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DIFFERENTIAL OVERCONVERGENCE

ALEXANDRU BUIUM AND ARNAB SAHA

Abstract. We prove that some of the basic differential functions appearing
in the theory of arithmetic differential equations [6], especially some of the
basic differential modular forms in that theory, have a remarkable “differential
overconvergence” property. One can also go in the opposite direction by using
“differentially overconvergent” series to construct “new” differential functions.

1. Introduction

This paper is a continuation of the study of arithmetic differential equations
begun in [3, 5]; cf. the Introduction and bibliography of [6]. For the convenience
of the reader the present paper is written so as to be logically independent of the
above references; we will instead quickly review here the main concepts of that
theory and we will only refer to [3, 5, 6] for various results as need.

The purpose of the theory in [3, 5, 6] is to develop an arithmetic analog of
ordinary differential equations. Analytic functions x(t) are replaced in our theory
by integer numbers n ∈ Z (or, more generally, by integers in number fields and their
p-adic completions). The derivative operator x(t) 7→ dx

dt (t) is replaced by a Fermat

quotient operator which, on Z, acts as n 7→ δpn := n−np

p . Non-linear differential

operators x(t) 7→ F (x(t), dxdt (t), ...,
drx
dtr (t)), with F analytic, are replaced by what

is being referred to as δp-functions. The latter have a series of purely arithmetic
applications for which we refer to [4, 5, 11]. What we discover in this paper is that
some of the most important δp-functions appearing in this theory have a remarkable
“differential overconvergence” property: they come from “δπ-functions”, π = 1−ζp,
where ζp denotes, in this paper, a root of unity of order p. We will call this property
δπ-overconvergence; cf. the definitions below. Conversely one can use bad reduction
phenomena to construct δπ-functions whose traces, then, are “new”, interesting δp-
functions.

In the rest of the introduction we will define our main concepts and state (in
a rough form) our main results. We shall refer to the main body of the paper for
detailed statements and for the proofs of our results.

1.1. Review of notation and terminology [3, 5, 6]. Throughout this paper

p ≥ 5 is a fixed prime and we denote by Rp = Ẑur
p the completion of the maximum

unramified extension of Zp. We set Kp = Rp[1/p] (fraction field of Rp) and k =
Rp/pRp (residue field of Rp); so k is an algebraic closure of Fp. Let π be a root of an
Eisenstein polynomial of degree e with coefficients in Zp. (Recall that Qp(π) is then
a totally ramified extension of Qp; conversely any finite totally ramified extension of
Qp is of the formQp(π) with π a root of an Eisenstein polynomial with coefficients in
Zp.) In order to simplify some of our exposition we will assume in what follows that
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2 ALEXANDRU BUIUM AND ARNAB SAHA

Qp(π)/Qp is a Galois. (A typical we have in mind for our applications is π = 1− ζp
in which case e = p− 1.) Consider the ring Rπ := Rp[π] = Rp ⊗Zp

Zp[π]. Then Rπ

is a complete discrete valuation ring with maximal ideal generated by π and with
fraction field Kπ of degree e over Kp. If vp : K×

π → R is the p-adic valuation with
vp(p) = 1 then vp(π) = 1/e. The ring Rπ possesses a unique ring automorphism
φ such that φ(π) = π and φ lifts the p-power Frobenius of k = Rπ/πRπ. Clearly
φ sends Rp into itself and is a lift of the p-power Frobenius of k = Rp/pRp. Also
throughout the paper ˆ denotes p-adic completion. For Rπ-algebras the p-adic
completion ˆ is, of course the same as the π-adic completion.

Our substitutes for “differentiation” with respect to p and π respectively are the
Fermat quotient maps [3] δp : Rp → Rp and δπ : Rπ → Rπ defined by

δpx := φ(x)−xp

p , x ∈ Rp,

δπx := φ(x)−xp

π , x ∈ Rπ,

respectively. In particular, for x ∈ Rp, we have

δπx = p
π δpx,

δ2πx = p2

π2 δ
2
px+

(
p
π2 − pp

πp+1

)
(δpx)

p, ...

Let V be an affine smooth scheme over Rp and fix a closed embedding V ⊂ Ad

over Rp. (The concepts below will be independent of the embedding.) A function
fp : V (Rp)→ Rp is called a δp-function (or order r ≥ 0) if there exists a restricted
power series Fp with Rp-coefficients, in (r + 1)d variables such that

(1.1) fp(x) = Fp(x, δpx, ..., δ
r
px), x ∈ V (Rp) ⊂ Rd

p.

Here and later a power series is called restricted if its coefficients tend to 0. (If V
is not necessarily affine fp is called a δp-function if its restriction to the Rp-points
of any affine subset of V is a δp-function.) A function fπ : V (Rπ) → Rπ is called
a δπ-function (or order r ≥ 0) if there exists a restricted power series Fπ with
Rπ-coefficients, in (r + 1)d variables such that

(1.2) fπ(x) = Fπ(x, δπx, ..., δ
r
πx), x ∈ V (Rπ) ⊂ Rd

π.

(If V is not necessarily affine fπ is called a δπ-function if its restriction to the
Rπ-points of any affine subset of V is a δπ-function.)

1.2. δπ-overconvergence. The main concept we would like to explore (and ex-
ploit) in this paper is given in the following definition. Let fp : V (Rp) → Rp

be a δp-function. We will say that fp is δπ-overconvergent if one of the following
equivalent conditions is satisfied:

1) There exists an integer ν ≥ 0 and a δπ-function fπ making the diagram below
commutative:

(1.3)
V (Rp)

pνfp−→ Rp

ι ↓ ↑ Tr
V (Rπ)

fπ−→ Rπ

(Here ι stands for the inclusion and Tr stands for the Rπ/Rp-trace.)
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2) There exists an integer ν ≥ 0 and a (necessarily unique) δπ-function fπ making
the diagram below commutative:

(1.4)
V (Rp)

pνfp−→ Rp

ι ↓ ↓ ι
V (Rπ)

fπ−→ Rπ

The equivalence between conditions 1 and 2 above is trivial to check; cf. also
Proposition 2.3.

Our terminology above is motivated by the following link with the classical con-
cept of overconvergence introduced in the work of Dwork, Monsky, and Washnitzer.
Indeed one can show (as we will later) that if V = Ad is the affine space, say, and
fp : V (Rp) = Rd

p → Rp is a δp-function as in (1.1) which is δπ-overconvergent and
has order r ≤ e − 1 then the series Fp appearing in (1.1) is overconvergent (in the
classical sense) in the variables δpx, ..., δ

r
px (but of course not necessarily overcon-

vergent in the variables x). Also, if fp is δπ-overconvergent of order r ≥ e then it
does not follow that Fp is overconvergent in the variables δpx, ..., δ

r
px. Finally note

that if fp has order 0 (which is the same as saying that fp comes from a global func-

tion on the p-adic completion V̂ of V ) then fp is automatically δπ-overconvergent
but, of course, Fp will not generally be overconvergent.

1.3. Main results. The interaction between δp-functions and δπ-functions turns
out to be a two way avenue as follows:

1) From δπ-functions to δp-functions. Given a δπ-function fπ : V (Rπ)→ Rπ the
function fp defined by the diagram (1.3) with ν = 0 turns out to be a δp-function.
In this paper we will construct “interesting” δπ-functions using bad reduction phe-
nomena and then we will apply trace constructions (a geometric trace construction
and also the Rπ/Rp-trace construction in diagram (1.3) which can be referred to
as an arithmetic trace) to get “new” δp-functions. Cf. Theorem 1.1.

2) From δp-functions to δπ-functions. In this paper we discover that some of the
basic “old” δp-functions that played a role in [3, 5, 6] are δπ-overconvergent. Cf.
Theorem 1.2.

We will apply the above considerations mainly to the theory of differential mod-
ular forms [5, 6]. To explain this recall the modular curve X1(N)Rp

over Rp with
(N, p) = 1, N > 4. This curve is smooth and carries a line bundle L such that
the spaces of sections H0(X1(N)Rp

, Lκ) identify with the spaces of modular forms
on Γ1(N) defined over Rp of weight κ; cf. [15], p. 450, where L was denoted by
ω. The curve X1(N)Rp

contains two remarkable (disjoint) closed subsets: the cusp
locus (cusps) and the supersingular locus (ss). On Y1(N) = X1(N)\(cusps) the line
bundle L identifies with u∗Ω

1
E/Y1(N) where u : E → Y1(N) is the corresponding uni-

versal elliptic curve. Next consider an affine open set X ⊂ X1(N)Rp
and consider

the restriction of L to X which we continue to denote by L. We can consider the
affine X-scheme V := Spec

(⊕
n∈Z L

⊗n
)
→ X . Then a δp-modular function (on X ,

of level N and order r) is simply a δp-function V (Rp)→ Rp (of order r). Similarly
a δπ-modular function (on X , of level N and order r) is a δπ-function V (Rπ)→ Rπ

(of order r). There is a natural concept of weight for a δp-modular function or a
δπ-modular function; weights are elements in the ring Z[φ] of polynomials in φ with
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Z-coefficients; cf. the body of the text for the definition of weight. δp-modular func-
tions (respectively δπ-modular functions) possessing weights are called δp-modular
forms (respectively δπ-modular forms). Now, as we shall review in the body of
the paper, δp-modular functions f (and hence forms) possess δp-Fourier expansions
denoted by E(f) which are restricted power series in variables δpq, ..., δ

r
pq, with

coefficients in the ring Rp((q))̂ .
Our first main result is a construction of some interesting “new” δp-modular

forms as Rπ/Rp-traces of some δπ-modular forms. In their turn, these δπ-modular
forms will be constructed using the bad reduction of modular curves. Here is the
result (in which X is assumed to be disjoint from the supersingular locus):

Theorem 1.1. Let f =
∑
anq

n be a classical normalized newform of weight 2 and
level Γ0(Np) over Z. Assume ap = 1 and let π = 1 − ζp. Then there exists a
δp-modular form f ♯

p of level N , order 1, and weight 0 which is δπ-overconvergent
and whose δp-Fourier expansion satisfies the following congruence mod p:

E(f ♯
p) ≡


 ∑

(n,p)=1

an
n
qn


−


∑

n≥1

anq
np


 δpq

qp
.

Cf. Proposition 4.11 in the paper. Note that the condition ap = 1 is equiva-
lent to the condition that the elliptic curve attached to f via the Eichler-Shimura
construction have split multiplicative reduction at p. The δp-modular form f ♯

p in
Theorem 1.1 should be viewed as a bad reduction analogue of the δp-modular forms
f ♯ = f ♯

p of level N , order ≤ 2, and weight 0 that were attached in [7] to classical
normalized newforms f =

∑
anq

n of weight 2 and level Γ0(N) over Z. For such an
f on Γ0(N) that does not have CM (in the sense that the elliptic curve attached
to it via the Eichler-Shimura construction does not have CM) the forms f ♯

p have
order exactly 2 and were shown in [11] to have δp-Fourier expansions satisfying the
following congruence mod p:

E(f ♯
p) ≡



∑

(n,p)=1

an
n
qn


− ap



∑

m≥1

amq
mp


 δpq

qp
+



∑

m≥1

amq
mp2


 ·

(
δpq

qp

)p

.

Similar results are available for f on Γ0(N) having CM; cf. [7, 11]. Unlike the
forms f ♯

p for f on Γ0(Np) the forms f ♯
p for f on Γ0(N) were defined for any X (not

necessarily disjoint from the supersingular locus).
Our second main result is a construction of δπ-modular forms from certain δp-

modular forms. Indeed, a key role in the theory in [5, 1, 6] was played by certain
δp-modular forms denoted by f1

p , f
2
p , f

3
p , ... of weights −1− φ,−1 − φ2,−1 − φ3, ...

and by a δp-modular form denoted by f∂
p of weight φ − 1 (where the former are

defined whenever X is disjoint from the cusps while the latter is only defined if
X is disjoint from both the cusps and the supersingular locus). The definition of
these forms will be reviewed in the body of the paper. Our second main result (cf.
Theorems 5.1, 5.3, and 5.5 in the body of the paper) is the following:

Theorem 1.2. Assume vp(π) ≥ 1
p−1 . Then the δp-functions f

∂
p , f

1
p , f

2
p , f

3
p , ... are

δπ-overconvergent. Also f ♯
p is δπ-overconvergent for any classical normalized new-

form f of weight 2 and level Γ0(N) over Z.

By the way the forms f1
p , f

2
p , f

3
p , ... and f∂

p “generate” (in a sense explained in
[5, 1, 6]) all the so called isogeny covariant δp-modular forms (in the sense of loc.cit.).
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We refer to loc.cit. for the role of these forms in the theory and for the significance
of the theory itself (in relation, for instance, to the construction in δp-geometry of
the quotient of the modular curve by the action of the Hecke correspondences);
reviewing this background here would take as too far afield and is not necessary for
the understanding of our second main result above.

1.4. Summary of the main forms. We end our discussion by summarizing (cf.
the table below) the main δπ-overconvergent δp-modular forms appearing in this
paper.

form attached to order weight domain X

f r
p r ≥ 1 r −1− φr X disjoint from (cusps)

f ♯
p f on Γ0(N) 1 or 2 0 X arbitrary

f ♯
p f on Γ0(Np) 1 0 X disjoint from (ss)

f∂
p 1 φ− 1 X disjoint from (cusps) and (ss)

1.5. Plan of the paper. We begin, in section 2, by revisiting our main set the-
oretic concepts above from a scheme theoretic viewpoint; δp-functions and δπ-
functions will appear as functions on certain formal schemes called p-jet spaces
and π-jet spaces respectively; cf. [3, 4]. We shall review some of the properties of
the latter and we shall analyze the concept of δπ-overconvergence in some detail.
Section 3 is mainly devoted to reviewing some basic aspects of modular param-
eterization and bad reduction of modular curves, following [13, 12, 15]; so this
section is exclusively concerned with “non-differential” matters. In section 4 we go
back to arithmetic differential equations: we will use modular parameterizations
and bad reduction of modular curves to construct certain δπ-modular forms and
eventually the “new” δp-modular forms in Theorem 1.1. In section 5 we prove δπ-
overconvergence of some of the basic δp-functions of the theory, in particular we
prove Theorem 1.2.

1.6. Acknowledgment. While writing this paper the first author was partially
supported by NSF grant DMS-0852591 and by the Max Planck Institut fur Math-
ematik in Bonn.

2. δπ-overconvergence

As expained in the Introduction we begin in this section by presenting δp-
functions and δπ-functions from a scheme-theoretic viewpoint (which is equivalent
to the set-theoretic viewpoint of the Introduction). The scheme-theoretic viewpoint
is less direct than the set-theoretic one but is the correct viewpoint when it comes to
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proofs so will be needed in the sequel. We then introduce and examine the concept
of δπ-overconvergence in a general setting.

2.1. p-jet spaces and π-jet spaces [3]. Let Cp(X,Y ) ∈ Z[X,Y ] be the polyno-
mial with integer coefficients

Cp(X,Y ) :=
Xp + Y p − (X + Y )p

p
.

A p-derivation from a ring A into an A−algebra B, ϕ : A→ B, is a map δp : A→ B
such that δp(1) = 0 and

δp(x+ y) = δpx+ δpy + Cp(x, y)
δp(xy) = xp · δpy + yp · δpx+ p · δpx · δpy,

for all x, y ∈ A. Given a p−derivation we always denote by φ : A → B the map
φ(x) = ϕ(x)p + pδpx; then φ is a ring homomorphism. A δp-prolongation sequence
is a sequence S∗ = (Sn)n≥0 of rings Sn, n ≥ 0, together with ring homomorphisms
(still denoted by) ϕ : Sn → Sn+1 and p−derivations δp : Sn → Sn+1 such that
δp ◦ϕ = ϕ◦ δp on Sn for all n. We view Sn+1 as an Sn−algebra via ϕ. A morphism

of δp-prolongation sequences, u∗ : S∗ → S̃∗ is a sequence un : Sn → S̃n of ring
homomorphisms such that δp ◦ un = un+1 ◦ δp and ϕ ◦ un = un+1 ◦ ϕ. Let W be
the ring of polynomials Z[φ] in the indeterminate φ. For w =

∑
aiφ

i (respectively
for w with ai ≥ 0), S∗ a δp-prolongation sequence, and x ∈ (S0)× (respectively
x ∈ S0) we can consider the element xw :=

∏r
i=0 ϕ

r−iφi(x)ai ∈ (Sr)× (respectively
xw ∈ Sr).

Recall the ring Rp := Ẑur
p , completion of the maximum unramified extension of

the ring of p-adic integers Zp. Then Rp has a unique p−derivation δp : Rp → Rp

given by

δpx = (φ(x) − xp)/p,
where φ : Rp → Rp is the unique lift of the p−power Frobenius map on k = Rp/pRp.
One can consider the δp-prolongation sequence R∗

p where R
n
p = Rp for all n. By a δp-

prolongation sequence over Rp we understand a prolongation sequence S∗ equipped
with a morphism R∗

p → S∗. From now on all our δp-prolongation sequences are
assumed to be over Rp.

Let now π be a root of an Eisentein polynomial with Zp-coefficients and let
Cπ(X,Y ) ∈ Zp[π][X,Y ] be the polynomial

Cπ(X,Y ) :=
Xp + Y p − (X + Y )p

π
=
p

π
Cp(X,Y ).

A π-derivation from an Zp[π]-algebra A into an A−algebra B, ϕ : A→ B, is a map
δπ : A→ B such that δπ(1) = 0 and

δπ(x+ y) = δπx+ δπy + Cπ(x, y)
δπ(xy) = xp · δπy + yp · δπx+ π · δπx · δπy,

for all x, y ∈ A. Given a π−derivation we always denote by φ : A → B the
map φ(x) = ϕ(x)p + πδπx; then φ is a ring homomorphism. A δπ-prolongation
sequence is a sequence S∗ = (Sn)n≥0 of Zp[π]-algebras S

n, n ≥ 0, together with
Zp[π]-algebra homomorphisms (still denoted by) ϕ : Sn → Sn+1 and π−derivations
δπ : Sn → Sn+1 such that δπ ◦ ϕ = ϕ ◦ δπ on Sn for all n. A morphism of δπ-
prolongation sequences, u∗ : S∗ → S̃∗ is a sequence un : Sn → S̃n of Zp[π]-algebra
homomorphisms such that δπ ◦ un = un+1 ◦ δπ and ϕ ◦ un = un+1 ◦ ϕ. Let W
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be, again, the ring of polynomials Z[φ] in the indeterminate φ. For w =
∑
aiφ

i

(respectively for w with ai ≥ 0), S∗ a δπ-prolongation sequence, and x ∈ (S0)×

(respectively x ∈ S0) we can consider the element xw :=
∏r

i=0 ϕ
r−iφi(x)ai ∈ (Sr)×

(respectively xw ∈ Sr).
As above we may consider Rπ = Rp[π] and the π−derivation δπ : Rπ → Rπ

given by

δπx = (φ(x) − xp)/π.
One can consider the δπ-prolongation sequence R∗

π where Rn
π = Rπ for all n. By

a δπ-prolongation sequence over Rπ we understand a prolongation sequence S∗

equipped with a morphism R∗
π → S∗. From now on all our δπ-prolongation se-

quences are assumed to be over Rπ.
We note that if S∗ = (Sn)n≥0 is a δp-prolongation sequence such that each Sn

is flat over Rp then the sequence S∗ ⊗Rp
Rπ = (Sn ⊗Rp

Rπ)n≥0 has a natural

structure of δπ-prolongation sequence. Indeed letting φ : Sn → Sn+1 denote, as
usual, the ring homomorphisms φ(x) = xp + pδpx one can extend these φs to ring
homomorphisms φ : Sn⊗Rp

Rπ → Sn+1⊗Rp
Rπ by the formula φ(x⊗y) = φ(x)⊗φ(y)

where φ : Rπ → Rπ is given, as usual, by φ(y) = yp + πδπy. Then one can
define π-derivations δπ : Sn ⊗Rp

Rπ → Sn+1 ⊗Rp
Rπ by δπ(z) = (φ(z) − zp)/π

for z ∈ Sn ⊗Rp
Rπ. With these δπs the sequence S∗ ⊗Rp

Rπ is a δπ-prolongation
sequence.

For any affine Rp-scheme of finite type X = Spec A there exists a (unique)
δp-prolongation sequence, A∗ = (An)n≥0, with A0 = A such that for any δp-
prolongation sequence B∗ and any Rp-algebra homomorphism u : A → B0 there
exists a unique morphism of δp-prolongation sequences u∗ : A∗ → B∗ with u0 = u.

We define the p-jet spaces Jn
p (X) of X as the formal schemes Jn

p (X) := Spf Ân.
This construction immediately globalizes to the case X is not necessarily affine
(such that the construction commutes, in the obvious sense, with open immer-
sions). For X smooth over Rp the ring of δp-functions X(Rp) → Rp naturally
identifies with the ring of global functions O(Jn

p (X)): under this identification any
function f ∈ O(Jn

p (X)) gives rise to a δp-function X(Rp)→ Rp sending any point

P ∈ X(Rp), P : Spec Rp → X into the Rp-point of the affine line A1
Rp

defined by

Spf Rp
Pn

→ Jn
p (X)

f→ Â1
Rp

;

here Pn is the morphism induced from P via the universality property of the p-jet
space. If X is a group scheme over Rp then

f : Jn
p (X)→ Ĝa,Rp

= Â1
Rp

is a group homomorphism into the additive group of the line if and only if the
corresponding map X(Rp) → Rp is a group homomorphism; such an f is called a
δp-character of X .

As a prototypical example if X = AN
Rp

= Spec Rp[x] is the affine space (where x

is anN -tuple of variables) then Jn
p (X) = Spf Rp[x, δpx, ..., δ

n
p x]̂ (where δpx, ..., δ

n
p x

are new N -tuples of variables).
We will need, in this paper, a slight generalization of the above constructions as

follows; cf. [5]. First note that the p-jet spaces Jn
p (X) only depend on the p-adic

completion of X and not on X . This immediately implies that one can introduce
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p-jet spaces Jn
p (X ) attached to formal p-adic schemes X over Rp which are locally p-

adic completions of schemes of finite type overRp; the latter association is functorial
in X .

Similarly, for any affine Rπ-scheme of finite type Y = Spec A there exists a
(unique) δπ-prolongation sequence, A∗ = (An)n≥0, with A

0 = A such that for any
δπ-prolongation sequence B∗ and any Rπ-algebra homomorphism u : A→ B0 there
exists a unique morphism of δπ-prolongation sequences u∗ : A∗ → B∗ with u0 = u.
We define the π-jet spaces Jn

π (Y ) of Y as the formal schemes Jn
π (Y ) := Spf Ân. This

construction immediately globalizes to the case Y is not necessarily affine (such that
the construction commutes, in the obvious sense, with open immersions). Again,
for Y smooth over Rπ the ring of δπ-functions Y (Rπ) → Rp naturally identifies
with the ring of global functions O(Jn

π (Y )). If Y is a group scheme over Rπ then

f : Jn
π (Y ) → Â1

Rπ
is a group homomorphism into the additive group of the line if

and only if the corresponding map Y (Rπ) → Rπ is a group homomorphism; such
an f is called a δπ-character of Y .

As a prototypical example if Y = AN
Rπ

= Spec Rπ[x] is the affine space then
Jn
π (Y ) = Spf Rπ[x, δπx, ..., δ

n
πx]̂ (where δπx, ..., δ

n
πx are new N -tuples of variables).

As in the case of p-jet spaces, note that the π-jet spaces Jn
π (Y ) only depend

on the π-adic completion of Y and not on Y . This immediately implies that one
can introduce π-jet spaces Jn

π (Y) attached to formal π-adic schemes Y over Rπ

which are locally π-adic completions of schemes of finite type over Rπ; the latter
association is functorial in Y.

For any scheme X/Rp we write XRπ
:= X⊗Rp

Rπ. Let X/Rp be a smooth affine
scheme. The δp-prolongation sequence (O(Jn(X)))n≥0 induces a structure of δπ-
prolongation sequence on the sequence (O(Jn(X))⊗Rp

Rπ)n≥0. By the universality
property of the δπ-prolongation sequence (O(Jn

π (XRπ
)))n≥0 we get a canonical

morphism of δπ-prolongation sequences

(2.1) O(Jn
π (XRπ

))→ O(Jn
p (X))⊗Rp

Rπ.

The following is trivial to prove by induction:

Lemma 2.1. For any n ≥ 1 there exists a polynomial Fn ∈ Rπ[t1, ..., tn] without
constant term with the property that for any f ∈ O(X) we have

(2.2) δnπf 7→
pn

πn
δnp f + πmax{e−n,0}Fn(δpf, ..., δ

n−1
p f)

under the map (2.1).

In particular, for instance,

(2.3)

δπf 7→ p
π δpf

δ2πf 7→ p2

π2 δ
2
pf +

(
p
π2 − pp

πp+1

)
(δpf)

p.

Note that for 1 ≤ n ≤ e−1 and f ∈ O(X) the image of δnπf in O(Jn
p (X))⊗Rp

Rπ is
always in the ideal generated by π. Also note that for f ∈ O(X) the image of δeπf
in O(Jn

p (X)) ⊗Rp
Rπ is not always in the ideal generated by π; indeed the image

of δeπp in O(Jn
p (X)) ⊗Rp

Rπ belongs to R×
π . For X not necessarily affine we get a

morphism (2.1) and a canonical morphism of π-adic formal schemes

(2.4) Jn
p (X)⊗Rp

Rπ → Jn
π (XRπ

).
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Note that the map (2.1) is an isomorphism if n = 0. For n ≥ 1 the map (2.1) is
not surjective and its reduction mod p is not injective. Nevertheless, we have:

Proposition 2.2. The map (2.1) is injective.

We will usually view the map (2.1) as an inclusion.

Proof. Indeed it is enough to prove this for X affine and sufficiently small. So
let us assume that X has étale coordinates i.e. there is an étale map R[x]→ O(X)
with x a tuple of variables. Then by the local product property of π-jet spaces [3],
Proposition 1.4, (2.1) becomes the natural map

(2.5) O(XRπ
)[δπx, ..., δ

n
πx]̂ → O(X)[δpx, ..., δ

n
px]̂ ⊗Rp

Rπ.

Now let L be the fraction field of the π-adic completion of O(XRπ
). (The latter

is an integral domain by the smoothness of X/Rp.) Then the left hand side of
(2.5) embeds into L[[δπx, ..., δ

n
πx]] while the right hand side of (2.5) embeds into

L[[δpx, ..., δ
n
px]] (the latter because Rπ is finite over Rp). Finally we claim that we

have a natural isomorphism

(2.6) L[[δπx, ..., δ
n
πx]] ≃ L[[δpx, ..., δnpx]]

that induces (2.1); this of course will end the proof that (2.1) is injective. To prove
the claim note that there is natural homomorphism

(2.7) L[δπx, ..., δ
n
πx]→ L[δpx, ..., δ

n
px]

which is trivially seen by induction to be surjective by the formulae (2.2). Since the
rings in (2.7) have both dimension n it follows that (2.7) is an isomorphism. Since
(2.7) maps the ideal (δπx, ..., δ

n
πx) into (and hence onto) the ideal (δpx, ..., δ

n
p x) we

get an isomorphism like in (2.6) and we are done. �

Let now Tr : Rπ → Rp be the (Rp-linear) trace map. We may consider the
Rp-linear map

(2.8) 1⊗ Tr : O(Jn
p (X))⊗Rp

Rπ → O(Jn
p (X))⊗Rp

Rp = O(Jn
p (X)).

Composing (2.1) with (2.8) we get an Rp-linear arithmetic trace map:

(2.9) τπ : O(Jn
π (XRπ

))→ O(Jn
p (X)).

(Later we will encounter another type of trace maps which will be referred to as
geometric trace maps.)

Proposition 2.3. Let X be a smooth scheme over Rp and f ∈ O(Jn
p (X)). The

following conditions are equivalent:
1) f times a power of p belongs to the image of the trace map (2.9).
2) f times a power of p belongs to the image of the inclusion map (2.1).

Proof. The fact that condition 2 implies condition 1 is trivial.
In order to check that condition 1 implies condition 2 let Σ be the Galois group

of Qp(π)/Qp (and hence also of Kπ/Kp) and let us consider the action of Σ on
O(Jr

p (X)) ⊗Rp
Rπ via the action on the second factor. We will prove that Σ acts

on the image of O(Jr
π(XRπ

))→ O(Jr
p (X))⊗Rp

Rπ; this will of course end the proof

of the Proposition. Let σ ∈ Σ and σπ
π =: u ∈ Zp[π]

×.

Claim 1. φ and σ commute on Rπ. Indeed φ ◦ σ and σ ◦ φ have the same effect
on Rp and on π.
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Claim 2. φ ◦ σ = σ ◦ φ as maps from O(J i
p(X)) ⊗Rp

Rπ to O(J i+1
p (X)) ⊗Rp

Rπ. Indeed it is enough to check this for X = Spec Rp[x] the affine space, x a
tuple of variables. So it is enough to check that φ and σ commute as maps from
Rπ[x, δpx, ..., δ

i
px]̂ to Rπ[x, δpx, ..., δ

i+1
p x]̂ . This is clear because φ and σ commute

on Rπ and on each tuple δjpx.

Claim 3. σ◦δπ = 1
u ·δπ◦σ as maps from O(J i

p(X))⊗Rp
Rπ to O(J i+1

p (X))⊗Rp
Rπ.

This follows trivially from Claim 2.

Now to conclude it is enough to show that for any 1 ≤ i ≤ r, and any f ∈ O(X)
we have that σ(δiπf) is obtained by evaluating a polynomial Pi with Rπ-coefficients
at δπf, ..., δ

i
πf . We proceed by induction on i. The case i = 1 is clear. Assume our

assertion is true for i. Then

σδi+1
π f = σδπ(δ

i
πf)

= 1
uδπ(σ(δ

i
πf))

= 1
uδπ(Pi(δπf, ..., δ

i
πf))

and we are done. �

Definition 2.4. A function f ∈ O(Jn
p (X)) is called δπ-overconvergent if it satisfies

one of the equivalent conditions in Proposition 2.3.

Remark 2.5. The set of δπ-overconvergent elements of O(Jn
p (X)) is a subring con-

taining all the elements of the form δipf with i ≤ n and f ∈ O(X). In partic-
ular if X is affine then the subring of δπ-overconvergent elements of O(Jn

p (X))
is p-adically dense in O(Jn

p (X)) and it is sent into itself by any Rp-derivation
O(Jn

p (X))→ O(Jn
p (X)).

Remark 2.6. Under the identification of δp-functions (respectively δπ-functions)
with elements of the ring O(Jn

p (X)) (respectively O(Jn
π (XRπ

))) the definition of
δπ-overconvergence above corresponds to the definition of δπ-overconvergence given
in the Introduction.

Remark 2.7. Let us note that δπ-overconvergence is preserved by precomposition
with regular maps. Indeed, if u : Y → X is a morphism of smooth Rp-schemes and
if λ · f is in the image of (2.1) for some λ ∈ Rπ and some f ∈ O(Jr

p (X)) then if f
is identified with the corresponding map f : X(Rp) → Rp it follows that λ · f ◦ u
is in the image of O(Jn

π (YRπ
))→ O(Jn

p (Y )) ⊗Rp
Rπ . (Here f ◦ u is identified with

u∗f where u∗ is the naturally induced map O(Jr
p (X))→ O(Jr

p (Y )).

The next Proposition shows that the trace map τπ in (2.1), although not injective,
is “as close as possible” to being so.

Proposition 2.8. The map

(2.10) O(Jn
π (XRπ

))→
e−1⊕

i=0

O(Jn
p (X)), f 7→ (τπ(f), τπ(πf), ..., τπ(π

e−1f))

is injective.

Proof. Indeed if the image of f in O(Jn
p (X))⊗Rp

Rπ is
∑e−1

i=0 fi⊗πi and the image

of f via the map (2.10) is 0 then we get
∑e−1

i=0 Tr(π
i+j)fi = 0 for all j = 0, ..., e−1.
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Now det(Tr(πi+j) 6= 0 which implies f0 = ... = fe−1 = 0 hence, by Proposition 2.2,
f = 0. �

Example 2.9. Consider the multiplicative group Gm,Rp
= Spec Rp[x, x

−1] and
the standard δp-character

ψp ∈ O(J1
p (Gm,Rp

)) = Rp[x, x
−1, δpx]̂

in [3] defined by

ψp := “
1

p
log

(
φ(x)

xp

)
” :=

∑

n≥1

(−1)n−1 p
n−1

n

(
δpx

xp

)n

.

Assume vp(π) ≥ 1
p−1 , e.g. π = 1 − ζp. Then clearly pψp = πψπ where ψπ is the

δπ-character ψπ ∈ O(J1
π(Gm,Rπ

)) defined by

(2.11) ψπ :=
∑

n≥1

(−1)n−1π
n−1

n

(
δπx

xp

)n

.

(which is well defined because if vp(π) ≥ 1
p−1 then vp(π

n−1/n) is ≥ 0 and →∞ as

n→∞). So ψp is δπ-overconvergent. Moreover

τπ(ψπ) = Tr

(
1

π

)
· pψp.

By the way, if π = 1− ζp then Tr( 1π ) =
p−1
2 .

The above global concepts and remarks have a local counterpart as follows. Let
q be a variable and δiπq, δ

i
pq corresponding variables. Then exactly as above we

have that the natural map

(2.12) Rπ((q))[δπq, ..., δ
n
πq]̂ → Rπ((q))[δpq, ..., δ

n
p q]̂

is injective. We shall view this map as an inclusion. On the other hand there is a
natural trace map

(2.13) τπ : Rπ((q))[δπq, ..., δ
n
πq]̂ → Rπ((q))[δpq, ..., δ

n
p q]̂

Tr→ Rp((q))[δpq, ..., δ
n
p q]̂ ,

where the first map is the inclusion (2.12) and the second map Tr is induced by
the trace map Tr : Rπ → Rp on the coefficients of the series. As in the global case
we have that:

Proposition 2.10. For a series f in Rp((q))[δpq, ..., δ
n
p q]̂ the following conditions

are equivalent:
1) f times a power of p belongs to the image of the trace map (2.13).
2) f times a power of p belongs to the image of the inclusion map (2.12).

So as in the global case we can make the following:

Definition 2.11. A series in Rp((q))[δpq, ..., δ
n
p q]̂ is δπ-overconvergent if it satisfies

one of the equivalent conditions in Proposition 2.10.

Example 2.12. Assume vp(π) ≥ 1
p−1 , e.g. π = 1− ζp. Then the series

(2.14) Ψp := “
1

p
log

(
φ(q)

qp

)′′

:=
∑

n≥1

(−1)n−1 p
n−1

n

(
δpq

qp

)n

∈ Rp((q))[δpq]̂
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is δπ-overconvergent. Indeed we can write pΨp = πΨπ where the series

Ψπ :=
∑

n≥1

(−1)n−1π
n−1

n

(
δπq

qp

)n

;

is in Rπ((q))]δπq]̂ because vp(π
n−1/n) is ≥ 0 and →∞.

2.2. δπ-overconvergence versus classical overconvergence. We would like to
compare the concept of δπ-overconvergence introduced above with the classical
concept of overconvergence as it was introduced in the work of Dwork, Monsky,
and Washnitzer. The material in this subsection will not be used in the rest of
the paper. Let us recall the classical concept of overconvergence of power series or,
more generally the concept of overconvergence of series with respect to a subset of
variables.

Definition 2.13. Let x and y be tuples of variables and F ∈ Rp[x, y]̂ ⊂ Rp[[x, y]]
a restricted power series, F =

∑
aα,βx

αyβ (where α, β are multiindices). Then F
is called overconvergent in the variables y if there exist positive real numbers C1, C2

such that for all α, β one has vp(aα,β) ≥ C1|β| − C2.

Here |β| is, of course, the sum of the components of β.
Then we have the following:

Proposition 2.14. Let F ∈ O(Jr
p (A

d)) = Rp[x, δpx, ..., δ
n
p x]̂ where x is a d-tuple

of variables. Assume n ≤ e − 1. Assume furthermore that F is δπ-overconvergent.
Then F is overconvergent in the variables δpx, ..., δ

n
px.

Proof. By hypothesis pνF is in the image of

Rπ[x, δπx, ..., δ
n
πx]̂ → Rp[x, δpx, ..., δ

n
p x]̂ ⊗Rp

Rπ

for some ν. We may assume ν = 0. Write

F (x, δpx, ..., δ
n
px) =

∑

α0,...,αn

aα0...αn
xα0(δπx)

α1 ...(δπx)
αn ,

with aα0...αn
∈ Rπ. By (2.2) one can find polynomials Gi ∈ Rπ[t1, ..., ti] such that

δiπx = π ·Gi(δpx, ..., δ
i
px), 1 ≤ i ≤ e− 1.

We get that

F (x, δpx, ..., δ
n
p x) =

∑
aα0...αn

πα1+...+αnxα0 (G1(δpx))
α1 ...(Gn(δpx, ..., δ

n
p x))

αn .

Let Dn := max{deg(G1), ..., deg(Gn)}. Then clearly the coefficient of the monomial

xα(δpx)
β1 ...(δnpx)

βn

in F is going to be divisible by

π[
β1+...+βn

Dn
]

in Rπ and we are done. �

Remark 2.15. Proposition 2.14 fails if we do not asssume the order n is strictly less
than the ramification index e. Here is a typical example. Let π =

√
p; so e = 2 and

δ2πx = p(δ2px) + u(δpx)
p, u = 1− p(p−1)/2. Let an ∈ Rp, vp(an)→∞, vp(an) ≤ nǫ,

0 < ǫ < 1, let x be one variable, and let

F = F (x, δpx, δ
2
px) :=

∑
an(p(δ

2
px) + u(δpx)

p)n ∈ Rp[x, δpx, δ
2
px]̂ .
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Then (the map Rp → Rp defined by) F is δπ-overconvergent because

F =
∑

an(δ
2
πx)

n ∈ Rπ[x, δπx, δ
2
πx]̂ .

On the other hand F (x, δpx, δ
2
px) is not overconvergent in δpx, δ

2
px. Indeed if this

were the case then

F (0, y, 0) =
∑

anu
nynp

would be overconvergent in the variable y which is clearly not the case.

2.3. p-jets and π-jets of formal groups. In what follows we recall from [6],
section 4.4, the construction of p-jets of formal groups and we also introduce the
π-jet analogue of that construction.

Start with a formal group law F ∈ S[[T1, T2]] (in one variable T ) over S = O(X),
where X is a smooth affine Rp-scheme. For r ≥ 1 we let Sr

p := O(Jr
p (X)). Let T

be the pair of variables T1, T2. One has a natural p-prolongation sequence

(Sr
p [[T, δpT, ..., δ

r
pT]])r≥0

(where δpT, δ
2
pT, ... are pairs of new variables). Then the r + 1-tuple

F , δpF , ..., δrpF
defines a commutative formal group in r+1 variables T, δpT, ..., δ

r
pT . Setting T = 0

in the above series, and forgetting about the first of them, we obtain an r-tuple of
series

F1 := {δpF}|T=0, ..., Fr := {δrpF}|T=0.

This r-tuple belongs to Sr
p [δpT, ..., δ

r
pT]̂ and defines a group

(2.15) (Âr
Sr
p
, [+])

in the category of p-adic formal schemes over Sr
p. Now let

l(T ) =
∑

n≥1

anT
n ∈ (S ⊗Q)[[T ]]

be the logarithm of F . Recall that nan ∈ S for all n. Define

(2.16) Lr
p :=

1

p
{φr(l(T ))}|T=0 ∈ (Sr

p ⊗Q)[[δpT, ..., δ
r
pT ]].

Then Lr
p actually belong to Sr

p[δpT, ..., δ
r
pT ]̂ and define group homomorphisms

Lr
p : (Âr

Sr
p
, [+])→ (Â1

Sr
p
,+) = Ĝa,Sr

p
.

For all the facts above we refer to [6], pp. 123-125.
Now let Sr

π := O(Jr
π(XRπ

)) ⊂ Sr
p ⊗Rp

Rπ; cf. Proposition 2.2. We have the
following

Proposition 2.16.

1) For some integer n(r) ≥ 1, pn(r)Fr belongs to the image of the natural homo-
morphism

Sr
π[δπT, ..., δ

r
πT]̂ → (Sr

p ⊗R R[π])[δpT, ..., δ
r
pT]̂ .

2) If vp(π) ≥ 1
p−1 , e.g. if π = 1 − ζp, then Lr

π := p
πL

r
p belongs to the image of

the natural homomorphism

Sr
π[δπT, ..., δ

r
πT ]̂ → (Sr

p ⊗R R[π])[δpT, ..., δ
r
pT ]̂ .
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Proof. Since φr(T ) ≡ T pr

mod π in Rπ[δπT, ..., δ
r
πT ] we have {φr(T )}|T=0 ≡ 0

mod π in the same ring. Set Gr,π = 1
π{φr(T )}|T=0. We claim that for any F ∈

S[[T ]] with F (0) = 0 we have

pN{δrpF}|T=0 ∈ Sr
π[δπT, ..., δ

r
πT ]̂

for some N . Indeed since some power of p times δrpF is a polynomial with Z-
coefficients in F, φ(F ), ..., φr(F ) it is enough to show that {φr(F )}|T=0 is a restricted
power series in δπT, ..., δ

r
πT for any r. But {φr(F )}|T=0 is a power series with Sr

π-

coefficients in {φi(T )}|T=0 = πGi,π , i ≤ r, and our claim is proved. The same
argument works for T replaced by and tuple of variables; this ends the proof of
assertion 1. To check assertion 2 note that

Lr
π =

∑

n≥1

φ(nan)
πn−1

n
Gn

r,π

and we are done because nan ∈ S and vp(π
n−1/n) is ≥ 0 and →∞. �

2.4. Conjugate operators. Recall from [6], Proposition 3.43, that if X/Rp is a
smooth affine scheme and ∂ : O(X) → O(X) is an Rp-derivation then for each
r ≥ 1 there is a unique Rp-derivation

(2.17) ∂r : O(Jr
p (X))→ O(Jr

p (X))

with the properties that ∂r vanishes on O(Jr−1
p (X)) and ∂r ◦ δrp = φr ◦ ∂ on O(X).

(By uniqueness this construction extends, in its obvious sheafified version, to the
case when X is not necessarily affine.) The operators ∂r are a special case of what is
called in [6] conjugate operators and were introduced, in a special case by Barcau in
[1]. By Remark 2.5 ∂r : O(Jr

p (X))→ O(Jr
p (X)) sends the ring of δπ-overconvergent

elements into itself. We would like to slightly strengthen this as follows. Note that
∂r uniquely extend to Rπ-derivations ∂r : O(Jr

p (X))⊗Rp
Rπ → O(Jr

p (X))⊗Rp
Rπ.

View O(Jr
π(XRπ

)) as a subring of O(Jr
p (X))⊗Rp

Rπ. Then we have:

Proposition 2.17. ∂r(O(Jr
π(XRπ

)) ⊂ O(Jr
π(XRπ

)).

Proof. Since O(Jr
π(XRπ

)) contains, as a dense subring, the O(Jr−1
π (XRπ

))-
algebra generated by all the elements of the form δrπf with f ∈ O(X) it is enough
to show that ∂rδ

r
πf ∈ O(Jr

π(XRπ
)) for f ∈ O(X). Since δrπf is a polynomial with

Rπ-coefficients in δpf, ..., δ
r
pf it is enough to show that ∂rδ

r
pf ∈ O(Jr

π(XRπ
)). But

the latter equals φr∂f which is obviously in O(Jr
π(XRπ

)). �

3. Review of bad reduction

This section is entirely “non-differential” and represents a review of essentially
well-known facts about bad reduction of modular curves. These facts will play a
role later in the paper.

3.1. Modular parameterization. Consider the following classes of objects:

(1) Normalized newforms

(3.1) f =
∑

n≥1

anq
n

of weight 2 on Γ0(M) over Q; in particular a1 = 1, an ∈ Z.

(2) Elliptic curves A over Q of conductor M .
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Say that f in (1) and A in (2) correspond to each other if there exists a morphism

(3.2) Φ : X0(M)→ A

over Q such that the pull back to X0(M) of some 1-form on A over Q corresponds
to f and L(A, s) =

∑
ann

−s. We have the following fundamental result:

Theorem 3.1.

i) For any f as in (1) there exists an A as in (2) which corresponds to f .
ii) For any A as in (2) there exists f as in (1) which corresponds to A.

The first part of the theorem is due to Eichler, Shimura, and Carayol; cf. [17]
for an exposition of this theory and references. The second part of the Theorem is
the content of the Tanyiama-Shimura conjecture proved, in its final form, in [2].

From now on we fix M = Np with (N, p) = 1, p ≥ 5, N ≥ 5, and we fix f and
A corresponding to each other, as in Theorem 3.1. We further assume ap = 1 or,
equivalently, A has split multiplicative reduction at p.

Recall from [17], p.282, that amn = aman for (m,n) = 1, aℓraℓ = aℓr+1 + ℓaℓr−1

for ℓ 6 |Np, and aℓr = arℓ for ℓ|Np; in particular apr = 1 for all r.

3.2. Model of X1(Np) over Z[1/N, ζp]. Recall that the modular curve X1(Np)
over C has a model (still denoted by X1(Np) in what follows) over Z[1/N, ζp] con-
sidered in [15], p. 470; this is a version of a curve introduced by Deligne and Rap-
poport [12] and the two curves become canonically isomorphic over Z[1/N, ζN , ζp]
if ζN is a fixed primitive N -th root of unity. Recall some of the main properties
of X1(Np). First X1(Np) is a regular scheme proper and flat of relative dimension
1 over Z[1/N, ζp] and smooth over Z[1/Np, ζp]. Also the special fiber of X1(Np)
over Fp is a union of two smooth projective curves I and I ′ crossing transversally
at a finite set Σ of points. Furthermore I is isomorphic to the Igusa curve I1(N)
in [15], p. 160, so I is the smooth compactification of the curve classifying triples
(E,α, β) with E an elliptic curve over a scheme of characteristic p, and α : µN → E,
β : µp → E are embeddings (of group schemes). Similarly I ′ is the smooth com-
pactification of the curve classifying triples (E,α, b) with E an elliptic curve over a
scheme of characteristic p, and α : µN → E, b : Z/pZ→ E are embeddings. Finally
Σ corresponds to the supersingular locus on the corresponding curves.

3.3. Neron model of A over Rπ. Let π = 1− ζp and consider a fixed embedding
of Z[ζN , ζp, 1/N ] into Rπ (hence of Z[ζN , 1/N ] into Rp.]

Let ARπ
be the Neron model of AKπ

:= A ⊗Q Kπ over Rπ; cf. [20], p. 319.
Then the π-adic completion (A0

Rπ
)̂ of the connected component A0

Rπ
of ARπ

is

isomorphic to the π-adic completion (Gm)̂ of Gm = Spec Rπ[x, x
−1]. Indeed by

[20], Theorem 5.3, p. 441, AKπ
is isomorphic over Kπ to a Tate curve Eq/Kπ with

q ∈ πRπ. By [20], Corollary 9.1, p. 362, A0
Rπ

is the smooth locus over Rπ of a
projective curve defined by the minimal Weierstrass equation of AKπ

. Now the
defining Weierstrass equation of the Tate curve ([20], p. 423) is already minimal
(cf. [20], Remark 9.4.1, p. 364). The isomorphism (A0

Rπ
)̂ ≃ (Gm)̂ then follows

from the formulae of the Tate parameterization [20], p. 425.
On the other hand recall that the modular curve X1(N) over C has a natural

smooth projective model (still denoted by X1(N)) over Z[1/N ] such that

Y1(N) := X1(N)\(cusps)
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parameterizes pairs (E,α) consisting of elliptic curves E with an embedding α :
µN → E. The morphism X1(Np)→ X1(N) over C induces a morphism

ǫ : X1(Np)Rπ
\Σ→ X1(N)Rπ

\(ss)

overRπ, where (ss) is the supersingular locus in the closed fiber ofX1(N)Rπ
. Indeed

the morphism X1(Np)→ X1(N)→ J1(N) over C (where J1(N) is the Jacobian of
X1(N) over C and X1(N)→ J1(N) is the Abel-Jacobi map defined by ∞) induces
a morphism from X1(Np)Rπ

\Σ into the Jacobian J1(N)Rπ
of X1(N)Rπ

(by the
Neron property, because the latter Jacobian is an abelian scheme and hence is the
Neron model of its generic fiber). But the image of X1(Np)Rπ

\Σ → J1(N)Rπ

is clearly contained in the image of the Abel-Jacobi map X1(N)Rπ
→ J1(N)Rπ

which gives a morphismX1(Np)Rπ
\Σ→ X1(N)Rπ

and hence the desired morphism
ǫ : X1(Np)Rπ

\Σ → X1(N)Rπ
\(ss). Let X ⊂ X1(N)Rp

\(ss) be an affine open set,

XRπ
:= X ⊗Rp

Rπ ⊂ X1(N)Rπ
\(ss) its base change to Rπ, and X! := ǫ−1(XRπ

).
Denote by XRπ

the π-adic completion of XRπ
. Also note that the π-adic completion

of X! has two connected components; let X! be the component whose reduction mod
π is contained in I\Σ. We get a morphism ǫ : X! → XRπ

.

3.4. Igusa curve and lift to characteristic zero. It will be useful to recall
one of the possible constructions of the Igusa curve I. Let L be the line bundle
on X1(N)Rp

such that the sections of the powers of L identify with the modular
forms of various weights on Γ1(N); cf. [15] p. 450 where L was denoted by ω. Let
Ep−1 ∈ H0(X1(N)Rp

, Lp−1) be the normalized Eisenstein form of weight p− 1 and
let (ss) be the supersingular locus onX1(N)Rp

(i.e. the zero locus of Ep−1). (Recall
that Ep−1 is normalized by the condition that its Fourier expansion has constant
term 1.) Take an open covering (Xi) of X such that L is trivial on each Xi and

we let xi be a basis of L on Xi. Then Ep−1 = ϕix
p−1
i where ϕi ∈ O(Xi). Set

xi = uijxj , uij ∈ O×(Xij), Xij = Xi ∩Xj. Consider the Rπ-scheme X!! obtained

by gluing the schemes X!!i := Spec O(Xi,Rπ
)[ti]/(t

p−1
i − ϕi) via ti = u−1

ij tj (where

Xi,Rπ
:= Xi⊗Rp

Rπ). Note that t
p−1
i −ϕi are monic polynomials whose derivatives

are invertible in O(Xi,Rπ
)[ti]/(t

p−1
i − ϕi). Denote in the discussion below by an

upper bar the functor ⊗k. Note that the scheme X !! = X!! ⊗ k is isomorphic to
X ! = X! ⊗ k; indeed X !! is clearly birationally equivalent to I (cf. [15], pp. 460,
461) and is the integral closure of X in the fraction field of X !!. We claim that:

Proposition 3.2. The isomorphism X !! ≃ X ! lifts uniquely to an isomorphism
(X!!)̂ ≃ X!.

Proof. Indeed this follows immediately by applying the standard Lemma 3.3

below to S := O(Xi), Xi = X̂i, S! = O(X!i), X!i = ǫ−1(Xi). �

Lemma 3.3. Let S → S! be a morphism of flat π-adically complete Rπ-algebras, let
f ∈ S[t] be a monic polynomial and assume we have an isomorphism σ : S[t]/(f)→
S! such that df/dt is invertible in S[t]/(f). Then σ lifts uniquely to an isomorphism
σ : S[t]/(f)→ S!.

Proof. The homomorphism σ exists and is unique by Hensel’s Lemma; it is an
isomorphism because σ is one and π is a non-zero divisor in both S and S!. �
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3.5. Review of diamond operators. Recall from [15] that G := (Z/pZ)× acts
on the covering X1(Np)→ X1(N) over Z[1/N, ζp] via the diamond operators 〈d〉p,
d ∈ G; this action preserves the Igusa curve I and induces on I the usual diamond
operators. In particular I/G → X1(N)Fp

is an isomorphism. So G acts on the
covering ǫ : X! → XRπ

and hence on the isomorphic covering (X!!)̂ → XRπ
; cf.

Proposition 3.2. It is easy to explicitly find the latter action. Indeed any G-action
on a covering (X!!i)̂ → Xi,Rπ

must have the form

(3.3) d · ti = ζ
χ(d)
p−1 ti, d ∈ G,

for some homomorphism χ : G → Z/(p − 1)Z, where ζp−1 is a primitive root of
unity of order p − 1. Now we claim that χ must be an isomorphism. Indeed if
χ was not surjective then the G-action on the Igusa curve I would be such that
I/G→ X1(N)Fp

has degree > 1, a contradiction.

3.6. Classical and p-adic modular forms. We end by reviewing some more
terminology and facts, to be used later, about classical modular forms and their
relation with the p-adic modular forms of Serre and Katz. Let M be any positive
integer. (In applications we write M = Npν , (N, p) = 1.) In what follows a
classical modular form over a ring B, of weight κ, on Γ1(M) will be understood
in the sense of [12, 16, 15] as a rule that attaches to any B-algebra C and any
triple consisting of an elliptic curve E/C, an embedding µM,C → E[M ], and an
invertible one form on E an element of C satisfying the usual compatibility rules
and the usual holomorphy condition for the Fourier expansion (evaluation on the
Tate curve). We denote by

M(B, κ,M) =M(B, κ,Γ1(M))

the B-module of all these forms. We denote by

M(B, κ,Γ0(M))

the submodule of those forms which are invariant under the usual diamond oper-
ators. In particular any newform as in (3.1) is an element of M(Z, 2,Γ0(Np)); cf.
[13], p.113. Also by [14], p. 21, the spaces M(Rp, κ,Np

ν) embed into Katz’s ring
of generalized p-adic modular forms W = W(N,Rp) parameterizing trivialized el-
liptic curves E over p-adically complete Rp-algebras, equipped with an embedding
µN ⊂ E[N ]; if f ∈M(Rp, κ,Np

ν) then f , as an element of W, satisfies λ · f = λκf
for λ ∈ Z×

p , λ ≡ 1 mod pν . (Here λ · f denotes the action of Z×
p on W induced by

changing the trivialization.) If f is actually in M(Rp, κ,Γ0(Np
ν)) then λ · f = λκf

for λ ∈ Z×
p . In particular any newform f as in (3.1) on Γ0(Np) defines an element

(still denoted by f) of W such that λ · f = λ2f , λ ∈ Z×
p . By [14], p.21, any f as in

(3.1) on Γ0(Np) is a p-adic modular form of weight 2 over Rp in the sense of Serre,
i.e. it is a p-adic limit in W (or equivalently in Rp[[q]]) of classical modular forms
over Rp of weight κn ∈ Z on Γ1(N) with κn ≡ 2 mod pn(p− 1). So if f =

∑
anq

n

is as in (3.1) on Γ0(Np) then, by [14], p. 36,
∑
anq

np is also a p-adic modular form
of weight 2 in the sense of Serre. In particular the reduction mod p of

∑
anq

np is
the expansion of a modular form over k on Γ1(N) of weight ≡ 2 mod p− 1. Finally
recall from [15] that the Serre operator θ := d d

dq : k[[q]] → k[[q]] increases weights

of classical modular forms over k by p+ 1. We conclude that the image in k[[q]] of
∑

(n,p)=1

an
n
qn ∈ Rp[[q]]
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is the expansion of a modular form over k on Γ1(N) of weight ≡ 0 mod p− 1.
We end by recalling a few basic facts about Hecke operators. Throughout the

discussion below the divisors of a given non-zero integer are always taken to be
positive, the greatest common divisor of two non-zero integers m,n is denoted by
(m,n), and we use the convention (m,n) = n form = 0, n 6= 0. Fix again a positive
integer M and let ǫM : Z>0 → {0, 1} be the “trivial primitive character” mod M
defined by ǫM (A) = 1 if (A,M) = 1 and ǫM (A) = 0 otherwise.

For each integers n ≥ 1, κ ≥ 2 and any ring C define the operator Tκ,M (n) :
C[[q]]→ C[[q]] by the formula

Tκ,M (n)f =
∑

m≥0




∑

A|(n,m)

ǫM (A)Aκ−1amn

A2


 qm.

Recall (cf., say, [17]) that if f =
∑

m≥0 amq
m ∈ C[[q]] is the Fourier expansion of a

form in M(C, κ,Γ0(M)), κ ≥ 2, then the series Tκ,M(n)f is the Fourier expansion
of the corresponding Hecke operator on f . Note that if M = Npν , (N, p) = 1,
(n, p) = 1 then Tκ,N = Tκ,M as operators on C[[q]]. Now if f is as in (3.1) then
T2,Np(n)f = anf for all n ≥ 1; so, for (n, p) = 1 we have T2,N(n)f = anf . On the
other hand, going back to an arbitrary f =

∑
amq

m ∈ C[[q]], we have

Tκ,N(p)f =
∑

m

ampq
m + pκ−1

∑

m

amq
pm,

Tκ,Np(p)f =
∑

m

ampq
m.

So Tκ,N (p) ≡ Tκ,Np(p) mod p as operators on C[[q]]. Specializing again to f ∈ Z[[q]]
as in (3.1) on Γ0(Np) we have T2,Np(p)f = apf = f so we get T2,N(p)f ≡ f mod p
in Z[[q]].

4. δp-modular forms arising from bad reduction

In this section we return to “differential matters”. We will use bad reduction
of the modular curve X1(Np) at p to construct certain δπ-functions on this curve.
These functions will then induce (via a geometric trace construction) certain new
interesting δπ-modular forms on the modular curve X1(N). By further applying the
arithmetic trace from Rπ down to Rp we will obtain certain new δp-modular forms
on X1(N). We will then analyze the δπ-Fourier expansions (respectively δp-Fourier
expansions) of these forms. On our way of doing this we will review the concepts
of δp-modular form and δp-Fourier expansion following [5, 6].

4.1. δp-modular forms and δπ-modular forms. Let L be the line bundle on
X1(N)Rp

such that the spaces of sections H0(X1(N)Rp
, L⊗κ) identify with the

spaces M(Rp, κ,N) of classical modular forms over Rp of weight κ on Γ1(N); cf.
[15] p. 450 where L was denoted by ω.

Let X ⊂ X1(N)R an affine open subset. (In [6, 10, 9] we always assumed that X
is disjoint from the cusps; we will not assume this here because we find it convenient
to cover a slightly more general case.) The restriction of L to X will still be denoted
by L. Consider the X-scheme

(4.1) V := Spec

(
⊕

n∈Z

L⊗n

)
.
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By a δp-modular function of order r on X [10] we understand an element of the
ring M r

p := O(Jr
p (V )). If we set, as usual, VRπ

:= V ⊗Rp
Rπ then by a δπ-modular

function of order r on X we will understand an element of M r
π := O(Jr

π(VRπ
)).

The formation of these rings is functorial in X . Also if L is trivial on X with basis
x then M r

p identifies with O(Jr
p (X))[x, x−1, δpx, ..., δ

r
px]̂ and M r

π identifies with

O(Jr
π(X))[x, x−1, δπx, ..., δ

r
πx]̂ . Recall the ring W := Z[φ] of polynomials in φ; it

will play in what follows the role of ring of weights. By a δp-modular form of order r
and weight w ∈W on X we mean a δp-modular function f ∈M r

p such that for each
i, f ∈ O(Jr

p (Xi)) · xwi ; cf. [10]. We denote by M r
p (w) the Rp-module of δp-modular

forms of order r and weight w on X . For w = 0 we set Sr
p = M r

p (0) = O(Jr
p (X)).

By a δπ-modular form of order r and weight w on X we will mean a δπ-modular
function f ∈M r

π such that for each i, f ∈ O(Jr
π(Xi,Rπ

)) ·xwi . We denote by M r
π(w)

the Rπ-module of δπ-modular forms of order r and weight w on X . For w = 0
we set Sr

π = M r
π(0) = O(Jr

π(XRπ
)). In view of (2.1) and (2.9) we have natural

Rπ-algebra homomorphisms

(4.2) M r
π →M r

p ⊗Rp
Rπ

preserving weights, i.e. inducing Rπ-linear maps

M r
π(w)→M r

p (w) ⊗Rp
Rπ, w ∈ W.

Also we have Rp-linear trace maps

(4.3) τπ :M r
π →M r

p

that preserve weights i.e. induce maps

(4.4) τπ :M r
π(w)→M r

p (w), w ∈ W.
In particular we have Rπ-algebra homomorphisms

Sr
π → Sr

p ⊗Rp
Rπ

and R-linear trace maps

τπ : Sr
π → Sr

p .

When applied to the scheme V , Definition 2.4 translates into the following:

Definition 4.1. A δp-modular function f ∈ M r
p is called δπ-overconvergent if one

of the following equivalent conditions is satisfied:
1) f times a power of p belongs to the image of the map (4.2);
2) f times a power of p belongs to the image of the map (4.3).

4.2. δπ-modular forms from δπ-functions on X!. Let X ⊂ X1(N)Rp
be disjoint

from the supersingular locus (ss) (but necessarily from (cusps) !). There is a
canonical way of constructing δπ-modular forms of weights 0,−1, ...,−p+ 2 on X
from δπ-functions on X!. Indeed we will construct natural geometric trace maps

(4.5) τκ : O(Jr
π(X!))→M r

π(−κ), κ = 0, ..., p− 2,

as follows. The isomorphism (X!!)̂ ≃ X! in Proposition 3.2 induces an isomorphism

Jr
π(X!) ≃ Jr

π(X!!). Since X!!i := Spec O(Xi,Rπ
)[ti]/(t

p−1
i − ϕi) is étale over Xi,Rπ

and since the formation of π-jet spaces commutes with étale maps it follows that
we have an identification

(4.6) O(Jr
π(X!!i)) = O(Jr

π(Xi,Rπ
))[ti]/(t

p−1
i − ϕi).
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Let us denote the class of ti in the latter ring again by ti and let the image of

α ∈ O(Jr
π(X!)) ≃ O(Jr

π(X!!)) in O(Jr
π(X!!i)) be

∑p−2
κ=0 ακ,it

κ
i , ακ,i ∈ O(Jr

π(Xi,Rπ
)).

Then define

τκ,iα := ακ,ix
−κ
i ∈ O(Jr

π(Xi,Rπ
)) · x−κ

i .

Note that from the equalities

p−2∑

κ=0

ακ,jt
κ
j =

p−2∑

κ=0

ακ,it
κ
i =

p−2∑

κ=0

ακ,iu
−κ
ij t

κ
j

it follows that ακ,i = uκijακ,j hence τκ,iα = τκ,jα for all i and j. So the latter give

rise to well defined elements τκα ∈M r
π(−κ) which ends the construction of the map

(4.5).

Proposition 4.2. The map

(4.7) O(Jr
π(X!))→

p−2⊕

κ=0

M r
π(−κ), α 7→ (τ0α, ..., τp−2α)

is an isomorphism.

Proof. Injectivity is clear from construction. Surjectivity immediately follows by
reversing the construction of the trace maps above. �.

On the other hand it will be useful to have a criterion saying when a δπ-function
on X! “comes from” a δπ-modular form on X of weight 0, i.e. from a δπ-function on
X . Indeed recall the G = (Z/pZ)×-action on X! induced by the diamond operators.
This action induces a G-action on O(Jr

π(X!)) for all r ≥ 1. Then we have:

Proposition 4.3. The ring O(Jr
π(X!))

G of G-invariant elements of O(Jr
π(X!))

equals O(Jr
π(XRπ

)).

Proof. This follows immediately from the identification (4.6) and the fact that
G acts on ti by the formula (3.3) where χ is an isomorphism. �

4.3. δπ-character composed with modular parameterization. We assume,
unless otherwise specified, that π = 1 − ζp and we fix, as usual an embedding
Z[1/N, ζN , ζp] → Rπ. Also recall our fixed elliptic curve A with modular parame-
trization (3.2) and the modular form f in (3.1). We continue to consider X ⊂
X1(N)Rp

an affine open set disjoint from (ss). We shall freely use the notation
in our section on bad reduction. By the Néron property [20], p. 319, we get a
morphism Φ : X! → ARπ

over Rπ. We get an induced morphism from X! into
the connected component (A0

Rπ
)̂ ≃ (Gm)̂ . This morphism Φ0 : X! → (Gm)̂

induces a morphism Φ1 : J1
π(X!) → J1

π(Gm). Now take the standard δπ-character
ψπ ∈ O(J1

π(Gm)), cf. (2.11), identified with a morphism ψπ : J1
π(Gm) → (A1

Rπ
)̂ .

By composition we get an induced morphism f ♯ := ψπ ◦ Φ1 : J1
π(X!) → (A1

Rπ
)̂ .

This morphism can be identified with an element

(4.8) f ♯
π ∈ O(J1

π(X!)).

(Here f in f ♯
π refers to the newform f =

∑
anq

n (3.1).) Now, since f is a form
on Γ0(Np) it follows that Φ : X! → ARπ

is invariant under the diamond operators
〈d〉p, d ∈ G. This implies that f ♯

π is G-invariant. By Proposition 4.3 it follows that

(4.9) f ♯
π ∈ O(J1

π(XRπ
)) =M1

π(0) = S1
π
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i.e. f ♯
π is a δπ-modular form of weight 0. Consequently its image via the corre-

sponding map (4.4) defines a δp-modular form of weight 0,

(4.10) τπf
♯
π ∈M1

p (0) = S1
p .

4.4. δp-Fourier expansions and δπ-Fourier expansions. The Rp-point ∞ on
X1(N)Rp

induces δπ-Fourier expansion maps

E : O(Jr
π(X!))→ Rπ((q))[δπq, ..., δ

r
πq]̂ .

Indeed to construct such a map we may assume X contains∞; but in this case the
map arises because X!! → XRπ

is étale so the inverse image of ∞ by this map is a
disjoint union of Rπ-points.

On the other hand there are δπ-Fourier expansion maps

(4.11) E :M r
π → Rπ((q))[δπq, ..., δ

r
πq]̂ .

compatible, in the obvious sense, with the previous ones and with the δp-Fourier
expansion maps in [6, 10]

(4.12) E : M r
p → Rp((q))[δpq, ..., δ

r
pq]̂ .

We recall [6] the δp-Fourier expansion principle according to which for any w the
map

E :M r
p (w)→ Rp((q))[δpq, ..., δ

r
pq]̂

is injective and has a torsion free cokernel.

Remark 4.4. The maps (4.11) and (4.12) commute with the trace maps τπ :M r
π →

M r
p and τπ : Rπ((q))[δπq, ..., δ

r
πq]̂ → Rp((q))[δpq, ..., δ

r
pq]̂ , in the sense that E◦τπ =

τπ ◦ E.

Remark 4.5. Clearly if f ∈M r
p of δπ-overconvergent then its δp-Fourier expansion

E(f) is δπ-overconvergent. Later we will prove the δπ-overconvergence of a number
of remarkable δp-modular functions. By the present remark we will also get that
their δp-Fourier expansions are δπ-overconvergent. However the δπ-overconvergence
of these expansions can also be proved directly.

The next Proposition establishes a link between the δπ-Fourier expansions of
δπ-functions on X! and δπ-Fourier expansions of their geometric traces. Recall the
series Ep−1(q) := E(Ep−1) ∈ Rp[[q]] and the fact that Ep−1(q) ≡ 1 mod p in Rp[[q]]
[16]. So the series Ep−1(q) has a unique (p−1)-root ǫ(q) ∈ Rp[[q]] such that ǫ(q) ≡ 1
mod p in Rp[[q]].

Proposition 4.6. If α ∈ O(J1
π(X!)) then its δπ-Fourier expansion is given by

E(α) =

p−2∑

κ=0

E(τκα)ǫ(q)
κ.

Proof. Shrinking X we may assume X = Xi for some i. From Ep−1 = ϕix
p−1
i

we get

Ep−1(q) = E(ϕi)E(xi)
p−1 = E(ti)

p−1E(xi)
p−1.

So E(tixi) = c · ǫ(q), c ∈ R×
p , c

p−1 = 1. Now the birational isomorphism between

the Igusa curve I and X !! sends tixi into the form a in [15], p. 460-461, and the
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Fourier expansion in k[[q]] of the form a at ∞ is 1. It follows that c = 1. We get

E(α) =
∑p−2

κ=0E(ακ,i)E(ti)
κ

=
∑p−2

κ=0E(ακ,i)E(xi)
−κE(xi)

κE(ti)
κ

=
∑p−2

κ=0E(τκα)ǫ(q)
κ.

�

Proposition 4.7. If f ♯
π ∈ O(J1

π(X!)) is attached to f =
∑
anq

n an in (4.9) then
its δπ-Fourier expansion E(f ♯

π) ∈ Rπ[[q]][δπq]̂ has the form:

(4.13)

E(f ♯
π) = 1

π (φ − p)
∑

n≥1
an

n q
n

= 1
π

[(∑
n≥1

an

n (qp + πδπq)
n
)
− p

(∑
n≥1

an

n q
n
)]

= 1
π

[(∑
n≥1

an

n (qp + pδpq)
n
)
− p

(∑
n≥1

an

n q
n
)]
.

Proof. Entirely similar to the proof of Theorem 6.3 in [7] �

Remark 4.8. The series in the right hand side of Equation 4.13 are a priori elements
of

Kπ[[q, δπq]] = Kπ[[q, δpq]].

The Lemma says in particular that these series are actually in Rπ[[q]][δπq]̂ . One
can also check the latter directly.

Proposition 4.9. The form τπf
♯
π in (4.10) satisfies the following identity in the

ring Rp[[q]][δpq]̂ :

E(τπf
♯
π) =

p− 1

2




∑

n≥1

an
n
(qp + pδpq)

n


− p


∑

n≥1

an
n
qn




 .

Proof. This follows from Proposition 4.7 by using Tr( 1π ) =
p−1
2 . �

One can get a more explicit picture mod π (respectively mod p) as follows.

Proposition 4.10. The form f ♯
π in (4.9) satisfies the following congruence mod π

in the ring Rπ[[q]][δπq]̂ :

E(f ♯
π) ≡


∑

n≥1

anq
np


 · δπq

qp
−


∑

n≥1

anq
np2


 ·

(
δπq

qp

)p

.

Proof. Using Proposition 4.7 and the fact that amn = aman for (m,n) = 1 and
api = 1 for all i [17], p.282, one gets immediately that

E(f ♯
π)|δπq=0 = − p

π

∑

(m,p)=1

am
m
qm ≡ 0 mod π.

Also the coefficient of the monomial qp(n−1)δπq in E(f ♯
π) equals an. Finally fix

i ≥ 2; the coefficient of the monomial qp(n−i)(δπq)
i in E(f ♯

π) equals

ci,n :=
πi−1

i!
(n− 1)(n− 2)...(n− i+ 1)an ∈ Kπ.
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If i < p clearly vp(ci,n) > 0. If i > p or if i = p and (n, p) = 1 then

vp((n− 1)(n− 2)...(n− i+ 1)) ≥ 1

and since

vp

(
πi−1

i!

)
≥ i− 1

p− 1
− i

p− 1
= − 1

p− 1
.

we get vp(ci,n) > 0. Finally, assume i = p and p|n. Then

ci,n ≡
πp−1

p
an ≡ −an mod π

because
p = πp−1(1 + ζp)(1 + ζp + ζ2p )...(1 + ζp + ...+ ζp−2

p )

≡ πp−1(p− 1)! mod π

≡ −πp−1 mod π

which easily concludes the proof because anp = an. �

Proposition 4.11. The form τπf
♯
π ∈ S1

p in (4.10) belongs to pS1
p . Moreover the

form

f ♯
p :=

2

p
τπf

♯
π ∈ S1

p

is δπ-overconvergent and satisfies the following congruence mod p

E(f ♯
p) ≡


 ∑

(n,p)=1

an
n
qn


−


∑

n≥1

anq
np


 δpq

qp

in the ring Rp[[q]][δpq]̂ .

Proof. By Proposition 4.9, one gets

E(τπf
♯
π)|δpq=0 = −p(p− 1)

2

∑

(n,p)=1

an
n
qn.

The coefficient of qp(n−1)δpq in E(τπf
♯
π) equals pan. Also, for i ≥ 2, the coefficient

of qp(n−i)(δpq)
i in E(τπf

♯
π) equals

p− 1

2

pi

i!
an(n− 1)(n− 2)...(n− i+ 1).

In particular E(τπf
♯
π) is divisible by p in the ring R[[q]][δpq]̂ . By the δp-Fourier

expansion principle it follows that τπf
♯
π is divisible by p in S1

p which proves the first
assertion of the Proposition. δπ-overconvergence follows from Proposition 2.3. The
rest of the Proposition then follows from the above coefficient computations. �

Remark 4.12. Let f =
∑
amq

m ∈ k[[q]], f (−1) :=
∑

(n,p)=1
an

n q
n ∈ k[[q]] and let V

be k-algebra endomorphism of k[[q]] that sends q into qp. Then the series in k[[q]]
obtained from the right hand side of the formula in Proposition 4.11 by reducing
mod p equals

g := f (−1) − V (f)
δpq

qp
∈ k[[q]][δpq].

This series g is Taylor δp-p-symmetric in the sense of [9]. Also, recalling from [9] the
operators denoted by “pU” and “pT0(p)” acting on Taylor δp − p-symmetric series



24 ALEXANDRU BUIUM AND ARNAB SAHA

and using the fact that T2,N (p)f = f it is a trivial exercise (using the formulae in
[9]) to check that “pU”g = g and hence

“pT0(p)”g = g + V (f (−1)).

In particular note that g is not an eigenvector of “pT0(p)”. On the other hand an
action of the operators T0(n) (for level N) on k[[q]][δpq] was introduced in [9]; using

the fact that T2,N(n)f = anf for (n, p) = 1 it follows (using the formulae in [9])
that nT0(n)g = ang for (n, p) = 1. So g is an eigenvector of all operators nT0(n)
with eigenvalues an.

5. δπ-overconvergence of some basic δp-modular forms

In this section we prove the δπ-overconvergence of some of the basic δp-functions
of the theory in [3, 5, 1, 6, 7, 11].

5.1. Review of the δp-modular forms f r
p [6]. We start by reviewing the con-

struction of some basic δp-modular forms f r
p = f r

p,jet ∈M1
p (−1− φr), r ≥ 1. These

were introduced in [5, 6]. (There is a “crystalline definition” of these forms intro-
duced in [5] for r = 1 and [1] for r ≥ 1 in the case of level 1, and in [6] for arbitrary
level; the equivalence of these definitions follows from [6], Proposition 8.86.) Below
we follow [6], p. 263. The construction is as follows. We let X ⊂ X1(N)Rp

be an
affine open set disjoint from (cusps). Assume first that L is trivial on X and let
x be a basis of L. Consider the universal elliptic curve E → X over Rp and view
x as a relative 1-form on E/X . Cover E by affine open sets Ui. Then the natural

projections Jr
p (Ui)→ Ûi⊗̂S0

p
Sr
p possess sections

si,p : Ûi⊗̂S0
p
Sr
p → Jr

p (Ui).

Let N r
p := Ker(Jr

p (E) → Ê ⊗S0
p
Sr
p); it is a group object in the category of p-adic

formal schemes over Sr
p . Then the differences si,p − sj,p define morphisms

si,p − sj,p : Ûij⊗̂S0
p
Sr
p → N r

p

where the difference is taken in the group law of Jr
p (E)/Sr

p. On the other hand

N r
p identifies with the group (Âr

Sr
p
, [+]) in (2.15) with coordinates given by the

δpT, ..., δ
r
pT , where T is a parameter at the origin of E chosen such that x ≡ dT mod

T . Let Lr
p be the series in (2.16) attached to the formal group of E with respect to

the same parameter T , viewed as a homomorphism Lr
p : N r

p = (Âr
Sr
p
, [+])→ Ĝa,Sr

p
.

The compositions

Lr
p ◦ (si,p − sj,p) : Ûij⊗̂S0

p
Sr
p → Ĝa,Sr

p

define a Cech cocycle of elements

(5.1) ϕr
ij ∈ O(Ûij⊗̂S0

p
Sr
p)

and hence a cohomology class ϕr in H1(E⊗̂S0
p
Sr
p ,O) = H1(E ⊗S0

p
Sr
p,O). The

expression

(5.2) 〈ϕr, x〉x−1−φr

,

where the brackets mean Serre duality, is a well defined element of Sr
p · x−1−φr

.
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If L is not necessarily free on X we can make the above construction locally and
the various expressions (5.2) glue together to give an element

(5.3) f r
p = f r

p,jet ∈M r
p (−1− φr).

5.2. δπ-overconvergence of f r
p .

Theorem 5.1. Assume vp(π) ≥ 1
p−1 . Then the forms

p

π
f r
p ∈M r

p (−1− φr)⊗Rp
Rπ

belong to the image of the homomorphism

M r
π(−1− φr)→M r

p (−1− φr)⊗Rp
Rπ.

In particular f r
p are δπ-overconvergent.

Proof. The question is clearly local on X in the Zariski topology so we may
assume that L is free on X with basis x and X has an étale coordinate t : X → A1.
We may also assume that each Ui → X factors though an étale map ti : Ui →
X × A1. Next we note that

(5.4) Ûi⊗̂S0
p
Sr
p ⊗Rp

Rπ ≃ (Ûi ⊗Rp
Rπ)⊗S0

π
(Sr

p ⊗Rp
Rπ).

(This follows from the general fact that if S is a ring, S′, C are S-algebras, A,B are
C-algebras, and A′ = A⊗S S

′, B′ = B ⊗S S
′, C′ = C ⊗S S

′, then A⊗C B ⊗S S
′ ≃

A ⊗C B′ ≃ A ⊗C C′ ⊗C′ B′ ≃ A′ ⊗C′ B′.) Consequently there is a canonical

homomorphism from (5.4) to Ûi,Rπ
⊗̂S0

π
Sr
π, where, as usual, Ûi,Rπ

= Ûi⊗Rp
Rπ. We

claim that one can find sections si,p and si,π of the canonical projections making
the following diagram commute:

(5.5)

Ûi⊗̂S0
p
Sr
p ⊗Rp

Rπ
si,p−→ Jr

p (Ui)⊗Rp
Rπ

↓ ↓

Ûi,Rπ
⊗̂S0

π
Sr
π

si,π−→ Jr
π(Ui,Rπ

)

where the vertical morphisms are the canonical ones. Indeed consider the ring

B = O(Ûi,Rπ
) and the commutative diagram

(5.6)

B[δpt, ..., δ
r
pt]̂ ← B[δpt, ..., δ

r
pt, δpti, ..., δ

r
pti ]̂

↑ ↑

B[δπt, ..., δ
r
πt]̂ ← B[δπt, ..., δ

r
πt, δπti, ..., δ

r
πti ]̂

with horizontal arrows sending δpti, ..., δ
r
pti and δπti, ..., δ

r
πti into 0. Then the spaces

in the diagram (5.5) are the formal spectra of the rings in the diagram (5.6) and we
can take the horizontal arrows in the diagram (5.5) to be induced by the horizontal
arrows in the diagram (5.6). The diagram (5.5) plus Proposition 2.16 then induces
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a commutative diagram

(5.7)

Ûij⊗̂S0
p
Sr
p ⊗Rp

Rπ
si,p−sj,p−→ N r

p ⊗Rp
Rπ

p
π
Lr

p−→ Ĝa,Sr
p⊗RpRπ

↓ ↓ ↓

Ûij,Rπ
⊗̂S0

π
Sr
π

si,π−sj,π−→ N r
π

Lr
π−→ Ĝa,Sr

π

where N r
π is the kernel of the canonical projection Jr

π(ERπ
) → ÊRπ

⊗̂S0
π
Sr
π and

the vertical morphisms are the canonical ones. The diagram (5.7) shows that the

cocycle p
πϕ

r
ij in (5.1) comes from a cocycle of elements in O(Ûij,Rπ

⊗̂S0
π
Sr
π). This

immediately implies that the element p
π 〈ϕr, x〉 ∈ Sr

p⊗Rp
Rπ comes from an element

in Sr
π and we are done. �

Remark 5.2. Since f1
p ∈ M1

p is δπ-overconvergent it follows that its δp-Fourier

expansion E(f1
p ) ∈ Rp((q))[δpq]̂ is also δπ-overconvergent. But, as shown in [5],

E(f1
p ) equals the series Ψp in (2.14) and note that we knew already (cf. the remarks

surounding Equation 2.14) that Ψp is δπ-overconvergent. A similar remark holds
for f r

p , r ≥ 2.

5.3. δπ-overconvergence of f∂
p . In this subsection we assume that X ⊂ X1(N)Rp

is an affine open set disjoint from (cusps) and (ss). There is a remarkable form
f∂
p ∈ M1

p (φ − 1) playing a key role in the theory. This was introduced in [1] in

the level 1 case; cf. [6], p. 269, for the arbitrary level case. The definition of f∂
p

in [6], loc.cit. is crystalline but an alternative description of this form (up to a
multiplicative factor in R×) can be given via [6], Proposition 8.64; here we shall
follow this latter approach. Indeed one has a canonical R-derivation ∂ : O(V ) →
O(V ) defined by Katz [16] via the Gauss-Manin connection, generalizing the “Serre
operator”; cf. [6], pp.254-255, for a review of this. (Here V is as in (4.1).) One can
consider then the conjugate operator ∂1 : M1

p → M1
p = O(J1

p (V )); cf. (2.17). One

can also consider the Ramanujan form P ∈ M0
p (2); cf. [6], p. 255, for a review of

this. Then one can define f∂
p ∈M1

p by the formula

(5.8) f∂
p := ∂1f

1
p − pφ(P )f1

p ∈M1
p .

It turns out that actually f∂
p has weight φ− 1, i.e. f∂

p ∈ M1
p (φ− 1). (By the way,

as shown in [1], f∂
p has δp-Fourier expansion E(f∂

p ) = 1.)
Theorem 5.1 plus Proposition 2.17 imply the following:

Theorem 5.3. Assume vp(π) ≥ 1
p−1 . Then the element p

πf
∂
p ∈M1

p ⊗Rp
Rπ belongs

to the image of the map M1
π →M1

p ⊗Rp
Rπ. In particular f∂

p is δπ-overconvergent.

5.4. Review of the δp-characters ψp of elliptic curves [6]. We follow [6], pp.
194-197. Let A/Rp be an elliptic curve and fix a level Γ1(N) structure on A.
(The construction below does not depend on this level structure.) If Y1(N)Rp

:=
X1(N)Rp

\(cusps) we get an induced point PA : Spec Rp → Y1(N)Rp
. Let X ⊂

Y1(N)Rp
be an affine open set “containing” the above point and such that the

line bundle L on X is trivial with basis x. Let ω be the invertible 1-form on A
defined by x. By the universality property of the p-jet spaces we get canonical
morphisms P r

A : O(Jr
p (X)) → R compatible with δp in the obvious sense. Then

any δp-modular form f ∈ M r
p on X defines an element f(A,ω) ∈ Rp as follows:
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we write f = f̃ · xw with f̃ ∈ O(Jr
p (X)) and one takes f(A,ω) ∈ Rp to be the

image of f̃ in Rp via the above morphism P r
A. In particular one can consider the

δp-modular forms f1
p ∈M1

p (−1−φ) and f2
p ∈M2

p (−1−φ2) in (5.3); we get elements

f1
p (A,ω), f

2
p (A,ω) ∈ Rp. We recall that f1

p (A,ω) = 0 if and only if A has a lift of
Frobenius i.e. the p-power Frobenius of A ⊗Rp

k lifts to a morphism of schemes
A → A over Z. Assume in what follows that A does not have lift of Frobenius.

Then the quotient
f2
p (A,ω)

f1
p (A,ω) , which is a priori an element of Kp, lies actually in Rp.

On the other hand we may consider the cocycles (5.1). The images of these cocycles

via the homomorphism Sr
p = O(Jr

p (X))→ O(Jr
p (X

′))
P r

A→ Rp yield cocycles

ϕr
ij(A) ∈ O(Ûij,A)

where Uij,A = Uij ∩A. (Here we view A embedded into the universal elliptic curve
E via the isomorphism A ≃ E ×X,PA

Rp.) The cocycle

ϕ2
ij(A)−

f2
p (A,ω)

f1
p (A,ω)

ϕ1
ij(A) ∈ O(Ûij,A)

turns out, by construction, to be a coboundary

Γi − Γj

with Γi ∈ O(Ûi,A), Ui,A = Ui ∩ A. Recall the series Lr
p ∈ Sr

p[δpT, ..., δ
r
pT ]̂ ; cf.

(2.16). (Here T is an étale coordinate at the origin of E such that x ≡ dT mod T .)
The images of Lr

p via Sr
p → Rp yield series Lr

p(A) ∈ Rp[δpT, ..., δ
r
pT ]̂ . Take sections

si,p : Ûi,A → J2
p (Ui,A) of the natural projections and let N2

p,A be the kernel of the

projection J2
p (A)→ Â. The maps

(5.9) τi,p : Ûi,A×̂N2
p,A → J2

p (Ui,A),

given at the level of points by (a, b) 7→ si,p(a) + b, are isomorphisms. Consider the
functions

(5.10)

ψi,p := L2
p(A) −

f2
p (A,ω)

f1
p (A,ω)L

1
p(A) + Γi

∈ O(Ûi,A)[δpT, δ
2
pT ]̂

= O(Ûi,A×̂N2
p,A).

Then it turns out that the functions

ψi,p ◦ τ−1
i,p ∈ O(J2

p (Ui,A))

glue together to give a function

(5.11) ψp ∈ O(J2(A)).

This map turns out to be an homomorphism J2
p (A) → Ĝa and was referred to in

[6], Definition 7.24, as the canonical δp-character (of order 2) of A. (In loc. cit. ψp

was denoted by ψcan.)
In case A has a lift of Frobenius a different (but similar, and in fact easier)

construction leads to what in cf. [6], Definition 7.24 was referred to as the canonical
δp-character (of order 1) of A. We will denote it again by

(5.12) ψp ∈ O(J1
p (A)).
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In [6], loc.cit. this δp-character was again denoted by ψcan.

5.5. δπ-overconvergence of ψp. Let A/Rp be an elliptic curve and let r be 1 or
2 according as A has a lift of Frobenius or not.

Theorem 5.4. Assume vp(π) ≥ 1
p−1 . Then the function p

πψp belongs to the image

of the map

O(Jr
π(ARπ

))→ O(Jr
p (A))⊗Rp

Rπ.

In particular ψp is δπ-overconvergent.

Proof. We give the proof in case r = 2. The proof in case r = 1 is similar. It is
enough to show that one can choose the data in our construction such that:

1) The functions p
πψi,p (where ψi,p is as in (5.10)) belong to the image of

O(Ûi,A ⊗Rp
Rπ)[δπT, δ

2
πT ]̂ → O(Ûi,A ⊗Rp

Rπ)[δpT, δ
2
pT ]̂ ;

2) There are commutative diagrams

(Ûi,A ⊗Rp
Rπ)×̂(N2

p,A ⊗Rp
Rπ)

τi,p→ J2
p (Ui,A)⊗Rp

Rπ

↓ ↓
(Ûi,A ⊗Rp

Rπ)×̂N2
π,A

τi,π→ J2
π(Ui,A ⊗Rp

Rπ)

for isomorphisms τi,π.
Now 1) follows from the fact that p

πL
r
p(A) ∈ Rπ[δπT, δ

2
πT ]̂ (cf. Theorem 2.16),

and Γi ∈ O(Ûi,A). On the other hand 2) follows from the fact that one can choose
the sections si,p together with sections si,π as in (5.5); then one can define the
isomorphisms τi,π using si,π in the obvious way. This ends the proof. �

5.6. δπ-overconvergence of f ♯
p for f on Γ0(N). We first recall the construction

of the δp-modular forms f ♯
p attached to newforms on Γ0(N) given in [7, 11]. As

usual we let N > 4, (N, p) = 1. Fix, in what follows, a normalized newform
f =

∑
n≥1 anq

n of weight 2 on Γ0(N) over Q and an elliptic curve A over Q of
conductor N such that f and A correspond to each other in the sense of Theorem
3.1; recall that this means that there exists a morphism

(5.13) Φ : X0(N)→ A

over Q such that the pull back to X0(N) of some 1-form on A over Q corresponds
to f and L(A, s) =

∑
ann

−s. Fix an embedding Z[1/N, ζN ] ⊂ Rp. Let ARp
be the

Néron model of A⊗QKp over Rp (which is an elliptic curve) and let X1(N)Rp
be the

(smooth) “canonical” model of X1(N) over Rp which has been considered before.
By the Néron model property there is an induced morphism Φp : X1(N)Rp

→ ARp
.

Let X ⊂ X1(N)Rp
be any affine open set. Let r be 1 or 2 according as ARp

has or
has not a lift of Frobenius. (Note that we always have r = 2 if A has no complex
multiplication.) The image of the canonical δp-character ψp ∈ O(Jr

p (ARp
)) in (5.11)

(respectively (5.12)) via the map

O(Jr
p (ARp

))
Φ∗

p−→ O(Jr
p (X)) = Sr

p =M r
p (0) ⊂M r

p

is denoted by f ♯ = f ♯
p and is a δp-modular form of weight 0; this form was introduced

in [7] and played a key role in [11].
Putting together Theorem 5.4 and Remark 2.7 we get:
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Theorem 5.5. Assume vp(π) ≥ 1
p−1 . Then the function p

πf
♯
p belongs to the image

of the map
O(Jr

π(XRπ
))→ O(Jr

p (X))⊗Rp
Rπ.

In particular f ♯
p is δπ-overconvergent.
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