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Introduction

Trace and extension theorems for the classical Sobolev spaces have been known for well
over 30 years. They go back to Aronszajn, Besov, Slobodeckij, Stein, and many others.
Kaljabin obtained corresponding results for the so-called spaces of functions of generalized
smoothness.
The theory of pseudodifferential operators led to yet another type of function spaces,
where the smoothness varies in space. Although these spaces have been investigated
for almost three decades, cf. Unterberger and Bokobza {23], it seems that no general
trace or extension theorems have been proven. One reason might be that the standard
pseudodifferential methods fail in this situation. The present paper gives a solution for a
class of such spaces.
For certain hypoelliptic pseudodifferential symbols a we define the Sobolev space W, **(IR")
by

Wy *(R") = {u € S"(IR*) : v € L*(IR")and Au € L*(R")};

here, A = Opa. We then show that the restrictions of these functions to the hyper-
plane {z,, = 0} belong to W,** (JR*"), where a'(z',¢) = (€'Y ? #a(',0,¢,0), and that
the restriction operator is in fact surjective. Except for the required hypoellipticity, the
essential assumption for the trace theorem is a conormal ellipticity condition guaran-
teeing a minimal growth for the quotient a(z,€)/a(z,¢’,0); for details see Theorem 2.1.
Conversely, in order to obtain the extension theorem, we have to control the quotient
a(z',0,¢)/a(z',0,¢,0) from above, cf. Theorem 2.2. Both conditions are quite natural
from the point of view of B.-W. Schulze’s wedge Sobolev spaces, cf. [21], [20], although,
for technical reasons, this relationship is not exploited in the present proof.

An example for a symbol @ where all assumptions are fulfilled is a(z,£) = (E)a(z) 1+
In (£))* where o is a smooth function with all derivatives bounded and info(z) > 1/2;t €
R.

This includes the classes considered by Unterberger-Bokobza and Beauzamy, where o was
the sum of a constant and a rapidly decreasing function. In addition, symbols of the
form a(z,£) = (€)°®®) recently have gained interest as generators of Feller semi-groups
and Markov processes [8], [18], [11]. The present results should provide a further step
towards the understanding of boundary value problems also for operators with symbols
such as these.

We reduce the proof of the trace theorem to a boundedness result for a composition of
pseudodifferential operators on standard Sobolev spaces over IR®. Although simple in
spirit, this requires a careful analysis since the symbols a and a’ live on spaces of different
dimension.

Vice versa, the extension operator is constructed in a straightforward way. Again we
reduce the problem to showing the boundedness of a composition of operators on Sobolev
spaces. This time, however, we have to show continuity from H*(/R""!) to H*(IR") for
large k, and the operators are partly pseudodifferential, partly potential operators in
Boutet de Monvel’s calculus.

Using different methods, Pesenson [19] has recently proven trace and extension theorems
for a certain class of non-isotropic Sobolev spaces on the Heisenberg group, given by vector
fields satisfying Hérmander’s condition.

The present proof does not carry over to the case of Besov spaces B, with p,q # 2.
The reason is the well-known limitation of the boundedness results for standard pseudod-
ifferential operators: For p # 2, the continuity of operators with symbols in S9; on L?
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Sobolev spaces requires that p = 1, cf. [6], while here we take advantage of the fact that,
for p = 2, the much weaker condition 0 < § < p < 1,8 < 1 is sufficient. The basic concept
of reducing both the trace and the extension theorem to boundedness results seems to
be quite general. We therefore hope that, for a restricted class of symbols, trace and
extension theorems can be obtained also in the case p # 2 using more refined continuity
results.

1 Pseudodifferential Operators and Sobolev Spaces
of Variable Order of Differentiation

A function p(z,£) belongs to the class 57, —c0o <m < 00,0< 6, p <1, 6 <1, provided
that for all multi-indices a, 8 there is a constant ¢, such that

(1)

for all z,€ € . Here pl§) = 05 Dp(s, €) and (€) = (1+ [¢[*)'/*.

The set of all functions p(a: &) such that (1) only holds for |a| < I and |3] < J will be
denoted by S7%(1,J), I,J € IN.

Forpe S)sorp€ Sp,s(I, J) define the semi-norms

m —m+p|a|-6|8
P = s e (e ] 7o)
18Ik

Pl (@, 8)] < cup ()

The pseudodifferential operator p(z, D) or Opp with symbol p(z,£) is defined by
(e, Dyl (a) = [ €% ple, €)(6)d

for u in the Schwartz space S(IR"); 4(€) = [ e~*u(z)dz is the Fourier transform of u,
and d¢ = (27)~"d{. For p € S,

p(z, D.) : S(B™) — S(I")

is continuous and can be extended to a continuous operator from S'(IR") to S'(IR").
Concerning the composition we will need the following observation.

1.1 Lemma. Letp € S}, p2 € S.%,. Then n(z, D:)pa(z, D) = p(z,D;) has a

K

symbol p(z,€) with the following e:cpansi?n
l (a
(2) p(@,6) = Y —27(@,6) Pae(2,€) + (2, €),
la|<N
where
(@6 = (N+1) Y / ool )6
lvI=N-+1

and
(3) ry0(2, &) = (211')'"03—// e~V pgﬂ(m,f + 6n) pagyy(z + 3, &) dy dn

We shall write p = p1#pa.



As usual, cf. [12, Chapter 2, Theorem 3.1], this follows from Taylor’s formula combined
with integration by parts for the particular form of ..

Forpy=p;=p,61=6,=6and § < pwehavep € S::g"'m’ and ry € S;“g"'m’_mﬂ)("_'s).

1.2 Theorem. Letp€ S7%, 0<6<p<1,86 <1, ands € R. Then there exist
integers I, J such that

Ip(z, D) L(HZ(R™), Hy 7™ (IR™)| < Clpl(,4)
H3(IR") is the usual Sobolev space of all distributions u with (1 — A)3u € Ly(IR").

The theorem goes back to Calderén and Vaillancourt, cf. [12, Chapter 7], Theorem 1.6;
in fact it is sufficient to ask that p € S75(1, J).

In [14] and [15], Besov and Sobolev spaces of variable order of differentiation were defined.

1.3 Definition. Let 0 <6 <1 and 0 < m’' < m. A symbol a(z,£) € ST belongs to
the class S(m,m’; ) if there is a constant R > 0 with the following properties

(i) for all multi-indices a, 8, and all (z,¢) € R" x IR™ with [¢| > R

(4)

% (xaf)‘ < cagla(z, €)] (€) T,
(ii) there exist constants ¢, > 0 such that for all (z,£) € R" x IR" with [£| > R
(5) O™ < la(z Q) S ()™

The symbols of the class S(m,m’;§) are a good substitute for the symbol [£|? of the
Laplacian which is used in the definition of the usual function spaces. For examples see
(14], [15], [12].

1.4 Remark. 3
(i) If a € S(m,m'; 6), b € S(m,m';6), then

ab € S(m + m,m’ + @’; max (6, §)).
(i1) The symbol ¢(z', &) = a(z’,0,¢',0) belongs to S(m,m’, §) with respect to IR*1.
(iii) The elements of S(m,m’,§) are hypoelliptic. Given a € S(m,m’,8) we can construct

a parametrix b(z, D;) to a(z, D,); i.e. b(z, D;)a(z, D;) — I and a(z, D;)b(z, D;) — I both
have symbols in S~ = {1 5}%;. Moreover, b will satisfy the estimates

(6) bggg(m,ﬁ)\ < copla(z, €)1 () IoIHEIA

for all (z,£) € IR™ x R, || > R, cf. [12, Chapter 2, §5].

1.5 Definition. For j =1,2,..., and @ € S(m,m’;8) let A= 0Opa and
Wg’a(lR") = {u € S'(IR") : ”u |Wg'°(ﬂ2") “ < oo} ,

where . ‘
[lw [W3* (B[ = || Al La|| + |l | L2 |-
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The definition extends to 1 < p < oo, cf. [14]. It shows a convenient way to relate
function spaces and pseudodifferential operators, cf. [22], [24],[25] [26], [1]. We shall need
the following fact.

1.6 Theorem. W7*(IR") is a Hilbert space, and S(IR") is a dense subset. For p €
Sts we have p(z, D;) € LWP*(IR")). If & is an other symbol and a — & € S~ then
Wi (") = W3*(IR").

For further results see [15].
1.7 Lemma. W2*(RR") = W;‘“j(R").
Proof By Remark 1.4, a’ € S(jm, jm'; §). Let Bg;y = Opb;) be a parametrix to Opa’.

Then _ ' _ '
| A7u| Ly|| < || A B;Opa’u| Lo|| + || A’ Rijyu| Ls|

with R;y € S7°°, so that the last term can be estimated by c|lu|La||. Applying (6), a
careful analysis of a# ... #a#b(;) gives A’ B(;, € S7;. By Theorem 1.6 we get

4] L] < ¢

;
u‘W._.]'a

Vice versa, let B = Opb be a parametrix to A = Opa. Then B’ is a parametrix to A/,
and

||Opaju| L2|| < ” OpaijAjul L2|| + ||Opa"Rju| L2||

with R; € §7%°. Again, the last term can be estimated by c||u|L; ||, and just like before
Opa’B’ € S} ;. Hence _
10p a’u| La|| < C [lu W2

2 The Main Results

As usual we write the variables in R" in the form z = (z',2,), £ = (¢, &.).

2.1 Theorem. (Trace Theorem)

Leta € (1 S(m,m/;6), m' > %

550 7, satisfy

a(:c',:cn,.f',O) (@) §+¢.
(e omtr )| = S \10

for some €* > 0. Then the restriction operator

(1)

Yo : Wl,a(Rn) - Wl,a’(Rn—l)
is continuous. Here, a'(z',&') = ({')_1/2 #a(z’,0,¢,0).

The restriction operator is in fact surjective. This follows from



2.2 Theorem. (Extension Theorem)
Leta€ JQOS(m,m’;é), m' > 1, satisfy

ofc',0,€',6,)

@ 4(2,0,0)

< (i&r)

for some k > 0. Then there is a bounded operator
E: Wl,a'(an-l) = Wl,a(mn)
with v F = id. Again, o'(z',{') = (&Y da(',0,¢,0).

2.3 Remark. In view of the fact that we may change the symbol a for small €] without
changing the space W,"*(IR"), cf. Theorem 1.6, it is sufficient to ask the estimates (1)
and (2) hold for |£| > R.

Likewise it is obviously sufficient to ask that estimate (1) holds in a small strip {|z.| < €}
only.

2.4 Remark. For symbols of the form

(3) a(z,€) = (£)°@

the spaces W1*(IR") were considered by Unterberger and Bokobza (23], Visik and Eskin
[24], [25], Beauzamy [2]. Here, o(z) = s + ¢(z) with a constant s, and ¢ € S(IR").
If t € R, then the spaces W"*(IR") associated with

(4) a(z,€) = (6" (1 +1n (€))!

were treated in Unterberger-Bokobza [23} and Unterberger [22].

It is easy to check that the symbols in (3) and (4) belong to QDS(m,m’,&) and satisfy
(1) and (2) provided inf o(z) > 1/2. This is also true for a generalization of (3) used in
[11], where o(z) is a function belonging to B<(IR") - it is ¢(z) and all its derivatives are
bounded on IR". For all these examples, trace and extension theorems are so far unknown.

3 Proof of the Trace Theorem

S(m,m',8), m' > 1, satisfies inequality (1)

In the following we shall assume that a € JDO

in Theorem 2.1.
3.1 Lemma. Letu € W,*(IR"). Then vou € L*(IR™1!).

P roof. Since A is hypoelliptic, there is a parametrix B with symbol in S,"';“' (IR") such
that BA = I+ R with R€ §-. Now u = B Au— Ru. By assumption Au € L*(JR") so
that u € HJ* (JR") by Theorem 1.2. The classical trace theorem now gives the assertion,
since m’ > 1/2.

We denote by A and A’ the operators with symbols (£) and (¢'), respectivly. = As in
Theorem?2.1, A’ is the operator with the symbol (",")_1"2 #a(z',0,¢',0), while Ap is the
operator with the symbol a(z’, z,, ', 0).



3.2 Lemma. Fizk = I—“Eil, cf. Theorem 2.1. Without loss of generality we may and will
assume that k < m’. Let B, R be as in the proof of Lemma §.1. For the proof of Theorem
2.1 it 1s sufficient to show that

(1) A% Ay BA¥ € L(HF(IRM)).

Proof Wehave you € L}(IR"!) by Lemma 3.1. It remains to show that A'you €
L*(IR*1). For u € W, *(IR™) we have

(2) Alyou=A*2y (A 4 BA*) A™* Au— A’y Ru,

since o A" ¥*1/2 A = A’"* A'~y. The second summand on the right hand side of (2)
certainly is a function in L*(IR""!), since R € S and A’ € S(m — 1/2,m' — 1/2;4).
By assumption, Au € L?(JR"), hence A~*Au € H*(R"). If (1) holds, the trace of
(A'=% Ag BAF) A% Auisin H¥"Y/2(IR*). So the first summand also belongs to L2(IR*~).

3.3 Lemma. Letb denote the symbol of B and
(3) o(@,€) = (¢)7" #a(a', 2, &', 0)#b(z, )% ()"

with the fized k of Lemma 3.2. In order to prove the boundedness in Lemma 3.2, it is
sufficient to show that ¢ = qy + qz, where ¢y induces an HS(IR")-bounded operator, while
for every 6 > 0, q; satisfies the estimates

(4) lql(aa))(x,g)’ S Ca,@ (f)2[m]5—’y+5|ﬁ| (6,)_2[,“]5_!_%__'0'

forall a, B with |a| < I, || < J. Here I and J denote the number of derivatives required
in Theorem 1.2 for s = k.
P r o o f. The right hand side of (4) equals

) & ~2[mé—plal

(5) Capr (5)“""“5'3! (ﬁf)lal(p—l) (%

By assumption, ¢ € S(m,m’;§) for all § > 0. Choose p = min (%, 1), 6 < min (p, 8—[;;?)
Then (5) implies that g, € S9 (1, J) and Theorem 1.2 shows the boundedness in HY(IR").

3.4 Lemma. The symbol q in (8) has a decomposition ¢ = ¢ + ¢z as in Lemma 8.3.

P r oo f. The symbol of b(z, £)# (£)* is b(z,€) (£)*. Choose M = [m]. The composition
formula for pseudodifferential symbols gives

(6)  a(z,&,0)#b(z, O)# (OF = > ;1;&‘“’(3,6',0)5(#)(58»6) (€)* + ra(z,),

lulgM ™7

where the precise form of the remainder term rp(z, ) is given in Lemma 1.1. Let us first
look at the terms under the summation. For arbitrary a and S,

) < Cop (€)W () WEHIRE (1 €1 03] Ja(z, €))7,

b ’ k
)z, ¢, 0)bu (=€) (6)*] <



Here we have used the estimates (4) and (6) of Section 1. Summing for all |u| < M, we
obtain the estimate (@)
o

M [ 00 O]
< C ()P €)™ (0 ala,€,0) lale, 17 max (€16 (g)H5+)

where the maximum is less than or equal 1. In order to control the remainder term we
consider

rua(2,€) = 0= [ [ )z, €+ 10)b o+ 4,) (©)* dud

for |u} = M + 1, and we identify ¢ and (¢',0).

The estimate is quite technical. It will therefore be given in Lemma 3.5, below. We will
show that, for all multi-indices «, 3, with |a| < I and |8] < J, with the numbers I and
J of Lemma 3.3, there exists an L € IN, independent of §, such that

(8)

Since § can be chosen arbitrarily small, we may assume that

rione) (@€ )| < C ()R HInIEHRLEHPIS (pry=lo]

0<(m|+1+2L+J)§<m' —k.

Then (8) implies that rar € S54(1,J), so that Op rar € L(H}(IR™)) by Theorem 1.2.
By ca(z,£) denote the sum on the right hand side of (6). Consider

(€)" #alz, &, 0)#b(z, E)# (6)* = ()7 #(cm(z, €) + (. €)).

Clearly, (E’)_k #ra(z,€) induces a bounded operator on HF(IR"). Using the composition
formula for N = [m]

©) € ez = 3 = (€0™) enle. ) + inla,€).

l|gN

Proceeding as before and using (7) and (1)

S (7)ot 1)

lvlsN

S eap ()G ()M (4P a(a, ¢, 0) fa(, €))7
< C;g (61)—k—|a|+1/2+c'—(M+N)6 (£)k+|ﬁ|5+(M+N)5—1/2—=' )
Since k < M M = N = [m], the summation on the right hand side of (9) satisfies
precisely the estimates required for the function ¢, in (4). We may therefore set gq(z,€) =
(.E')"= #rum(z,€) + 7n(z,€), and we only have to show that #nx(z,£) induces a bounded
operator on Hj(IR"). Like before, we introduce 7, and show in Lemma 3.5, below, that
for all «, B with |a| < I, |8]| < J, there exists an L independent of § such that

(10)

We may decrease § again and achieve that the first exponent in (10) is negative for all
|| < J. This will imply that Op7y € C(H5(IR")) and complete the proof of the lemma.

(3’5)‘ <C (£>k—m’—lul8+M6+2E6+1ﬂ|5 (£1>~Ial_

(o)
Ty.8(8)

8



3.5 Lemma. Let0 <8 <1 andlet p, q be two symbols for which the following estimates

hold '
(11) pgg;( £)| < Czﬂ (6)"*"!6'5 (El)a ~lal
(12) o5}, 6)] < e (€41 (€)'

For 10| <1 and a multi-indez v define

(13) o2, €) = Os— / [0, + 0m)a +u,E)duen

Here we write £ instead of (¢',0). Moreover, let I, J € IN be given. Then there exists an
L, depending on I, J, s, §', t' and n, but independent of § and 8, such that

(14)

72 9)(® )/ < € 5. () HIEFALEHIBIE (gry=lel

forall |y| > s+ s+t and all a, B with |a| < I, |B] < J.

P r o of. The proof employs a technique of Kumano-go, [12, Chapter 2, Lemma 2.4]. Due
to the more subtle estimates (11) and (12), however, a more careful analysis is required.
We first note that

"ot (€)= Os= / f Carantfa Py (5 €'+ O0)g(risy (% + y, E)dyd.
ay +02=a

Pr+pr=p

It is sufficient to consider the terms under the summation separately.
Step 1. Fix v, ay, aq, 1, f2 and let

§) = Os— / f TPt (, €' + On)glons (= + v, §)dydn.
Now let [ = [%] + 1. The fact that
) lo b .
e = (14 )" (14 (=ay)) e
together with integration by parts gives
Io(2,€) = s~ [ [ & ha(a, &,y m)dya

where

he(z,€,y,m) B
(15) = (L4 W)™ (1 (=80) " [P w8 + 0n)aSiy(e +9,6)]

Since 2ly > n, integration over y is well-defined.
Let

= {n:lnl < €72}, %= {n:€V2<hl< ()2}, %=1in:lnlz )2}



On Ql U QQ

' : 3 .
(16) (52—)s<5+9n)55<5)
and ’ 3
() © <terom <)
We will now analyze the integrals
Io;=0s - ] / ™V ho(x, €, y, 1)dydy, i=123
Qy ki

Step 2. On Uy, (11), (12), (16), and (17) imply that
|ha($=§;y,7l)|

N o ’ .
< (1 +(€)" Iylz) l [Z(?)(E’)”JG%’; o o (€ 4 )BT gy herrl=

3=0
chg,ry:+ﬁ2 (€)t+|‘¥+ﬁ2|5 (£I>i'—lag|
_lo I t
(18) < (1 ()P Il) T (g e gyl

Step 8. Since lp > %,

/ﬂ 1 / (1 + (&) |yI2) —Io dydy = (£)"" /ﬂ 1 / (w)~* dwdy = ciyn

independent of § and ¢, cf. [12, Chapter 2, (2.31)].
Therefore
[Tp1(z, €)| < c(€)HMEHIE (gryste+t'=hri=lal

Since we had assumed that |y| > s + 8’ + ¢/, the first term satisfies the desired estimate.
Step 4. In order to estimate Iy 5, we first note that

(19) B(1+ (€Y )™ < o (€)1 (1 + (€)Y Iyl ™.
Together with the estimate in (18) this gives

|(--Ay)l° ha(ﬂ?,f,y, 77)| < Clo(l + ({1)26 |y|2)—lo cﬁﬁy (£)t+h‘|6+iﬁ|6+2l06 (6;)s+s’+t'-—|'yl—|a] .

Integration by parts yields

Ho2(z, €)1 = fn Iﬂl""’/e"""(—Au)'°he(ﬂ=,E,y,n)dydn
2
(20) < Cg«?-rclun (€)f+|‘ﬂ5+w|5+ﬂo5 (61)8+a'+t'-|’7|—[a|-2105

Here we have used the inequality

[ ] (L) ") dydn < con (€)7°
Q2

10



Note that (20) again has the required from.
Step 5. On Qs, (¢ +0y) < (¢ +0n) < 3p|. Hence (11), (12), and (19) imply the
preliminary estimate

(=A)" ke (2,6,9,1)]

(21) < epny(1 4+ (€)Y fy[?)lo &% [nfe++o +ei HPIEH bt lal (o tivo+2LEHIBIS (o1 ~la]

Here s, = max{s,0}, analogously we define s, t/,; so far L € IV is arbitrary.
Given I and J, we now choose L so that

I+J+2+sp+s, +t, <2L—n-1

This is independent of «y, 6, and 6. It allows us to estimate the exponent of |5} in (21) by
2L — n — 1. Integrating by parts /

/ﬂ Inl'zL/e"”"(—Ay)L ho(z, €, y,7)dydy

ol / Inl ™" d f (L+ ()7 y[?)ody (g)FMeraEe+iols (gry-lel,

|IB'3($1£)| S

AN

The integration over y and 7 gives a finite value, independent of ¢'; so we obtain precisely
the estimate required for (14). This concludes the proof.

3.6 Remark. Looking more closely at the estimates, it is easy to check that we need
derivatives of p up to order |a| + |y| + n + 1 in £, and order |§| in z. For ¢ we need the
derivatives with respect to £ up to order |a|, and with respect to z up to order |B|+]|v|+2L.

4 Proof of the Extension Theorem

The idea in this section is the following. The hypoellipticity of the symbol a gives
an embedding of W} (IR*1) in H "*(R*-'). On this space, however, there ex-
ist many continuous extension operators to HJ* (IR"). We choose a particularly sim-
ple one. Since m' > 1/2, the restriction operator 7o is well-defined on HJ* (IR"). Re-
stricting the extension operator to W2 (IR*!), we immediately get a right inverse to
Yo. The difficult task in this section is to show that the extension operator in fact
maps W,y* (JR*"1) to W) *(JR*). This again requires a careful analysis. We proceed
in a series of lemmata. As before A, A’, A, and A’ are the operators with symbols
a(z,§), d'(z', &) = (f’)'ll? #a(z',0,€,0), (€) and (¢'), respectively. B’ = Opb' is a

parametrix to A’ over IR*~1.
4.1 Lemma. For a fized ¢ € CP(IR) with ¢ =1 near 0 define
E: S(R™") - S(R")

by
(Bu)(z's2a) = Fal o $((€) Ta) Fomgr u.

Then E extends to a continuous operator
Wy (IB) — HYY' (R™);

moreover, v F =1d on W«}‘“’(R"'l).

11



P roof. The operator E is suggested in {12, Chapter 6, Lemma 2.3]. The hypoellipticity
of a implies that '’ € S(m —1/2,m' —-1/2,6). fu e W;'“'(R"‘l), then A’u € L?, hence
u € H;"'_ln(ﬂi’““l). It is well-known that E : Hg"-l’lg(ﬂ%"‘l) — Hy¥(IR") is bounded
and that yo £ = id on H}* /2 (IR*"1), a forteriori on W}*' (R*1).

4.2 Lemma. Fiz some k > k. In order to prove Theorem 2.2 it is sufficient to show
that
(1) A* AE B'A* € L(HE(R*), HE(R™)).

P roof. After Lemma 4.1 it remains to show that for u € W;‘“l(IR""I), we have AEu €
L*(IR™); notice that, trivially, Eu € L*(IR"). In view of the fact that W,*(IR") —
H3'(IR"), the continuity of E then is immediate from the closed graph theorem.

On the other hand, A Eu € L*(IR*) iff A"™* AEu € Hf(R"). Now

A *AEu=AFAEB A'u+ A AER u,

where R’ = I — B’ A’ € §~*°. Therefore A~ A E R'u € H¥(IR"); it is in fact much better.
Noting that A’u € L*(IR*) and A" AEB' A’ = A"™* AE B' A’ A'~* A’ we obtain the

assertion.

In the following we will consider the products A™* A and E B’ A’* separately. We will
decompose each of them in a finite number of terms which are easy” to handle and
remainders with sufficiently good mapping properties.

For the analysis of E B’ A’* we rely on the theory of potential operators in Boutet de
Monvel’s calculus.

4.3 Theorem. Let!l=1(z',¢&, z,) be a C*® function on R"' x R* ' x R, u € IR, and
suppose that for all v, v’ € Ny, o, f € N3

®) =5, DY, Dg D2, 1z, €', 20) | L* (IR, )| < Caprrs (€)1

Then the operator
Opxl: Hj(R*™') — H, *(RR")
is bounded for every s € IR. Here the potential operator Opk ! associated with | is defined
by
(O (&, 20) = @)% [ <4102, €, ) )

For every fized s we only need a finite number of a, B, r, v’ in (2) in order to estimate

|Opx HL(HF(IRYT), Hy™"(IR™))]].
P r o o f. This is immediate e.g. from Theorem 2.5.1 and (2.3.26) in [7].

4.4 Lemma. Letyp € S(R) and l(z',€,z,) = Y({(¢') z,). Then [ satisfies the estimates
in (2) for p = —1/2.

P roof. Thisis an easy calculation, noting that ||$({¢') zn) | L2(Rs,)|| < C (€)%,
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4.5 Lemma. Lety € S(IR), s € S{;(IR*"). Then

' ! (1 — 0)N 't
Onkb(§) )0 Ops = X Opicly+ (N +1) 3 Opie [ Eophorssle' ¢ zn)a

[vIEN [vl=N+1
with
Iy(z', &, zn) = DY, () 2n) 07 s(2', &) /7!

and
r'Yl ( "f Tn
Os‘f [ Db + 00w sl + o' € '
Here, dn = (27)}~"dn.
P r o o f. Writing out the integra,ls,‘ Opk P({€') ) 0 Op s = Opg | with

(', ¢,z,) = OS—// eV Y((E + 1) z) s(z’ + ', &) dy'dy’.

Taylor expansion with respect to 5’ and integration by parts then gives the desired for-
mulas.

It is our next goal to estimate the symbols of the operators in Lemma 4.5. As a preparation
we prove the following technical result.

4.6 Lemma. Let x € S(R), p = p(¢') € Sto(R™1), g € S/(R™), 0< 0 < 1, and

ke(z', ¢, z,) = Os— / f eV (€' + ') 2a)p(€ + 00 )a(z’ + ¢, & )dy'dn’ .

Then |
”ko(:::', f" x“)le(‘Rzn)” S C (E:)u-l-y -1/2

with a constant independent of 0.
P roof. We again use the technique of the proof of Lemma 3.5; however, now the domain
of the integration is JR*~! and we need L?(IR,,)—estimates.
Fixing lp = [25%] 4+ 1 we have
ka(&:', §',$n) — OS—]] e-iy'q'ha(xf’fr,yf,nf’ mn)dyrdnf

with

hﬂ(xl, Ela y’$ 77’1 :L‘n) =

=l fo ' ' ’ '

(1@ W) (1446 (=a0)) " [+ 0n) za)p €’ + 0n')a(a’ +¥',€)] -
Let
= {n ) <@)2), = {n @72 < W <€)/}, Q=102 €)/2),

and consider the three integrals similarly as before. The identity

Dy, x({€' 4 0n") z) = 9((%197:’))1. (€ +0n") 7" (tDex) (€' + 07') )

then leads to the desired estimate, very much like before.,
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4.7 Corollary. We use the notation of Lemma 4.5. Then

|Dg D%z, DL raa(a € @) L (R, )| < € (/)M HDOTITIbREmrr

n Zn

The constant is independent of 6.

Proof. Wehave

DEDLEDLrrale 20 = T o Ovm [ [ L DL DE (e + ) )
oy Toay=a
D?,’fo".s(m' +y', & )dy'dn’ .
We now have the following identities, 7 =1,...,n — L:

2L DL {p((€ +00')za)} = (& +0") " ("D )€ + 0n') z,)

B DHE +0r) o) = (TR 4 0) T (DA + ) 20).

The notation ("D} %)({¢' + 0n') z,,) indicates that we evaluate the function t — "D} 1 (t)
at t = (¢’ + 0n') z,. Therefore z;D;LD?,‘ (€ + 09") z,)} is a linear combination of

terms of the form p(¢' + 0n')x({¢' + 6n') z,) with p € S;(l,a‘l-m_"l'rl(IR"‘l) and x € S(R).
Note that both p and y depend on the choice of r and r'.
Now the assertion follows from Lemma 4.6.

4.8 Lemma. The operator EB'A* can be written in the form
! 1 ! F
(4) EBN* = 3 —OpxDpg((€) n)0L¥(a',€) (€)" + B
R

where Ry : H¥(IR*™') — HP(IR") is bounded, provided N is large enough. Here ¢ is
the fized function of Lemma 4.1

P r o of. First apply Lemma 4.5 in order to obtain the representation (4). Lemma 4.5
also gives the precise form of the remainder. Corollary 4.7 in connection with Theorem
4.3 implies the boundedness of Ry provided N is large.

4.9 Lemma. We have the following estimates:
Dg DL (', €) < C (€)W (e, 0,¢,0)7!
for large |£'|.

Proof. Thesymbol ¥ is a parametrix to a'(z’, §') = ({’)"1"2 #a(z',0,€',0) € S(m —1/2,
m’ —1/2,6). By Remark 1.4(iii) we get the desired estimate.

Now we consider the composition of A~*A with EB’'A’*. We start with a decomposition
of the symbol of A=%A.
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4.10 Lemma. Let L,M € IN. Then we can write

M

()7 #a(z,6) =Y 3la;(2,0,8) + 2 apria(2, €) + i (z, 6),

j=0

where, for all multi-indices «, B, we have the estimates

(5) |DgDZa;(=,0,6)] < Cla(a',0,6)[ ()™ 1MW 5 =0, .., M, I¢] large,
(6) [DgDa;(a',0,8)] < C (g)mTHHIlHAE i=0,...,M,

(1) |DgDSaps(z, &) < C (g rHM+Di- '°'+""5

(8)  |IDEDErL(z,6) < C(gmAHEA- '“'*"”5.

P r o o f. We use the asymptotic expansion formula for symbols

(€ a8 = 3 = (07 ag(e,6) + rala,8)

<L =

In view of the fact that a € S(m,m/,§) we have

9) 16 ™) a2, 6)](3)| < € (g M-Il 1o 5 ),

and (8) is the immediate standard estimate for the remainder. Now we use Taylor’s

formula
M M

+1 1
flz,) = Z i f(:)( M' /0 (1 — OYM FM+1) (g5 Vdo

j=0

for the function 3., 5 (({)"k)(”)a(y)(:c,{). We obtain (5) from (9). Estimates (6) and
(7) also follow from (9), using that la(z,£)| < C (6)™

4.11 Remark. In order to show the boundedness of A~*AEB'A™ : H¥(R*) —
H*(IR") we split the operator up into four parts. In the notation of Lemma 4.8 and
Lemma 4.10

M
AFAEBA* = 30 S Oplaias(e,0,6))0px (DLH((E) 2n)OLH (@, €) (€))/!

=0 yl<N

(10) + 7 0p(e¥* arssa(e,))0px (DL S((E)) 2n)OLH (', ) (€)*) /!

+ Y OpriOpx(DL((E) )00 (', &) (€)F) /2!

lvl<N
+A* ARy .
Obviously the last summand does not require any attention, since Ry : H¥(R*') —

HP(IR") is bounded.

In order to analyze the others we make the following observations

(i) Opl(zic(z,€)) = ( ) Op((=Dg, ) c(z,€))Op (") for an arbitrary symbol c.
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(i) Dy¢({') z») is a linear combination of terms of the form p(¢)y((¢') zn) where
pES] lﬂ”(R“ 1) and ¢ € S(JR). Noting that
Op(24)Opk ($((€) ) = Opxc (€)™ (t)((€) )

(for the notation cf. the remark after (3)), the composition

Op (=i™)Opk (DL ¢((&') za) 0L b (2',€') (€)")
is a linear combination of terms of the form
(11) Opx (p(E" VB ({€") 2) O (', €) (€))
with p € ST (IR and o € S(RR).
(iii) In view of (ii), 4.9, and Theorem 4.3 we will have
Opx (DG ¢((¢) z2)LY (', €') (€)) : HE(R™') — Hy" (IR™)

bounded. Moreover Opry, : H (IR™) — H*(IR™) will be bounded for large L. Hence
the third term in (10) induces a bounded operator from H*(IR"~!) to H*(IR") and
this is sufficient for Theorem 2.2 according to Lemma 4.2.

We now treat the second summand.in (10).
4.12 Lemma. For every ~y

Oplaly * apesa(z,€)Opc (D (€ 2)2H (2, €) (€)Y) : HE(R'™) — HE(RY)
s bounded provided M is sufficiently large.

P r o o f. The considerations in Remark 4.11 show that we have to estimate the norm of
an expression of the form

Op Dg, am+(e,€) Opx (p(E)H((€') 2.)0L (=, €) (€))

where [ =0,...,M+1,p€ S;SJ'I_I"’]“(R”“), and ¢ € S(IR). We now use the estimates

of Lemma 4.4 and Lemma 4.9 together with the facts that |a(z',0,¢",0)|2 < C (¢)™.
We get

| Dz D22 D {p(€)b((€") 2)OL (2", €) (€) NI (RRe, )|
< c{gyTlalrtrmMolohitihisHIER-m!

Using Theorem 4.3 this will induce a bounded operator from HX(IR"=1) to HEtM-i-k+m!
(R*) = HY~"™(IR"), noting that § can be taken arbitrarily small, so that for the
maximum |f| required for the boundedness estimate we still have |3]§ < 1/2.

The operator Op D apr41 maps Hy'~ —Hm (R to HEFMU-8=b-mim pay Ghich is a sub-
space of H¥(IR"), prov1ded M is large.

Now for the terms in the first summand in (10). We start with a simple observation.
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4.13 Lemma. Let q€ (| S{s(IR*1), ¥ € S(IR). Then
§>0

Opk (Y((€') zn)q(2",€')) = Opq(a’, &) Opx (H((€) 24)) -

Notice that the mapping (¢, z, & €n) — ¢z, &) defines a symbol in S{,‘;""(IR”) for every
€ > 0, so that the operator Opq is well-defined on each H(IR").

4.14 Lemma. We use the nolation of Lemma 4.10 and Lemma 4.11.
Op(=ia;(2',0,8))0px (DLS((€') 2a) AL (2,€) (€)F) : HH(R™) — HYR")

is bounded for 0 < 7 < M and all multi-indices 7, |7 £ N. Without loss of generality we
assume that M and N are fized so large that the boundedness results of Lemma 4.8 and
Lemma 4.12 are valid.

P r o of. As pointed out in Remark 4.11 it is sufficient to consider
Op(DL,a,(+',0,€)) Opx (€ B((€) 2) AL (', €) (€)°)
for 1=0,...,7, p € S;F™* (JR*"1), 4 € S(IR). Using the boundedness of
Opk (€)' $((¢') =) : H¥(R™™) — H*(IR")
and Lemma 4.13, all we have to show is the boundedness of
Op(D},ai(z',0,6)) Op(p(€)828/(«',€') (€)7/%) : HY(IR") — HH(R™) .

For fixed j,+ and ! we denote the first symbol by ¢:(z’, £) and the second by ¢(z’,¢'). By
Lemma 1.1 we get

(12) (a#a) (€)=Y %Qi&)(x’,ﬁ)@(a)(w',f')+7‘zcr(=t’,£)

la|l<Vv

where rg(2’,£) is given in Lemma 1.1 and depends, of course, on j,7 and I.

Now we show that each term of the sum of the right hand side of (12) defines a bounded
operator in H*(IR™). The boundedness of the operators defined by the remainder terms
in (12) will be shown in Lemma 4.16, below. Consider an arbitrary term under the
summation in (12). By Lemma 4.10 we have :

|Dg D282 D ai(=',0,)p(€') (€Y DEOTH (<, €))]

S CIG(.’E’, 0’ £)| (€>—k+j6-l-|&|+|ﬁ|6 ]a(ml', 0, E’: 0)|—1 (Er)1/2—|—y|—j+l+(k_1/2)+|&|5+h,|5_|c,|
< o|H=:0.€.6) ({6 )-k+pla|-l+16 ()P gy =tl1=8)~11(1-8)5(1-0)~lai(1-5)
B a(z',0,¢,0) | \ (&)

A

¥

¢ (€)rlel+sla ( %

because of the assumption of Theorem 2.2.

) m—k+plal+j6-1
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Let I and J again denote the numbers of derivatives required in Theorem 1.2 for s = k.
Then we have for |a| < 1,|8]1 < J

n—k+pl4+6M -1
Dz DE@faDi)| < c() (g—))) o

< ¢ (£>—Plal+5|ﬁ|

provided that we choose p = min (}‘H\fl, 1) and § < p. This is possible, since we fixed

k > k in Lemma 4.2, and since a(z, ) belongs to S(m,m’; ) for all § > 0 by assumption.
Then the last inequality implies that B?q;ngg € Sg's(I, J) and by Theorem 1.2 we get
the boundedness in H*¥(IR™) of all summands of the sum in the right hand side of (12).
The proof is complete except for the estimates of the remainder terms which will be given
in the next two lemmas.

To estimate the terms ry(z,£) we need yet another modification of Lemma 2.4 in [12,
Chapter 2].
1

4.15 Lemma. Let 0 < 6 < 5 and let q1,q2 be two symbols for which the following
estimates hold

5 (2, )] < el (g)eTIIHIAR
lqgc(!ﬁ)?)(miéﬂ < iy ({)IBIE ({I)t—lal .
For |0| <1 then deﬁne

ro(2,€) = 0= [ [ €m0, + On)aae (@ + .8y i
where £’ = (£1,...,€-1,0). Moreover, let I,J € IN be given. Then

a4 +t! — -6 § e —la
000 €)1 < i (€)M HA g1yl

for all v with |y| > 2(s4 + 1) and all o, B with |a| < I, |B| < J. As before we use the
notation o, = max{o,0}.

We omit the complete proof. It is very similar to that of Lemma 3.5; in fact it even is
slightly easier. The inequality |y| > .2(3.,. +1/,) is an analog of the condition |y| > s+s'+1¢'
in 3.5; here we want (1 — §)}y| sufficiently large and estimate it by |y]/2.

4.16 Lemma. We use the notation of Lemma 4 14.
For N sufficiently large the remainder terms ry(z',€) in (12) define bounded operators in
H*(IR™). Specifically, it is sufficent if N > M + 1 + 2k.

Proof From Lemma 4.10 and Lemma 4.14 we know that the symbols ¢; and ¢,
introduced before fulfill the estimates in Lemma 4.15 with s = m — k + j6 — | and

—|y| =7 +1—m'+|v|6 + k. Hence it is sufficient to have N > 2(s, +1. ). By Lemma
4.15 we then have

Iy (@ E)] S g (£) 7w HMEHImthm U0 ory =l

N{(p

In view of the fact that < 7,0 <8 < 1/2, k> m and |B] < I we only need to ask that
N > M + I + 2k in order to make sure that rg(z,£) € Sgo(1,J). By Theorem 1.2 this
will guarantee the boundedness of Oprg in HE(IR").

This completes the proof of Lemma 4.14, hence that of Theorem 2.2.
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