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Introduction

This is the second part of a paper which is aimed on comparing the irreducible rep-
resentations of G := GLn(F) and of a central division algebra D/F of index N over a
p-adic number field F'|Q, by purely local methods. In Part I ([Zig2]) we have seen that
the explicit constructions of [BK] and of [Zigg] enable us to introduce a parameter system
which works for (D*)” and for the cuspidal representations in G as well. Now we will see
that our parameters can be used for the discrete series representations in G too.

We start out from the remark that a simple type in the sense of [BK] uniquely deter-
mines an unramified twist class of discrete series representations of G and moreover that
there is a natural bijection between conjugacy classes of simple types and unramified twist
classes of discrete series representations. Then it is easily seen that this bijection can be
lifted to a natural bijection between conjugacy classes of eztended simple types (EST) and
discrete series representations of G (Theorem 2.9). An EST is by definition the extension
of a simple type onto its normalizer.

By the results of Bushnell and Howe, Moy, resp., the level of a discrete series repre-
sentation coincides with the level of a corresponding EST (Corollary 2.5) which is given in
terms of the principal unit filtration in a maximal compact modulo center subgroup of G.
In section 3 we use [BFr] and [GJ] to relate this level to the exponential Artin conductor
of the representation which is given in terms of its e-factor, and we remark that the same
result holds for division algebra representations (Theorem 3.1). Moreover, we reduce the
computation of the e-factor to that of the root number W of the corresponding extended
simple type (Theorem 3.6).

The next step is to produce extended simple types out of our parameters, which is
done in Section 4. The way to do that is basically the same as to construct simple types
([BK], §5) but there is one detail which we will explain more carefully (Main Lemma 4.1).
What is immediately clear from our construction is that different parameters give rise to
extended simple types which are not conjugated (Theorem 4.6) such that an injection of
our parameter set T, into the set éz of discrete series representations of G is induced
(Theorem 4.7).

First properties of that injection are compatibility with tame character twist, an
expression of the level and the exponential Artin conductor resp. of a representation
in terms of its parameter and that it is possible to say in these terms if a representation is
cuspidal or a character twist of the Steinberg representation, respectively.

In Section 5 we use the methods of [CMS] to compute the formal degree of a discrete
series representation in terms of its parameter ¢ € T3 (Theorem 5.1). And in Theorem
6.1 we see that precisely the same formula gives us the dimension of the division algebra
representation which is assigned to {. Combining all these results, in Theorem 6.8 we obtain
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an injection D*” — G2 which is compatible with tame character twist, takes the dimension
into the formal degree and preserves the exponential Artin conductor of representations.
Using the local Matching Theorem of [BDKV] and a counting argument, in 6.9 we prove
that any injection D*”~ — G which is compatible with unramified character twist and
preserves the exponential Artin conductor is in fact surjective too. Especially we see that
the injection constructed in 6.8 (hence that in 4.7 too) is surjective, which by the results of
[BK] should be possible to prove purely locally. Finally, following an idea of C. Bushnell,
we show that any bijection II' € D*™ — II € @2 which is compatible with unramified
character twist and takes the dimension into the formal degree, has the property that II
is cuspidal iff II' has the Galois dimension N (see Definition 6.3), i.e. II' can be induced
from K* - U! where U! are the principal units in D and K/F is a subfield of degree N.
Especially this applies to the Matching Theorem.

In section 7 we take up the e-factor computations of section 3. Using the parametriza-
tion of the extended simple types we make a first computation of their root numbrs. The
aim is to show that the root number W(A) of an EST A is essentially determined by just
one character value of A (Theorem 7.1). This fact is well known for the cases p{ N and
p=DN.

Section 1 is separate from the other sections. It is to give an improved definition of our
set T of parameters which we will denote as R-polynomials and to put T into perspective
by comparing it with two other sets 8 and P. 8 seems to be more adapted to parametrize
Galois representations which conjecturally should be possible, while P can be useful for
counting arguments (see the proof of 6.9). Moreover, P is helpful to understand the metric
on T, §, respectively and the definition of I~. For more details see [Zigg]. Note that the
notation T of Part 1, 2.1 is replaced here by T~ while T is the set of all R-polynomials.

This paper was written while the author enjoyed the hospitality of the Institute for
Advanced Study, Princeton. I am pleased to recognize Ms. Dottie Phares for her accurate
production of the typescript.

A first draft of the paper has been done during a visit at the Université Paris 7,
Jussieu. I want to thank M. F. Vigneras for the invitation, and I am indebted to J.-L.
Waldspurger, who helped me to improve the argument of Theorem 2.9.

Beginning from Section 2, we will use the following standard notations:

A= Myn(F) the matrix algebra over F

Agp = centralizer of a subfield E/F in A

G = A* =GLn(F)

GLg = A} is the centralizer of £* in G

A = principal op-order in A

A /p = principal og-order in Endp(L) which corresponds.

to the op-lattice chain {Pi}iez of prime ideal
powers in the extension field L/F

A =AN Ag

A= Ng(2) normalizer of 2 in G

R =8NGLg

P = Jac() the Jacobson radical of
A = group of units in A
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Ui=1+P the principal units in 2

D/F a central division algebra of index N

Op the integers in D

UL, =1+ P} the principal units in D

Gy = equivalence classes of irreducible admissible

representations of G which are in the discrete series

D*” = irreducible admissible representations of the
multiplicative group D* modulo equivalence

If M C N are groups and 7 is a representation of M we write Indarqn(7) or Indn(7)
for the induction of 7 from M to N. If the factor N/M is not compact, then indy(r)
denotes the induction with compact support.



1. R-polynomials

Let F|Q, be a p-adic number field. Throughout this paper F[T] will denote the set
of irreducible polynomials with highest coefficient 1 and degree >1. If F'/F is a fixed
algebraic closure and Gr = Gal(F/F), the corresponding Galois group, we get a natural
bijection

(1) Gp\F « F[T|

between Galois orbits of F-algebraic numbers and irreducible polynomials. Let F|F be
the maximal tamely ramified subextension of F/F. If 8 € F, then F(8) is the maximal
tamely ramified extension of F(8). Let I's C Gal(F(8/F(B)) be the tame Weil group, i.e.
we restrict to automorphisms which on the maximal unramified extension of F(8) induce
an integral power of the Frobenius. As proposed by (1) we say:

1.1 Definition: An R-polynomial is a Galois orbit of pairs (R, 8), where 8 € F and
R € T's” is an irreducible admissible representation of I's and where the Galois action is
given by

(2) g: (R,ﬂ) = (O'RO’_I, U(ﬁ))

for 0 € Gp. (Note that I',(5y = 0Tgo™" and (¢Ro™')(1) := R(c7!70))

With t = [R, 8] we will denote the R-polynomial which is generated by (R, ), and the set
of all R-polynomials is denoted by TF. then we have a natural projection

(3) T — F[T}, t+— fui(T)

which assigns the minimal polynomial of 8 over F' to an R-polynomial t = [R, f].

1.2 Definition: The basic numerical invariants of an R-polynomial ¢ = [R, 8] are the
degree deg(t) := dim(R) - [F(B): F}, the inertial degree f; := dim(R) - fr(gy/r and the
ramification ezponent e = ep(g)/F-

Note that R € T's” is induced by a character of the unramified extension of degree
dim(R) over F(f).

Sometimes it is useful to look at R-polynomials from the following slightly different
point of view:

1.3 Definition (p-polynomials): Let F[T] be the set of irreducible monic polynomials
over F. The coefficient field F, of a polynomial ¢(T) € F[T] is the tame extension of F
which is generated by the coefficients of o(T). Let T', C Gal(F'/F,) be the Weil subgroup.
A p-polynomial is a Galois orbit of pairs (p,¢(T')) where ¢(T) € F[T] and p € T',” is an
irreducible admissible representation of I',. On the pairs (p,(T)) only the tame Galois
group G5 /p acts, namely

(4) o (p,p(T)) = (opo™,%p(T)) for o€ Gpps
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where the polynomial “¢(T') is obtained by applying ¢ to the coefficients of o(T). s =
[, (T)] denotes the p-polynomial which is generated by the pair (p, »(T)), and the set of
all p-polynomials is denoted by 8. Again, we have a natural projection

(5) § — F[T], s+ f(T)

sending s = [p,(T)] to the F-irreducible polynomial which is generated by (7). Note
that deg fo(T) = [F,: F] - deg o(T).

1.4 Proposition: There is a natural bijection
Te—38, t=[R,pl— s=[p,p(T)

where @(T) is the minimal polynomial of § over F' and p € T,” is obtained from
R by using the natural isomorphism I'g5T, which comes from F, = F(§) N F and
Gal(F(8)/F(8))> Gal(F/F(B) N F). Moreover this bijection has the property f,(T) =
fi(T) € F[T} if s corresponds to t.

The proof is almost obvious. The inverse map is s = [p,(T)] — t = [R, 3] where
B € F is a zero of (T) and R is the pullback of p with respect to [g>T,. If B is another
zero of ¢(T') then By = o(f) for some 0 € Gp/p, g, = oTgo~!, and the pullback of p
with respect to g, 5T, is cRo~!. O

Now we come to a third interpretation of R-polynomials which is not canonical but
useful for counting arguments. Namely, let Cr C F™* be a complementary subgroup with
respect to the principal units Uy = 1 + pp, i.e. F* = Cp- Uy is a direct product. Cr
contains the roots of unity of order prime to p in F', a group which we can identify with &}
(= multiplicative group of the residue field). Cr is fixed by choosing a prime element 7.
Cr = {np) k}. Let vr be the normalized exponent of F', vp(mr) = 1. It extends in a unique
way to an exponent of F with values in Q and v¢(0) = c0. pp = {z € F; vp(z) > 0} is the
valuation ideal in F' and UI-" = 1+ pp are the principal units. By [Zigg] we can extend Cp
to a complementary group C of F*, and C is unique up to applying field automorphisms
s € Gp. We fix such a group C 2 C[', F*=C. UI and we consider the field X = F(C)
which is obtained by adjoining all elements from C Note that C consists of all roots of
unity of order prime to p and of a “string” of roots 7, @ € Q, (i.e. C = Qt x k%) and

that X consists of all z € F' which expand into a converging series ¢ = ¥ z, with terms
veQ
z, € CU {0}, where vp(z,) = v if ©, # 0 and where z, = 0 if v < vp(z). K/F is said

to be a C-field if K C X with the property that Ci := CN K is a complementary group

in K*. Let z = ) z, be the C-expansion of x € X. There is a smallest C-field I,
veQ
containing x. It is a finite extension of F' and is obtained by adjoining the terms of the

expansion: K, = F(z,; v € Q)
Moreover, we get X = F' - K, as a composite field, where K,/ F is generated by all
p-power roots of g in C. This yields a natural isomorphism of Galois groups:

(6) G(K/Koo)SG(FF).

Because of F = C - Uj we have a projection y € F* — [y] € C which is called the symbol
of y. From ramification theory follows: [s(y)] = [y] for all s € G(F/F).
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1.5 Theorem ([Zigg] 2.1): There exists a well defined bijection
(7) X« F[T], z+— p,(T)

such that for all zeros a of p,(T):

@) [e] = o ~
(ii) K; NF = F(a)NF and 3 i
deg 0. (T) = [K: N Koo: F] = [K;: K; N F| = [F(a): Fla) N F|
(iii) via (6) the bijeciton (7) is compatible with the natural Galois action on both sides.

As a consequence, (7) induces a bijection
(T« G(K/Ko o \X — F[T).

Forz € XletT'; C G(F/FNK,) be the Weil subgroup. Consider pairs (p, z) where z € X
and p € I',”. G(F/F) acts on these pairs by

(8) so(p,x) = (sps"l, szx(z))

where sx € G(X/Kq) corresponds to s under (6).

1.6 Definition: Let P be the set of equivalence classes [p, z] of pairs (p,z) with respect
to the Galois action (8).
Then (7). extends to a bijection

(9) Pe— 8, [p,z] — [p,02(T)]

The most important property of (7) is that the exponential distance on the field X
is transported into a well defined exponential distance wp on the set F[T] of irreducible
polynomials:

(10) vp(z1 — 72) = wr (p1(T), p2(T))

where ¢; 1= ¢;; and wr(p1,p2) = Vo, (Vr(v1,92)) = Yo, (vr(p1,p2)) is a Herbrand
transformation of the exponential mean distance of polynomials (see [Zigg], 3.11 (ii); the
metric wp has been reviewed in [Zigg], 0.4 and Part 1, 1.8 too). Moreover, with respect to
the induced map (7)., we have:

(10). vr(%1,%2) = wr (fi(T), 2(T))

where f;(T) € F[T] is the irreducible polynomial corresponding to the Galois orbit x; €
G(X/ Koo \X, vr(x1,%,) := max{vp(z1 — z2); 21 € Xy, &2 € X5} and where wp(fi, fo) :=
Vs (vr(fi, f2)) = ©i(ve(fi1, f2)) is again a Herbrand transformation of the exponential
mean distance of polynomials (see {Zigg], 4.3 and the other references as before). As
a consequence of (10), (10)., one gets: wp(f,¢9) = max{wr(p,v)}, where ¢,y € F[T]
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are running over the F-irreducible factors of f,¢ € F[T]. Further, on X one has an
approzimation procedure (see 1.9 of Part I)

(11) KxQ— K, (z,7)r— ()= =

v

which is given by truncating the C-expansion of z € X (see Part I, 1.10). Moreover, the

action of G(X/K ) on X = F(C) takes C into itself. Hence (11) induces an approximation
procedure

(11). G(K/Ko)\X x Q — G(X/Koo\X
(x,7) — x(3)

where x(j) is the orbit of z(7) for any representative z € x. And by means of (7), (10)
and (7)«, (10). the approximation procedures (11), (11), resp. are transported into ap-
proximation procedures on F[T] and F[T] resp. These approxiamtion procedures refer
to the exponential distance wp of polynomials. So we have a well defined approximation
procedure

F[T]x Q — FIT], (f(T),5)— F(T),

and we put:

(12) F[T)™ := {f(T) € F[T], f(T) = A(T)}
TT ={teT; f(T) € F[T]"}
§= ={s€8; fo(T)€ FIT]"}
PT = {lp o] € P x(0) = x € G(X/ K )\X}

Let be X~ := {z € X; z(0) = z}. This set is stable under the action of G(X/K) and we
get: P~ ={[p,z] € P; z € X™}.

The sets T—, §~, P~ are in bijective correspondence to each other, and the set P~ is
appropriate for counting its elements. Consider Ty := {t € T7; deg(t)|N} and the sets
8%, Py which are defined in a similar way. The point is that each of thesc sets can be
used to parametrize the discrete series representations of GLn(F).



2. Extended simple types

In this section we are going to explain the notion of an extended simple type (EST)
which is a slight modification of the notion of a simple type introduced in [BK]. The
main result is a natural bijection between conjugacy classes of extended simple types and
irreducible discrete series representations of GLy(F).

Let us remember first some basic facts on simple types. We consider a principal order
2 in A = My(F) with Jacobson radical P = Jac(?). £ denotes the normalizer of 2 in
A* = G which is a maximal compact modulo center subgroup in G and U* =1 + P* for
t>1, 1 € Z are the principal units in K.

A simple type (J° ) consists of a compact subgroup J° in G and an irreducible
representation A € (J°)”. The simple type is associated to a simple stratum o + %, i.e.
« is an A-pure element in A such that o € o + 2 is a representative of minimal degree
over F. We note the following properties (which are in [BK], but sometimes we give a
reformulation in terms of [Zigq], Sections 1, 2):

2.1 Let J be the f-normalizer of the set F = {AdUH - (a+ P~%)}; o of orbits of residue
classes derived from «a + 2U:

(1) J = Na(F) = () Na (AdU*!  (a+ P7Y))

iv0
The group J° of the simple stratum is given as
(2) Jo=2"nJ =0
where O = Eo PN Z{a,P7") is an op-order contained in 2A. Here the notation is:
v>
Z(a,P7%):={z € A; za —az € P77},
d:= > PN Z(a,P™") is the Jacobson radical of O, and

v>1

Jt:=U'NJ =147 are the principal units of 0.
Let fg,2AE be the intersections of &, resp. with the centralizer Ag of E = F(a) and let
L|E be a maximal extension such that L* C &g. As a matter of fact, we have:

(3) J=8gJ', hence J®=2%-J', and
J=L*-J°

The third equation follows from the second because of g = L*U%.

2.2 (J% ) is an admissible pair with respect to the sequence %* D U! D U? O --- of
normal subgroups in £ (see [Zigs], Section 2). Especially this means that A € (J%)™ is
an irreducible representation with the additional property that for all integers > 1 the
restriction of A to

I=UnJ=1+)Y P'nZ(a,(P")

v
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is the multiple of an irreducible representation 7; of J* and that all inductions Ind situi(mi)
for:>0 (mg = A, U® = A*) are irreducible. As a consequence we get that 7 is a Heisenberg
representation because J' is nilpotent (see [Zigs], Sections 4, 5). More precisely, let J*+ be
the orthogonal complement of J in P with respect to the alternating character

Xao(z,y) =vr o Trasr ((zy — yz)a)

(where 3p: Ft — C* is an additive character of conductor pr). Then - CJisa ring
too, namely:

3+=>Y P°nZz(a,Pt)

vyl

and 1 + g1 C J! is a subgroup which under 7 is represented by scalar operators. The
basic relation is:

m (142, 1+y]) = Xao(z,y) -1 for =z,y€d,

where [1 4 z, 1+ y] denotes the commutator in J! and where 1 is the unit operator. With
respect to P = Jac(2A), let vp(a) = —j be the exponent of the simple stratum a+ 2. Then
gl/a+1t €149+ C J', and A (or m;) restricted to UU/A*! is a multiple of the character
8(1 4 z) = ¢r o Trap(az).

2.3 The intertwining of the pair (J!,7) in G is

(4) Ig(J', m)=J"-GLg - J*
where GL g is the centralizer of E* in G, hence:

(5) Ig(I',m)NR=J"8g - J =@ J,

and because J normalizes J', we conclude that Ig(J!,m ) N & is the f-normalizer of
(J],’Il'l )

2.4 7 extends to J (especially to J?), and there exists an extension 7 € J” such that
Ic(J% Res(n)) = Ig(J',m).

T is unique up to character twist with x o deta, g of Rg/U'S5J/J! where x is a tame
character of E*.

2.5 A = Res(m) ® o, where ¢ is a “cuspidal” representation of J%/J! = A% /U? (see 4.1).
2.6 The intertwining of the simple type (J°, ) is:

IG(JO,/\) =J%. GLgk - JO,

where K |E is maximal unramified with the additional property K* C &.

Unfortunately, the map a + % — (J% X) depends on choices (to be made if one
constructs A), and « + 2 cannot be recovered from (J°, A). But it is possible to recover 2
from J°. Namely, J° = O* is the unit group of an or-order O in A. Hence the op-module
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L C O which is generated by O* is an op-order too with the same Jacobson radical d (see
[BuF], (1.1.1)). And the normalizers Ng(J?) = Ng(L) agree. Because A = F - L, the
centralizer of L is F*, hence

Ng(L)/F* C Auty, (L)

is compact, and we see that Ng(J%) is a compact-modulo-center subgroup in G. Hence
there is a maximal compact-modulo-center subgroup &' such that Ng(J?%) C &. On the
other hand, we can take a maximal extension L|E such that L* C &g C J (see (3)).
Then L* normalizes J°, hence L* C Ng(J%) C &. But we have L* C &, and from [Frgr],
Theorem 1 we know that there is precisely one maximal compact-modulo-center subgroup
containing L* because [L: F] = N, i.e. L is a maximal field in A. Hence & = &, and we
have

2.7 Proposition: If (J° )) is a simple type, then the normalizer Ng(J®) is contained
in a uniquely determined maximal compact-modulo-center subgroup & and £ is in 1-1
correspondence to a principal order 2 (such that & = Ng(?1)). The normalizer of the pair
(J% ) is:

Ne(I°,N)=J =Ig(J°, A)N &

We are left to verify the equations. From 2.6 we obtain
Ic(JO YN R=J% Ry - J® Cay J

because of & C Ag. Moreover J normalizes (J°,A), because J normalizes J° and J
intertwines A. Hence

JC Ne(J°, ) CIs(J, )NnAaCJ O

Now we are able to give a reasonable definition of extended simple types.

2.8 Definition: An extended simple type (EST) is a pair (J,A) where J is the G-
normalizer of a simple type (J° A) and where A is an extension of A onto J.

Remark: Using (3) and 2.7, we see that there is a uniquely determined maximal compact-
modulo-center subgroup £ containing J. The argument is the same as for N (J?). Because
of J/J° C &/A*, the factor group J/J is cyclic such that an extension A always exists.

Now we come to the Main result of this section:
2.9 Theorem: Let (J,A) be an extended simple type.

(i) There is a uniquely determined maximal compact modulo center subgroup & D J, and

(J,A) is an admissible pair (in the sense of [Zigg], 2.1) with respect to the descending
sequence

(6) AOA DU DU

of normal subgroups in &. Hence (J, A) corresponds to a representation filter of (6)
and especially: Indg(A) is an irreducible representation of K.
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(i1) There exists precisely one discrete series representation I1 of G such that
Hom ;(A,II) =2 Homg (indg(A), IT) # 0,

and the multiplicity is one (i.e. dim¢ Hom =1).

(i) The map (J,A) — II € Gy which is given by (ii) induces a bijection between G-
conjugacy classes of extended simple types and the set of discrete series representations

of G. The discrete series representation II which is assigned to (J,A) Is cuspical iff
II = indg(A).

Remarks: 1. indg(A) denotes the induction with compact support.

2. (i1) may be reformulated by using (&, Indg(A)) instead of (J, A). This point of view
is adopted by Howe and Moy in the tame case.

3. A special instance of (ii) is I = indg(A) which occurs iff I is supercuspidal.
Otherwise there is a uniquely determined maximal subspace in indg(A) such that the
factor is a discrete series representation.

We are going to prove parts (ii), (iii) of 2.9. As to (i), the proof is essentially the
same as that of [Zigg], 4.6 but we will not go into that. According to (iii), it is enough to
parametrize the conjugacy classes of EST’s in order to get an overview over the discrete
series representations. We will do that in the fourth section. We will approach 2.9 via
a property of the simple types which is not mentioned explicitly in [BK] but is an easy
consequence of §7. Namely:

2.10 Proposition: Let (J° A) be a simple type of G. All discrete series representa-

tions Tl € G4 which contain (J°,A) form an equivalence class with respect to twisting by
unramified characters.

Proof: We consider J® C J = Ng(J% A) C & = A&(A) where the maximal compact-
modulo-center group £ and the principal order U resp. are uniquely determined. Then
we have JO = JNQA*. If y: F*/Up — C* is an unramified character, then ¥ = y o det 4/
vanishes on 2* because det(A*) C Up. Hence IT O (J°,A) implies T ® ¥ D (J°, \) for all
unramified characters x.

Now we need the following fundamental properties of simple types which we have not
yet mentioned:

2.11 (see [BK]§85,7) (i) Let (J°,A) be a simple type which is associated to a simple
stratum a + 2 and consider K 2 F 2 F as in (3) and in 2.6. Then there is a canonical
family of Hecke algebra isomorphisms

H(GLx, W, 1)=H(G, T, N)
where 1 denotes the unit representation of the Iwahori subgroup 23, of GLk.
(i1) Let Ad(G, J°, A) be the category of admissible G-representations of finite length
such that each composition factor contains (J°, A). Then an equivalence

Ad(GLg, U3, 1)DA(G, T°, N)
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can be obtained which has the following properties:
— if Mg 10, then |det 4, /k |5 ® Tk > |detg/p |F ® I for all s € C ([BK] 7.5.12).
— [l € GLg™ is a discrete series representation iff I € G is discrete series ([BK] 7.7.1).

We use 2.11 to reduce our Proposition to the case (J°,A) = (U*,1) where 2* is an
Iwahori subgroup of G, i.e. the period of the principal order A is e(U/or) = N.

Lemma 2.12: Let UA* be an Iwahori subgroup of G. Then the irreducible discrete se-
ries representations from Ud(G,A*, 1) are precisely the unramified twists of the Steinberg
representation St.

Proof: Let IT € 2Ad(G,A*, 1) be irreducible. If we apply [BK] (7.3.8) to the simple type
(A*,1) with e = e(A/op) = N, then we see that the supercuspidal support of II consists
of N unramified characters of F*. Moreover, if II is a discrete series representation the
supercuspidal support has to be a “segment” x, x(1),...,x(N — 1), where x() := x - ||
From Bernstein, Zelevinsky we know that the map

(Z) II € (G)” — supercuspidal support of II

is injective if we restrict to discrete series representations, and it is compatible with twisting
by characters of F*. We consider the special case where B is the Borel group of upper
triangular matrices in G. For 7: F* — C* and 7 = 7 o det 4,5 we obtain

F®Indpgie (x@x(1)® - @ x(N = 1)) =Indpre (tx @ (rX)(1) ® -+ @ (Tx)(IV — 1))

which proves the twist property of (Z) in that special case. Because all unramified segments
are obtained by twisting a fixed unramified segment with the unramified characters of F*,
our assertion follows from (Z). a (2.12), (2.10)

Now we come to the poof of 2.9 (ii). From (J, A) we go back to the simple type (J%, A)
where J° = J N2A* and A = Res(A). Let A be the unramified twist class of all discrete
series representations II € G, which contain (J?, A) (see 2.10). On the other hand, let T
be the set of EST’s (J,A') which extend (J?, A).

Step 1: We define a map

(7) OeA— (J,An) €T

Namely, if IT D (J%, ) let V* be the A-component of the representation space Vi1 considered
as a J%-space. (V* is finite dimensional because II is admissible and J° is an open subgroup
of G). Using that J? is a normal subgroup in J and that X is J-invariant, we conclude
that V* is even a J-space. Moreover, we have

2.13 Lemma: (J°,)) occurs in Vi with multiplicity one.

Proof: In view of the Hecke isomorphism 2.11 (i), the proof is the same as that of [HM]
Cor. 5.5 (a). Namely, the Lemma is reduced to the case (J° A\) = (2*, 1), where 2* is an
Iwahori subgroup of G. In that case Il is an unramified twist of the Steinberg representation
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(see 2.12), and we are left to show that (*,1) occurs in St with multiplicity one which is
well known. d
From the Lemma we conclude that V* is irreducible as a J%-space hence as a J-space
too. And the map (7) is given by assigning the J-space V* toa Il € A,
Step 2: The map (7) is surjective.
Let x: F*/Up — C* be an unramified character. With ¥ = y o dets/p, an easy property
of (7) is

(8) Awn =x@AneJ™

Using (3)s, we have J = L*- J®, and [L: F] = N implies ¥|z- = x o Ny p. But x = ||% for
some s € C and [Ny r|r = ||z. Hence ¥ ® A = ||} ® An, where ||} acts on L*J°/J® =
L*/Ur,. Therefore we see that the characters y ® An cover all extensions from A onto J if
x runs over the unramified characters of F™.
Step 3: The map (7) is injective.

Let x: F* — C* be an unramified character such that Ap = Azen. Then we have to
show Il = y ® II. Because of (8) and the identification J/J® = L*/Uy (see Step 2), our
assumption implies:

(9) An =(xoNyr)®An

Putting a prime element 7 into the argument and using x o Ny |p(7) = X('lrf;), we see
that (9) is equivalent to x/ = 1 where f = frp denotes the inertial degree. So we are left
to show that x/ =1 implies ¥ ® II = II. Here we can use (2.11) (ii). Namely, x = ||% for
some s € C. Then y/ =1 iff pr|‘;§f = |Tk|% = 1 (note that f = fx/r becanse L|K is
fully ramified) iff ||% = 1. Now if II corresponds to IIx € Ad(GLk, A}, 1) then by 2.11
(i) ¥ ® I = |det | ® IT corresponds to |det s,k | ® Ik = Ik (because of ||} = 1),
hence y @ II = 1II.

Altogether we see that (7) is a natural bijection, and that the extended simple type
(J,An) has multiplicity one in II. Further from [BZ] or [Cas] 2.3.1, 2.3.2 we obtain the
Frobenius reciprocity

Homg(indg(A), IT) 2 Hom (A, (I1;)™)
where “ 7 ” denotes the contragredient admissible representation. But II is from the dis-
crete series. hence I = y ® I, where IT is the complex conjugate representation and y is
a certain real character. Therefore (II1;)™ =1I.

We are left with the proof of 2.9 (iii). By [BK] (8.4.3) any discrete series representation
contains a simple type, hence an extended simple type too, i.e. our map is surjective, On
the other hand, the simple type (J° A) in II is unique up to conjugation, and from 2.13
we see that (J% A) has a unique extensioin (J,A) in II. Hence the EST (J,A) in II is
unique up to conjugation too. If II = indg(A) then by a well known argument IT is
cuspidal. On the other hand from [BK] we know that the simple type (J°, ) C II is
maximal if IT is supercuspidal. This means I = K in the notation of (3)3 and 2.6, hence
I(J°% X) = K*J9 = J, hence indg(A) = II is irreducible. O (2.9)
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2.14 Corollary: For II € éz let fri be the cardinal number of unramified characters
x: F* — C* such that ¥ @ Il = II, and let e be the period of the principal order 2 such
that I1 contains an extended simple type (J, A) which is in & = (). Then:

e-fn=N.

Proof: We fix a simple type (J°,A) C II and consider the bijection (7). Because it is
compatible with unramified character twist, we conclude:

Mm={GX®A=A}= fyF

as we have seen in Step 3 of the proof of 2.9 (ii). But [L: F] = N and L* C & implies
N/fur =eLr =e. O
For an extended simple type (J,A) define:

, OlfA 1 =1
](A):—_—{ K

max{i; A| ;i # 1} otherwise.
Note that j(A) = 0 implies m; = 1 hence J! = U! because Indyi () is irreducible. But if
(J',m) = (U, 1), then from (4), (5) follows E = F and J = &, such that A is a “cuspidal”
representation of £/U'. On the other hand if j(A) = j # 0 then JU/2+! = pU/2+1 a5 we
have stated at the very end of 2.2. Moreover j # 0 corresponds to a + 2 # U, ie. a ¢ 2
for an associated simple stratum, namely vp(«) = —j because

A(l+z) =t oTryp(az) -1

for z € PU/2H1, Especially A|y; corresponds to the stratum o + P=i+1, (Note that p
has conductor 1, i.e. ¥p(pr) =1, ¥r(or) # 1). This stratum is fundamental because « 1s
2-pure, hence o+ P77 = o-U! C £ such that o+ P77 contains no nilpotent elements
(see [KM] 1.3). In terms of [BFr] (2.2.8) this also means that o + P~/*! is non-degenerate
which we will use in the next section. The level of a + P~7*! is by definition:

o+ P+ = —up(a)fe = j/e,
where e is the period of 2. Identifying o + P~/*! with A|y;, we may say that
OI2ADa+ P i+ if I € G, corresponds to (J,A).

Now it is known that all fundamental strata in a representation II € G have the same
level, and this is by definition the level £(II). If j(A) =0, i.e. if Il contains a “cuspidal”
representation of some &/U?, then the level ¢(II) is defined to be zero (see [KM], 1.3, 1.4
for more details and hints). Thus we have:

2.15 Corollary: IfIl € @'2 corresponds to the extended simple type (J,A), then it has
the level:
0if Ap=1, hence J'=U'"J=18

€ = {j(A)/e otherwise

(where e is the period of the uniquely determined principal order 1 which is normalized
by J ).
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3. Interdependence of the exponential Artin conductor and
the level of a discrete series representation

In this section we want to compare the level of II € G, with its exponential Artin
conductor a{Il) which yields another interpretation of a(Il) than that of [J, P,Sh] — at
least for the discrete series representations. (In loc. cit. a(II) has been interpreted for all
generic representations.) Let us recall the definition of a(II):

Let B|F be a central simple algebra of index N and let IT € B*™ be an irreducible
admissible representation. The exponential Artin conductor a(II) is given by the equation:

(1) e(s, I, ¢p) = e(0,I,9%F) - q;“(n)" for all s € C, where the e-factor is defined as in
[GJ], Theorem 3.3 (4), where ¢p: FT — C* is an additive character of conductor 0
and where gr = |kp| is the order of the residue field.

We remark that a(II ® |[Nrd|%) = a(Il) for all ¢ € C because e(s,I1 @ |Nrd|%,¥F) =
e(s + t,I1,9F), L.e. a(Il) is invariant with respect to unramified character twist. And in
the case B = F, i.e. II is a character of F*, the usual exponential Artin conductor is
recovered.

We want to compare o(Il) and €(II) in the case where B = A = My(F) and B =D
a division algebra of index N resp. Before stating our main result we have still to define
£(11) for division algebra representations. Namely:

(2) For II € D*™ define j(II) = 0 if U}, C KerII and j(II) = max{i; |y # ¢} otherwise
and define the level to be
() = j()/N.

The main result of this section is:

3.1 Theorem: (1) Let Il € G be a discrete series representation. If Il is not an unram-
ified twist of the Steinberg representation Sty, then: a(Il) = N(€(II) + 1). On the other

hand, we have
e(s, Stn,ypr) = (DN qgr—S)(N-l)

hence a(Il) = N — 1 if Il is an unramified twist of Sty.

(ii}) Assume that I1 € D*” is not an unramified character. Then:
a(Il) = N(¢(1) +1).
On the other hand, if 1 is the unit representation of D* then:

e(s,1,9p) = (—1)N~1. qg;ff")(N—l),

hence a(¥) = N — 1 if ¥ = x o Nrd is an unramified character of D* (i.e. x: F*/Up —

Proof: To begin with we prove (i) in the case where IT € @2 1s not an unramified twist
of Sty. Consider an extended simple type (J,A) which corresponds to II by 2.9 (iii).
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Then we will apply [BFr] (3.3.8) to p = Indg(A), where & D J is the uniquely determined
maximal compact modulo center subgroup. Namely as we have seen before 2.15, A (hence
p) contains a fundamental stratum o + P~/*! C & which means that p is nondegenerate.
Note that the case j(A) = 0 is included into the definition of “non-degenerate” too ([BFr]
2.2.8 ff). Therefore [BFr] (3.3.8) gives us the formula:

(3) e(IL,s) = N(Da - §(e) F= - W(p),

where Dy is the differente of /Z,, (2 being the principal order that corresponds to £)
where N(?) = (:0) for an ideal @ C U, where f(p) = P*?U(#) is the conductor of p and
where W (p) is the root number of p which does not depend on s (see [BFr] (2.8.9)).

3.2 Remark: We have used [BFr] 3.4.(C). According to that remark, (3) is valid not only
for supercuspidal II but for all II such that L(Il,s) = L(IIY,s) = 1. Therefore from [J]
(38.1) we see that (3) applies to discrete series representations too if we exclude unramified
twists of the Steinberg representation.

Because of the definition of f(p) in [BFr] (2.2.3) we see that

(4) vp(f(p)) = e £(I1) + 1

where £(IT) is the level and e is the period of A. Note that in our case v,(f(p)) # 0
because II is cuspidal. Further, if 9 is a power of the Jacobson radical P of 2, then an
easy comptution gives us: |

(5) NN = g e,

Because Dy = P*~1. A, where A is the differente of 05 /Z p, and because vp(A) = e-vp(A),
we obtain from (4), (5):

(6) N(Dq . f(p))l/N — qg[”F(A)+l(H)+1].

Now we remark that the e-factor of [BFr| and that of [GJ] Theorem 3.3 (4) are related by
the formula:

(7) e(Tl, s) = e(s, I1,9")

where ¥’ = g, Trpiq, is an additive character of F', which is lifted from the additive
character 1q, having conductor 0 (i.e. g, vanishes on Z, but not on p~'Z,). According
to (1) we need ¢(s,II,%F) where ¢r has conductor 0 with respect to F. Hence:

(8) ¥'(z) = pp(z6)

where § € F' is a generator of the absolute differente A. Using [GJ] (3.3.5), we conclude
from (7), (8):

(9) e(s, T, 9br) = w(6™1) - |67 N~ g(m, s)
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where w is the central character of II. But [§7'|p = q}',F(m, such that from (3), (6), (9)
we obtain:

- - —aN (&Il
e(s, T, pp) = w(6™1) - gp (IHDA2=9) yy () = ¢ NEIDID (0, 10, ),

hence a(Il) = N(¢(1I) + 1).

We come to the proof of 3.1 (i) in the case where II € G, is an unramified twist of
the Steinberg representation. Using a Theorem of Zelevinsky, we know that every discrete
series representation II is the unique irreducible quotient of Indpg(1 ® -+ @ on/n),

where n is a divisor of N, P C G is a parabolic subgroup with the Levi component
GLn(F) x --- x GL,(F) C G (where the number of factors is N/n), and

o; = oy|det|s? for i=1,...,N/n

are cuspidal representations of GL,(F).

The Steinberg representation II = Sty is obtained for n = 1 and o7 = | det |;]/2(N—1).
This ensures that the supercuspidal support of Sty has the property {o1,...,0n8} =
{¢1,...,6n} because &; = or!.'l. Hence Sty is selfdual.

The y-factor of IT € G is by definition:

¥(s, 1L, 9pr) = (s, 1L, ¢pF ) - L(1 — 5,1T)/L(s, TI).

From {J] (2.7.3), (2.3) we know that in the situation of Zelevinsky’s Theorem we have

N/n
(10) (s, pr) = [] v(s,00,%r)-
=1
In the case II = Sty one can use (10) with n = 1 and o; = |det 1;1/2(N+1)+i. Then the

computation of [GJ], p. 97 (where the notation is €'(s, 0, %) instead of v(s, o, %)) gives us
the formula for e(s, Sty, ¥ r).

Next we apply (3) to prove 3.1 (ii). In the case of a division algebra we simply have
p =1II and 2 = O (= integers of D) because D* is compact modulo center. Therefore (3)
turns into:
(3)p e(IL, s) = N(Do - () 3=V . w(m)

where Do is the differente of O/Z,, and f(II) is the conductor of II. If I is not an unramified
character, then from [BFr] (2.2.3) we see that

ve(f(Il)) = N - €(II) + 1,
where P is the prime ideal of O and £(II) is the level. If ® is a power of P, then:
N() := (0:0) = ¢y ?®,
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Using Do = PN~1. A, where A is as before, we conclude that:
(11) N(De - f(H))I/N — qg[uF(A)+£(H)+]]_
Again we have to use the formula (9) such that (3)p, (11) imply:

e(s, I r) = w(671) - gh Oy,

where w is the central character of II, hence a(Il) = N(£(II) + 1).

We are left with the case where II is an unramified character of D*, and here we have
to compute £(s, 1, ). Computing €(1, s) by means of (3)p, we can use [BFr] (2.8.13) (ii),
which gives us:

W(lp)-y(1p:) = [W(Lp) - y(1p)]",

where for the moment we have written 1p- instead of 1. But apparently y(1p-) =
y(1p+) = —1 and W(lp+) = 1, hence W(1p-) = (~1)¥~1, and because of f(1p-) = O the
formula (3)p yields:

e(l,s) = (—I)N_l -N('Do)(l/z_")/N.

Again we use Dg = PV ! . A and proceed as before to obtain

(N=1), =

1
6(3$ 1) ¢F) = (“1)N—l ’ QET? ’)
Using the congruence Gauss sums of [BFr| we want to make the formulas for e(s, II, 3 )
a little more precise by reducing them to a congruence Gauss sum for the extended simple
type (J,A) corresponding to II. In the division algebra case, an extended simple type is
nothing else than an admissible pair with respect to the principal unit filtration D* O
UL D UE D .- which gives rise to II.
We begin by defining the congruence Gauss sums for an arbitrary additive character
p: FT — C* with conductor f#(3¥) = p¥%.

3.3 Definition: Let & = &(2), P = Jac(2) be a maximal compact mod center subgroup
in the central simple algebra B/F, and let p € 8 be an irreducible representation. The
congruence Gauss sum 7(p, ) is the value of the scalar operator

T(p,)= Y plc™ ) pp(c u)
wE(A/f(p))*

where ¥p = poTrdp,r, f(p) = PI*! is the conductor of p (we will always assume p|g- # 1,
ie. j > 0), and where c is any generator of the ideal f(15) " f(p) = P~ - fp(¥)™* - f(p)
(which is a power of P). e := e(™U/or) = e(A/Op) - e(Op/or), if B is a matrix algebra
over a division algebra D.

For a € F* define ¢, by: ¥,(z) = ¥(az). Then fr(,)"" = a-fr(1p)!, hence a small
computation yields:
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3.4 Lemma: T(p,v,) = wy(a)™? - T(p,¥), where w,: F* — C* is the central character
defined by p.

Now the formula of [BFr| (3.3.8) reads:

(12) e(s, T,) = N(f(p) - ()" ) E=IN . W(p, )
where:
(13) W(p, %) = (=1)¥~™ - Ni(p)/% - 7(p", %)

if p € &7 is a nondegenerate representation occurring in II and if L(Il,s) = L(II", s) = 1.
N is the index of B/F and m is determined by B = M,,(D).
Note that as a consequence of 3.4 we obtain:

(14) W(p, d)a) = wp(a) ) W(,O, 11’)

We consider the case that p € 8 is induced by A € J~, where F* C J C Ris a
subgroup of finite index. Modulo twist with ¥ = x o Nrdg;p, where x: F*/Up — C* is
an unramified character, we can assume that p and A are finite representations. Hence we
have the usual formula connecting the characters x, and xya. Now we apply this formula

to
T(p,¥) - dim p = Z xp(c ™ u)pp(c™ u)
ve(™A/f(p))*
i.e. we substitute x,(c”lu) = > ¥4 (r~'e~'ur), where R is a residue system of £/J.

reR
Then we interchange the sums and replace r~'c¢c™'ur = (r~te™r)(r~lur) by r~c7ru
because the summation is over u. We find:

r(p, %) dim p =" {Z Xa(r™ ey t/)B(r“IC_IW)} :

Now we assume ¢ € J, then:
rlelru e J iff r ¢ ru e 710,
where J? = J N 2A*. Hence

ZX%(T_]C_ITH)I/)B(T—IC_I?‘U) = Z xale w) - Pplc™ u)

u€JO/1+1(p)
is independent from r € R, and we conclude:
T(p,¢) - dim p = (R J)r(A,¢) - dim A.
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3.5 Proposition: If p = Indjja(A) and if f(3p) ™" - §(p) has a generator in J (i.e. ¢U* C
JA* for any ¢ as in 3.3), then:

(15) (p, %) = (A, 9¥)

where T(A, ) is the value of the scalar operator ) A(c™'u)yp(c™'v) where the sum is

over u € J°/1+ §(p) and c is now a generator of f(¥g)™" - f(p) in J. O

Note that (15) holds for all additive characters because F* C J and that f(p) = f(A).

Now we consider I € Gy, D*™ resp., and we take (J,A) to be a corresponding EST.
Moreover let 3 be an additive character of conductor 0. Then from (8) we see ¢ = ¥5_,,
and the computations in proving Theorem 3.1 give us:

(16) (s, 1L p) = g TG Ly ),

where p = Indjra(A). We check that Proposition 3.5 is applicable, i.e. that f(5) f(p)
has a generator in J. For that we may assume that 3 has conductor pr. Then f(p5)~?! -
f(p) = P71 -§(p) = P¥", where j(p) = j(A) is the index of p, A resp. Now if (J,A) is
related to the simple stratum a + 2 then on one hand j(A) = —vp(a) and on the other
hand &g C J (see 2.(3)) where E = F(a). (In the division algebra case we have D}, C J).

Hence we can take ¢! = a € J. Therefore:
3.6 Theorem: IfII € G5, D*” resp. corresponds to an extended simple type (J,A) and
if pp: FT — C* is an additive character of conductor pr, then:

(5,11, ¥ np) = g OV ) WA, )

where W(A,¥p) = (=1)¥ ™. N{(A)"Y/2.7(AY,F), withm = 1, N if B/ F is the division
algebra and matrix algebra resp.

Remark: Note that A and p = Indj;2(A) have the same conductor f{A) = f(p) and that
in case f(p) = P we have p = A.

Proof: 5, has conductor op. Hence we can apply (16) and (15). The result follows
from W(A,¥rx,) =wn(rp) W(A,¥r). d
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4. Parametrizing extended simple types

In view of 2.9 we have to find a parameter system for the G-conjugacy classes of
extended simple types. We consider T~ from 1.(12) and

Ty :={t€T7;deg(t) | N}

where the degree of an R-polynomial has been defined in 1.2. We are going now to construct
an injection of T into the set of G-conjugacy classes of extended simple types (which in
fact is a bijection). Of course we could replace T by 8y, Py resp. (which are defined
in the same way as Ty ). Taking P is especially useful for counting procedures. We will
not go into that but will work only with T5. Before going ahead two remarks might be in
order:

Remarks: 1. T will turn out to be not a canonical system of parameters because the
construction of the conjugacy class of EST’s (J, A) which is assigned to t € Ty will depend
on certain choices.

2. According to a conjecture of Langlands it should be possible to parametrize the
irreducible admissible representations of the absolute Weil group Wy C Gal(F/F) which
are of dimension dividing NN in terms of T, too. But here it seems to be more advantageous
to use 8y, Py resp. (see §6 of {Zigg] for some more precise conjectures. The case p{ N
can be settled in an easy way as it is explained there after 6.6).

For all e|N we fiz a principal order 2, in A and a map

(1) f(T) € FIT), o — ay € A7 ¥ (Jy,my)

as in Part I, Prop. 2.4, where (Jf,7¢) is an admissible pair (in the sense of [Zigg], section
2) with respect to the filtration

ROWDHU'DU*D---,

with f being the G normalizer of .. A denotes a fundamental domain for Ad(&)\ A(2,)
/e, hence ay € A7 is a uniquely determined root of f(T) in A which is ,-pure, and
ay+ %A, is a simple stratum. Mostly we are considering a fixed order 2% = 2, and therefore
omit the subscript e (= period of ).

(Jf,7¢) 1s a pair associated to the simple stratum a; + 2 which has the properties
2.1, 2.2 (if we take the sequence 8 D A* D U' D U? O --+), 2.3 and 2.4. Note that =y
is just one of the representations 7 occurring in 2.4, i.e. 7y restricted to J} is irreducible
and is a Heisenberg representation m; of J;. Now we have E = F(as) C A, and we fix a
maximal extension L|E with the property L* C g = AN Ag. Then we write &1, %5
instead of g, Ar resp. and thereby we think of the construction in the proof of 1.1 in
Part I. Hence

(2) T3/ T} 2 Uy /U = [GLrg(kL)|™H15
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is the product of ez p exemplars of GLkg (k1 ), and
(3) Ji/J} = Ry p/U = L*UY p/U" = (7)) x [GLy(kL))"H1.

According to 2.5 (which is [BK] (5.5.10)) a simple type is obtained ty tensoring
Res(my) € (J7)” with the inflation (see (2)) of a representation (®09)°*1#, which is to
denote the external tensor power of an irreducible cuspidal representation g of GLg, (kg ).
Hence an extended simple type (J¢, A) is obtained by tensoring 7 with a representation
Rg of (3) that extends some (®0¢)218. Here our main result in this section is:

4.1 Main Lemma: Let L|F be a finite extension and let & p € GLp(L) be the maximal

compact-modulo-center subgroup associated to Up;p. Let T'r C Gal(F’|F) be the tame
Weil group. Then there is a well defined injection

(4) L™ (dim = frr) — (8 r/U')", R+ Rg

of irreducible admissible representations R € T'r” of dimension fr|p, which has the fol-
lowing properties:

(i) The image consists of all irreducible representations Rg, the restriction of which
to Qizlp/Ul = [GLyi, (kL)]°¥!F is an external tensor power of a cuspidal representation of
GLyq(kL).

(i1) The map (4) lifts the bijection (due to J. Green)

(5) G(kp|kr)\{kF — regular characters of k] } «—— GLy. (k)" cuspidal

between Galois orbits of regular characters and irreducible cuspidal representations of
GLg. (k). Namely, let K be the inertial field in L|F, and via

¢:I{"'/U;( - C* |-—-—+R=Indp(¢)

(where K*[U}. is identified with T% and Indr denotes the induction from Tk to T'p)
identify the range of (4) with the set of G p-orbits of regular characters ¢. Then if
Rﬁl“lw = (®00)LIF, the Galois orbit of ¢ = ¢|u, (which is a regular character of
k} = kj ) corresponds to o¢ under (5).

(i) If x: F*/U} — C* is a tame character, then

(x® R)sa = X ® Rg,

where ¥ = x o det is the corresponding character of GLp(L).

Before proving the Main Lemma, we will explain how it is used. Looking at (3), from
the Main Lemma we conclude that Rg should be related to an irreducible representation
R of the tame Weil group I'p C Gal(E|E) which is of dimension f1|z. On the other hand,

we know that frr = N/e, where ¢ is the period of 2 (see at the very end of Section 2).
Hence:

(6) d1mR=N/efE|p, 6=N/d1meE|F
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Now we consider an R-polynomial £ = [R, ] € Ty. To avoid confusion let f(T) be the
polynomial and let f; be the inertial degree which are associated to ¢ (see 1.(3) and 1.2).
Because f; = dim(R) fp(g);r and F(8) = F(ays) = E (see (1)), we see from (6); that the
extended simple type (J,A) corresponding to ¢ should be related to the principal order
A = A, where ¢ = N/f;. Namely, for that e we have f(T) € F[T];N/e because fr(gy/F
divides f; = N/e and epgy,r = deg(t)/ fi divides N/f, = e. Moreover, if we choose L|F
as in (2), then ey r = e implies fr|r = N/e = f, and f g = fi/fejr = dim R. So we
have:

(Th t=[R,B € Ty f(T) € F[T]] /. => (Jps75)

where e = N/f;, and we use the isomorphism F(f) ~ E = F(ay) which takes 8 to ay
to transfer R € 'ppy into a representation R € g™ (dim = frg). If we start from
(cRo~1,0(B)) € t we get the same R € '™ because then we have to use the isomorphism
F(o(f)) =2 E = F(ay) which takes o(f) to ay. Now we can apply the Main Lemma:

()2 ReTg (dim = f1g) — Ra € (R g/U")"

and by means of (3) we arrive at the following

4.2 Definition: The extended simple type (J,A) which is associated to t = [R, 8] € Ty
is contained in R, = A(2.) where e = N/f, and is given by J = Jf, A = 7y ® Rg, where
f(T) and Rg are as in (7)y, (7)2.

Before stating some properties of the map ¢ — (J, A) we return to the
Proof of the Main Lemma: We begin with the case where L|F is unramified. Then
R € Tr™(dim = fr) has the form R = Indp(¢) where ¢: L*/U} — C* is an F-regular
character, i.e. all conjugates are different. R C GLr(L) has the period ¢ = 1, & p =

L2 = F* -2y,

(8) Ry p/UY = F* -4} p/U" = (xp) - GLi, (kL)

and there exists a uniquely determined irreducible representation Rg of (8) such that:
(4.1.1) (i) On GLk,(kL), Rg is the irreducible cuspidal representation which is assigned
to the Galois orbit of the regular character ¢o € (k7)”.

(i1) On the center (F*/Up) C R #/U", Rga gives rise to the character ¢r = ¢|p-.

Remark: Note that the intersection (F*/UL) N G Ly, (k1) of subgroups in f1,r/U" con-
sists of the scalar matrices k. C GLg.(kr). Hence, according to the results of J. Green,
the definition (4.1.1) is consistent (see [Rei], 2.7 for some further details).

From the definition the property 4.1 (ii) is obvious. We verify 4.1 (iii): Note that
X®R = Indr(x N jp®¢) and (xoNpr®¢)o = (X0o Nk, |k )®¢o, where xo = X|ks, - As we
know from J. Green, the cuspical representation of G L, (k1) assigned to (xo0 Ny, k) ® do
is Xo ® Rg where Yo = xo o det is a character of GLy, (k). Hence 4.1 (iii) is correct on
GLi. (k) € &5 /U'. On the other hand:

(xoN/r) - #lp = X" ¢p = (¥ ® Rp)

F.
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because ¥|r+ = xV. Therefore, 3.1 (iii) is correct on F*/U? too.
Now we come to the general case. Then we have

(9) Ry p/U' = L* U . [GLip(kL))® (see (3))

where e = ey /p and the intersection of the two factors is kj diagonally embedded into
[GLg,(kr)]¢. Hence:

(9) Rpp /U = (71) X [GLgp (kL))

is a semidirect product. We are going to compute the mj-conjugation on [GL. (k)]
Write 2, P instead of Az ,p, P r resp. Then we have a natural isomorphism

/P = Endi, (01 /p1) ® - ® Endg, (57" /p%).

Let = g + -+ + pe—1 be the corresponding decomposition of € A/P. ; can be given
as: ¢; = {w}( — 7} - 2i(¢)} where z; € Endg,(or/pL), which gives rise to:

(10) A/P = [End,(0/pL)]5, z+— (z0,...,Te—1).
We want to compute wvarZ] . Obviously:
T = (751 ¢ — Tri"'l -z:(€)} for 0<i<e—1.

Now we consider
(10 RiperT! = {750 7 - 2o (O},
We have to identify (10)" with an element from End, (o1 /pr,). This is done by using
(11) 7 =7p-Amod U], where np € F, A€k},
Then (10)' turns into

TLpe177 S{AC = Aze—1(¢)} € Endy,(0L/pL),
and by substituting u = A € o?,/pL we obtain

TLpe1T] S{u — Aze1(A7'u)} € Endg,(or/pL).

So we may state:
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4.3 Lemma: Consider z — (zg,...,%¢-1) as in (10). Then
wbmwzl — (Ae—y A"z, ... yTe—2)

if ¢ = mp - Amod U}, where A € k} C GLy, (k). O

Remark: = being fixed, the result in 4.3 does not depend on the choice of the prime
element wp. Another choice of mp changes A by a factor from k% but z._; is a kp-
endomorphism.

Now we are going to define I'p™(dim = fi,p) = (&/r/U')” in the general case.
Let K be the inertial field in L/F. According to (4.1.1) we get

(12) ReTp (dim = f/p) +— Ry € (Re/p/UY)”

To avoid any confusion we write here Ry instead of Rg. We note &y/p/U' = F* /Uy -
GLi.(kL). Let V be the representation space of Ry. From (12) we deduce a representation
of F*. QLE/F/UI = (F*/U%) - [GLg,(k1))® in the space (®V)¢, namely:

(13) Rﬁ(a - (.’1’30, N P | )) = .R{)(Ofivo) ®--- ® Ro(afbe_l)
= ¢7(a) - (Ro(20) ® -+ ® Ro(Te-1))

where we have used (4.1.1) (ii). F*- AL, p CRrp = L*- A7 is a normal subgroup with
a cyclic factor which is L*/F*U| & Z/eZ and is generated by 7. We extend Rg onto
A1, r as follows:

(4.1.2) Definition: Let Rg(wy,) be the operator on (®V)¢ which is given by Rg(r,) :=
[Ro(mpA)@1---®1]- S, where X' € k] C GLk. (kL) is determined by:
¢ =7 - N -6mod U]
5_{ +1 if e is odd
| -1 ifée iseven
(¢' denotes the prime-to-p factor of e), where 1 is the unit operator on V and where § is
the operator on (®V)® which is given by S(vo ® - @ Ve—1) = vVe—1 Q Up + ** ® Ve—s.

Remark: Note that for p = 2 we have always § = 1. The reason for modifying (11) is the
property 4.5 below.
We are going to verify

4.4 Lemma: (i) Rg(ny) - Ra(z) - Ra(m)™! = R_q(arb:mrzl) for ¢ = axg,...,Ze—1) €
F* /U - [GLip (k1))
(11) Ra(wp)® = Ra(mp(X,...,A)) with the notations from 4.3.

Proof: (i) Obviously we have S - Rg(z) - 57! = Ra(a(ze—1,20,- - .,Te~2)), hence:
RR(T'TL) . R_ﬁ(l‘) . Rg(‘n'L)_l = [Ro(ﬂ'p/\') ®1---® 1] . Rﬁ(a(a:e_l 2 T0,y .- ,.’Ee_g))'

[Ro(rpA)®1---@1]!
= Ra(a(N et N 71 20, .0, Zemz))
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Because of X = £\ we obtain Mze_; A ™1 = Aze—1 A7! such that (i) follows from 4.3.
(i1) Define T := Ro(nrA')® 1 - ® 1. Hence:

Ra(m)® = (TS)* = T(STS™Y)--- (S°7'T S 1) - §°

Now we use S =1, S'TS™ =1® - R(rp)') ® - ® 1 where Ro(mp)\') is shifted from
the first to the (¢ + 1) position. Hence

(TS)c = Rﬁ(‘n‘F(/\', very /\’)).

If ¢’ is odd we are done because X' = A. If ¢’ is even we get A’ = — A and e is even too.
Hence:

Ra(np(N,. .., A")) = (@Ro(mr X)) = ¢p(—=1)° - Ra(mr(X,...,A)) =
= Ra(rr(A,...,A))

where we have used (4.1.1) (ii). O

From the lemma we see that, by (4.1.1), (4.1.2), we have a well defined representation
Rg such that the map (4) has been established.

Qur next aim is the proof of 4.1 (iii) in the general case. We need the following lemma:

4.5 Lemma: Let K be the inertial fieldin L/F, e = ey jp and €' the prime-to-p component
of e. Then:

7§ =8 Npjx(IlL) mod Uj,
where § is defined as in (4.1.2).

Proof: We can assume K = F, i.e. L/F is fully unramified. Let L/F be the normal
closure of L/F in F/F. Then

w5 /Nyp(nn) = [[ =17

where o runs over a system of representatives of Gf,/F/GL/L' We put Gi/F =G, GL/L =
H. then Hi = Gy N H where Hy, G; are the subgroups of wild ramification, hence
G1/H, — G/H. And if o) € G; then 71')15—01 € U%,‘ Hence if L; | F' is the maximal tame
subextension of L | F', then:

TreL/e = Ny, (7p) mod Ul
78 = Nyyp,(71)¢ mod U}.
Now 71 = N1, (71) is a prime element of Ly, and we are left to show that:
n¢ =§- Ny, /p(m1) mod U},
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Our computation is in L} /U} € L*/U}. By an unramified base change we can shift L, /F
into a cyclic extension EL;/E. Then we know that

0 €Gpryp—m™ ° €ky=Up/UgL,

1s an injective homomorphism of groups. Therefore

{wi‘”; o€ GELle} = {1,3,...,3e "1}

is a cyclic group of order €' in k7. Hence
m¢ INLp(m)=1-s-82 s V=t D =gy O

Now we come to the proof of 4.1 (iii). It is enough to show that
(i) (x®R)a=X®Raon F*U} . C Ry/r
(i1) (x ® R)a = X ® Rg if the argument is 7.
As to (1), we use (13) and the property 4.1 (ii1) of R — Ry:
(x ® R)g(a(zo, .. ,2e—1)) = (X ® R)o(az0) ® -+ ® (x ® R)o(aze—1) =

= x(a(zo,...,Ze-1)) - Ro(azo) ® - ® Ro(aze—y) =
= f(a(:l;g, ey Te—g )) . Rﬁ(a(:CO) RN $e—1))~

Note that g(U!) =1 for U! = Ui/F C R /r, because x is a tame character. Therefore it

is possible to consider ¥ as a character of &;,/p/U". As to (ii), we use (4.1.2) which gives
us:

(14) (x® R)a(m1) =[(x ® R)o(rrX\)@1---®1]- 5.
Moreover (x ® R)o(mr)') = X(Ng/rp(7FA')) - Ro(wpX') where K is the inertial field. This
is because R — Ry has the property 4.1 (iii) and “det” restricted to K* C GLp(K) agrees
with NK'/F .

Now from 7§ =7 - A’ - § mod U] and 4.5 we conclude:

mrAN = Npji(n) mod Uy, hence
Ngyp(npA') = Npjp(rr) mod U}

On the other hand 71, € L* C R;p C GLp(L) yields Ny yp(ry,) = det(ry,) such that:
(x ® Ro)(wr ') = X(71) - Ro(mpA').
Substituting this into (14) we obtain (i1).

To complete the proof of 4.1 we are left to show that (4) is an injection and to
determine its image.
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Consider Ry = Indg1r(¢1); Rz = Indkrr(é2) € T (dim = f;/p) and assume
Rig = Ras.

Then the property 4.1 (ii) implies that ¢;|y, and ¢2|u, are conjugated with respect
to Gg/rp. Therefore by conjugating ¢, we can assume $1lux = ¢2|ug, and using that
Nyypi K*[Ug — F*[UF is injective, hence Nk g (F*/Up)” — (K*/Uk)™ is surjective,
we see:

(15) R; = x® Ry, where x: F*/Up — C* is unramified.
Now we apply 4.1 (iii) and obtain
(16) Rig = Rg = X ® Riaq.

Let W = (®V)® be a representation space of R;g as in (4.1.2). The equivalence of repre-
sentations means for the operators:

XQ@Riga=A-Rig-A™! where A € Autc(W).
We restrict to QIE/F/UI C R/r/U'. Because X vanishes on QI‘I:/F we obtain:
R]R=A~R1_RA"1 on QlE/F/Ul

But on QIE/F/Ujl we know that Rjg = (®0p)° is still irreducible. Hence A has to be a
scalar operator, and we see that (16) is even an equation of operators. Now we check the
argument 7. Then we obtain 1 = ¥(rz) = x(Ny/p(71)) = X(vriL’F), hence x/t/Fr =1
because x is unramified. But this implies y ® R; = R; because f;,p = [K : F]; and from
(15) we conclude R; = R,.

Finally we come to the proof of 4.1 (i). Because of 4.1 (i) we see that R — R'ﬁ'lﬁ;,/i‘
covers all external tensor powers (®0g)® of cuspidal representations o9 € GLg.(k1)”. Fix
one (®ao)¢ and consider

Y= {0‘ € (ﬁL/f/Ul)A; 0|Q¢1/F = (®Jo)e}

We use Rp/p /U7, pL" /UL, the surjectivity of Ny p:(F*/Up)” — (L*/UL)” and the

property det |« = Np,p with respect to L™ C GLp(L). Then we see that starting from

any o € ¥ the whole set £ is covered by the representations ¥ ® o, where x runs over

the unramified characters of F*. But we have at least one Rg € . Therefore 4.1 (i) is a

consequence of 4.1 (iii). This completes the proof of our Main Lemma. O
Now we proceed to prove some properties of 4.2.

4.6 Theorem: The map

t=[R,Bl€Ty— (J5,ms ® Rg) € {EST}n
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into the set of extended simple types in G which has been defined by 4.2 is injective and
meets each conjugacy class of extended simple types at most once. Moreover 1t has the
properties:

(i) For a tame character x: F*/U' — C* let be x @ t := [(x o Np(gy/r) ® R,(]. Then

x ®t is mapped onto (J¢, X(75 ® Rga)), where ¥ = x - det is the associated character
of G.

(i) II; := Indg(rs @ Rg) € & (where & = &, e = N/ f,) has the index j(II,) := max{i €
Z;Myy: 1} = —e-vp(B) if B # 0, and I, vanishes on U' iff § = 0.

Proof: (ii) From the constructions of Part I, 2.4 ff we know that 7y vanishes on J} =
JgnUY iff f(T) =T, ie. B = 0. Moreover this is equivalent to Ijyn = 1 because I
contains IndJ}TUI (Res7y) as an irreducible component. If 7y # 1 on J;, ie. §# 0, then
we get

j(Il) = j(Indga(7y)) = —e - vr(B)

where the last equation follows again from Part I, loc. cit.

(i) x ®t has the same polynomial f(T) € F[T]|™ as t. Hence Jy, 7y are unchanged.
Consider

(R,B) — REeTg ™ (dim = fy/g) — Ra € (R/g/U")".
Then (x o Np(g)/r) ® R is mapped to (x o Ng/r) ® R € [g”, and by 4.1 (iii) we have:

((xoNg/r)® R)a =(xo Ng/rodetay g) ® Rg = xodets r ®Rg

because Rg € R g and &g C GLg. Furthermore if “inf” denotes the inflation from
RL/E to Jf = ﬁK/E . J}, then:

inf(xo NE/F o} detAE/E ®R§) = (X OdetA/F) ®inf(Rﬁ)

because x is a tame character.

Now we consider t; # t; € Ty and we will show that the corresponding simple
types are not G-conjugated. If the inertial degrees f,, fi, are different then e; # e3 for
ei = N/fi,. Hence the groups Jy, J; which correspond to ¢, #; resp. normalize orders
of different periods namely 2., , 2., resp., and from the remark following 2.8 we see that
they cannot be conjugated.

Finally we assume f;, = fi, hence e; = ez = ¢, and we will show that ¢t; = t3 if the
corresponding extended simple types are conjugated. Namely then we have Jy, J; C &,
and zJ,271 = J; for some ¢ € G. Therefore J, is in &, and in z8.z~" too. Because of
the remark following 2.8 we conclude z8,z~! = R, hence 22,z7! =2, and = € K,. Thus
we obtain:

(17) 2(m @ Rig)z™) =7, @ Rog with z € R,

Restricting to J} = J2 N U, we see that zmz™! = 73 on J§ because R;g vanishes on J}.
Hence for II; := Ind j;1q(7;) we will have

(18) HomU1 (H],Hz) -',é 0.

29



In Part I, 2.(12) we have established a distance relation for the map
(1) e F[T]e_,N/e — ap € A7 — (Jp,mp) — [y = Indg, (7).

According to that relation (18) is equivalent to f1(T') = f2(T). But then we have (J1,m) =
(J2,72) too and we denote this pair (J, 7). Now (17) turns into

(19) z(r ® Rig)z ™' = 7 ® Rag with =z € &,,

and restricting to J! we see that z € £ normalizes the pair (J',Res()). But then z € J

as we see from 2.(5). Hence zrz™! = 7, Ryg = zR1g7~' = R4 and from the injectivity

of (4) (Main Lemma) we conclude that t; = [Ry, 51] and t; = [Ry, 8;] coincide. d
Combining Theorems 2.9 and 4.6, we obtain

Theorem 4.7: The map
t=[R,pleTy— (J,A)=(Js,my ® Rg) € {EST}n — H?L € az

is an injection of Ty into the set of discrete series representations of G. It has the following
properties:

(1) Hgérjt = Y QIIEL for tame characters x: F* /UL — C*. Especially we have f, = fy1 for
IT = 6L,
(i) TIEL is cuspidal iff deg(t) = N.
(iii) The choices can be made such that I is the Steinberg representation if t = [1,0] €
TN
(iv) IFL is a character twist of the Steinberg representation iff deg(t) = 1.
(v) Fort = (R, B) the level of IF® is gty = { |2 %5

—vp(B) otherwise
(vi) The exponential Artin conductor is

N-1 if £ =[x, 0] where x is an unramified character
oIy ={ N if t = [R,0] and R # x
N1 —-vp(B)) ift=[R,H)and B #0.
Remark: In 6.9 below we will see that the map of 4.7 is in fact bijective.

Proof: (v), (vi): As we have seen in 2.15, the level is

(") = j(Ad)/e = —vp(ag)/e,

because A, is associated to the simple stratum ay + . But ay € A and # € F are roots
of the same irreducible polynomial f(T). Therefore vp(ays)/e = vp(B). And using 3.1 we
see that (vi) is a consequence of (v) and of (iii).

(1) The twist property follows because Ayge = ¥ ® A: C ¥ ® I¥~%. From the Remark
2.1.1 in Part I we conclude f; = fi1.
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(i1) Let (R.,J,A) be the extended simple type which is associated to t. The cor-
responding simple type is (J°,A) = (J N A%, Res(A)). From [BK] (5.5.17) and the re-
mark after that, we obtain the G-intertwining of (J° X) to be: J°GLgJ? (2 J) where
E = F(ay) = F(B) is the subfield in A associated to ¢t = [R, ] and K/E is maximally
unramified with the property K* C f,. But this means in the notation of (7),:

[K:E] = frig, [K: F] = dim(R) - [E: F] = deg(?).

By 2.5 IIFL is cuspidal iff ¥ = indg(A) is induced from the corresponding EST. And
this happens iff the intertwining of the simple type is J°GLyJ® = J,i.e. [K: F] = N (see
[BK] section (6.2).)

(iii)) From [Bo| we know that the extended simple type of the Steinberg representation
St is (J,A) = (fn,1) (see 2.12 and 2.9 (ii)). For the corresponding parameter ¢t = [R, §]
this implies 8 = 0 (see Part I, proof of 2.2 and what is said there on the construction of
the systems of characters Xp, Yp and X, Y, resp.) and fy = dim R=1. A, € Ay is
given as A, = 7y ® Rg. And 75 has to be an extension of the 1-representation of U'! onto
An which has the intertwining G. Hence

7y = xodet, wherex F*/Ul — C* is tamely ramified,
R=x""

Establishing a map t € T — (J,A), € {EST}n~, we have to fix one extension 7y and we
do this by taking x = 1.

(iv) Let I¥L be a character twist of St. Then we have &, = &y = J because a
character twist does not change the pair 8, D J. From e = N we conclude f; = dim R -
frgyyr = 1. Hence t = [x, ] where F(B)/F is fully ramified and x € I'f(g) (dim = 1).
We consider the minimal polynomial f(T') of 8. The definition of J5 in Part I, 2.4 ff implies
Jy=Riff deg f(T) = 1. Hence g € F, deg(t) = 1.

Conversely, assume deg(t) = 1. With the notations of Part I, 2.4 ff this implies
Jy= Ay and J} = H} = U'. Now we look at the character f:U' — C* as it is given in
Part I, 2.4.2. The polynomial f = f(T) associated to ¢ has degree 1, hence ay = ag € F,
and the relation of Part 1, 2.4.2 for v = 0 gives us:

6s(1+x)=Ajodetyp(l+z) forl4+zeU',

because 49 = A D U! and \g = As. And because ¢ has to be an extension of 8¢ onto &

which has the intertwining G, we find 77 = A; o det, where A;: F* — C* is an extension
of Ay. Therefore:

(J,A); = (Ry, (A o det) ® Rg),

where R = x is a tame character of F*. Using 4.1 (iii) we see Rg = ¥ ® 1z = ¥, because
the unit representation 1 € I'p™ gives rise to 1g = 1 € (Av/U")™. Now A, = (A;x)~
implies 1L = (A;x)~ ® St. a

31



5. Computation of formal degrees of the discrete series
representations in terms of their parameters

Consider the injective map

(1) te‘J'K,l—rH,,GI’Eég

which has been obtained by combining Theorems 2.9 and 4.6. While the map of 2.9 has
been completely canonical, 4.6 has depended on several choices, the first one of which has
been to fix an approximation procedure on F[T], just as to say what T is (sec 1.(12)).
The other choices we have logged in Part [ after 2.4. In section 1 we have reminded that
an approximation procedure on F[T] is given by fixing an appropriate bijection 1.(7),.
Such a bijection we had constructed in [Zigg] by pursuing the methods of H. Koch. We
stress that the approximation procedure on F[T] refers to an unconventional exponential

distance wg on F[T'] which has been defined in [Zigg] too. The key role of wr has become
visible in Part I, 1.8.

5.1 Theorem: Assume the Haar measure on G/ (wp) to be normalized in such a way
that the Steinberg representation St = IIFL corresponding to ty = [1,0] € Ty has formal
degree 1. Then the discrete series representation II¢* has the formal degree:

N
~1
deg TG~ = f, . 4

g = (1 /2)myry
que‘ 1 q P

where:

— ey, fi are defined in 1.2
- ¢ =kr|
f(T) € F[T]~ is the polynomial associated to t = [R, 8] € Ty (see 1.3)

-mpr) =N 2 (1—=1/deg f7(T)) — (1~ 1/eq)| with f~°(T):=
v20,v€1/nZ

approximation polynomial of f(T').

The formula for m ¢y is in fact independent from the approxiamtion procedure because:

deg f7°(T) = ged{deg g(T); wr(9(T), f(T)) = —v}.
Remarks: 1. For the invariant description of deg f~¥(T') see Remark 5 following 1.9 of
Part L.
2. In the next section we see that Divisionalgebra representations have the same dimension
formula.
3. my(y i1s a number depending not only on f(T') but on N, too. It is easy to see that
mpery = —N(1—1/e;) + N? - dy(ry, where

din== 3 (1-1/degf™(T)

vZO,vE-:TZ

only depends on f(T'). Then we obtain

N/2 _ —NJ2
GL _ q q N
degII™ = fo - gNT2er — g=N/2e, gV

Before we can prove 5.1 we need two propositions.
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5.2 Proposition: Let (J,A) be an extended simple type for G. Then it is possible to find
a field extension L|F of degree N in A and an intermediate field L 2 E 2 F, such that

(i) L*CJ C R, wheree =ey/p
(ii) J = R gJ?, where J' = JNU(K).

The maximal compact modulo center subgroup f. and the inertial degrees and ramification
exponents in the tower L O E 2 F are uniquely determined.

Proof: The existence of E, L follows from the results of [BK], §5 on simple types which
we have recorded in section 2. The uniqueness of &, hence of ¢ = ¢/ r, has been remarked
after 2.8. The uniqueness of fr /g, ey, g follows from

TV (mp) w [GLig (kL)]*H12 (see 4.(3)),
and finally

fep = fLip/frye = Nje- fue
EE/F = e/eL/E. O
5.3 Proposition: Let (J,A) be an extended simple type for G and let L 2 E 2 F,

e = er/r be as in 5.2. Consider the discrete series representation Il which is assigned to

(J,A) via 2.9 (ii). The formal degree of II is:

(2)  deg(ILG/(rr)) - vol(ALp) =
epe—1

= dim {Indg, (A)} =+ ] (gh — 1)+ vol(®}c)/vol( Gy (o)),

k=1

where K|E is maximal unramified in L|E and q;, = |kL}.
Remark: As we know from [BK], §6, IT is supercuspidal iff L|E is unramified,i.e. L = K,

er/e = 1. In that case the formula reduces to:

deg (T1, G/ (mr)) - vol(20] ) = % . dim {Indg_(A)} .

Proof: We start out from [BK] (7.7.9): Let (J%, A) = (JN2A%, Res A) be the corresponding
simple type. Then:

(3) deg (I, G/F*) - vol(J°F* | F*) =
= (1/61(/5') : dlm(/\) . deg(cr, GLK/I(*) : VO].(Q(E/KI(*/I\"),

where o is the discrete series representation of GLk containing the simple type (2} /10 1)

that under a Hecke algebra isomorphism 2.11 (i) corresponds to II. Hence ¢ is (up to twist
by an unramified character of K*) the Steinberg representation.
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Therefore from [CMS] (2.2.2) we deduce that

n—1

1 .
(4) deg(o, GLx [K™) - vol(K* - GLoy (01)/K") = = [[ (¢ 1)
k=1

where n = [L : K] and ¢gx = |kk|. But K is the inertial field in L|E. Hence n = e g,
n-ek/r = ¢ and g = qr. Therefore substituting (4) into (3), we obtain

(5)
deg(Il,G/F*) - vol(J°F*|F*) =

EL/E—I

= (1/e)-dim(A)- [ (¢f —1)- vol(®7 /- K"/ K*)/vol(GLqy (0r)K*/K*).
k=1

The last factor on the right hand side can be replaced by vol(?lle)/vol(GLoK(o,g)).
Moreover:

dim (Indgs A) = (A%: J°) - dim()).
Therefore, multiplying (5) with (A% - F*: J°F*) = (U}: J°), we obtain

(6) deg(IL, G/F*) - vol(2(* - F* /F*) = %dim(lndg;)\)-
e vol(2} 1)
' H (qf‘ -1 vol(GL L/(I; ))
k=1 ok \"L

Finally, we note that:
deg(II,G/F*) - vol(U; - F*/F*) = deg(II, G/ (wF)) - vol (A} - F* [ {nF))

and dim(Indg: (1)) = dim(Indg, (A)). 0

Proof of 5.1: We consider t = [R, 8] € Ty — (J,A); € {EST}n and we will apply (2)
to (J,A):. Then we have A, = my ® Rg and we are going to compute dim(Indg,(A;)) in
three steps.

Step 1: The restriction of 7y to J! is a Heisenberg representation 7, and we compute:

dl = dim(:[ndljl(ﬂ'l)) = dim(IndﬁL/E Ul(ﬂ-f))

because 5.2 (ii) implies J - U' = &, gU".
Step 2: We compute

dg 1= dim(IndJTﬁLiEUI(Rﬁ ® ﬂ'f)) =d, - dlm(R_q)
The equation follows because Rg lifts to a representation of & ,gU Yot
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Step 3: Finally, we get:
ds := dim(Indg, (A)) = da - (Re: RL/EU] ).

To compute d; we use 2.2. It implies that the Heisenberg representation m; has

dim(mi) = \/(1+35:1+38}) = /35:3},

hence

d; =(1—|—P:1+3f)\/3f:3f;=\/PzPJ-, where

PL = {z € P, Xg(z,P) = 1} is the radical of the alternating character X;(z,y) =
Yr o Tr((zy — yz)ay) on P. Explicitly it is given in the same way as in the division
algebra case (see [Zigo)], 2.3, the formula for Pg"), namely:

(7) Pt= 3 (P™nA4.),

v>0,velZ

where A_, is the centralizer of a_, (= zero of the approximation polynomial f~*(7) in
A.). Note that ag = ay and that a_, € ap+ P7™"¢ is a simple representative for all v > 0.

Hence:
(Pve: Pvc+l)
(Pr*NA_,:Pve-1NA_,)

(8) #=@:PYy= ]

v>0,velZ
2. being a principal order, we have:
e—1

A /P @ My e(ky)

=1

(P: Pt = (%: P) = ¢V'/°  for all integers 1.

To obtain (P** N A_,: P**1 N A_,) we switch from the principal order 2, = ;/p to the
principal order 2y, /r(o_,) of A~,. Then we have to replace:

N by N/[F(Ct‘_v)‘F], q by qu("—u)lf',

e=erL/F bBY €L/F(a_.)-
This gives us:

(PPNA_,: P NA_,)=¢", where:
ny = fra_)/F (N/IF(ao): FI)? - epipg = N2 /[Fla_,): F)-e.
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Therefore:
(Pve:PUC+1) "

(PreNA_, PrerinAd_,) ¢

where

m, = & (1 - ) Substituting this in (8), we get:

N2
(9) di (1/2)'“ , where u = pym =

3" (1-1/deg f7(T)).

v>0,vELlZ
In step 2 we have to compute dim(Rg), where Rg is the image of
ReTg™(dim = fr/5) — Ra € (|g/U")”
(see the Main Lemma 4.1). From 4.(13) we see that
dim Ry = (dim Ro)**/*.
Using now the dimension formula for cuspidal representations of G Ly, (k) we obtain:
dim Ro = [£4° ™ (¢} — 1)

frie—1
(10) dim Rg = H (¢ — 1)°2/8,  where qp = |kg|= ¢/#/F.

=1

In step 3 we compute:

(ﬁcIﬁL/E : Ul) = (ﬁelUl)/(.ﬁL/EUlZ U])
= ( Z/F:Ul)/( L/E " vt.ut)
= |G Lk (kr)|*/|GLig(ki)|*/®
= |GL(9)|°/|GLy,,z(qm)I*"/*.

Now we use the formula: ord(N,q) := |GLn(g)| = Hf;l(q" — 1) ¢2N(¥=1) Then we
obtain:

dim(Indg,(A)) = d; - dim Rg - ord(fi,q)*ford(fL/ g, qE)"/*

(11) ; _

= q(f)“ ~ord(fi,¢)¢/(qr — 1)*4/® 'QiI/Z)UUE Necss

where we have used (9), (10) and the fact that dim Rg | ord(fy,/g,qE)* /", and qf“ =qr.
According to (2) we go ahead to compute vol(27 / ), referring to a Haar mecasure of

G and vol(A7 )/ vol(GLo, (01)) referring to a Haar measure of GLk.

If the Haar measure of G/ {(7p) is normalized in such a way that the Steinberg repre-
sentation gets deg(St) = 1, then:

(12) vol(GLy(or)) H(q —1)
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as we see from [CMS] (2.2.2). Using (12), we have to compute vol(Ql’Z/F). To this end we
determine:
vol(GLy(oF))/vol(UL p) = (GLn(0r): 1+ Mn(pr))/(245: 1+ Pe)(1 + Pe: 1+ Mn(pr))
= |GLN(DI/IGLN;e(D)° - [Pe: Mn(pF))-
We describe P./Mn(pr) C Mn(kr). It consists of matrices which are divided into blocks

of size f; x fi (note fi = N/e). All blocks on the diagonal and below have zero entries.
All blocks above the diagonal have arbitrary entries from kp. Hence the kg-dimension of

P./Mn(pr) is:

1
dimg =ft2(1+2+---+(e—1))=§N2 (1—-%), because N = f;-e

Substituting this into the formula above, we obtain:

(13) vol{GLn(or))/vol(],p) = ord(N, q)/ord( f1,q)° - /AN A=1/e)

N o foo
= -0/l -

And from (12) we deduce:

Ji
(19) vol(@3/p) = - [(a" — 1)*/(a" —1).

=1

To compute vol(} ) )/vol(GLok (01,)) we may use (13) with K instead of F', i.e. we have
to replace:
Nande by [L:K]=eyx=eymp
q by gk =gqr

Then we get:
CLIE .

(15) vol(243 1) /ol G Lo (01)) = (a2, = 1% | T[ (ah, - 1).
1=1

Now, substituting our results into (2), we obtain
e -1
15) 1 5, (15) 1
1 d HGL =(_'—° L— . 1_,—_—-_._.

where (15) = (g1, — 1)*+/ /(¢;*/® —1). The numerator of (14) is in the numerator of (11),
and the numerator of (15)" is in the denominator of (11). Hence, (16) implies:

N_
(17) deg (68) = . L =D ame
e (q?L/E—l)

d=efi(fe—1) = f(frje — Vepje + .
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Now we use f; = N/e, fi-[L: E] = % . ﬁ'ﬂ’ fi-eryg = Nfe, (because e, - e /p = e).
Then we get:

d=N?/e— N —N?/e-deg f(T)+ Nfe,+(N*/e)- Y (1-1/deg f~(T))

v>0,v€—l—Z
= -N(1—1/e)+(N*/e) > (1—1/deg f7*(T)),
vZO,ve-le-Z
where the sum now starts from v = 0. Because of N/e = (%Z:1Z) and because
deg f~*(T) does not change for v € Z~1Z, the sum can be replacedby N- 3~ (1-

v>0,vERZ
1/deg f~¥(T)), and we see that

d=mp=N{ Y (1-1/deg D)~ (- 1/e0)}
v>0,vER{L

which proves our Theorem. O
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6. Comparison of division algebra representations and
discrete series representations of G

We start from an analogue of 4.7 in the division algebra case. Let D/F be a central
division algebra of index N and let D*” be the set of equivalence classes of irreducible
admissible representations of D*.

6.1 Theorem: The map
1 t=[R,B] € Ty — I = Indy,1p+(7; ® Rp) € D*"

which has been defined in Part 1, is a bijection with the following properties:

(i) wf@ = x ® IP for tame characters x: F*/U} — C*, where ¥ = x o Nrd. Hence
fo= fn for I =T1IP.

(ii) The unit representation IIP = 1 is assigned to t = [1,0] and dim(I1P) = 1 iff deg(t) =
1.

(iii) The level of TIP is ¢(IIP) = —vp(B) and the exponential Artin conductor is a(TIP) =
N1 —vp(B)) if 8 # 0. If 3 = 0 then ¢(IIP) = 0 and for t = [R,0] we have either
{(TIP) = N — 1 or = N depending on R being (via class field theory) an unramified
character of F* or not.

N
(iv) djm(HtD) = ftq_fqﬁ?cli_f g/ Dm )

with the same notation as in 4.1.

Proof: Everything but the dimension formula is clear, either from Part 1 or from Section
3. fu is defined in the same way as in 2.14 for G. The index j(II?) (compare 3.(2)) has
been seen in 2.2 (i) of Part 1 to be —N - vp(B) if t = [R, §] with 8 # 0 and j(IIP) = 0 if
t = [R,0]. Hence (iil) follows from Section 3. And (ii) can be derived from (iv) which we
are going to see is an easy consequence of [Zigg] 6.6 and 2.4. Namely dim(IIP) is computed
in precisely the same way as dim Indg, (A) in the proof of 5.1.

At first we compute

dy := dim(Indy:(m)) = dim(Ind ;1 pr i (7y)),

where U? are the principal units in D, J5 and J} are as in 2.(3) ff of Part 1, the Heisenberg

representation m; € J}7 is the restriction of 7y € J; 7 and Dy is the centralizer of oy € A,
In {Zigp], 6.6 and 2.4 we have seen that

dy = g /3™ where

(2) mpry = (Ne)1=1/fo) +N Y (1-1/deg f7°(T))

v>0,vEH Z

With €y = ep(f(T)) = ep(ﬂ)/p, fo = fp(f(T)) = fp(ﬂ)/p. Note tha.t here f(T) = fO(T)
and the notation § of loc. cit. 2.4 has to be replaced by ay € A7, hence ay € ay +0Op is
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a minimal representative, and deg f~"(T) is the degree of a minimal representative from
as+ P5N. Moreover:

(N/ea)(1 = 1/fo) = N(1 = 1/eafo) = N(1 = 1/eq) = N(1 = 1/ deg f(T)) = N(1 = 1/ey),

which transforms (2) into the exponent of 4.1.
In the second step we compute:

dz = dim(Ind_],Tpaul(ﬂ'f ® RD)) = d] - dim RD,
because Rp is a representation of Jf/J} = D3U' /U'. But from the last step in the proof

of 2.2. (i) in Part 1 we see that dim Rp = dim R.
Finally we get dim(I1P) = d; - (D*: D{U?'), and

(D*:DLUY) = epypy - (kpikp,) = fo - 2

with © = [kp,: kr] = fp,yr = N/fp;p, = N/eo. This gives us the result because ep = e,
and dim R fo = f;. a

For further use we want to express the invariants fi, e, deg f~%(T) of t € Ty com-
pletely in terms of IT = TT”. Here we have:

3) fu = fu (see 5.1 (1)
_ ¢ —1
*) = Nllogg { (i (@)/ fulyr 1}

where [dim(II)/ fi],» denotes the prime-to-p-factor (see 5.1 (iv})). Moreover let II D Il D
II; D I; D --- be any representation filter with respect to

(5) D*>0L,DU'DU*D -,
which has the leading term II. Then as we have seen in [Zigo] 6.2, (2):
(6) Np-(Tlp) N Np+(I;) = Dy - U*

where K/ F is a field extension with fr/r = fi and ex/p = e, [K: F| = deg(t) if I = IIP.
Namely in that case (Js,7f ® Rp) is an admissible pair with respect to D* D U! > U? >
-+ . Welook at Jy = Dj-J} where Dy is the centralizer of E = F(ay) and we take K/E to
be unramified of degree dim(R2p) = dim(R). Then Dg/Dx is fully ramified, D} - J}; C Jg
is a subgroup of index [K: E] = dim R, and (D} - J},Res(mf)® x) — where x is a character
contained in Rp restricted to D}(J} — is an admissible pair with respect to (5). Therefore

we obtain (6) in the case where II = I and K/F(a ) is an unramified extension of degree
dim(R). Hence:
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6.2 Proposition: Consider Il € (D*)” and let 11 D Iy D II; be a representation filter
with respect to D* D 03 D U'. Then there exists an extension K/F in D such that:

ND-(HD) nND.(I‘Il) = D}‘( . Ul,
and for any such K/F we have:

fx/p=fu
¢V -1
= 1
exre = N/1og, { g gy 1)
Proof: Because of 6.1 there exists ¢t € Ty such that II =IIP. In view of (3), (4) and what
we have said before we are left to show that D}, - U! = D}, - U! implies ex/p = exrp,
fr/F = frxryr which is an easy exercise. (]

6.3 Definition: For II € D*™ we define
e i= €K/P, dimga(Il) := [K: F]

to be the ramificatioin exponent and the Galois dimension of II, where K/F is any field
as in 6.2.

Concerning the other invariants, we see from [Zigg], 6.2.(3), that for all integers ¢ > 0
there exist field extensions K_;/F in D such that

(7) Np-(Tligy) - Ut =D_; - U,

where II;1, € U*1” is from a representation filter with leading term II and where D_; is
the centralizer of K_;.

If T = IIP and f(T) is the polynomial of ¢t = [R, 8] € Ty, then it is a5 € A}, which
plays the role of the element § from loc. cit. 6.2. And if a_;;ny € AF is a zero of the
approximation polynomial f~*/¥(T), then a_; /N €« f-’r-P" is a representative of minimal
degree, and we conclude:

6.4 Proposition: IfII = IIP and if K_;/F is any field extension in D whose centralizer
D_; fulfills (7), then K_.;/F has the same ramification exponent and inertial degree as
F(a_;/n)/F, hence [K_i: K] = deg f~/N(T). a

6.5 Corollary: IfIl € D*” and if 1 D IIy D II; D -+ is any representation filter with
respect to (5) and if K/F, K_;/F are field extensions such that (6), (7} resp. are fulfilled:
then:

. QN -1 (1/2)m
dim(IT) = fg/F - e ¢ ,
Wheree=eK/F,mzN[E (1—-1/[1{_;:F])—(1—1/e)]. 0O
i>0

Now we want to play the same game in the GLy-case. If II = TI¢% ¢ G, then II
corresponds to the EST (J,A), = (Js, 7 @ Rg) which represents a representation filter

() (0%, Mo, 10y,...) of KA DU D---,

41



where & = & for e = N/fn = N/f,. Namely we have: # = Indg(A), Iy = ¥ =
Indg- (A), TI; = Indyi(m;), where m; € J'™ is the support of the isotypic representation
wgl i (for all 2 > 1).

The construction of (Jg,7s) in 2.4 ff of Part 1 1mphes that II;4, € U™ corresponds
to the double class Ad U o(a_;/ + P~*) € AdU\A(U)/P~*. Hence from [BK] (3.2.2)
we see that the G-intertwining Ig(Il;41) coincides with the intertwining Ig(Ad U™ o
(a_ife+P7%)) = Ut Ig(a_;je+ P7H)U!, where Ig(f+PY) := {z € G, (B + P)z™" ﬂ
(B+ P*) # ¢}. _

The reason is that a_;/, + P7*, hence a_;;, + 9 are simple strata, and by 2.4.1 of

Part 1 we have 65 = 6§, on H} AU f = f(T) and if g = f~'/¢(T) is the approximation
polynomial. Therefore if we are interested only in 6; on H } N U we can use 2.4.2 of

Part 1 with f~/¢(T) instead of f(T). Therefore [BK] (3.3.2) applies with ¢ instead of m
and «_;/, + U instead of § + 2. Moreover miy; € J i+17™ is the Heisenberg representation
which is given by (H1 N U Resfy) (see section 4 of [Zgs]), and ;41 = Indyitr (mig1)-
Thus we have:

6.6 Proposition: IfIl =TI ¢ Gy and if (8) is the representation filter which 1s deter-
mined by the EST (J,A),, then:

Ul 1My U = U - GL(a_is,) - U

for all integers¢ > 0, where a_;;, € A[ is a zero of the approximation polynomial Foile(T),
and GL{a_;/.) denotes the centralizer of a_ij, in G. Moreover

Io(To) = A*GLA*,

where K/F(a) is a maximal unramified extension such that K* C &,

Proof We know that Ig(Tliy1) = U Ig(a—je+P7F). U and GL(ar—;/e) C Io(o_ifet
P~y c U' - GL{a_;;.) - U because of [BK] (1 5.8). I5(Iy) follows from the intertwining
Ic(X) of the simple type (J°, A) which has been computed in [BK] §5. 0

6.7 Corollary: Let II € Go, let (J,A) be a corresponding EST and consider the repre-
sentation filter (8) of R, (e = N/ fn) which is assigned to (J,A). Further let K_;/F be
any field extension such that:

(g) I{:l C .ﬁe aﬂd Ul * IG(HH—I) . U] = Ul . GLK_.. . Ul.

Then for a normalized Haar measure we have:

deg(IT) = fir - V-1 g1/Hm
qN/e’ -1

where €' = ey, /p and m = N[z fm(1=-1/[K_;: F]))-(1- 1/6')].
i>0

Proof: We use that t € Ty — I¢L ¢ Gy is surjective (which has not yet been proved).

Then IT = %, and by comparing (9); with the first equation in 6.6 we see that K_;/F
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has the same ramification exponent and the same inertial degree as F(a_;/.)/F. The
argument is similar as in the proof of 6.2 if we use the equation

(GL(a—iy/e)NR)-U' = (GLk_,NK)- U

Especially we have [K_;: F] = deg f~'/°(T) for all integers i > 0, and e, = €Ko /P
Moreover the sequence [f*(T)},¢ 4z of approximation polynomials has jumps at most
for v € 1/e - Z because f(T) € F[T];N/e. Therefore deg f¥(T') is constant for —i/e < v <
—(z — 1)/e, hence in the sum m = mr) of 5.1 we can write

m=N| ¥ T0-1/deg fT) - (1-1/e)

v>0,0€LZ

and then by means of e; = ey, /r and % = fi1 we get our result. d
Now we are ready to compare division algebra representations and discrete series
representations of GLy. Namely combining 4.7, 5.1, 6.1 we obtain:

6.8 Theorem: There exist injections D*~ — @2 IT'" — II, which have the following
properties:

(i) FIU' — II and if x: F*/U' — C* is a tame character, then: (x o Nrd) @ II' —
(x odet) ® . Especially frr = fi, i.e. Il corresponds to an EST (J,A) for a maximal
compact-modulo-center subgroup &, with e = N/ f-.

(ii) If we consider a representation filter II' O IIj D II{ O --- with respect to (5) and
a representation filter (8) of &, which corresponds to (J,A) then from Ig(Il;41) and
Np-(I}y,) via (9), (7) resp. we are led to the same numerical invariants if i/e = j /N.
Especially the projective level of I: = 1 - min{i,I¢(Iliy1) = G} and the projective
level of TI': = 3 min{j; Np«(IT},,) = D*} coincide.

(111) T is cuspidal iff the Galois dimension of II' (which has been defined in 5.3) is equal
to N.

(iv) II is a character twist of the Steinberg representation iff dim(Il') = 1.

(v) If the measure on GLN(F)/ (nF) is chosen appropriately, then deg(Il) = dim(Il').
(vi) €(II) = £(IT") and o(TT) = o(Il").

Proof: The injection is II' = IIP w II = IIFY for all t € Ty. %" cuspidal means
deg(t) = N as we have seen in 4.7 (ii) and this is equivalent to dimg,(II') = N. a

6.9 Complement: Any injectioni: D*” — Go which is compatible with unramified char-
acter twists and which preserves the exponential Artin conductor is necessarily a bijection.
Especially the maps of 6.8 and 4.7 are bijective.

Proof: We consider the bijection b: D*”~ — Gy of [BDKV] (and of J. Rogawski). It is
compatible with character twist and preserves the exponential Artin conductor. But from
6.1 we see that the set of unramified twist classes {II'}, II' € D*” where the exponential
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Artin conductor (or the level, compare 3.1 (ii)) is fixed, has only finitely many elements.
Namely by 6.1 (i), (iii) it corresponds to the set of unramified twist classes {t}, ¢ = [R, 8] €
TN where vp(B) is fixed. Now we have the bijection

(10) Ty — Py = {lp,2] € P7; dim(p) - [K,;: F]|N}

which is given via 1.4 and 1.(9). Remember that K; = F(zy;v € Q) is generated by all

terms z, of the C-expansion z = Y , of z € K. Because vp(f8) = vp(z) if t = [R, ]
v€Q

corresponds to [p, z] and because P~ = {[p,z] € P; z € X~} (compare at the very end of

section 1), we are left to show that:

Py, =1lp 2l € P; 2 € X7, vp(z) = —j, dim(p) - [K: F]|N}

consists of finitely many unramified twist classes. If we fix an z C X~ then p has to be an
irreducible representation of the tame Weil-group I'; C G(ﬁ’ / Fn K;), hence the condition
dim(p) - [K;: F]|N implies that the set of admissible p consists of finitely many unramified
twist classes. Thus we are left to show that {z € X~; vp(z) = —7, [K;: F]|N} is a finite
set. We consider the C-expansion of z:

(11) T = Z z, where z, € CU{0}, z_; #0.
—j<v<0

Note that the indices v are rational numbers and that vp(z,) = v if z, # 0. The decisive
remark is that the ramification exponent of K, = F(z,; v € Q) is

e = £.c.m.{denominators of all v € Q such that z, # 0},

which can be easily proved by induction on the number of nonvanishing terms z,, in the
C-expansion of z. Hence [K,: F]|N impliesv € § Z if z, # 0, and in (11) we are restricted
to the finite set v € & ZN[—j5,0). Therefore it is enough to show that for a fixed v € &2
the set

Con={z€C; vp(z)=v and [F(z):F||N}

is finite, which is obvious.

Now using the bijection b, we see that the set of unramified twist classes {II},II € G,
with a fixed exponential Artin conductor is finite too and has the same cardinal number
as in the division algebra case. Hence 6.9 follows. d

6.10 Corollary: Let II' € D*™ — 1II ¢ @2 be a bijection which is compatible with
unramified character twist and such that dim(Il') = deg(IT) (if we consider the normalized
formal degree of the discrete series representations). Then II is cuspidal iff II' has the
Galois dimension N (see 5.3).

We need the following Proposition which is the analogy of 6.2 in the GL y-case.
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6.11 Proposition: Consider II € G, with a corresponding extended simple type
(Re, J,A), e = N/ fu, and let Iy € A*”™ be from the representation filter which is given
by (J,A). Further consider a field extension K/F in A such that (i) K* C R., (ii)
GLk N R, is an extended Iwahori subgroup in GLy, (iii) Ig(Ilg) = A*GLgA* and
A\NGLg /UA* & A3 \GLy /Ay is a natural bijection. Then:

¥ -1
o) fie = fu exgp = N/1og, { L)

Proof: Because of (ii) K/F has the maximal inertial degree which is possible for fields
normalizing 2 = .. Hence fx;p = N/e = fr1. Further, because of 6.9 we may assume
I1 = [I¥L. Then from 5.1 we see that the right hand side of (11), coincides with e;. On
the other hand, the field K appearing at the very end of 6.6 has the degree [K: F] = deg t

and ex/p = €. And if L, K are two field extensions of F' in A normalizing 2 and such
that:

I\GLL/U% — AN\GLp/A* = A\GL /%
— WA\GLi /U

is a natural bijection, then we will have [L: F] = [K: F]. Hence the field K from our
Proposition has the same degree as the field from 6.6 and it has the same inertial degree
too, namely frj. Hence 1t has the same ramification exponent which is e;. |

Proof of 6.10: Let K'/F be a field extension in D which is related to II' as in 6.2
and let K/F be a field extension in A which is related to II as in 6.11. Then we get
frryr = fr = fo = fryr because II' — II is compatible with tame character twist. On
the other hand dim(II') = deg(II), the last equation of 6.2 and (11), imply ex'/r = ex/F.
Especially we have [K': F| = [K: F]. But from [BK] we know that II is cuspidal iff the
simple types contained in II are maximal which means [K: F] = N. |

Remark: 6.10 especially applies to the bijection “b” of [BDKV]. The idea of proof was
submitted to the author in a letter of C. Bushnell [B].
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7. Some further computations concerning the &-factor

In 4.7 and 6.1 the maps t € Ty = II; € @2, D*” resp. have been given via the
extended simple types (Jf, 7f ® Rx) in the matrix algebra case (see 4.6) and (J;, 7y ® Rp)
in the division algebra case (see Part 1, proof of 2.2 (1)). Now we use our information on
the EST’s for some further remarks on the root nubmer W(A, ) of (J,A), which by 3.6
the comptuation of the e-factor has been reduced to.

Up to now the EST’s have been given in terms of the polynomial f(T') of the parameter
t € Ty, namely

1) f(T)e FIT| yje—as € AL, A€ X, br €Y, mpe k.,
(2) f(TY€ FT|y— a5 € AR, A € Xp, 05 €Yp, 7y € D*”.

(For the chracter sets X., Y., Xp, Yp see the proof of 2.2 in Part 1.) To simplify the
notations we will avoid now the polynomials and we will write Aq, 04, 7o instead of Ay,
85, s because « is the unique root of f(T) in A~ such that we can introduce o as the
parameter. And we will speak of the approximation procedure on A7, A7, resp., which
of course is obtained by transport from the approximation procedure for polynomials. We
will use the integral numeration of approxiamtions, i.e. for a,a’ € A™:

(3) VP(Q_'CI")ZJ' iff ij=a’3;,

where P is the Jacobson radical of 2 and the prime ideal of Op resp. The maps of 4.7
and 6.1 can be expressed then as:

t= [Rnﬁ] GT};'_)(JC!’WQ@RR)"_’HZ € @2
— (JoyTa @ Rp) — II, € D™~

where a € A, e = N/f; and a € AJ, resp. is the uniquely determined element which
has the same minimal polynomial over F' as 8. Our additive character ¥r has conductor

pr, and we write ¥ = typ o Trd for B = A, D resp. Now we are ready to state the main
results of this section:

7.1 Theorem: If (J,A) = (Jo,ma @ Rg), (Ja,Ta ® Rp) is an EST in the matrix and
division algebra case resp., then:
(0) W(A,¥p) = (=1)N'q=N27(¢5" 0 Norm, iy )

ifa =0, i.e. t = [R,0], and R is not an unramified character of F*. Here ky is
the extension of degree N over the residue field k of F, the regular character ¢¢ of k7};

is related to R € ['p as in 4.1(ii), Norm denotes the norm with respect to the extension

kn|ky of finite fields, and

T(¢5" o Norm,hiy) = Y ¢5" o Norm(z).9pp o Try, i(z)
:Ek;,

is a Gauss sum.
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Ifa#0,ie j(A)=—~vp(a) 21, we have:

() W(A,Fp) = (=1)VN""AY(a)p(a) if 21 j = ~vp(a). In this case AY(a) is a scalar
operator which in the equation is to be identified with its value.

If 2|5 = —vp(a) then let a = a—jy1 € A~ be the approxiamtion of a, i.e. vp(a —
a)> —j + 1. Moreover let B, be the centralizer of a in A, D resp., let B!, := (Pi/?2n
B,) + Pi/?*! be the intermediate ring Pil? 5 B! 5 Pi/?*1 and let M', M be the first
and second index resp. Then:

(it) W(A,F) = sgn-(M')~1/2. ‘;:—‘E;\)--d)g(a)-ﬁ(/\a)lv“ if F(a)/F is tamely ramified (which
includes the case a € F'), where §(),) € C* depends on the character A, € X, Xp
resp. (6(Aa) will be defined in (16), (18) below), where Ny = N/[F(a): F] and where
sgn=1, (~1)Y~Ne in the cases B = A, D resp.

(i) W(A,¥F) = (-1)N ™. (%—,—)1/2 . ?——:‘G‘} -g(e), if F(a)/F is wildly ramified.

Remarks: Thesign in (i), (ii1) is determined by m = N, 1 in the cases B = A, D resp. The
theorem reduces the computation of W(A, ¥ ) to that of the character value ys(«) because
the numbers §(\,) can be considered to be known. If a € F' then (ii) applies with M' =1,
N, = N and A(«) is a scalar operator, such that W(A,¥r) = AV (a) - pa(a) - 6(A)V.

Proof: (o) We begin with the division algebra case. Here we have J = D* and A =
Rp = Ind(4), where ¢ : K*/U) — C* is related to R as in 4.1(ii),¢ = ¢ o Nrdp, |k is
the corresponding character of the centralizer of K in D, and the induction is from D} U},
onto D*. According to 3.(13) and 3.3 with (&, p) = (D*, Rp) we obtain

WA, ) = (1)1 (Op : P)" 2 r(R},%r)

where 7(R},,3¥'r) is the value of the scalar operator

T(R),¥r) = Lucop/p)  Rp(u)¥p(u). Note that ¢p is of conductor pr, hence
¥p = Yr o Trd is of conductor P. Because T(Rp,®r) is a scalar operator and because
the restriction of Rp onto the units OF, contains ¢g 0 Norm (which is a consequence of
Rp = Ind(qg)), we obtain 7(Rp,¥r) = 7($o 0 Norm, ¢y, ), hence the result.

In the matrix algebra case we have J = R, e = N/dim(R), and Rg € R is an

extension of the external tensor power (®09)¢ € (A/P)*” (see 4.1(ii)). From 3.(13) with
m = N and 3.3 we obtain

(a) W(A, ¢p) = (Ao : P)727(RY, vr)

where T(R}, ¥ r) is the value of the scalar operator

T(R%,¥r) = e, py-(®04 ) (w)pa(u), with 4 = ¢ o Tr. Therefore:

(R, ¥r)dim(Rg) = 3 tr(@eq)s (w)Pa(u),

and because of (U./P)* = [GLs(k)]*, where f = dim(R) = [K : F] (see 4.1), we
conclude 7(Rg, ¥r)dim(Ra) = (X eqr, (k) troo(¥) - ¥r 0 Tr(u)]®, hence

(b) T(Rg,¥r) = m(00,%F)°
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is the e-th power of the value of the scalar operator

T(og,%r) = EneGL,(k) oo(u)pr o Tr(u). Because op € GLys(k)"is the cuspidal
representation which is associated to the regular character ¢o of k} we can apply Kondo’s
formula:

7(00,%r) = (1) g =D/ [—1 (o, i )],
where 7(d0, Yy ) = Zrek;{ $o(z) - thr 0 Triy k(z). Now from (a),(b) we obtain

W(A,$r) = (e : PY T2 (1N g2 =D [=r(g5" i )
= (—1)(N=D . ¢g=N/27 (451 0 Norm, iy ), where we have applied the Hasse-Davenport
formula for Gauss sums.

(1)-(ii1) The first informations we use are that the restrictions A|y: to the principal
unit groups U' = 1+ P* are isotypic, that j = —vp(a) is the index of A and that

Algi(1+ z) = ¢p(ac)l for 1=[3/2]+1

is a multiple of the character 1 + z +— ¥p(az). Therefore the same argument as in the
proof of Proposition 1 of [T], §1 can be applied to obtain:

7.2 Proposition: With the assumptions of 7.1 we have:

—-1/2 v AV(a) . "‘bB(a) e 1’:’(!\)
Nf(A) T(AV,¥p) 1= A¥(a)pp(a) - NPp-1/2 [Z AY(1+ $)¢B(am)] if 2|j(A)

where the sum is over x € P3/2/Pi/?*1 [n the first case A¥(a) has to be a scalar operator
because the left hand side is known to be scalar. O

Remark: See section 3 for further notations. By 3.6 we have W(A,yp) =
(=1)NmNF(A)TH2 - r(AY, ).

In the case 2|j(A) we write the right hand side of 7.2 as the product of two operators,
namely

Dy =A%(a), Dy=n(a) NPT/2[3°AY(1 +2)n(az)].
T
Because Dy Dy = p1 is a scalar operator and because D, is invertible, we get
(4) tr(Dz) = - tr(D7).
Moreover tr(Dy') = ya(a) is the character value of a with respect ot A. Now we use
A =7, ®Rg, ma ® Rp resp., where n, € Jo is an appropriate extension of the Heisenberg
representation 7q = me1 € (Ja)” corresponding to the Heisenberg pair (H},6,), where

8o € Ye, Yp resp. (See the proof of 2.2 in Part 1 and 2.3, 2.4 above.) According to [H],
we have:
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7.3 Proposition: Let Hy, C J, be the subgroup which is given by H, = RgH., Hy =
wH? resp., where E = F(a). Then ny € Jo has the property:

(5) To ® Mo = Indy, 17, (1)

Later we are going to make some remarks on the proof of 7.3 because our situation is
a little different from that in [H]. At the moment we see from (5) that:

Xa(@) - Xa(@) # 0, where xo denotes the character of 74, because & € E* C H,.
Further A = 7, ® R with R = Rg, Rp resp., and R(«) is a scalar operator because R is
irreducible on J/J! & H/H! and « is in the center of Rz, D}, resp. Therefore we see that
xa{a) = xa(a)xr(a) # 0, and we can divide (4) by tr(D;!) = xa(a). Hence:

7.4 Proposition: If 2|5 = j(A) we obtain

N§(A) A (A yp) = ¢f((f3 NPT [ZM¢B<aw)]

where the sum is over € P3/2 | Pi/?+1,

Next we note that A|y;,2 is a multiple of the Heisenberg representation = (U/7/2,1 4
By, res(8,)). Namely because of a = a—j11 we have

B, =(P*nB,)+ PI**' = pilfngt 14+ B, =U0"/nH],

where we have used the notations H}, Jo instead of H, J; in Part 1. Thus we have
n(z) = 84(2)1 for z € 1+ B., and the alternating character

ba ([1+ 2, 1+ ) = ¥B((zy — yz)a)
is nondegenerate on [/7/2/1 4+ B The character of 7 is:

0 for u € U3/? — (1 4+ BY)

Xa(w) ={ dim(y) - Ba(u) foru e 1+ B..

A|yss2 being a multiple of 7, we conclude:

()_{o foru e U¥/? —(1+ B)
A dim A - 6,(u) foru €1+ B..

Putting this into 7.4, we see:

(6) Y xa(+a)¢plaz) =dim A Y G.(1+z)¥s(az).

zEB! [ PilT+1

Now we prove:
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7.5 Lemma: If the extension F(a)|F is wildly ramified, then
14z 6,4(1 + ) ¥p(az)

is a character on 1 + B' /1 4 Pi/2+1,
Proof: We use the abbreviation A(1 + z) = 84(1 + =) ¥ g(az). Then we find:

A(l+z+y+ zy) _
A(l+z)-A(l+y)

Yp(azy) = ¥p(azy)

because @ = a_;41, TY € P and v¥p has the conductor P. We want to show that
Yp(azy) = 1for z,y € B, and because of pg(aP?*!) = 1 we may assume z,y € B,NP/?,
hence:

(7) Yp(azy) = r o Trisp o Trdp, | k(azy),
where K = F(a) is the center of B,. We compute the conductor
(8) fr := f(¢F 0 Tricyp 0 Trdp, jx) = Dapp, oy ($F):

In the matrix algebra case B = A we have A = U, and (AN B, | 0x) = e/eq, with
es = ex/F. Therefore

(M Datng, fox = (PN Ba)e’-l with ¢ =e/eq
(9)2 :DOK/OF = pcﬁ_H-&'
Using px(P N B,) = (PN B,)', we see that the exponent of Dans, jor = {91 - (9)2 with

respect to PN B, is:
e —14+e(ea—146)=—-1+e+¢€é

Because of f(1r) = pr = (P N B,)* we see now from (8):
fi = (PN B,
In the division algebra case B = D, hence 2 = Op, a similar computation yields:
\ fy = (PNB,)'""M® where N'=N/[K:F).
Now from (9)2 we conclude § > 0, € Z, because K = F(a) is wildly ramified over F. Hence
f2ANB,, OpN B, resp.,

and from vp(azy) >0 for z,y € B, N Pil? we see that Yplazy) = 1. O
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Because of 7.5, the sum on the right hand side of (6) is over the values of a character
of the abelian group 1+ B, /1 4 Pi/?+1 = B! /| Pi/?+1, Hence either

(10) 8,(1+z) ¢Yplaz)=1 for z € B,

or the sum vanishes, which is impossible because T(AY,¥p) # 0. (See [BFr] (2.3.8).)
Therefore (10) applies, and from 7.4 and (6) we conclude 7.1 (iii).

We are left with the case 2 | j = j(A) and F(a) | F tamely ramified which is 7.1 (ii).
In that case we use Part 1, 2.3.1, 2.4.1. Namely vp(a — a)> — j + 1 implies:

(11) (Be - 0;)1 4+ 2) =¢p((a —a)z) for 14z € HoN yliztl+,

But because of 2 | j the intersection is nothing else than 1+ B!. Therefore using (11), (6)
turns into

(12) Y xal+o)¢plaz) =dimA Y G(1+c)¢s(az).

TE€B! [Pil2+1

For the right hand side we can take £ € B, N P¥/?/B, N Pi/2*1 And from Part 1, 2.3.2,
2.4.2 with a instead of oy and with v = 0 we see:

6a(1 +z) = Ao Nrdp, k(1 +2) on U'NB,,

where i = F(a) and A\, € X, Xp resp. With the notation Xa = Ao oNrdg, |k, (12) turns
into:

(13) > xal+z)¢plaz) =dim A- Y X (1+z)¢a(az),

where the right hand sum S is over z € P/ N B,/Pi/**1 0 B,. Now we can apply [BFt]
(2.8.13) (i1) for the central simple algebra B,|K, where the group G is the normalizer of
the principal order A N B,. This gives us:

(14) W(ha,¥x) = W(ha,¥x )", where N, =N/[K:F], $x =4r o Ty,
for every extension A, from U} onto K*. Note that A,(Uk) Z 1, because vp(a) = vp(a) =

-3 <0. )
Further, from 7.2 with B,|K instead of B|F and ), instead of A, we see:

(15) W(ha,px) = ()N~ A (@) (a)N(P N B,)™/2 - S,
where S is precisely the sum from (13). Therefore, introducing the notation
(16) §(Aa) := W(ha,¥K) - Aa(a) - Yx(—a)

from (14), (15) we obtain:
(17) S = (=1)Na=mag(A)Ne . M2, where my=1,N, if B=D,A resp.,
and 3.6, 7.4, (13), (17) imply 7.1 (ii). O
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7.6 Remarks: 1. Note that §(),) is independent from the extension of A, onto K*. More
precisely, the argument of [T] loc. cit. yields:

1 fPi?nK =pPil?+in K

(18) 8(xa) = N(pg)~'/? 3 As(1+ z) P (az), otherwise.
T€Pil2nK/Pil+

In the case a € F we have B! = P3/? and the Heisenberg representation 7 is simply
a character of U/7/?, Hence Xal|yiza is a multiple of 8,, and we see that D, is a scalar
operator, hence D, too.

2. A flaw of 7.1 is that j = j(A) is not invariant. If we start from ¢t = (R, (] € Ty
with inertial degree f;, then in the division algebra case we have j(A;) = N - vp(f), but
in the matrix algebra case we have j(A,;) = f—f\f— -vr(B).

Remarks on the proof of 7.3: There is an easy reduction to the case where J is a finite
group. Therefore we may assume:

(i) J = J'- H is a finite group and J! C J is normal.
(ii) H' = J'N H is normal in J and J/H' = J'/H' x H/H' where V = J'/H! is an
F,-vectorspace.
(iii) m € J~ has the property that mjn = (H',8) is a Heisenberg representation of J!, i.e.
6 applied to the commutator of J! is a non-degenerate alternating character X on V
which is invariant with respect to the action of J/J! & H/H! by conjugation.

We want to prove that (i)-(iii) imply 7 @ 7 = Indy1s(1). The proof consists of two steps:
Step 1: The character x, vanishes on conjugacy classes of J which do not intersect
H.

Step 2: The assertion follows if x, has the property proved in step 1.
Step 2 is explained in [H] at the end of section I (after Proposition 2). The argument with
minor changes applies to our case too. Therefore we restrict to Step 1.

We start from the following remark of [H]:

7.7 Lemma: a-h € J'-H is in a conjugacy class of J which intersects H, iff @ = v — h(v)
for somev € V.

We will write the operation on V additively and the conjugation we will interpret as
an F,-endomorphism on V.

_ Because of 7.7 we can restrict our considerations to the case J = J!-(h),ie. H/H' =
( h) is a cyclic group. Then we have to prove:

(19) a-heJ'- (k) with aecV—(1-h)oV implies x.(ah)=0.
We consider
(20) (g = 71) —_— pr(V),

where X is as in (iii) and Spx (V') is the corresponding symplectic group. Let ¢” generate
the kernel of (20). Then we may replace J', H! by J' (r"), H' - (k") resp. and therefore
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come down to the case where (20) is injective. Thus we may consider g as an clement of
Spx (V).

Write V = V] + V2 where V; is the 1-eigenspace of g (that is, ¢ — 1 is unipotent on V)
and ¢ — 1 is non-singular on V,. Then on V; we have (g — 1)”h = gP' —1 = 0 for some b.
And V = V] + V4, is an orthogonal direct sum with respect to X (see [H]). We may assume

(21) a=vi+vy with v €V -{(1-g)o,

because otherwise @ € (1 —g)o Vi + V; = (1 — g) o V which contradicts to our assumption

(19). Let g = 5 - u be the decomposition of g into its regular and unipotent component.
Then:

slv, =1dy,, s(Vi)=Vi, u(Vi)=V, for i=1,2.

Therefore: _
J=Vx{g)=Vy-snV; u,

where V, - s (and V} - u resp.) denotes the subgroup which is generated by V; and s (by
Vi and u resp.). Let Y C Y, C J be the preimage of V, C V5 -5 C J resp., and let p € Y°
be an extension of the Heisenberg representation n = (H!,8) of Y. Note that 8 applied
to the commutator of ¥ gives the non-degenerate alternating character X on Vo, = Y/H1.
And 7 extends to Y, because it is s-invariant. Moreover we have the p-group V) - u acting
on the set of extensions p of 7. But the number of such extensions is prime to p, hence we
find p € Y,” which is V} - u-invariant. Therefore:

(22) T=pQp

where p is an extension of p to a projective representation of J and p is a projective
representation of J/Y, & Vi - u. Now let [V - u] be a central extension of V; - u such that
¢ lifts to an ordinary representation fi of [V; - u]. Then, from (21) and h = g = s - u we sce
that a - h = vyu mod Y, hence:

(23) Xa(viu) =0 implies xn{a-h)=0,

because from (22) we conclude x» * X7 = Xj0sv * Xu@i> and Xuoir = Xi - Xi- (Note that
5 ® pv and p @ i are ordinary representations.)

Therefore we can reduce to the case J = [Vj-u] and 7 = 1, i.e. we assume that V =V}
and that H/H?! is a cyclic p-group with generator g = u. We consider the subspace V9 of
g-invariant vectors. With respect to X we have (V)1 = (¢ —1)oV, and we let W C V¢
be any complement of V9N (g — 1) o V. Then:

V =W + W+ is an orthogonal direct sum with respect to X, and
a=w+w eV-(1-g)oV.
Case 1: Assume w # 0. This ensures @ ¢ (1 — g) o V because W C V9 implies

WL D>(1-g)oV. Let Y C J be the preimage of the normal subgroup W+ c J. (H!,#9)
determines a Heisenberg representation n of ¥ because X is non-degenerate on W+. And
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7 is W - g-invariant. Hence n = p ® p, where p is a projective representation of J extending
n and pu is a projective representation of J/Y = W . g. As before, let i be an ordinary
representation of an appropriate central extension [W - g] of W - g, which lifts u. Again,
we conclude that x;(w - ¢) = 0 implies x»(ah) = 0 because ch =w-gmod Y. But i is a
Heisenberg representation of [W - g] with center [g]. Hence w # 0 implies xz(w - ¢) = 0.

Case 2: a =w € Wt —(g—1)oV. Let Y C J be the preimage of the normal
subgroup W C J and let n € Y™ be the Heisenberg representation which corresponds to
(H',6). n is W . g-invariant, hence

T=pQ

where p is a projective representation of J extending n and u is a projective representation
of J/JY = W+ . g. And it is enough to show xu(w' - g) = 0 for the representation /i of
[WL . g]. Therefore we can reduce to the case J = [W.g], V = W, 7 = i, hence
ViCc(g—1)oVanda=v€eV —(¢g—1)oV. Then we have:
~ V9 =((g —1)o V) is normal in J and isotropic in V.
— Let Y C J be the preimage of V9. Then 7|y is a multiple m of a character orbit of
length V9|, hence m = dim =/|V9|.
- If x:Y — C* is from that character orbit, then its normalizer N ;(x) has the property
Ny(x)/H = (V) -g=(g~1)oV)(g).

Hence N;j(x) C J is a normal subgroup and = is induced from Ny(x). But ah —»v.g € J
is not in Ny(x)/H", because v ¢ (¢ — 1) o V. Hence x(ah) = 0. a
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