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Abstract: We introduce free vertex operators V(vy, z) as operators in
Hilbert space and prove: Vertex operators are densely defined for |z| < 1.
Any radially ordered product of vertex operators is defined on a dense
subset as an operator product. We bound V (v, z) by exp (¢N) where N is
the number operator and apply this result to screened vertex operators.
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1 Introduction

Free vertex operators are defined as expressions of the following type:

toamen (1S5 )er (4ESS) o
n=1

where {a,,a—, : n € N} are elements of a Heisenberg algebra with relations [an,am| =
nbp —m,y € € and z is an indeterminate. Also formal expressions like

f/('71)‘21) e :’YT,ZT’) =

— a G a )
= exp (Z (el +...+ ’rrz;‘)T) exp (— ; (a7 + . )= - )

n=1

are usually considered. We introduce the following notations. Let w = {wq,w2,...) be an

infinite sequence of functions all depending on the same set of variables 71, 21, ..., 7y, 2» fOr
some integer 7, i.e. w; = wi(7,21,...,7r 2r). Define
W (Y1215 2e) = —wi{, A e ). (3)

We want to study

V(w) = exp (Z w\}) exp ( “f) @

n=1
The two examples above are given by

-1

: 1, A
wi(y,2) = 7% and wi(y1,21,. .-,V 2r) = “\/_2—.(71'31 +. 1) 5)

Remark that we denote by V the formal object whereas V' is reserved for the operators.
We omit the dependence of V on ag and T, (see [1]) with relations [ao,an] = 0 and
[Ty, @] = 6n,07Ty, which are unimportant from a functional analytic point of view. All
properties we prove here hold even in the case when these dependencies are included.

The objects we have introduced up to now could be understood as formal Laurent series
in z; (or w;) with coefficients in the Heisenberg algebra. In this paper we want to define
V as an operator acting in the Hilbert space which is the Fock space F defined as the
irreducible vacuum vector representation of the Heisenberg algebra. Moreover we will show
the following properties:

6)) V(w) defines an operator in F which is at least defined on the finite elements of
F (and hence densely defined). In section 5 prove that in fact D(V(w)) contains a
much bigger domain.

(ii) Any product of vertex operators is well defined in the operator sense on the finite
elements of F.



2 DEFINITIONS

(iii) V(w) could be estimated by what is called a field or a “®-Bound™
o0

lee N = Y a_,a, be the Number operator in F. Then we prove

[[V(w)f|| < gl_Hlexp (coN)f|| for some constants ¢y,c2 > 0 and for all f €
D(exp(c2N)). ®—bounds were used in constructive field theory [2] for proving
the self-adjointness of the (Minkowski) fields. In the present context they should be
of interest for looking at the Hamiltonian approach to two-dimensional conformal
quantum field theory.

(iv) We give an application of (iii) to screened vertex operators as introduced in [1].
We can define screened vertex operators on D(eCN ) for some constant ¢ > 0 if the
products ;y; have positive real part for all ¢ < j.

2 Definitions

Let {a,,a_, :n € N} U T be the generators of the Heisenberg algebra with commutation
relations [an,@m| = 6,—mnf and let F be the unique Hilbert space on which a,,n > 0
acts as annihilation and a_,,n > 0 acts as creation operator, the relation a}, = a_, holds
and which is generated by the vacuum vector ®;. We use the canonical basis of 7 which
is given by ®g and the vectors

Bo = (al1%) 200 . a0 @y, (©6)

where @ = (aj,«2,...) is an infinite multiindex where all but a finite number of «;’s are
zero, a! = [J ;! and I* = []4%. We set ||| = 3 ia; and Fy = Lin{®, : ||a|| < co}. The
operators a4, are uniquely determinated by their action on the basis which is given by

an®o = /g ®oy,, and e, ®o = V/n(an +1)Poqy,, @)

where f,, is the multiindex which is one in the n—th entry and zero otherwise. The domain
of definition of a, is given by

D(asy,) = {11; = ch,,@a Y (o + Deal® < oo}. 8)

Let (a; ;) be an infinite matrix, let H be a Hilbert space with basis {e; : 7 € N}. Then (see
for instance [3])

k 0 ©
— T .. . ; . . 2
D(A) = feH'kll{lc}oZ:law<eJ’f> exists Z;|;a,)]<ej,f>| < oo )
i= 1= 1=

and
= o] o0
Af =YY aij<ej,f>]e for feD(A) (10)
i=1 \j=1
defines a linear operator A in A with domain of definition D(A4).



3 Definition of vertex operators in J

We want to define vertex operators via matrix elements, i.e. we assign to V(w) a set of
matrix elements, which defines a matrix operator in F. The matrix elements with respect to
the basis {®,} can be calculated using the following well known commutation relations for
V(w) : For any k € N '

—~ wk ~ ~ ~

[a,k,V(w)] = —=V(w) and [a,_k,V(w)] = ——=V{(w). (11)

We only state the result.
Lemma 1

oo min((!,',ﬂ,') ) . . .
Y _ 1 @, Bi\ . aimj; 4\Bi—i
<P, V(w)®s> = ToF 'I;[l E ( ; ) (j )]!wi J (“Ji )

o 77 (12)
= 7—:”31 ’l:ll fa,-,ﬂ,- (w;,w;“) = "Ua”g(w)
with
min(n,m) n - | |
frm(@y) = 3 (3) (j )j[m""’ym‘f.
Jj=0

The infinite product above is well defined since only a finite number of «;’s and 3;’s are
different from zero and hence only a finite number of factors are different from one. Remark
that fn,m(w, y) = fm,n(yv z) and fO,m(a":y) =y

We denote by V(w) the operator defined by these matrix elements in F via (9) and (10).
As a first step we prove:

o0

Theorem 1 Let 3 |w;i|> < co. Then we have:
i=1

Fo C D(V(w)), hence, V(w) is a densely defined operator.

To prove this, we make use of the following helpful identity, that encodes the properties of
products of vertex operators (which should be clearer later on).

Lemma 2 For all z,y,z,w € C,1,5 € Ng the following identity holds (in the sense that both
sides define the same entire function of four variables).

1
Z ikl v (2, w) = fii(r+z,y+w)e. (13)

A proof of Lemma 2 will be given in the appendix.
Proof of Theorem 1: We have to show &g € D(V(w)) for all ||§|| < oo, i.e.

Z |va,8(w)|? < 0o forall ||B]| < oco.

aillall<oo



4 PRODUCTS OF VERTEX OPERATORS

Now:
0o
Z |'Uo,ﬁ(w)|2 = Z}T EIT H |f0.‘,l3-' (wl’w?)lz
a aiflaljl<oo =1
e (14)
< Al Hl Zoglrfﬁ;,a;(le-la|wi|)fa;,ﬁ.‘(|wi|a|w?—|)s
i=lai=

where we have used |fnm(z,y)| < fam(|z|,|y|) and the above mentioned symmetry of f.
The application of Lemma 2 gives

o0

%_Jl'va,,a(w)lz < g IT (s (Jwil + I | i + i) exp (fwil®))

=31 11 (s, (fil + [ ] Josl + JwlT])) exp (Z |w,'|2) < co.

—

(15)

In the last step once again we have used the fact that for any § with ||3]| < co only finitely
many factors in the product are different from one, since foo(z,y) = 1. q.ed.

The condition of Theorem 1 is fulfilled in our examples (5) if |z} < 1 forall 1 <k < 7.

4 Products of vertex operators

The next question we ask ourself is about products of vertex operators, since in QFT we want
to take products of the field operators to build the n—point functions. We will show that any
product of vertex operators is well defined on Fy.

On the formal side we know that for two sequences w! = (w},wl,...) andw? = (W} w2, .. )

<

()

(0?) = V(w' +w?) exp (Z w}+-w,-2) (16)

i=1

o0
by the CBH-formula. Usually one claims that ) w! "w? < oo which gives the time ordering

=1
condition for products of fields (but this is um;ecessary in order to treat both sides as formal
Laurent series). Surely we also require this for giving both sides of (16) a definite meaning.
We prove that (16) holds for the corrresponding operators in the strong sense on Fj.

o0 o0
Theorem 2 Let 3 |w!|? < oo for { = 1,2 and ¥ w}tw? be convergent. Then the following
holds: -

=1 t=1

V(w?)(Fo) € D(V (w)) (17)

and

V(W) V(w?)|z = V(w' +w?) exp (Z w,-1+w,-2) |7,- (18)

=1



4 PRODUCTS OF VERTEX OPERATORS

Proof: First we show that the matrix product of the matrices v, g(w!) and v, g(w?) exists
if > wH' 2 is convergent. If we interchange the product and the infinite number of infinite
sums we can calculate

sl =g T ﬁ(pfa.,.(,, o) s 2, 2))

1
o0
=g g (wl + wz) exp (E w}*‘w?),
= (19
where we have used Lemma 2 and the convergence of the sum.

Why can we interchange the summations and the product‘? Of course there exists a number
. . D &

io = ip(, B) such that for any i > ig we have f,, 5 (w!, wit) f5 5, (W2, w?T) = (witw?)” =
Xf". Because for a finite number of factors we can mterchangc, it remains to show

> ﬁxa ﬁ(!_oXs)- 20)

6:|8}1< o0 i=1 S

Since E X; < oo we have H X; = 0 and hence H X% /81 = 0 for any multiindex 6
i=1
with ||6|| = oo. Therefore we can forget about the resmctmn [|6]] < oo on the L.h.s. of

(20). Hence

T E D | @n

8|6l <0 i=1 5 i=1

Now it is easy to see that

Zﬁxs ﬁ(_lxg> ﬁe 22)

é i=1 =1

The proof is complete by the following observation: eq. (19) tells us that we can multiply
the infinite matrices and get as result a matrix operator which is also defined on Fy, since
the matrix elements on the r.h.s. of (19) and hence the r.h.s. of (18) fulfill the condition of
Theorem 1 too. By definition of a matrix operator this implies that also the 1.h.s. of (18) is
well defined on Fy (this could easily be proved using (9) and (10)), which immediately gives
our assertions, q.e.d.

Theorem 2 shows, that any product of radial ordered vertex operators is well defined on Fj
as a product of operators in 7 Moreover, Theorem 2 gives information about the mapping
properties of the vertex operators if we consider triple products of vertices which via Theorem
2 are well defined.



5 ®-Bounds for vertex operators

o0
The Hamilton operator in Fock space is given by the selfadjoint operator N = a_pay on
k=1

the domain of definition D(N) = {lIJ =Y ca®a: Y ||afl|cal? < oo}. We want to prove
Q o

|V(w)¥|| < c1]|e®*™ || for some constants ¢, ca > 0. To do so, we have to impose a further
condition on w :
lwi| < KR' for some constants [ > 0,0 < R<1 and

lwF| < KR' for some constants I{, R > 0. @)

Surely (5) fulfills this condition if |z;} < 1, i.e. there is no additional condition for the
standard vertex operators.

Theorem 3 Let w obey (23). Then there exists ¢ € Ry such that

B(w) = V(w)c" (24)
is a Hilbert - Schmidt - operator. Hence V (w) can be defined on D (c_N) using the equality
V(w) = Blw)e ¥ (25)
which is valid a priori on Fy.
Theorem 3 gives trivially:
Corollary 1 Let w, ¢ be as above. Then with c; = ||B(w)|},ca = —Ilnc:
IV()¥]| < eille™™ 9 forati @ € D(e) (26)

Theorem 3 has also an application to screened vertex operators. In [1] they were introduced
as follows:

Let wi = wi(Y, 2,74, 215 -+ - s Y4 Zrs Y=y Zr41s - -« » Y=, Zr4 ) fOr all § where 4. is given e.g.
by the Kac determinant formula. Let 2 be fixed and denote by C, the path, which starts in
2z, encircles zero once and ends in 2. Then a screened vertex operators is defined by

~

Vir(y,2) = / V{w)dzr Ao Adzpgy. (27)
C:+r'

We can give a meaning to (27) if Re (77;) > 0 and |2| < 1. By Theorem 3 there exists
0 < ¢ < |z| with B{w) defined by (24) is Hilbert -~ Schmidt. The constant ¢ could be
chosen independent from (21,...,z.4,) € C;""’“’. Moreover, the Hilbert - Schmidt norm
of B(w) is uniformly bounded if (z1,...z-4.) vary in CJ*". Hence we have a uniformly
bounded holomorphic function B(w) : CIt" — By(F) (with By(F) the (Hilbert -) space
of Hilbert - Schmidt operators) which integrated gives again a Hilbert - Schmidt operator.
Consequently we have:

Corollary 2 Let w be as above and |z| < 1. Then there exists ¢ > 0 such that V, (7, z) can
be defined on D(c™V) by

Ver(w) = / B(w)dzy A .. Adzpy V. (28)

'
it



5 ®-BOUNDS FOR VERTEX OPERATORS

Proof of Theorem 3: we have to show

Z |va g(w)c!Pll|? < 0o for an admissible c. (29)

First we evaluate the sum over «. This is already done in the proof of Theorem 1 and with
a trivial modification we get (see (15))

> [va g = 2N 2 Jva,8(w)[?

< 280 3 (o + o+ o ) e 5 o
0o Bi 1 2 i—J =

= Il ] ﬁ*%(f) Hlwi + i) 201 exp (E wa|2) (30)
oo fi

< 2l H > (i )(|w,| + |w+|)2(3»*1) cxp (2 |w.|2)

_ 28l H ( + (Jwi] + |wi]) )ﬁ eXp (Eﬁllwd?).

Note that we have used that the condition (23) in Theorem 3 is stronger than the requirements
for Theorem 1. The constant ¢ is now fixed by the condition of convergence of the 3;—sums.
We have to sum

Bi
> @1+ (il + i) ) < (14 (KR + RR)'), 31)
ﬂ' ﬂ'
which is summable for all z if
|cz(1+(KR+R’R)2)|<1 or |c|2< L ——. (32)
1+ (KR+ KR)

We choose a ¢ which fulfills (32) and set X; = czi(1 + (I{R"—}—I:;'I-{")z) and ) =
o0
exp (E |w,~|2). We obtain

=1

% i p(@elPIP < ] (§ (14 (] + o] )ﬂ‘)em (£ 1ar)
a,f } Bi=0 i=1 33)

0 ® g o)

o0

since 3 X; < oo. q.e.d.
i=1

Remarks:

(i) fw, = &:,-zi and |z] < 1, Theorem 3 shows that B(w) is Hilbert - Schmidt if

e < [L+(Ief 4172 +2)] 2.



6 APPENDIX

A similar expression could be obtained in the second case of (5).

(ii) Another question which naturally arises is if V' (w) is a closed operator. Equiva-
lently one ask if V(w)" is densely defined. Since formally V(w)* = V(&%) we see,
that the problem is to define V{w) for |z| > 1. In this case the basis @, and hence Fy
is not in the domain of definition of V' (w) because of the divergence of Z |wi |2. This

=0
problem could be interesting for perturbation theory of CFT. A mmlmal requirement

for any kind of perturbation is it's closability.

6 Appendix

Here we give a proof of Lemma 2.

We expand both sides of the identity (13) in a power series in four variable in (0,0,0,0),
i.e. we write (13) in the form

Z ("ﬁ"fr) 9 yﬁz‘fw Z 6('2;;) sT yﬁz"w
GLB,';"? 07517?6

and proof that c'3"”  and &{"}") ¢ coincide.

(i) The 1.h.s. of (13):

o ) ® min (n,k) min (k,m) EN [k m\
£ bt fintzw) =S4 L o ()().()( .)j!x
k=0 k=0 1=0 j=0 4 1 J J
( ) xz’.n—iyk—izk—jwm—j
— E n,m IL‘ yﬁz7'zv‘5
o6 ,ﬂm
with

_ 1 n n—a+pf | n—a+f
s = Gt 1 — o h o ) s ¥

m
X (m - 5) (m = 6)10y nmmn—aspts (35)
_("ym (n—atB) s
T\ § | Blln—m—a+fF8) " vn—m—a+f+é:

(ii) The r.h.s. of (13):

fn,m(a" +2,y+ ,w)ezy =

min (n,m)
= 3 (:) (7;;) k2 + 2)" (g 4 w)™ ey

k=0

- minm) "f” "'EL K ( ) (m) (" - k) (m - k)_,cn-k—fyj+:zs+lwm-k—j
1=0 k 0 a 0 j= k l J

= Z sT yﬁz’yw
'B , ’

!
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A tedious calculation (eliminating <) gives

B
~(n,m) !’"‘}"—5—52! n m
Ca.B.7.8 ; (771+l—ﬁ-5>(m+l—ﬁ-5)x

n—m=l+f+8 \(~l+f+8),
11—1Il—l—a+ﬁ+6 _I+ﬁ +.,n—m—a+G+6

m! ﬁ N — (37)
B A

om S n—u« 5
TEM\ o J\n—m-l—a+p+6) rrmmatht
_ (nm)
= B8
Since both sides are convergent power series for any z,y, 2,0 € C,n,m € Ny the
equality of the functions follows from the equality of the coefficients.
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