some basic d,-modular forms f) = f; ., € Mg(fl —¢"), r > 1. These
were introduced in [5, 6]. (There is a “crystalline definition” of these forms intro-
duced in [5] for r = 1 and [1] for > 1 in the case of level 1, and in [6] for arbitrary
level; the equivalence of these definitions follows from [6], Proposition 8.86.) Below
we follow [6], p. 263. The construction is as follows. We let X C X1(N)g, be an
affine open set disjoint from (cusps). Assume first that L is trivial on X and let
x be a basis of L. Consider the universal elliptic curve £ — X over R, and view
x as a relative 1-form on E/X. Cover FE by affine open sets U;. Then the natural
projections J;(Ui) — Ui®sg S, possess sections

Sip: Ul®sgsg — J;;(Ul)
Let N := Ker(J,(E) — E ®s0 Sp); it is a group object in the category of p-adic
formal schemes over S7. Then the differences s;;, — s;,, define morphisms
Si,p = Sjp - Uij®535; - N;
where the difference is taken in the group law of J;(£)/S). On the other hand
N} identifies with the group (A%, [+]) in (2.15) with coordinates given by the

0T, ..., 6, T, where T' is a parameter at the origin of F' chosen such that x = dT" mod
T. Let Ly, be the series in (2.16) attached to the formal group of E with respect to

the same parameter 7', viewed as a homomorphism Ly : N = (Ag” [+]) — ([A}aysg.
The compositions
L; o (Si,p — Sj,p) : Uij®sgS; — Ga,S;
define a Cech cocycle of elements
(5.1) ¢}; € O(Ui;©50y)
and hence a cohomology class ¢" in Hl(E®SgS;,(9) = H'(E ®s0 S}, 0). The
expression
(5.2) (", x)z™ 179",

where the brackets mean Serre duality, is a well defined element of S} - z 1m0
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If L is not necessarily free on X we can make the above construction locally and
the various expressions (5.2) glue together to give an element

(5.3) fn biet € Mp(=1—¢").

p = JIpje

5.2. dr-overconvergence of f,.
Theorem 5.1. Assume vy(m) > p—il. Then the forms

Prremy(-1-¢)or, R

TP P Ry, i
belong to the image of the homomorphism

Mi(=1—¢") = My(-1—¢") ®r, Rr.

In particular f; are 6-overconvergent.

Proof. The question is clearly local on X in the Zariski topology so we may
assume that L is free on X with basis x and X has an étale coordinate t : X — Al.
We may also assume that each U; — X factors though an étale map ¢; : U; —
X x A'. Next we note that

(5.4) U@SSS; ®Rr, Br >~ (UZ ®r, Rx) ®s0 (S; ®r, Rx).

(This follows from the general fact that if S is a ring, S’, C' are S-algebras, A, B are
C-algebras,and A’ = A®g S’, BB =B®gS',C'=C®gsS’, then AQc B®Rg S ~
A®c B ~ A®c C' @cr B ~ A’ ®c B’.) Consequently there is a canonical
homomorphism from (5.4) to Ui,R,,@gg ST, where, as usual, Ui,Rﬂ_ =U; ®r, Rr. We
claim that one can find sections s;, and s; » of the canonical projections making
the following diagram commute:

Ti®s0Sy ®r, Re 5 J5(Ui) ®n, Re
(5.5) s ¢

Uir,®s0S5 =5 Ji(Uir,)

where the vertical morphisms are the canonical ones. Indeed consider the ring
B = O(U; g, ) and the commutative diagram

B[(Spt, ceey (S;t]A — B[(Spﬁ, ey (5;t, (5pti, ey (Sgti]A
(5.6) T 1

B[(Sﬂf, ceny (S;t]A — B[(sﬂ—t, ceey (S:rﬁ, (Sﬂ—ti, ey (S:rti]A

with horizontal arrows sending d,t;, ..., 0,t; and dxt;, ..., o5¢; into 0. Then the spaces
in the diagram (5.5) are the formal spectra of the rings in the diagram (5.6) and we
can take the horizontal arrows in the diagram (5.5) to be induced by the horizontal
arrows in the diagram (5.6). The diagram (5.5) plus Proposition 2.16 then induces
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a commutative diagram

o R rpr
Uij®528; ®R, Rr L N; ®R, Rr - Ga,Szﬁ@RpRﬂ
(5.7) } ! !
~ ~ r Sim—Sim - L7 ~
Uijr,®g0 Sy —>"  Np — Ga,s1

where NT is the kernel of the canonical projection JZ(Fgr, ) — EA’Rﬂ®59r ST and
the vertical morphisms are the canonical ones. The diagram (5.7) shows that the
cocycle 2oy, in (5.1) comes from a cocycle of elements in O(Uijﬂﬂ@Sgr Sr). This
immediately implies that the element Z(¢", z) € S) ®pg, R comes from an element
in ST and we are done. O

Remark 5.2. Since f; € M; is d-overconvergent it follows that its &,-Fourier
expansion E(f}) € R,((¢))[6pq]" is also dr-overconvergent. But, as shown in [5],
E(f,) equals the series ¥, in (2.14) and note that we knew already (cf. the remarks
surounding Equation 2.14) that ¥, is dr-overconvergent. A similar remark holds
for fp,r>2.

5.3. dz-overconvergence of fz?. In this subsection we assume that X C X;(N)g,
is an affine open set disjoint from (cusps) and (ss). There is a remarkable form
fz? € MI} (¢ — 1) playing a key role in the theory. This was introduced in [1] in
the level 1 case; cf. [6], p. 269, for the arbitrary level case. The definition of fg
in [6], loc.cit. is crystalline but an alternative description of this form (up to a
multiplicative factor in R*) can be given via [6], Proposition 8.64; here we shall
follow this latter approach. Indeed one has a canonical R-derivation 0 : O(V) —
O(V) defined by Katz [16] via the Gauss-Manin connection, generalizing the “Serre
operator”; cf. [6], pp.254-255, for a review of this. (Here V' is as in (4.1).) One can
consider then the conjugate operator 9, : M) — M, = O(J}(V)); cf. (2.17). One
can also consider the Ramanugjan form P € MS(Q); cf. [6], p. 255, for a review of
this. Then one can define fz? € MI} by the formula

(5.8) fy = 01fy = po(P)f, € M.
It turns out that actually fﬁ has weight ¢ — 1, i.e. fp6 € M]D1 (¢ —1). (By the way,

as shown in [1], fz? has é,-Fourier expansion E(fg) =1)
Theorem 5.1 plus Proposition 2.17 imply the following:

Theorem 5.3. Assume vp(m) > ﬁ. Then the element %f;{’ € My ®r, Ry belongs

to the image of the map M} — MI} ®r, Rr. In particular fz? 18 O -overconvergent.

5.4. Review of the J,-characters 1, of elliptic curves [6]. We follow [6], pp.
194-197. Let A/R, be an elliptic curve and fix a level I'1(N) structure on A.
(The construction below does not depend on this level structure.) If Y1(N)g, :=
X1(N)g, \(cusps) we get an induced point Py : Spec R, — Y1(N)g,. Let X C
Y1(N)r, be an affine open set “containing” the above point and such that the
line bundle L on X is trivial with basis . Let w be the invertible 1-form on A
defined by x. By the universality property of the p-jet spaces we get canonical
morphisms P} : O(J;(X)) — R compatible with §, in the obvious sense. Then
any dp-modular form f € M, on X defines an element f(A,w) € R, as follows:
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we write f = f -z with f € O(J; (X)) and one takes f(A,w) € R, to be the
image of f in R, via the above morphism P}. In particular one can consider the
dp-modular forms f, € M} (—1—¢) and f2 € M7(—1—¢*) in (5.3); we get elements
fo(A,w), f2(A,w) € Ry. We recall that f}(A,w) = 0 if and only if A has a lift of
Frobenius i.e. the p-power Frobenius of A ®g, k lifts to a morphism of schemes

A — A over Z. Assume in what follows that A does not have lift of Frobenius.

2(A
Then the quotient ;EE A:z;, which is a priori an element of K, lies actually in R,.

On the other hand we may consider the cocycles (5.1). The images of these cocycles

via the homomorphism S} = O(J; (X)) — O(J, (X)) ! R, yield cocycles

¢i;(A) € O(Uij,a)
where U;j 4 = U;; N A. (Here we view A embedded into the universal elliptic curve
E via the isomorphism A ~ E x x p, Rp.) The cocycle

2 (A w) N
2 p\hH 1
0ii(A) — 2 %ii (A) € O(Uij4)
J f,}(A,w) J
turns out, by construction, to be a coboundary
I —T;

with T; € O(Ui.4), Uia = Ui N A. Recall the series L € S5[5,T, ..., 00T]"; cf.
(2.16). (Here T is an étale coordinate at the origin of E such that © = dT mod T.)
The images of L}, via S) — R, yield series Ly (A) € Ry[d,T,...,6,T]". Take sections
Sip: Uia — J2(Ui,a) of the natural projections and let Nng be the kernel of the
projection Jz(A) — A. The maps

(5.9) Tip: Ui7A>A<N§,A — Jz(Ui,A);

given at the level of points by (a,b) — s;,(a) + b, are isomorphisms. Consider the
functions

fp(Aw)
"/)i,p = LZ(A) — fpl(A,w) Lé(A) + Fz

(5.10) € OUi,a)l6,T, 82T

Then it turns out that the functions

YipoTi, €O (Ui a))

P
glue together to give a function

(5.11) ¥, € O(J2(A)).

This map turns out to be an homomorphism J2(A) — G, and was referred to in
[6], Definition 7.24, as the canonical dp-character (of order 2) of A. (In loc. cit. v,
was denoted by ¥ean.)

In case A has a lift of Frobenius a different (but similar, and in fact easier)
construction leads to what in cf. [6], Definition 7.24 was referred to as the canonical
dp-character (of order 1) of A. We will denote it again by

(5.12) Yp € O(J)(A)).
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In [6], loc.cit. this d,-character was again denoted by tcqan.

5.5. dr-overconvergence of ¢,. Let A/R, be an elliptic curve and let r be 1 or
2 according as A has a lift of Frobenius or not.

Theorem 5.4. Assume vp(m) > p—il. Then the function £, belongs to the image

of the map
O(Jz(ARr,)) = O(J;(A)) ®r, Rx.
In particular vy, is 6-overconvergent.

Proof. We give the proof in case r = 2. The proof in case r = 1 is similar. It is
enough to show that one can choose the data in our construction such that:
1) The functions £; ;, (where 1); ; is as in (5.10)) belong to the image of

O(Ui.a @R, Ra)[0:T,02T]" — O(Ui . ®r, Rx)[6,T, 62T]';
2) There are commutative diagrams

(Ui,a ®r, Re)X (N2 4 ®R, Rx) ' J2(Usa) @R, Br
A ool
(Ui,A ®RTJ RW);(N;A Z—;r JT%(ULA ®Rp Rﬂ')

for isomorphisms 7; .

Now 1) follows from the fact that 2L7(A) € Rr[6T,02T]" (cf. Theorem 2.16),
and T; € O(U; 4). On the other hand 2) follows from the fact that one can choose
the sections s;, together with sections s; . as in (5.5); then one can define the
isomorphisms 7; » using s; . in the obvious way. This ends the proof. O

5.6. dr-overconvergence of fg for f on I'o(N). We first recall the construction
of the d,-modular forms f} attached to newforms on I'o(N) given in [7, 11]. As
usual we let N > 4, (N,p) = 1. Fix, in what follows, a normalized newform
f=>,51anq" of weight 2 on I'x(NN) over Q and an elliptic curve A over Q of
conductor N such that f and A correspond to each other in the sense of Theorem
3.1; recall that this means that there exists a morphism

(5.13) P Xo(N)— A

over Q such that the pull back to Xo(N) of some 1-form on A over Q corresponds
to f and L(A,s) = ) a,n™°. Fix an embedding Z[1/N, (ny] C Rp. Let Ag, be the
Néron model of A®qg K), over R, (which is an elliptic curve) and let X (N)g, be the
(smooth) “canonical” model of X;(N) over R, which has been considered before.
By the Néron model property there is an induced morphism ®,, : X1(N)g, — Ag,.
Let X C X1(N)g, be any affine open set. Let r be 1 or 2 according as Ar, has or
has not a lift of Frobenius. (Note that we always have r = 2 if A has no complex
multiplication.) The image of the canonical J,-character ¢, € O(J; (AR, )) in (5.11)
(respectively (5.12)) via the map

O(JI(AR,)) 2 O (X)) = S% = MZ(0) C M,

is denoted by f* = fz‘ﬁ and is a ,-modular form of weight 0; this form was introduced
in [7] and played a key role in [11].
Putting together Theorem 5.4 and Remark 2.7 we get:
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Theorem 5.5. Assume vy,(m) > ﬁ. Then the function %fﬁ belongs to the image

of

In

o Ot

—_
= O © 0w

13.

14.
15.

16.

17.
18.
19.
20.

the map
O(J7(Xg,)) = O(J;(X)) @r, Rr.

particular fg s O -overconvergent.
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