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Abstract. We describe the non-trivial deformations of the standard embedding of the Lie super-
algebras D(2, 1; x) into the derived contact superconformal algebra K ′(4), and realize D(2, 1; x) as
4× 4 matrices over a Weyl algebra.

1. Introduction

The Lie superalgebras D(2, 1;x) have recently been studied by mathematicians
and physicists from different points of view. In particular, they became important in
the context of the AdS/CFT correspondence [2, 6, 13]. Recall that D(2, 1;x), where
x ∈ C\{0,−1}, is a one-parameter family of classical simple Lie superalgebras of
dimension 17 [7]. The bosonic part of D(2, 1;x) is sl(2)⊕sl(2)⊕sl(2), and the action of
D(2, 1;x)0̄ on D(2, 1;x)1̄ is the product of 2-dimensional representations. We will use
another notation for these superalgebras (see [20]): Γ(σ1, σ2, σ3), where σi are nonzero
complex numbers such that σ1 + σ2 + σ3 = 0. Note that Γ(σ1, σ2, σ3) ∼= D(2, 1;x),
where x = σ1/σ2.

The family D(2, 1;x) is closely connected with the derived contact superconformal
algebra K ′(4) [3]. Recall that K ′(4) is spanned by 16 fields, one of which is a Virasoro
field, and it is also known to physicists as the centerless big N = 4 superconformal
algebra [8, 9]. It was shown in [21, 22] that the big N = 4 superconformal algebra
contains D(2, 1;x) as a subsuperalgebra.

In this work we consider the standard embedding of Γα = Γ(2,−1 − α, α − 1),
where α ∈ C, into the Poisson superalgebra P (4) of pseudodifferential symbols on the
supercircle S1|2 with two odd variables. Γα is naturally embedded into K ′(4) ⊂ P (4).
We describe the infinitesimal deformations of this embedding, which are classified by
H1(Γα, K

′(4)). We prove that this cohomology space is one-dimensional and that the
infinitesimal deformations are indeed the formal deformations of the embedding.

Integrability of infinitesimal deformations of embeddings of Lie algebras were stud-
ied by A. Nijenhuis and R. W. Richardson in [14, 19]. For the standard embeddings
of V ect(S1) into the Poisson algebra on S1 and into the Lie algebra of pseudodiffer-
ential symbols on S1 they were studied in [15, 16]. Similar problems in the case of
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superalgebras K(1) and K(2) of contact vector fields on S1|1 and S1|2 were studied
in [4, 1]. In our work we use the similar approach.

Note that in [17, 18] we constructed a different embedding of Γα into P (4), where
pseudodifferential symbols were essentially used. In this work we actually obtain an
embedding of Γα into the Lie superalgebra of differential operators on S1|2.

We also realize Γα as a Lie subsuperalgebra of 4×4 matrices over the Weyl algebra
W =

∑
i≥0 C[t, t−1]di, where d = ∂

∂t
. This realization is different from the one given in

[17, 18].

This work was done during my staying in Bonn. I would like to thank the Max-
Planck-Institut für Mathematik for the hospitality and support and for the excellent
working conditions.

2. Superalgebras Γ(σ1, σ2, σ3)

Recall the definition of Γ(σ1, σ2, σ3) [20]. Let g = g0̄ ⊕ g1̄ be a Lie superalgebra,
where g0̄ = sp(ψ1)⊕sp(ψ2)⊕sp(ψ3) and g1̄ = V1⊗V2⊗V3, where Vi are 2-dimensional
vector spaces, and ψi is a non-degenerate skew-symmetric form on Vi, i = 1, 2, 3. A
representation of g0̄ on g1̄ is the tensor product of the standard representations of
sp(ψi) in Vi. Consider sp(ψi) - invariant bilinear mapping

Pi : Vi × Vi → sp(ψi), i = 1, 2, 3,

given by
Pi(xi, yi)zi = ψi(yi, zi)xi − ψi(zi, xi)yi

for all xi, yi, zi ∈ Vi. Let P be a mapping

P : g1̄ × g1̄ → g0̄

given by
P(x1 ⊗ x2 ⊗ x3, y1 ⊗ y2 ⊗ y3) =

σ1ψ2(x2, y2)ψ3(x3, y3)P1(x1, y1)+

σ2ψ1(x1, y1)ψ3(x3, y3)P2(x2, y2)+

σ3ψ1(x1, y1)ψ2(x2, y2)P3(x3, y3)

for all xi, yi ∈ Vi, i = 1, 2, 3, where σ1, σ2, σ3 are some complex numbers. The super
Jacobi identity is satisfied if and only if σ1 + σ2 + σ3 = 0. In this case g is denoted by
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Γ(σ1, σ2, σ3). Superalgebras Γ(σ1, σ2, σ3) and Γ(σ′1, σ
′
2, σ

′
3) are isomorphic if and only

if there exists a nonzero element k ∈ C and a permutation π of the set {1, 2, 3} such
that

σ′i = k · σπi for i = 1, 2, 3.

Superalgebras Γ(σ1, σ2, σ3) are simple if and only if σ1, σ2, σ3 are all different from
zero. Note that Γ(σ1, σ2, σ3) ∼= D(2, 1;x) (see [7]) where x = σ1/σ2.

3. Embeddings into the Poisson superalgebra on S1|2

The Poisson algebra P of pseudodifferential symbols on the circle is formed by the
formal series

A(t, τ) =
n∑
−∞

ai(t)τ
i,

where ai(t) ∈ C[t, t−1], and the even variable τ corresponds to ∂t, see [15]. The Poisson
bracket is defined as follows:

{A(t, τ), B(t, τ)} = ∂τA(t, τ)∂tB(t, τ)− ∂tA(t, τ)∂τB(t, τ).

An associative algebra Ph, where h ∈ (0, 1], is a deformation of P , see [16]. The
multiplication in Ph is given as follows:

A(t, τ) ◦h B(t, τ) =
∑
n≥0

hn

n!
∂nτA(t, τ)∂nt B(t, τ).

The Lie algebra structure on the vector space Ph is given by

[A,B]h = A ◦h B −B ◦h A,

so that

limh→0
1

h
[A,B]h = {A,B}.

Let Λ(2N) be the Grassmann algebra in 2N variables ξ1, . . . , ξN , η1, . . . , ηN with the
parity p(ξi) = p(ηi) = 1̄. The Poisson superalgebra of pseudodifferential symbols on
S1|N is P (2N) = P ⊗ Λ(2N). The Poisson bracket is defined as follows:

{A,B} = ∂τA∂tB − ∂tA∂τB + (−1)p(A)+1

N∑
i=1

(∂ξiA∂ηi
B + ∂ηi

A∂ξiB).
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Let W (2N) be the Lie superalgebra of all superderivations of the associative super-
algebra C[t, t−1]⊗ Λ(2N). By definition,

K(2N) = {D ∈ W (2N) | DΩ = fΩ for some f ∈ C[t, t−1]⊗ Λ(2N)},

where Ω = dt +
∑N

i=1 ξidηi + ηidξi is a differential 1-form, which is called a contact
form [10]. Note that there exists an embedding

K(2N) ⊂ P (2N), N ≥ 0.

Consider a Z-grading on the associative superalgebra P (2N), defined by

deg t = deg ηi = deg τ = deg ξi = 1 for i = 1, . . . , N.

With respect to the Poisson super bracket,

{P(i)(2N), P(j)(2N)} ⊂ P(i+j−2)(2N).

Thus P(2)(2N) is a subsuperalgebra of P (2N), and one can easily check that it is
isomorphic to K(2N). Note that this embedding of K(2N) into P (2N) is different
from the embedding considered in [17, 18], which is based on another Z-grading of
P (2N).

K(2N) is simple if N 6= 2, and if N = 2, then the derived Lie superalgebra
K ′(4) = [K(4), K(4)] is a simple ideal in K(4) of codimension one, defined from the
exact sequence

0→ K ′(4)→ K(4)→ Ct−1τ−1ξ1ξ2η1η2 → 0.

Proposition 3.1. For each α ∈ C there exists an embedding

ρα : Γ(2,−1− α, α− 1)→ K ′(4) ⊂ P (4).

Γα = ρα(Γ(2,−1− α, α− 1)) is spanned by the following elements:

E1
α = t2, F 1

α = τ 2 − 2αt−2ξ1ξ2η1η2, H1
α = tτ,

E2
α = ξ1ξ2, F 2

α = η1η2, H2
α = ξ1η1 + ξ2η2,

E3
α = ξ1η2, F 3

α = ξ2η1, H3
α = ξ1η1 − ξ2η2,

T 1
α = tη1, T 2

α = tη2, T 3
α = tξ1, T 4

α = tξ2,

D1
α = τξ1 + αt−1ξ1ξ2η2, D2

α = τξ2 − αt−1ξ1ξ2η1,

D3
α = τη1 + αt−1ξ2η1η2, D4

α = τη2 − αt−1ξ1η1η2.

(3.1)

Proof. Note that if α = 0, then Γ(2,−1,−1) ∼= spv(2|4), and ρα is the standard
embedding of spv(2|4) into P (4).
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Let
V1 = Span(e1, e2), V2 = Span(f1, f2), V3 = Span(h1, h2),

and
ψ1(e1, e2) = −ψ1(e2, e1) = 1,

ψ2(f1, f2) = −ψ2(f2, f1) = 1,

ψ3(h1, h2) = −ψ3(h2, h1) = 1.

Explicitly an embedding ρα is given as follows:

ρα(P1(e1, e1)) = −E1
α, ρα(P1(e2, e2)) = −F 1

α, ρα(P1(e1, e2)) = −H1
α,

ρα(P2(f1, f1)) = −2F 2
α, ρα(P2(f2, f2)) = −2E2

α, ρα(P2(f1, f2)) = H2
α,

ρα(P3(h1, h1)) = −2F 3
α, ρα(P3(h2, h2)) = 2E3

α, ρα(P3(h1, h2)) = H3
α,

ρα(e1 ⊗ f1 ⊗ h1) =
√

2iT 1
α, ρα(e1 ⊗ f1 ⊗ h2) =

√
2iT 2

α,

ρα(e1 ⊗ f2 ⊗ h1) = −
√

2iT 4
α, ρα(e1 ⊗ f2 ⊗ h2) =

√
2iT 3

α,

ρα(e2 ⊗ f1 ⊗ h1) =
√

2iD3
α, ρα(e2 ⊗ f1 ⊗ h2) =

√
2iD4

α,

ρα(e2 ⊗ f2 ⊗ h1) = −
√

2iD2
α, ρα(e2 ⊗ f2 ⊗ h2) =

√
2iD1

α.

Thus sp(ψi) ∼= Span(Ei
α, H

i
α, F

i
α) for i = 1, 2, 3.

�

4. Deformations of embeddings

Let ρ : g → h be an embedding of Lie superalgebras, then h is a g-module. A
map ρ + βρ1 : g → h, where ρ1 ∈ Z1(g, h) is a Lie superalgebra homomorphism
up to quadratic terms in β. It is called an infinitesimal deformation. Infinitesimal
deformations are classified by H1(g, h), see [14, 19].

Describe obstructions to higher order prolongations of these infinitesimal defor-
mations, see [15, 16]. Let

ρ̃β = ρ+
∞∑
k=1

βkρk : g→ h,

where ρk : g→ h are even linear maps, satisfy

ρ̃β([X, Y ]) = [ρ̃β(X), ρ̃β(Y )].
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ρ̃β is called a formal deformation of ρ. Let ϕβ = ρ̃β − ρ. Then

[ϕβ(X), ρ(Y )] + [ρ(X), ϕβ(Y )]− ϕβ([X, Y ]) +
∑
i,j>0

[ρi(X), ρj(Y )]βi+j = 0. (4.1)

The first three terms are (dϕβ)(X, Y ), where d stands for coboundary. For arbi-
trary linear maps ϕ, ϕ′ : g→ h, define

[[ϕ, ϕ′]] : g⊗ g→ h,

[[ϕ, ϕ′]](X, Y ) = [ϕ(X), ϕ′(Y )] + [ϕ′(X), ϕ(Y )].
(4.2)

The relation (4.1) is equivalent to

dϕβ +
1

2
[[ϕβ, ϕβ]] = 0.

Expanding this relation in power series in β, we have

dρk +
1

2

∑
i+j=k

[[ρi, ρj]] = 0.

The first nontrivial relation is

dρ2 +
1

2
[[ρ1, ρ1]] = 0,

and it gives the first obstruction to integrability of an infinitesimal deformation. Note
that (4.2) defines a bilinear map, called the cup-product:

H1(g, h)⊗H1(g, h)→ H2(g, h).

The obstructions to integrability of infinitesimal deformations lie in H2(g, h). Thus
we have to compute H1(g, h) and the product classes in H2(g, h).

Consider the embedding (3.1).
Theorem 4.1. dimH1(Γα, K

′(4)) = 1. The cohomology is spanned by the class of
the 1-cocycle θ given as follows:

θ(T 1
α) = τ−1ξ2η1η2, θ(T 2

α) = −τ−1ξ1η1η2,

θ(T 3
α) = τ−1ξ1ξ2η2, θ(T 4

α) = −τ−1ξ1ξ2η1

θ(D1
α) = t−1ξ1ξ2η2, θ(D2

α) = −t−1ξ1ξ2η1,

θ(D3
α) = t−1ξ2η1η2, θ(D4

α) = −t−1ξ1η1η2,

θ(E1
α) = 2τ−2ξ1ξ2η1η2, θ(F 1

α) = −2t−2ξ1ξ2η1η2.

(4.3)

The map ρ̃α,β = ρα + βθ (β ∈ C) is a formal deformation of the embedding (3.1).
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Proof. Consider gl(2) ∼= Span(ξiηj | i, j = 1, 2) ⊂ Γα. The diagonal subalgebra of
gl(2) consists of h = h1ξ1η1 + h2ξ2η2, where h1, h2 ∈ C. Let εi(h) = hi, i = 1, 2.
Obviously, Span(ξ1, ξ2) is the standard gl(2)-module, Span(η1, η2) is its dual, ξi and
ηi have weight εi and −εi. Note that H1(Γα, K

′(4)) is a trivial gl(2)-module, since a
Lie (super)algebra acts trivially on its cohomology [5]. Hence we have to compute
only the 1-cocycles of weight zero. Note also that

H1(Γα, K
′(4)) = ⊕n∈ZH1,n(Γα, K

′(4)),

where the Z-grading is given by the condition

deg t = 1, deg τ = −1, deg ξi = deg ηi = 0.

Let c ∈ C1,n(Γα, K
′(4)) be a 1-cochain of weight zero. Note that if c 6= 0, then n is

even: n = 2m, and c acts on the odd elements of Γα as follows:

c(T 1
α) = gm1 t

m+1τ−mη1 + sm1 t
mτ−m−1ξ2η1η2, c(D1

α) = rm1 t
mτ−m+1ξ1 + qm1 t

m−1τ−mξ1ξ2η2,

c(T 2
α) = gm2 t

m+1τ−mη2 + sm2 t
mτ−m−1ξ1η1η2, c(D2

α) = rm2 t
mτ−m+1ξ2 + qm2 t

m−1τ−mξ1ξ2η1,

c(T 3
α) = gm3 t

m+1τ−mξ1 + sm3 t
mτ−m−1ξ1ξ2η2, c(D3

α) = rm3 t
mτ−m+1η1 + qm3 t

m−1τ−mξ2η1η2,

c(T 4
α) = gm4 t

m+1τ−mξ2 + sm4 t
mτ−m−1ξ1ξ2η1, c(D4

α) = rm4 t
mτ−m+1η2 + qm4 t

m−1τ−mξ1η1η2,
(4.4)

where gmi , s
m
i , r

m
i , q

m
i ∈ C. Let

c0 = tm+1τ−m+1, c1 = tmτ−mξ1η1,

c2 = tmτ−mξ2η2, c3 = tm−1τ−m−1ξ1ξ2η1η2.

If m 6= 0, then the elements of weight zero in C0,2m(Γα, K
′(4)) span the subspace

Span(c0, c1, c2, c3). If m = 0, then the elements of weight zero in C0,0(Γα, K
′(4)) span

the subspace Span(c0, c1, c2). Note that the coefficients gmi in (4.4) are as follows:

if c = dc0, then gm1 = gm2 = gm3 = gm4 = m− 1,

if c = dc1, then gm1 = −gm3 = 1, gm2 = gm4 = 0,

if c = dc2, then gm1 = gm3 = 0, gm2 = −gm4 = 1.

Let X, Y ∈ Γα. Note that

dc(X, Y ) = {X, c(Y )}+ {Y, c(X)} − c({X, Y }), if p(X) = p(Y ) = 1̄,

dc(X, Y ) = {X, c(Y )} − {Y, c(X)} − c({X, Y }), if p(X) = 0̄, p(Y ) = 1̄,

dc(X, Y ) = {X, c(Y )} − {Y, c(X)} − c({X, Y }), if p(X) = p(Y ) = 0̄.
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Let c ∈ Z1,2m(Γα, K
′(4)) be of weight zero. From the condition dc(X, Y ) = 0, we

have that
{T 1

α, c(T
3
α)}+ {T 3

α, c(T
1
α)} − c(E1

α) = 0,

{T 2
α, c(T

4
α)}+ {T 4

α, c(T
2
α)} − c(E1

α) = 0.
(4.5)

It follows that
gm3 + gm1 = gm2 + gm4 . (4.6)

Case m 6= 1. One can change c by adding (or removing) coboundaries dci for i =
0, 1, 2, and thus assume that gmi = 0 for i = 1, 2, 3. Then from (4.6) gm4 = 0. Note
that

{T 1
α, c(T

2
α)}+ {T 2

α, c(T
1
α)} = 0, (4.7)

hence sm2 = −sm1 .
{T 1

α, c(T
4
α)}+ {T 4

α, c(T
1
α)} = 0, (4.8)

hence sm4 = −sm1 .
{T 2

α, c(T
3
α)}+ {T 3

α, c(T
2
α)} = 0, (4.9)

hence sm3 = −sm2 = sm1 .
Note that if c = dc3, then in (4.4) gmi = 0 for i = 1, . . . , 4 and sm1 = sm3 = −sm2 =

−sm4 = 1. Changing 1-cocycle c using the coboundary dc3, we can assume in addition
that sm1 = 0. Then smi = 0 for i = 2, 3, 4. We have that

{E2
α, c(T

1
α)} − {T 1

α, c(E
2
α)}+ c(T 4

α) = 0, (4.10)

hence c(E2
α) = 0.

{E3
α, c(T

1
α)} − {T 1

α, c(E
3
α)} − c(T 2

α) = 0, (4.11)

hence c(E3
α) = 0. Also

{F 2
α, c(T

3
α)} − {T 3

α, c(F
2
α)}+ c(T 2

α) = 0, (4.12)

hence c(F 2
α) = 0.

{F 3
α, c(T

3
α)} − {T 3

α, c(F
3
α)} − c(T 4

α) = 0, (4.13)

hence c(F 3
α) = 0. Then

{D1
α, c(T

4
α)}+ {T 4

α, c(D
1
α)} = 0, (4.14)

{T 2
α, c(D

1
α)}+ {D1

α, c(T
2
α)} = 0. (4.15)

From (4.14) (1 − m)rm1 + qm1 = 0, and from (4.15) (1 − m)rm1 − qm1 = 0. Hence,
rm1 = qm1 = 0.

{T 1
α, c(D

2
α)}+ {D2

α, c(T
1
α)} = 0, (4.16)
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{D2
α, c(T

3
α)}+ {T 3

α, c(D
2
α)} = 0. (4.17)

From (4.16) (1 − m)rm2 + qm2 = 0, and from (4.17) (1 − m)rm2 − qm2 = 0. Hence,
rm2 = qm2 = 0.

{T 2
α, c(D

3
α)}+ {D3

α, c(T
2
α)} = 0. (4.18)

{T 4
α, c(D

3
α)}+ {D3

α, c(T
4
α)} = 0, (4.19)

From (4.18) (1 − m)rm3 + qm3 = 0 and from (4.19) (m − 1)rm3 + qm3 = 0. Hence,
rm3 = qm3 = 0.

{T 3
α, c(D

4
α)}+ {D4

α, c(T
3
α)} = 0. (4.20)

{T 1
α, c(D

4
α)}+ {D4

α, c(T
1
α)} = 0, (4.21)

from (4.20) (m − 1)rm4 − qm4 = 0 and from (4.21) (m − 1)rm4 + qm4 = 0. Hence,
rm4 = qm4 = 0. Hence the cocycle c is zero on the odd elements.
Case m = 1. Changing 1-cocycle c using coboundaries dci, we can assume that
g1

1 = g1
2 = 0. Then from (4.6) g1

3 = g1
4. In addition, changing c by a multiple of dc3,

we can assume that s1
1 = 0. Next

{T 3
α, c(T

4
α)}+ {T 4

α, c(T
3
α)} = 0,

Hence s1
3 = −s1

4. From (4.7) s1
2 = −s1

1 = 0. From (4.8) s1
4 = g1

4. From (4.9)
s1

3 = −g1
3 = −g1

4. Note that from (4.5) we have that

c(E1
α) = g1

4(−t2τ−2ξ1η1 − t2τ−2ξ2η2 + t3τ−1).

Since the coefficient of ξ1 in

{E1
α, c(D

1
α)} − {D1

α, c(E
1
α)}+ 2c(T 3

α) = 0

is −2g1
4, then g1

4 = 0. Thus c(T iα) = 0 for i = 1, 2, 3, 4, and c(E1
α) = 0. From (4.10)

c(E2
α) = 0. From (4.11) c(E3

α) = 0. From (4.12) c(F 2
α) = 0. From (4.13) c(F 3

α) = 0.
From

{D1
α, c(T

4
α)}+ {T 4

α, c(D
1
α)} − (1 + α)c(E2

α) = 0,

q1
1 = 0. From

{T 1
α, c(D

2
α)}+ {D2

α, c(T
1
α)} − (1− α)c(F 3

α) = 0,

q1
2 = 0. From

{T 2
α, c(D

3
α)}+ {D3

α, c(T
2
α)} − αc(F 2

α) = 0,

q1
3 = 0. From

{T 3
α, c(D

4
α)}+ {D4

α, c(T
3
α)} − (α− 1)c(E3

α) = 0,

q1
4 = 0. From

{D1
α, c(D

2
α)}+ {D2

α, c(D
1
α)} = 0,
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(1 + α)r1
2 − (1 + α)r1

1 = 0. From

{D3
α, c(D

4
α)}+ {D4

α, c(D
3
α)} = 0,

(1 + α)r1
4 − (1 + α)r1

3 = 0. From

{D1
α, c(D

4
α)}+ {D4

α, c(D
1
α)} = 0,

(1− α)r1
4 − (1− α)r1

1 = 0. From

{D2
α, c(D

3
α)}+ {D3

α, c(D
2
α)} = 0,

(1− α)r1
3 − (1− α)r1

2 = 0.
If α 6= ±1, then r1

1 = r1
2 = r1

3 = r1
4. Then c is a multiple of dc0.

Subcase α = 1. In this case r1
1 = r1

2 and r1
3 = r1

4. One can change c by a multiple of
dc0 and assume that r1

1 = r1
2 = 0. From

{D1
α, c(D

3
α)}+ {D3

α, c(D
1
α)} − c(F 1

α) = 0, (4.22)

c(F 1
α) = r1

3(ξ1η1 + ξ2η2 + tτ). From

{F 1
α, c(T

1
α)} − {T 1

α, c(F
1
α)} − 2c(D3

α) = 0, (4.23)

2r1
3tη1 = 0, hence r1

3 = r1
4 = 0. Hence the cocycle c is zero on the odd elements.

Subcase α = −1. In this case r1
1 = r1

4 and r1
2 = r1

3. One can change c by a multiple
of dc0 and assume that r1

1 = r1
4 = 0. From (4.22) c(F 1

α) = r1
3(ξ1η1 − ξ2η2 + tτ). From

(4.23) 2r1
3tη1 = 0, hence r1

3 = r1
2 = 0. Hence the cocycle c is zero on the odd elements.

Finally, from (4.5) c(E1
α) = 0, from (4.23) c(F 1

α) = 0. From

{E1
α, c(F

1
α)} − {F 1

α, c(E
1
α)}+ 4c(H1

α) = 0

c(H1
α) = 0. From (4.10) c(E2

α) = 0, from (4.11) c(E3
α) = 0, from (4.12) c(F 2

α) = 0,
and from (4.13) c(F 3

α) = 0. Hence c(H2
α) = c(H3

α) = 0, and c is the zero cocycle. This
proves that if m 6= 0, then each 1-cocycle c of weight zero has the zero cohomology
class, and the cohomology is spanned by the cocycle dc3 where m = 0, because
c3 = t−1τ−1ξ1ξ2η1η2 6∈ K ′(4). The coefficients in (4.4) for this cocycle are gi = ri = 0,
s1 = s3 = −s2 = −s4 = 1, and q1 = q3 = −q2 = −q4 = 1. Thus dc3 = θ as it is given
in (4.3).

According to the Richardson-Nijenhuis theory, one has to determine the cup prod-
uct [[θ, θ]] [15, 16]. It is easy to see that this cup product is identically zero (and not
only in cohomology). Thus ρ̃α,β = ρα + βθ is a formal deformation of the embedding
ρα.

�
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5. Matrices over a Weyl algebra

By definition, a Weyl algebra is

W =
∑
i≥0

Adi,

where A is an associative commutative algebra and d : A → A is a derivation of A,
with the relations

da = d(a) + ad, a ∈ A,

see [11, 12]. Set

A = C[t, t−1], d =
∂

∂t
.

Let End(W2|2) be the Lie superalgebra of 4× 4 matrices over W.
Theorem 5.1. For each α ∈ C there exists an embedding

ρ̄α : Γ(2,−1− α, α− 1)→ End(W2|2)

given as follows:

ρ̄α(T 1
α) =


0 0 t 0
0 0 0 0
0 0 0 0
0 t 0 0

 , ρ̄α(T 2
α) =


0 0 0 t
0 0 0 0
0 −t 0 0
0 0 0 0

 ,

ρ̄α(T 3
α) =


0 0 0 0
0 0 0 t
t 0 0 0
0 0 0 0

 , ρ̄α(T 4
α) =


0 0 0 0
0 0 −t 0
0 0 0 0
t 0 0 0

 ,

ρ̄α(D1
α) =


0 0 0 0
0 0 0 d+ αt−1

d 0 0 0
0 0 0 0

 , ρ̄α(D2
α) =


0 0 0 0
0 0 −d− αt−1 0
0 0 0 0
d 0 0 0

 ,

ρ̄α(D3
α) =


0 0 d+ αt−1 0
0 0 0 0
0 0 0 0
0 d 0 0

 , ρ̄α(D4
α) =


0 0 0 d+ αt−1

0 0 0 0
0 −d 0 0
0 0 0 0

 ,

11



ρ̄α(E1
α) = t214|4

ρ̄α(F 1
α) =

(
(d2 + αt−1d)12|2 0

0 (d2 + αdt−1)12|2

)
,

ρ̄α(H1
α) = (td+

1 + α

2
)14|4,

ρ̄α(E2
α) =


0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 , ρ̄α(F 2
α) =


0 −1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , ρ̄α(H2
α) =


−1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 ,

ρ̄α(E3
α) =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 , ρ̄α(F 3
α) =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0

 , ρ̄α(H3
α) =


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 −1

 .

Proof. For each h ∈ (0, 1] and each α ∈ C there exists an embedding

ρα,h : Γ(2,−1− α, α− 1)→ Ph(4).

Γα,h = ρα,h(Γ(2,−1− α, α− 1)) is spanned by the following elements:

E1
α,h = t2

F 1
α,h = τ 2 − α(2t−2ξ1ξ2η1η2 + t−2(ξ1η1 + ξ2η2)h− t−1τh),

H1
α,h = tτ +

α + 1

2
h,

E2
α,h = ξ1ξ2, F 2

α,h = η1η2, H2
α,h = ξ1η1 + ξ2η2 − h,

E3
α,h = ξ1η2, F 3

α,h = ξ2η1, H3
α,h = ξ1η1 − ξ2η2,

T 1
α,h = tη1, T 2

α,h = tη2,

T 3
α,h = tξ1, T 4

α,h = tξ2,

D1
α,h = τξ1 + αt−1ξ1ξ2η2, D2

α,h = τξ2 − αt−1ξ1ξ2η1,

D3
α,h = τη1 + αt−1η1η2ξ2, D4

α,h = τη2 − αt−1η1η2ξ1,

so that
limh→0Γα,h = ρα(Γα) ⊂ P (4).

Let V = C[t, t−1]⊗ Λ(ξ1, ξ2). We fix h = 1, and define a representation of Γ(2,−1−
α, α − 1) in V according to the embedding ρα,h=1. Namely, ξi is the operator of
multiplication in Λ(ξ1, ξ2), ηi is identified with ∂ξi , and 1 ∈ Ph=1(4) acts by the
identity operator. Consider the following basis in V :

12



v0
m = tm, v1

m = tmξ1,

v2
m = tmξ2, v3

m = tmξ1ξ2 for all m ∈ Z.

Explicitly, the action of Γ(2,−1− α, α− 1) on V is given as follows

T 1
α(v3

m) = v2
m+1, T 1

α(v1
m) = v0

m+1, T 2
α(v3

m) = −v1
m+1, T 2

α(v2
m) = v0

m+1,

T 3
α(v0

m) = v1
m+1, T 3

α(v2
m) = v3

m+1, T 4
α(v0

m) = v2
m+1, T 4

α(v1
m) = −v3

m+1,

D1
α(v0

m) = mv1
m−1, D1

α(v2
m) = (m+ α)v3

m−1, D2
α(v0

m) = v2
m−1, D2

α(v1
m) = −(m+ α)v3

m−1,

D3
α(v3

m) = mv2
m−1, D3

α(v1
m) = (m+ α)v0

m−1, D4
α(v3

m) = −mv1
m−1, D4

α(v2
m) = (m+ α)v0

m−1,

E1
α(v0

m) = v0
m+2, E1

α(v3
m) = v3

m+2, E1
α(v1

m) = v1
m+2, E1

α(v2
m) = v1

m+2,

F 1
α(v0

m) = m(m− 1 + α)v0
m−2, F 1

α(v3
m) = m(m− 1 + α)v3

m−2,

F 1
α(v1

m) = (m+ α)(m− 1)v1
m−2, F 1

α(v2
m) = (m+ α)(m− 1)v2

m−2,

H1
α(vim) = (m+

α + 1

2
)vim, i = 0, 1, 2, 3,

E2
α(v0

m) = v3
m, F 2

α(v3
m) = −v0

m, H2
α(v0

m) = −v0
m, H2

α(v3
m) = v3

m,

E3
α(v2

m) = v1
m, F 3

α(v1
m) = v2

m, H3
α(v1

m) = v1
m, H3

α(v2
m) = −v2

m.

Thus we obtain the above-mentioned embedding ρ̄α of Γ(2,−1 − α, α − 1) into
End(W2|2).

�
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