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Abstract

A general resurgent functions theory in the framework of the abstract alge
bras is introduced. On the basis of this notion the problem of deformations of
differential equations is investigated. The deformations of the corresponding
integral transforms (representations) is used as the main tool of this investi
gation. The rebuildings of the type of the asymptotic expansions arising in
the process of the above mentioned deformations are described.
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The resurgent analysis, that is, the analysis of resurgent functions introduced by
Jean Ecalle [1], at present proved to be a powerful tool in the asymptotic theory of
both ordinary and partial differential equations (see [2] - [11], and the bibliography
therein.)

When one makes the first acquaintaince with the asymptotic aspects of the the
ory of resurgent functions, it appears to be quite refined and complete. Actually,
we found out that there exists an algebra isomorphism between the multiplicative
algebra. &1 of functions of exponential growth of degree one at the origin (determined
in some sector of the complex plane) and the convolutive algebra 1i of hyperfunc
tions of exponential growth. This isomorphism (given by the Borel-Laplace trans
form) establishes the one-to-one correspondence between the asymptotic behavior
of functions near the origin and the smoothness properties of the corresponding hy
perfunctions. Later Oll, there exists two asymptotic scales in &1, one generated by
the multiplication by exponentials eWX with different ws, and the other - by multi
plication by different powers of x. So, the asymptotic expansion of any function of
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(0.1 )

the algebra &1 must be
00

u(x) = L eWj~ L Cjkxk .

j k=O

Clearly, since the second scale is more weak than the first Olle, to interpret expansion
(0.1) one have to resummate series in x involved in the latter expansion, and the
Borel-Laplace transform provides one with the tool of such aresummation.

The mentioned two asymptotic scales are taken by Borel-Laplace transform into
the scales generated by shifts in the p-plane, and by the operator d/dp, respectively.
The latter fact leads to the microlocalization of expansion (0.1), since different terms
of the outer sum in the outer sum in (0.1) is taken over different points of the p
plane. So, the examination of the behavior of functions u(x) is taken into the local
investigation of smoothness properties of the corresponding hyperfunctions1

.

However, it is evident that this clear scheme does not cover all possible applica
tions of the resurgent functions theory. Actually, the exponential growth of order one
is not the only type of behavior of solutions to differential equations. For example,
they (solutions) can have exporiential growth of order different than one.

Clearly, in the resurgent functions theory there exists a generalization of the
theory, the so-called k-Borel-Laplace transform, which can sufficiently deal with ex
ponential functions of order more than one. And, in spite of the fact that tbe
function algebra under investigation was changed (now it is the algebra &k of func
tions with exponential growth of order k =f:. 1), the same picture takes place in the
p-plane. More than tbat - all the investigation of singularities of the corresponding
hyperfunctions makes no difference with the case of functions of exponential growth
of order 1.

In fact, the resurgent functions theory can be of use also in the investigation of
Fuchs-type equations. In this case we have met again another algebra of functions
(the algebra P of functions of power growth), which needs another transform (Borel
Mellin transform this time) to investigate this algebra. And again we arrive at the
same space of hyperfunctions we have met earlier.

Moreover, the similar situation takes place also in the investigation of deforma
tions of differential equations. For example, let us see how the exponential asymp
totics for differential equation

H (x, xI+o~) u(x) = 0

becomes apower asymptotics as Q' ~ o.
1We recall that hyperfunctions, that is, the quotient classes of ramifying analytic functions

modulo entire functions, naturally arise in the theory of the Borel-Laplace transform (see, e. g.
[9]).
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So, we have come to the natural problem to work out some general sche.me.
including as its specialization all known in present resurgent theories of different
function algebras.

This paper is an attempt to construct this general scheme and apply it, in par
ticular) to problem of deformations of differential equations.

The outline of the paper is as follows. We begin with the simplest examples of the
Borel-Laplace and the Borel-Mellin tra.nsforms in order to understand the framework
of the future general theory (Subsection 1.1). Here we determine the objects to
appear in this general theory and detemine the degree of generality nesessary for its
construction.

Later on, we construct tbe general theory (Subsections 1.2 and 1.3), and show
how specifications of this theory lead to the above two importa~t particular cases
- to Borel-Laplace and Borel-Mellin transforms (Subsection 1.4).

In Section 2, we present the method of investigating the asymptotic behavior for
solutions of equations in the framework of the above constructed general scheme.
Here we show that 3011 the work in constructing asymptotic expansions goes in the
convolutive algebra of hyperfunctions in the p-plane, and the results of this investi
gation are lead to the description of asymptotic behavior of the initial objects.

After this we consider the case when equations in question depend on the addi
tional parameter. Here we investigate the two cases of rebuilding of the asymptotic
expansions, and investigate these rebuildings {roIn the general viewpoint (Subsection
3.1).

Finally (Subsection 3.2), we describe the above mentioned rebuilding on the two
concrete examples concerning the confluence of tbe Fuchs-type equations (and, in
particular, the confluence of hypergeometric equations, Mathie equations, etc.), as
weH as the deformation (homotopy) of equations connecting equations with irregular
singularities with that with regular (Fuchs-type) sing~lar point. Clearly, the most
interesting thing here is the catastrophe occuring when the equation changes its
type and the asymptotics changes by jump.

Let us make one more important remark. For simplicity, we consider here the
case of scalar differential equations. At the same time, the more general situation
occurs to be important in applications. For example, in the theory of equations
on manifolds with singularities the equations with operator-valued symbols arise
(see, e. g. [12}.) The application of the theory developed in the present paper to
such a situation allows to obtain new interesting results in the deformation problem
in the elliptic theory on manifolds with singularities. Namely, it is well-known
that to obtain the asymptotics of solutions for simplest (conicaI) singularities of
an underlying manifold, one can use standard tools such that the Mellin transform
and the residue theory. At the same time, in thc case of cusp-type singularities, to
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obtain asymptotic expansions one have to apply the resurgent analysis method (see
[13], [14]). Here we show, in part icular, how the expansions of one (cusp) type are
transformed to the expansions of the another (conical) type.

Acknowledgements. The authors are grateful to Professor Bert-Wolfgang
Schulze for fruitful discussions.

1 Resurgent analysis

1.1 Preliminaries

In this section, we present a general sceme of resurgent functions theory allowing
one to consider different transforms, and even deformation of such transforms in the
framework of the resurgent theory.

Let us briefly illustrate the method of application of the resurgent functions
theory in the simplest situations to asymptotic investigation of ofdinary differential
equations.

Suppose that we need to investigate the asymptotic behavior of solutions to the
equation

H(x- t
,_ d~) u(x) = f(x) (1.1 )

as x ~ 00.

It is well-known that the application of the resurgent analysis is based on the
procedure of representation of solutions to differential equation with the help of the
Laplace transform

u (x) = Je-prU (p) dp.

"Y

(1.2)

Here U(p) is a function in the dual space, and I is some contouf in the complex
plane with coofdinate p.

Since the operators (d/dp) and p are taken into the operators x and -dJdx under
tbe action of the representation (1.2), equaton (1.1) is transformed into the equation

H ((d/dp)-l ,p) U (p) = F (p) (1.3)

in the p-space. Later on, transform (] .2) establishes the correspondence between the
smoothness of the function U (p) and the behavior of the solution u (x) to equation
(1.1) at infinity.

So, the reduclion 0/ equation (1.1) to equation (1.3) with the help 0/ trans/orm
(1.2) allows one to obtain the information about the behavior ofu (x) at infinity trom
the smoothness properties of the funetion U (p).
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U (x) = Je-p/",U (p) dp
..,

From the other hand, if one investigates the behavior of solutions to differential
equation

H(x, - x2 d:) U (x) = f (x)

near the singular point x = 0, he needs another representation of solutions given by
the integral

(this representation is also ca.lled the Laplace transform) In this case, the operators
d/dp and p are taken into the operators x and -x2d/dx, and the singularities of the
function U (p) describe the behavior of the initial function u (x) near x = o.

Finally, investigation of equations of the Fuchs type

H (x,-x :x) u(x) = f(x)

requires the representation given by Borel-Mellin transform

u (x) = Jx-PU (p) dp.
..,

All the three cases considered have the following mutual features:

• Each transform used for the representation of solutions to the initial equation
is determined by some analytic group in p as a kernei:

So,

- the first transform is determined by the group

G(x,p} = e-Px
,

- the second - by
G (x,p) = e-p!x,

- the third - by
G (x, p) = x-Po

6
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• In each case the large parameter of the corresponding asymptotic expansion
is equal to

C- 1 ( )dG(x,p)
x,P dp

(clue to tbe group property, tbis element does not clepend2 on p). So, for the
first case the parameter is x, for the seconcl case it is X-I, and in the third
case we have In x as a parameter. This correlate with the fact that in the first
case one investigates the behavior of solutions at infinity, and in the last two
cases - at x = o.

• For each transform one can define tbe operator ßcorresponding to tbe operator
of multiplication by p in the dual space. These operators are

d 2 d d
-- -X - ancl -x-

dx' dx' dx

in the three above cases, respectively.

As it can be seen from the examples considered, the key point in construction of
resurgent representation is to def1ne the kernel of the corresponding representation.
Since we want this representation to be an algebra homomorphism3

, this kernel
G~(p) must be a representation of the a representation of tbe (additive) group C in
the corresponding algebra U.

We remark also, that both the large parameter and the operator p can be used
for tbe determination of the group G~(p) in question (thougb in the last case there
is some ambiguity in this determination).

So, for consicleration different integral representation, or, what is more, some
their deformations, some general theory of integral representations of the above
described type is nesessary. Such a theory will be constructed in the following
subsection.

:2 Actually, differentiating the relation (1.4) and putting P'J = Q and Pt = P, we obtain the
relation

G- t ( )dGr(p) = dGr(Q)
r P dp dp'

3The fact that the integral representation under construction determines an algebra homomor
phism leads to the fact that the corresporiding resummation operator (see below) is, in turn, an
algebra homomorphism commuting with the differentiation operator. This fact is important for
the investigation of asymptotic solutions of differentiial equations
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1.2 Analytic groups and integral representations

Let us introcluce objects playing essential role in the further constructions.
1. Let U be a commutative topological algebra. with unity. Consider the analitic

group in U, that is, such a mapping

C : C -+ U.

that
1) the function C(p) is holomorphic in the whole complex plane Cj
2) the group property

(1.5)

takes place.
In essence, mapping (1.5) is a hamomorphism of the additive group C of complex

numbers into the multiplicative group of the algebra U.
2. Consider the set U· of linear functianals over U (these functionals are not

continuous, and, in particular, they can be defined not on all U.) We shall say that
C·(p) is an analytic farnily 0/ /unctionals over U if

G·:C-+U

is such a mapping that
1) for any element u E U the set

Ou = {p I(C·(p), u) is defined}

is an open set4 in the plane Cj
2) the function

Uu(p) = (C·(p), u)

is holomorphic on Ou for any u EU.

(1.6)

Remark 1 In the sequel, only quotient cIasses of functions Uu(p) modulo entire
functions will be essential far us, not the functions Uu(p) themselves. So, function
(1.6) will be thought as a hyper/unction.

3. Any analytic family of functiona.ls determines a filtration in the algebra U.
Namely, let us denote by UR the subset of elements u E U such that the set Ou
contains the complement eR in e of same sector of magnitude less than 'Jr with the
vertex at point p = R bissected by the direction of the positive real axis (see Figure
1). Clearly,

4We do not exclude the case when the set f2 u is ernpty für sorne u EU.
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Figure 1. The set CR.

URt C UR2 if R1 < R2 •

Besides, it is clear that UR is a linear subspace in U for any R E R.
Denote also

Uoo = nUR.
ReR

The set Uoo is a set of infinitely smooth elements of the algebra U with respect to
the introduced filtration.

Remark 2 We have supposed that each sector eR is bissected by the direction of '
the positive real axis just to be definite. This direction can be replaced by any other
direction without essential changes in the theory.

We suppose that the following condition is fulfilled:

Condition 1 The filtration {UR, R ER} is complete. This means that for any
family {UR, R ER} such that UR - UR' E Urrun(R,R') there exists auE A such that
U - UR E UR for each R E R.

4. Let some analytic family of functionals G"'(p) be fixed. Denote by specG (u)
the minimal set such that the function (1.6) can be analytically continued in the
whole plane e except for specG (u) as a ramifying function. The set speCa (u) will
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be called the G-spectrum5 of the element u E U. As we shall see in the sequel, the
set speca (u) determines the asymptotic expansion of the element u with respect to
the filtration UR.

Let UB introduce the main definition of this subsection.

Definition 1 The group (1.5) is called a generating group 0/ integral representation
if the following conditions hold:

• The element A = dC/ dp is invertible in the algebra U .

• There exists an analytic family of functionals C· (p) of the above described
type such that

(C" (p) , C (q)) = 2 . / )
1n p- q

modulo holomorphic functions.

From the viewpoint of hyperfunctions, the second requirement can be rewritten
in the form

(C·(p), C(q)) = h(p - q),

since the analytic function 2~i (p - q)-1 determines the delta function in the space
of hyperfunctions (see Remark 1 above.)

Let G (p) be a generating group of integral representation. We are interested in
the investigation of the integral representations of elements from U having the form

U = 'Ra (U) = JC (p) U (p) dp,

"Y

(1.7)

where U (p) is a function holomorphic in the domain fl u such that the intersection
of the complement e \ flu with any right half-plane eR is a compact set, and the
contour "y is encircling this set, as it is shown on Figure 2.

Consider the quest ion of the convergence of integral (1.7). To do this, we denote
by IR the intersection of the contour , with the left half-plane Re p < R (see Figure
2). The following assertion takes place:

Proposition 1 The spectrum 0/ the element

UR = JC(p)U(p) dp

"YR

(1.8)

is contained into the curve IR.

5In the sequel, we shall name G-spectrum simply by "spectrumn
. One should have in mind that

the spectrum of an element u EU is, in essence, the set on the Riemannian surface of the function
(1.6) rather then in C.

10



o

Figure 2. Domain of definition of U(p) and the integration contour.

Proof Let us apply a functional C· (q) to the element UR given by (1.8). We
arrive at the relation

(GO (q), UR) = J(Go (q), G(p)) U (p) dp.

"'IR

Due to the second condition of Definition 1, the latter relation can be rewritten as

• 1 JU (p)(C (q),UR) = -2' -dp.
ifl q - P

"'IR

The latter integral is an integral of the Cauchy type with the support in IR, and,
hence, it is holomorphic in the whole plane outside IR. This completes the proof of
the proposi tion.

Now, let us consider the family UR of elements of the algebra U given by formula
(1.8). Proposition 1 shows that

UR - UR' E Unlin(R,R').

Due to the completeness of the filtration UR (see Condition 1 above), there exists a
(unique modulo Uoo ) element u E U such that

U - UR E UR

11



for any R E R. By definition, this element is exactly the value of integral (1.7). So,
this integral is defined modulo Uoo •

Remark 3 It is easy to see that if the function U (p) is an entire function, then
the corresponding integral vanishes. This observation shows that U (p) must be
interpreted not a.s a function but as a hyperfunction in p.

The following statement shows that the function U (p) is defined by n. (U) in the
unique way.

Theorem 1 (on inversion) If u = 'Re (U), then

modulo entire Junctions.

Proof For Rep sufficiently large in module and negative we have

(CO (p), u) = J(CO (p), G(q)) U (q) dq

__1. JU (q) dq.
27rz P - q

"Y

Deforming the contour , into the contour " drawn on Figure 3 and calculating the
residue at the point p, we arrive at the relation

(C$ (p), u) = U (p) + -2
1

. JU (q) dq.
11'"1 P - q

"'Y'

The integral on the right in the latter formula is, clearly, an entire function in the
variable p. This completes the proof of the Theorem.

The following result ia a direct consequence of the last theorem.

Theorem 2 The equality
spec 'Ra (U) = sing U

takes place. Here sing U is the set 0/ singularities oJ the funetion U (p).

We denote by Ua the set of elements of U representable in the form (1.7). It
occurs that the set UG is a subalgebra of the algebra U:

12



Figure 3. Deformation of the integration contour.

Theorem 3 If G (p) is a generating group 0/ a integral representation, then the
eorresponding set UG is a subalgebra 0/ the algebra U. The representation Ra is an
algebra homomorphism /rom the eonvolutive algebra 0/ hyper/unetions to U a .

Pro%f this affirmation is based on the fact that

(1.9)

where * is the convolution of hyperfunctions. The proof of the latter fact uses the
group property G(Pl + P2) = G(pt}G(]J2) of thc kernel and goes quite similar to the
proof of the corresponding fact for usual Borel-Laplace transform (see [9]), and we
omit it.

Now, let us define the operator ßon the algebra UG by

ßnc (U) = Ra (pU). (1.10)

Due to Theorem 1 this operator is uniquely defined. Formula (1.9) together with
the fact that the multiplication by p is a differentiation of the convolutive algebra
of hyperfunctions shows that the following affirmation is valid

Theorem 4 The operntor ß is a differentiation 0/ the algebra U G .

13



Moreover, it is easy to see that the multiplieation by the "large parameter" A (see
Definition 1) corresponds to the operator d/dp from the viewpoint of representation
na:

ARa (U) = Ra e~). (1.11)

Remark 4 As it was mentioned in the end of Subseetion 1.1, the group G (p) can
be determined (possibly, non-uniquely) either by the operator ß or by the element
A. In the first ease, one uses the relation

pa (p) = pO (p) ,

(this relation expresses the fact that G (p) is an eigenfunetion of the operator ßwith
the eigenvalue p In this case G (p) is determined up to a multiplieative constant
C (p) subjeet to the condition C (PI + P2) = C (PI) C (P2). In the second case G (p)
eao be (uniquely) determined as a solution to the problem

{
\ = AG(p),

G (0) = 1.
(1.12)

1.3 Resurgent elements of the algebra

1. We begin with the definition of resurgent elemens of the subalgebra UG of the
algebra U with respeet to the generating group G (p).

Definition 2 The element u E U G is called to be aresurgent element of the algebra
UG , if the corresponding hyperfunetion

u(p) = (G~ (p) , u)

is endlessly eontinuable6 funetion in the variable p.

Since the set of endlessly continuable (hyper)funetions is closed with respeet to
the convolution (see, e. g. [9]), and taking into aecount relation (1.9), we arrive to
the following statement:

Theorem 5 The set UG,r 0/ resurgent elements form a subalgebra of the algebra
UG

.

6The exact definition of the notion of endless eontinuability the reader ean find, for instanee,
in the book [9]. Roughly speaking, the function is endlessly-eontinuable if this function ean be
expanded up to a (ramifying) function having a diserete set of singularities on its Riemannian
surface.
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Singularities ofv(P)

Figure 4. Reduction to the standard contours

If u is some resurgent element of U G , there exist the canonical representation of
this element. To obtain this representation, one should decompose the homology
dass determined by the integration contour , in the representation (1. 7) ioto the
sum of homology classes corresponding to standard contours f j (see Figure 4). Each
contour f j surrounds one of the singularities of the function U (p) counterclockwise
and comes to infinity (over different sheets of the Riemannian surface of this func
tion) in the direction of the positive real axis.The result of this decomposition is

U = L JG (p) U (p) dp,
J rj

(1.13)

where the summation is fulfilled over all singular poins Pj which cao be seen from tbe
original domain of the function U (p) along the direction parallel to the real positive
axis. The set of singularities involved into the decomposition (1.13) of the element
u is called to be the support of this element. As it follows from the definition of the
resurgent element, the support of any such element is contained as a whole in some
sector witb angle less than 1r bisected by tbe direction of tbe real positive axis (with
arbitrary origin).

2. Let us stand now on one more point which is of extreme importance in the
asymptotic resurgent theory. This point is a notion of the resurgent element with
simple singularities.
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We recall (see, e. g. [9]), that the endlessly continuable function U (p) is said to
have simple singularities if this function can be represented in the form

co ~ (p - Po)k
U (p) = _ + In (p - Po) LJ ., Ck+1

P Po k=O)'

(1.14)

near each point Po of its singularity. Here the series on the right in the latter relation
is supposed to be convergent in a sufficiently small neighborhood of the point Po.

Definition 3 The element u E UG,,. is said to be aresurgent element with simple
singularities if the corresponding function

U (p) = (er (p) , a)

has simple singularities in the sense (1.14).

As it is usual in the resurgent function theory, resurgent elements with simple
singularities possess some standard asymptotic expansions (which are far away gen
eraliyations of the WKB-expansions in the semi-classical approximation in quantum
mechanics) .

Let us derive this expansion. First of all, it is evident that we can consider dis
tinctly each term on the right in the decomposition (1.13). Computing the integral

Uk =JG (p) U (p) dp =JG (p) [ ~ + In (p - Pk) f= (p ~fd Ck+J] dp
p Pk k-OD ~ -

term-by-term, we obtain:

• For the first term the integral can be computed with the help of the usual
residue theorem

J dp
CO G (p) = COG (Pi) .

P - Pi
r·J

• Due to relation (1.12), for the second term one has

Cl JG(p) In (p - Pj) dp

r·J

- Cl JA- I d~~p) In (p - Pj) dp

rj

_ -CIJA-1G(p) dp dp=-c1A-1G(Pi)
P- Pi

rj

(we have used the integration by parts, and, again, the residue formula.)

16



• The iteration of the procedure used for the computation of the second term
leads us to the following expression for all subsequent terms

where k = 1,2, ....

So, for ea.ch term of the decomposition (1.13) we obtain the expansion

(1.15)

3. Let us consider examples of the corresponding asymptotic expansions.
i) First, let us consider the algebra EI of functions of exponential growth of order

1 and use the Borel-Laplace representation, that is, the representation with the
kernel

Gx(p) = e-;.
Then expansion (1.15) beconles in this case

since the values of the group Gx(p) for fixed p = Pi are e-Pj!x, and the large param
eter of the expansion is X-i.

The same situation takes place for WKB-expansions in quantum mechanics,
where we must just replace x by h. The corresponding expansion is

and x plays a role of parameter (additional variable).
ii) For the k-Borel-Laplace representations one uses the group

so that the expansion (1.15) becomes

17



(here one can use also the expansion in fractional powers of the "large parameter"
A = x-fe to obtain the usual Taylor series in the expansion).

iii) Finally, for the Borel-Mellin representation with the kernel

one arrives to the asymptotic expansions of the form

00

Uj(x) = x'Pj L CI In-1x
1=0

since in this case the "Iarge parameter" equals In x.
4. Clearly, the series on the right in the latter relation are not, a.s a rule, conver

gent in U, and the expression

Uj = JG (p) U (p) dp
r·J

supply us with the resummation procedure for series (1.15). However, one should
define, in what sence the series on the right in (1.15) is asymptotic. In other words,
we must present in the explicit way the asymptotic scales used for exact asymptotic
expanSions.

As one can see from the above considerations, there are the two asymptotic scales
present.

The first one was introduced above and is determined by the filtration

U~·T = UR n UG,T.

This asymptotic scale is generated by multiplication by elements of the form G (p)
with different P since such elements correspond to shifts by P in the p-plane.

The other scale is determined on the set of resurgent elements having the support
in a single point Pj. Clearly, it is sufficient to describe this scale for Pi = 0, which is
a good choice since the set DUG,T of elements from UG,T with supports at P = 0 form
a subalgebra in UG,T. For such elements we use the filtration

:Fa = {U (p)11U (p)1 ::; C~ Ipla-~ for each e > o} , a E R

in the space of endlessly continuaple functions with singularity at p = 0 (cf. [15]).
Denoting this filtration by U:F0 C DUG,T, one can see that it is generated by the
operator A, since this operator corresponds to the differentiation operator in the
space of microfunctions supported at P = 0 (see (1.11)). For example, in the series

00

L A-1q

1=0

18



(1.16)

the main term (corresponding to I = 0) belongs to the space U:F-I, since the unit
element of the algebra U corresponds to the function

U (p) = Co [27l"ip]-1 ,

the first term belongs to Aro: it corresponds ta

u (p) = CI (27l"i)-llnp,

etc.

1.4 Examples

In this subsection, we shall show how the classical Borel-Laplace and Borel-Mellin
transforms are embedded into the above described general scheme. To do this, we
consider the algebra U of functions holomorphic in the sector

S (E, R) = {x E er I -E < arg x < e, 0 < IxI < R}

in the complex plane C with the topology of uniform convergence on compact subsets
(we denote by x the coordinate in this plane).

1. Borel-Laplace transform. As it was already mentioned in Subsection 1.1,
the corresponding group can be defined with the help of the operator

" 2 dp=x
dx

'

Namely, the function G (p, x) is defined for any fixed p as an eigenfunction of the
operator (1.16) corresponding to the eigenvalue p. In other words, G (p, x) satisfies
the following equation:

x2 d~G(p,x) = pG(p,x).

This equation can be easily solved and the general solution is given by

G(p,x) = C(p)e- i ,

where C (p) is an arbitrary constant (in x) subject to the condition

C (PI) C (P'J) = C (PI +P2) .

So, as we have already remarked, operator (1.16) determines not a unique group,
but the /amily 0/ such groups parametrized by all complex-valued representations
C (p) of the additive group C.

19



If we put C (p) = 1, we obtain the corresponding integral representation in the
form 7

'Ra (U) = Je-;U (p) dp,

"Y

which coincides with the standard definition of the complex Laplace transform. Here
1 is a contour drawn on Figure 2. From the theory of the Borel-Laplace transform,

. it follows that the corresponding subalgebra UG is simply an algebra EI (5 (e, R)) of
functions of exponential growth with degree 1 defined in the sector 5 (e, R):

UG = EI (5 (e, R)) = {f (x) E Ullf (x)1 :::; Cea~1 with some C > 0 and a} ,

and the corresponding analytic family of functionals is given by the relation

(CO (p), f (x)) = 2~i Je;f (x) dx,
1',4

(1.17)

G(p,x) = e-;

where the contour lA is drawn on Figure 5 (it is easy to see that changing the
initial point A of this contour leads to appearence of an additive entire function,
and, hence, the right-hand part of formula (1.17) is well-defined as a hyperfunction,
as required). Relation (1.17) is exactly the definition of the Borel transform.

To conclude this example, we remark that the large parameter corresponding to
the group

is simply A = X-I.

Clearly, all k- Borel transforms. for any k can be descri bed in the same way. This
will be one of the topics of our consideration below.

2. Borel-Mellin transform. This transform can be determined by the opera-
tor

" dp=x-.
dx

The equation for the corresponding group G (p, x) is

d
x dx G (p, x) = pG (p, x) ,

and the expression for G (p, x) can be obtained by resolving this equation:

G (p, x) = C (p) xP ,

7As we shall see below 1 the choice C(p) i= 1 is not meaningless!
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Figure 5. The form of the contour TA.

where C (p) is as above. Again, putting C (p) = 1, one obtains the corresponding
integral representation

'Ra (U) = Jx P U (p) dp,

which coincides with the inverse Borel-11ellin transform. In this case it is easy to
compute that the corresponding subalgebra U G is a subalgebra of functions of power
growth, and the corresponding large parameter is A = In x.

Leaving the refinement of the other details to. the reader, we consider here only
one additional question. The matter is that the standard Fuchsian operator

is transformed into the operator
H (T!,p) ,

where Tl is the shirt by 1 in the p-plane:

(Tl U) (p) = U (p - 1) .

Clearly, operator (1.19) is not an operator of the form

H(:p'p)
21
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(1.20)

(the latter corresponds to the operator of the form

(
-1 d)H In X,x dx

in the dual space.) So, the models for Fuchsian operators in the dual space are not
differential, hut difference operators.

The last consideration shows that in investigating differential equations one
should start with operators of more general form than that involved into formula
(1.3). Namely, one should consider operators

H(a,p),

where a is an operator corresponding to an element a of the corresponding algebra
U G • Such operators will be considered in the next section.

1.5 The parametrie case and the Stokes phenomenon

Here we shall consider the case when the hyperfunetions in the dual space (and,
hence, the corresponding elenlents of the algebra UG,r) depend on an additional
parameter x E c n

• This ffieans that we consider here tbe representations of the
forms

u (x) = Re [U (x,p») = L JG (p) U (x, p) dp.
J rj

Suppose that the hyperfunction U (x,p) is endlessly continuable with respect to
the variable p for any given value of x. Then the singulatiy set of the funetion
U (x,p) can be deseribed by the equation

p= S(x),

where the function S (x) is, as a rule, ramifying function of the variable x. The points
of ramification of this function will be called Cocal points of the element (1.20). The
set of foeal points of the element u (x) will be denoted by :Fu , or simply by F if this
does not lead to misunderstanding.

The interest to the parametrie ease can be explained by considerations of exaet
asymptotics of solutions to the so-called A-differential equations [16], [17]

H (x,A- 1:x) u(x) = O. (1.21 )

BIt is possible to consider the case when the variable x is ehanged in seme open set in the
spaee eR; for simplicity we shall not consider this esse here, the more that aB needed ehanges for
consideration of this more general ease are quite obvious.
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For example, exact semi-classical approximations for quantum mechanics equations
leads to equation (1.21) with i/h as the operator A.

The consideration of representation of the type (1.20) leads to the so-called Stokes
pheoomenon, which cao be described and investigated in the framework of the above
constructed general scheme quite similar to the investigaion of this phenomenon
in the classical theory of resurgent functions. To do this, we suppose that the
element (1.20) has simple singularities. This means tha't the function U (x, p) has
the asymptotic expansion (in smoothness) of the type

Co (x) ~ (p - S (x))j
U(x,p)= _S(x)+ln(p-S(x))~ '! Cj(x)

p ;=0 J

near each point of its singularity in p for each x f/:. F.
If the resurgent element u (x) has simple singularities, then, as this was shown

in Subsection 1.3, for each fixed value of x there exists an asymptotic expansion of
this element having the form

00

u (x) = L G (Sj (x)) L A-kCkj (x),
j k=O

(1.22)

where the outer sum is taken over some subset of the set of singular points of the
function U (x,p), Sj (x) are different branches of the function S (x), and each inner
sum is understood as tbe result of its resummation

(1.23)

Here r j is a standard contour encircling the singularity point p = Sj (x) of the
integrand. As it is well-known in the classical resurgent functions theory, asymptotic
expansion (1.22) can be changed by jump if the parameter x intersects the so-called
Stokes lines (this is exactly the Stokes phenomenon which is well-known in the
classical resurgent function theory; see [9] for details.)
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2 Asymptotics of solutions

2.1 Description of the class of equations

Let us fix some generating group C (p) of integral representation in the algebra U.
Consider the equation9

H (~J) u = 0, (2.1 )

where H (x,p) is a polynomial in p of order m with holomorphic coefficients, and ais
some element of the algebra UG • We suppose that the operator of multiplication by
a is an operator of negative order in the double filtration defined by the asymptotic
seales

{U~'T, RER} and {UFo, aER}.

Sinee the first scale is stronger than the second, the last requirement on the operator
a means that

• either this operator has negative order with respect to the asymptotic seale

{U~,r, RE R},

• or this operator has zero order with respeet to {u~,r, R ER} and has the

negative order wi th respeet to {U:Fcn Q' ER}.

Let us interpret these two requirements in terms of the operator a in the dual
space.

In the first case the fact that the operator a has negative order in the asymptotic

scale {U~'T, R ER} means that the corresponding operator a shifts supports of

functions U (p) to the right in the p-plane to some positive value (whieh is interpreted
as the negative order of this operator). For example, this operator can be the shift
in the p-plane by a complex number Po with positive real part. This operator cau
be represented as the convolution with the function

a (p) = (C- (p) , a) ,

namely
aU (p) = a (p) * U (p) ,

9Below we use Feunmann indices over the operators defiing the order of their action, see [16],
[18).
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and the support of this function must be contained as a whole in the half-plane
{Rep> O} (as weIl as in some sector with angle less than 7r bisected with tbe di
rection of the positive real axis; see tbe remark after the definition of aresurgent
element from U).

In the second ca.se, we again represent the operator a a.s the convolution with
tbe corresponding function a (p). Since this operator has zero order with respect

to tbe scale {Ag,r, RER}, the support of the element a is contained as a whole

in tbe half-plane {Rep > O}, and it intersects the line {Rep > O}. We shall restriet
ourselves with tbe most simple but the most interesting case when the support of
a consists of a single point p = O. In this case the function a (p) has the only
singularity point p = 0, and, since a is an operator of negative order with respect to
the seale {AFo , Q' ER}, the singularity at this point is weak, that is

with some C > 0 and ß > -1.
The process of solving equation (2.1) in these two cases is quite different, and

we consider the eonstructing of an asymptotic expansion in eaeh of these two cases
distinctly.

2.2 Asymptotic expansion (first case)

Since tbe element a involved into equation (2.1) is in some sense small (it has tbe
negative order), it is natural to expand tbis equation in powers of this element:

H (a 1 ß) U = [Ho (ß) +a H1 (a, ß)] u = O.

Due to (1.10), passing to tbe dual equation wi th the help of the representation

u = 'RG [U (p)] ,

one arrives at the following equation for the function U (p):

[Ho (p) + ~ H 1 (X, ~)]U (p) = o.

Let us search for the solution of the latter equation with the help of the succes
sive approximation method. Neglecting the term aHI (0., p) U (p), we determine the
zeroth iteration Uo (p) as a solution to the equation

Ho (p) Uo(p) = O.
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Suppose, for simplicity, that all the roots of the polynomial Ho (p) are simple. Then
equation (2.2) bas exactly m independent solutions of tbe form

U(j) ( ) 1 . 1p = . ( )' J = , ... m,
271"1 P - Pi

where Pi are different roots of Ho (p) (we recall that all equations in the dual space
are to be solved in the spaces of hyperfunctions). Let us fix Olle of these solutions
(say, U(1) (p)). Now, searching for the next iteration of the form (we omit the
superscript (1))

U1 (p) = U0 (p) + VI (p) ,

we obtain the equation for VI (p) in the form

3 (2 1) 3 (2 1)Ho (p) VI (p) + a H1 a,P Uo(p) + a H1 a,P Vi (p) = O.

Again neglecting the term aH1 (a, p) Vt (p), we arrive at the expression for VI (p):

13 (2 1)VI (p) = - [Ho (p)]- a H1 a,P Uo(p).

Note, that the support of the function VI (p) is shifted to the right in the p-plane by

8 > 0, where -8 is an order of the operator ain the asymptotic scale { A~·r, RER}.

Continuing this process, we shall construct a solution to equation (2.1) in the
form

(2.3)

Taking into account that

• the supports of only finite number of terms of series (2.3) have a nonempty
intersection with any left half-plane {Rep < R}, and

• the filtration {A~·r, R ER} is complete,

ODe obtains that series (2.3) converge in the space of resurgent elements thus deter
mining a solution to equation (2.1).

So, we have arrived at the following statement:

Theorem 6 TI the operator a has a negative order with respeet to the asymptotic

seale {A~·r, R ER}, there exist a /ull system 0/ resurgent solutions to equation

(2.1). Each solution 0/ this system is determined by some root Pi 0/ the polynomial
Ho (p), and the support 0/ this solution consists 0/ the point Pi itsel/ together with
shijts 0/ this point by any p /rom the support 0/ the element a. The set 0/ singularities
0/ the /unetion U (p) is the union 0/ the set {PI, ... ,Pm} and all above described shi/ts
0/ this set.
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2.3 Asymptotic expansion (second case)

The case when the operator a has zero order wi th respect to the asymptotic scale

{ A~·r, R ER} is a little bit more difficult lO
• However, the initial steps in the

constructing an asymptotic solution go quite similar to the above considered ca.Be.

Namely, we expand the equation in powers of the operator a and transform the
obtained equation into the equation for the function

v (p) = (G· (p) , u)

with the help of the representation 'Ra. Similar to the above case, we get

(2.4)

Using again the successive approximation method, we obtain a formal solutions to
this equation in the form of the series

00

v (p) = Vo (p) +L Vk (p),
k=O

where Uo(p) is one of the functions

Uo (p) = UJi) (p) = 2 . ( 1 )' j = 1, ... m,
7rt p - Pj

and the functions Vk (p) are solutions of the following recurrent system

Ho (p) Vdp) - i. H. (X';') UO (p),

Ho (p) Vk(p) = - XH, (i.';') Vk-dp), k = 2,3, ....

(2.5)

The difference between the above considered case and this one is that all the func
tions Vk(p) are supported at one and the same point p = Pj, and, hence, we mllst
prove the convergence of series (2.5) in the space of endlessly continuable functions.

Such an affirmation can be proved, if one takes ioto account the fact that the
operator a can be represented as the convolution

aU (p) = a (p) *U (p)

lOWe recall that we consider the case when the element a involved into equation (2.1) ia supposed
to have the support consisting of the single point p = O.
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with the function a (p) = (C· (p), a) which has a weak singularity at the origin (and
the origin is the only singular point of this function). Due to this fact, equation
(2.4) is an equation of the Yolterra type, and this allows one to obtain the needed
estimates (we omit here the details).

So, we arrive at the following statement:

Theorem 7 Under the above formulated conditions, for any Pi, j = 1, ... , m there
exists aresurgent solution to equation (2.1) with support at P = Pi' The singularity
set 0/ the corresponding function U (p) is {Pt, ... ,Pm} .

2.4 A-differential equations

Here we consider the so-called A-differential equations having the form

(
_1

8 )H x, A 8x u (x) = 0, (2.6)

where x E C n is an n-dimensional complex variable, u (x) is a function in x with
values in the algebra U G.r • As it was mentioned before (see Subsection 1.5), the
model for such equations are equations of quantum mechanics, for which the operator
A is simply tbe multiplication by h-1, where h is a Planck constant. The same
method can be applied to the investigation of the Mathieu equation (see [19], [20])

J1y
dz'l + (A - q cos 2z) y = 0

and others.
To apply the general resugrent scheme to this equation, one should determine

the corresponding representation from the given "large para.meter" A. As it :was
described above (see Subsection 1.2), the kerneI C (p) of the representation 'R.o is
connected wi th the large parameter by the relations

dC(p)
dp = AC(p), C(O) = 1.

Now, passing to tbe resurgent representation,

u (x) = 'Ra [U (x, p)]

one obtains tbe following equation for the (hyper)function U (x, p):

(2.7)
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We remark that the latter equation is quantized with respect to smoothness. To
investigate the asymptotic solutions to this equations in smoothness, one can use
the theory of differential equations on complex-analytic manifolds (see [15]). For one
dimensional equations (that is, for x E Cl), the existence of an endlessly-continuable
solution to equation (2.7) was proved in the book [9] by the authors.

Clearly, in the process of investigation of asymptotic behavior of solutions to
equation (2.6) one should investigate the Stokes phenomenon. This can be done
quite similar to the investigation fo this phenomenon in the framework of the cIassical
resurgent functions theory, and we shall not present here these considerations (see,
e. g. [2], [9]).

3 Deformations of integral transforms and equa
tions

3.1 General theory

In this section, we shall investigate equations of the above described type in the case
when these equations depend on some additional parameter. The main question of
the theory will be the changes of type of asymptotic expansions taking place at some
values of the parameter.

Let us describe the situation in detail. Consider a family of generating groups of
integral representations depending on some complex parameter 0' E C k

• We suppose
that the corresponding function

G(p,a) , (3.1 )

as weIl as the corresponding functionals G* (p, a) depend on the parameter Q' ana
lytically in some set f! in the space C k • Then all the objects constructed in Section 1
such as the operator ß, "large parameter" A, the subalgebra UG,r, and the above
introduced filtrations will depend on the parameter Q', in turn. This dependence
will be denoted by the subscript a for the corresponding objects. So, pa will be
the notation for the operator ß defined by the group (3.1), u~,r will denote the
corresponding subalgebra of resurgent elements, and so on.

Consider the equatian
H(aa,Pa)u=o, (3.2)

where a Q is an element from u~,r such that the multiplication by aa is the operator
of negative order in the double asymptotic scale determined by the graup G (p, a).
We suppose that the dependence of the element aa on Q' is analytic in f!. Under this
condition, the asymptotic solution to equation (3.2) can be obtained literally in the
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way described in Section 2, and this solution has the form

00

u (p,o) = Uo (p,o) +L Vk (p,o),
k::O

(3.3)

and the terms of this series are graduated with respect to the double asymptotic
scale determined by the group G (p, 0). However, one must have in mind that

• first, this double scale depends on the parameter 0 and

• second, the operator ä = lIa also depends on this parameter.

So, when the parameter 0 changes its value, it is possible that expansion (3.3)
changes its type by jump (we mean the two types of asymptotic expansion described
in Section 2). In this process there are two possible cases. To describe these cases,
let us follow the evolution of asymptotic expansion (3.3) along some curve I in the
domain n where the parameter 0 have its values.

Case 1. On the initial stage of the deformation (that is, on some initial part of
the curve 1; see Figure 6) the asymptotic expansion has the first type (that is, the op-

erator lIa has a negative order with respect to the filtration {U~:~, RER}), and at

some point 00 on the curve this expansion becomes an expansion of the second type

(this means that the operator aoo has zero order in the fil t ration {U~:~o' RER}

but negative order wi th respect to the fil tration {U:F0, 0 ER}).
Case 2. The deformation begins with values of 0 such that the asymptotic

expansion has the second type, and for 0 = 0'0 this expansion becomes that of the
first type.

Let us consider these two cases in more detail.
We recall that the support of the resurgent solution is deternimed by the roots

of the polynomial Ho (p) = H (O,p) and by the support of the function

a (p, 0) = (C- (p, 0') ,ao ) . (3.4)

The set of roots of Ho (p) does not depend on 0 and, hence, it does not affect the
type of the asymptotic expansion. On the opposite, the support of function (3.4)
changes with the change of 0 and, hence, is crucial for the determination of the type
of the asymptotic expansion in question.

In the first case, the support of the function a (p, 0) at the beginning of the
deformation process is contained as a whole in the open half-plane {Rep > O}. In
the process of deformation, some points of this support approach the line {Rep = O},
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Figure 6. Deformation path.

ancl , finally, come to this line at a = 0'0. The examples below show that even
infinite number of points of support ean eome to one ancl the same point of the line

{Rep = O}. So, the expansion initially graded with the help of seale {U~:~, RER}

ean beeome to be graded wi th the help of the more weak seale {UJ='Cl.) a ER}.
In the seeond ease, at the initial stage of the deformation proeess the support of

the funetion a (p, 0') has points on the line {Rep = O} (this support ean even eonsist
of a single point p = 0 on this line). Then, at a = 0'0, the support of a (p, 0') looses
points on the imaginary axis and beeomes a set laying as a whole in the half-plane
{Rep> O}. Henee, the set of terms of the asymptotic expansion being initially
graded with the help of more weak seale {U:Fcn 0' ER} becomes to be graded with

the seale {U~:~, RER}. We shall see this phenomenon on one of the examples

below.
So, the asymptotic expansion can change its type for values of the parameter a

such that the support 01 the funetion a (p, 0') comes to the line {Rep = O} or leaves
this line.
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(3.5)

3.2 Examples

1. Multiple Mellin transforms (see [21]).
Let us consider the equation

H (x, x (x + 0) d~ ) u (x) = 0,

where H (x,p) is a polynomial in p with coefficients holomorphic near the origin in
the complex x-plane. This is an equation of the Fuchsian type with the two singular
points x = 0 and x = -0. Our aim is to investigate the uniform asymptotic
expansion of solutions to this equation in a neighborhood of the origin in o-plane.

Using the above described scheme of investigation, one should first to construct
an integral representation defined by the operator

ß= x (x + er)~.
dx

The corresponding group is determined by the requirement that G (p, x, er) IS an
eigenfunction for the operator ß:

d
x (x + er) dx G (p, x, er) = pO (p, x, er) .

The direct computation gives

G(p,x,er) = C(p,o') (_X_)P/OI
x+a

The constant C (p, 0') has to be chosen in such a way that the function G (p, x, 0')
is regular at the point 0' = O. Since we have

lim (_x_)P/O/ = e-p1x ,

0-0 x + er

it is sufficient to put C (p, 0') = 1. So, we obtain the representation of the form

'Ra,,, (U) = JC:or/"U (p) dp.
r

This representation can be named double Mellin representation since its kernel
has two singular points x = 0 and x = -0', and both these points are of the Mellin
(Fuchs) type. Later on, as 0' ---+ 0 this transform takes the form

li~ 'Ra,,, (U) = 'Ra,o (U) =Je-plxU (p) dp

r
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of the classical (complex) Laplace representation.
To determine a point 0'0 at which tbe type of asymptotic behavior of solution is

changed, one have to compute the operator xa corresponding to multiplication by
x in the x-plane. This ca.n be done with the following procedure. Multiplying the
equality (3.5) by x / (x + 0') we obtain

C:J Re,,, (U) = JC:J (P+")/" U(p) dp

r

- JC:JP

!" U(p-a) dp = Re,,, (T"U) ,
r

where Ta is a shirt operator in the p-plane:

(To U) (p) == U (p - a) .

Hence, we have

Resolving this equation with respect to the operator xo , one arrives at the relation

The operator (1 - To )-1 involved into the latter relation requires interpretation.It
can be formally rewritten in the two different ways:

00

or

(1 - To)-1 == LTjo,
j=O

00

(1 - To )-1 == -T-o (1 - T_ o )-1 == - LT-ia.
j=1

(3.6)

(3.7)

To interpret the operator (1 - Ta )-1 for different values of x and 0', we rewrite the
expression of the kernel G (p, x, 0) of representation (3.5) as

G (p, x, a) == exp [Ein _x_] .
a x+o
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Figure 7. Decomposition of (1 - To}-l (first case).

Then it is evident that the direction of the steepest descent contour r for represen
tation (3.5) is given by the formula

x
arg B = 1r + arg 0' - arg In --. (3.8)

x+a

So, if the value of a lies in some sector of angle less than 1f bissected by the direction
(3.8) with its vertex in the origin (see Remark 2 above), then the operator To is an

operator of negative order with respect to the asymptotic scale {U~:~, RER},
and the decomposition (3.6) is correct. In the opposite case oue should use the
decomposition (3.7). The geometry of both these cases is drawn on Figures 7 and
8. To be definite, we consider the first possibility.

Then the operator Xo is given by

and the corresponding hyperfunction is

00 1
X (p, a) = a L 2 . ( .)"

. 1ft P - Ja
J=1

One can easily see that the set of singularities of the latter function (or, what is the
same in the considered case, the support of the corresponding resurgent element)
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jf_ arga-arg in _X_
x+a

Figure 8. Decomposition of (1 - Ta)-l (second case).

forms a lattice with step 0 originated from the point Cl' ~n the p-plane. As 0 tends
to zero, all this lattice shrinks ta one and the same point, namely to the origin in
the p-plane. The limit of the carresponding operator is

I·... l' T A-l1m X a = 1m O'L.l. a =
a-O a-O

where

is the difference derivative with step 0. So, the corresponding limit hyperfunction
IS

1
X(p,O) = -2.lnp,

1ft

and this function has the only singularity point at p = O.
So, we see that far this example the first case of changing the asymptotic expan

sion is realized.

One can also cansider the tripie Mellin transform which arises in the investigation
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of the equation

H (x,x(x +a)(x + ß) ~) u = o.

We shall not consider this case in detail, hut shall discuss briefly the properties of
the eorresponding representation. This representation has the form

J[ x'h ]P
'Ra,ß (U) = U (p) dp.

(x +o)or1=al (x +ß)~, r

This representation can be ca.lled triple Me/lin representation corresponding to the
points x = 0, x = -0', and x = -ß.

It ean be shown that:

i) There exists a double limit lim R o ,(3 (U). This limit eoincides with the 2-Laplaee
o,ß-O

transform

"Ro,o (U) =Je~U (p) dp.
r

ii) There exist limits

lim Ro,p (U) = 'Ro,ß (U) = Je-!$ (~ß) -fr U (p) dp, (3.9)
0_0 x +

t

lim 'Ra ß (U) = Ra 0 (U) = Je!ä (_x_) ~ U (p) dp,
ß-O' , X + 0'

r

and

lim 'Ro,ß (U) = Rß,ß (U) =Je~ (~ß)--fr U (p) dp,
o-ß X +

r

These representations ean be eonsidered as the mixed Laplaee-Mellin repre
sentations. For instance, representation (3.9) is of Laplace type at the point
x = 0, and of ~1ellin type at x = -ß.

So, in this case the parameter spaee ean be split ioto five stratum. First is
the origin where the representation has the 2-Laplace type, three others are planes
0' = 0, ß = 0, and 0' = ß with origin deleted (here the representation has the mixed
Laplace-Mellin type), and the rest is all the spaee C 2 with all these planes deleted
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a

Figure 9. Strata in the parameter space.

(here the representation is of a tripie Mellin type). Schematically all these strata
are drawn on Figure 9.

Let us present some concrete examples. The above described scheme can be
applied to the investigation of the confluent hypergeometric equations (see [22],
[23], , [25]), and tbe Larne equation (see [20]). Let us consider first the case of tbe
hypergeometric function.

It is well-known that the confluent hypergeometric equation appears from tbe
Hauss bypergeometric equation

( Z) cPy [ Z] dy ß
Z 1 - - - + 1'- (0' +ß+ 1) - - - Q-y = 0

b dz 2 b dz b
(3.10)

for b = ß -+ 00. We remark that equation (3.10) is an equation of the Fuchsian type
with three regular singular points z = 0, z = b, and z = 00. During the mentioned
limit the two points z = band z = 00 coincide with each other forming an irregular
singular point at infinity.

To investigate this limit, one can apply the method developed in this paper. We
transform equation (3.10) to the form convenent for investigation by the variable
change z = X-I with b = ß, thus obtaining the equation
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The latter equation have the form

with ß = _b- l
, and, hence, all the examination above can be applied to this equa

tion. The form of the limit equation (confluent hypergeometrie equation or the
Kummer equation) is

We mention that the confluence phenomenon for hypergeometrie functions was
investigated with the help of different technique by J. Mart.inet and J .-P. Ramis [26],
and H. Kimura and K. Takano [27] (see also the bibliography therein).

Let us examine now the Lame equation. This equation has the form

tP I\. 1[1 1 1] dl\.
d~2 + 2 a 2 + A + b2 + A + c2 + A dA

n(n+l)A+C 1\.=0
4 (a2 + A) (b2 + ~) (c2 + ~) ,

where a, b, c, n, and C are parameters. The Lame equation has four regular singular
points, namely A = _a2 , A = _b2 , ~ = -2, and A = 00. The behavior of the
solution to this equation during the cOl).fluence between these four points also can
be investigated by our methods. To show this, we shall rewrite the equation in the
form

{ [(a2 + A) W+ A) (c2 + A) ~] 2 - ~ [W + A) (c2 + A) + (a2 + A) (c2 + A)

+ (a 2 + A) W+ A)] [(a
2 + A) W+ A) (c2 + A) d~] - ~ (n (n + 1JA +C)

X (a2 +~) (b2 +~) (c2 +~)} I\. = 0,

which, in essence, coincide with the above considered equation

H (XIX (x + a)(x + ß) ~) y = 0

after the shift by a2 with a = b2
- a2 and ß = c2

- a2 • The variable change ~ = X-I

allows to incIude iuto consideration the fourth singular point A = 00.
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(3.11 )

2. The family of Borel-Laplace transforms.
Here we investigate the equation

H (x,xI+O :x) u = 0

for a E C, Rea ~ O. The most interesting is the investigation of the behavior of the
solutions as a -+ 0, so we shall consider as sufficiently small in module.

Tbe interest for the investigation of tbe limit a -+ 0 is due to the fact tbat
solutions to equation (3.11) has quite different structure in cases Q' =F 0 and a = O. In
the first case ea.ch solution (from the full system of resurgent solutions) is a function
witb support at a single point Pj, where Pb' .. , pm are roots of the polynomial
H (O,p). The asymptotics of these solutions have the form

(3.12)

where "Yk is some increasing sequence of reals such that fk -+ +00 as k -+ 00. The
series on tbe right in the latter expansion are, as a rule, divergent, and one must
use the resurgent analysis for resulumating these series.

On the opposi te, in the second case (that is, for a = 0), equation (3.11) is
an equation of Fuchs type, and the solution to this equation has the well-known
conormal form

where

00 mkj-l

Uj ~ L xPkj L Cjkllnl X,

k=O 1=0

{Pki = Pi +k}

(3.13)

(3.14)

are lattices originated from points Pj with step 1, and mkj are corresponding mul
tiplicities. As it cau shown, this functions are resurgent with respect to the Borel
Mellin representationj the supports of these functions are given by (3.14), and there
are finite number of terms in the expansions corresponding to each point of sup
port, so that tbe resummation procedure is not needed for the interpretation of this
expanSIon.

One cau show, that the quest ion how expansion (3.12) transforms ioto expansion
(3.13) can be solved with the above introduced technique.

Let us compute the corresponding family of groups. Due to the above theory,
the corresponding function G (p, X, a) must be a solution to the equation

xI+o :xG (p, x, a) = pG (p, X, a).
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c (p, Q') = e~ .

The general solution to this equation is

G (p, x, a) = C (p, a) e-~ ,

where C (p, Q') is an arbitrary constant. Since we are interested in investigatopn
of the limit a --+ 0, we must choose this constant in such a way that the function
G (p, x, a) is regular at Q' = O. In contrast to the previous example, we cannot use
here C (p, a) = 1 since the function exp [-p/ (axO

)] has an essential singularity at
the point Q' = O. It is easy to see that to obtain a function G (p, x, a) regular at
Q' = 0 it is sufficient to put

So, finally we have
G(p x 0') - e-p(~-;),,- ,

and the corresponding representation has the form

Ra,<> (U) = Je-"(~-:')U (p) dp.

r

The limit of this representation as 0' --+ 0 is

~~Ra,,, (U) = Ra,o (U) =Jx"U (p) dp,
r

which, naturally, coincides with the Borel-Mellin representation. So, we have con
structed adeformation of the representations connecting Borel-Laplace representa
tions of different orders a with the Borel-f\1ellin representation.

Now, one has to investigate the corresponding operator xO ' Denote by [,0 the
classical Laplace representation of order a:

.c" (U) = Je-~U (p) dp.
r

Clearly, we have

na.Cf (U) = [,,, (e~U) .

Now, taking ioto account the relation
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one has

x'Ra,a (U) - xL:a(e;U) = L:a (a-:' (~r!; e;u)

- L:o (e; [e-;a-:' (~) -!; e;] u) = 'Ra,o (xoU),

where the operator xa is given by

(
d )-:A _.2. _1. .2.

x", = e 00 0 dp e o • (3.15)

The latter operator can be rewritten as the convolution with some function X (p, 0).
To do this, we use the relation

(
d )-ß ]1-1
dp U (p) = U (p) * r (ß)

valid for ß > 0 (here r (ß) is the Gamma function). Using this relation, operator
(3.15) can be rewritten in the form

where
_l.

a 0 1._1_E.
X (p, a) = r (;) po e o.

One can see from the latter relation that the less in module tbe number Q' is, the more
negative order with respect to the asymptotic scale {Aro , 0 E R} the operator Xo

has. From the other hand, this operator has zero order with respect to tbe scale

{U~:~, R ER} for any 0 with Rea> O.
The following affirmation is almost evident.

Lemma 1 The following relation takes place

where Tl is the shift by 1 in the plane C;
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Pro0/. Since

li!!":, 'R.O,Cl (xoU (p)) = li~ X'Ro,Cl (U (p)) = x'R.G,o (U (p)) = 'Ro,o (T1U (p)) ,

the required statement follows from the invertibility of the representation na,Cl up
to 0' = O.

Now one ean see that the terms of asymptotie expansion (3.3) being eoneentrated
at one and the same point of support Pi of the resurgent solution for ReO' > 0, "jump"
from this point to points Pi + k, k E Z+ when 0' becomes to be equal to zero. This
mea.ns that we have here the second case of behavior of the asymptotic expansion
described above.
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