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ON THE DIMENSION GROWTH OF GROUPS

ALEXANDER DRANISHNIKOV1 AND MARK SAPIR2

Abstract. We prove that the Thompson group F has exponential
dimension growth. We also prove that every solvable finitely gener-
ated subgroups of F has polynomial dimension growth while some
elementary amenable subgroups of F and some solvable groups of
class 3 have dimension growth at least exp(

√
n).

1. Introduction

Gromov introduced the notion of asymptotic dimension [Gr1] to
study finitely generated groups. It turns out that groups with finite
asymptotic dimension satisfy many famous conjectures like the Novikov
Higher Signature Conjecture [Yu1],[Ba],[CG],[Dr1],[DFW],[BaRo]. Many
of the popular types of groups have finite asymptotic dimension like
hyperbolic groups [Gr1], virtually polycyclic groups (hence nilpotent
groups), and solvable groups with finite rational Hirsch length [BD],
[DS], Coxeter groups [DJ], arithmetic subgroups of algebraic groups
over Q [Ji], any finitely generated linear group over a field of positive
characteristic [GTY], relatively hyperbolic groups [Os] with parabolic
subgroup of finite asymptotic dimension, mapping class groups [BBBF],
group acting “nicely” on finite dimensional CAT(0) cubical complexes
[W], etc. Examples of asymptotically infinite dimensional groups in-
clude Thompson group F , Grigorchuk’s group, Gromov’s group con-
taining an expander. The infinite dimensionality of F easily follows
from the fact that for every n, F contains Zn as a subgroup. Grig-
orchuk group does not contain Z since it is a torsion group. It is infinite
dimensional because for every n it coarsely contains Rn

+ [Sm]. This
argument does not apply to Gromov’s groups containing expanders,
since they can have finite cohomological dimension [Gr2]; the infinite
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2 A. DRANISHNIKOV AND M. SAPIR

dimensionality of them follows from the fact that these groups do not
coarsely embed into Hilbert spaces while all groups of finite asymptotic
dimension embed [HR].

The dimension theoretic approach still could be useful in the case of
asymptotically infinite dimensional groups. Thus, in [Dr2] the notion
of asymptotic dimension growth was introduced. It was shown there
that the groups with polynomial asymptotic dimension growth have
property A. In particular, the Novikov conjecture holds true for them.
Examples of infinite dimensional groups with polynomial asymptotic
dimension growth were constructed in [Dr2].

Property A was introduced by Guoliang Yu [Yu2] and it is a deep
generalization of amenability. Thus, any question about amenability
of a given group has a relative: Does the group satisfy property A? In
particular, if one tries to show that Thompson group F is amenable,
first question to answer would be if F has property A. Property A
implies a coarse embedability of a group into the Hilbert space. In
fact, for finitely presented groups, it is still an open question wether it
is equivalent to coarse embedability into a Hilbert space. In view of D.
Farley’s result [Fa], the R.Thompson group F is coarsely embeddable
into the Hilbert space. The compression number of such embeddings
was computed in [AGS], and unfortunately the answer lies exactly on
the border (=1/2) where it does not allow to derive property A [GK].
Note that low compression number of a group does not imply high
dimension growth. For example, groups constructed in [ADS] have
finite asymptotic dimension and compression number 0.

Thus the question about dimension growth of the R. Thompson
group is very relevant to the famous amenability problem of F .

1.1. Definition. Let λ be a positive number, X be a metric space. We
say λ-dimX ≤ n if there is a uniformly bounded cover U of X which
can be decomposed U = U0 ∪ · · · ∪ Un into n+ 1 λ-disjoint families.

Thus, U i = {U i
α}α∈A and dist(U i

α, U
i
β) ≥ λ for α 6= β, and diam(U i

α) ≤
C for some constant C and all α ∈ A and all i.

Often we will refer to the above decomposed cover as to a (n + 1)-
colored cover with colors 0, 1, . . . , n. So we assume that all sets of U i
are painted by the same color i.

Two functions f, g : R+ → R+ have the same growth if there are
positive constants a, t0 such that f(at) ≥ g(t) and g(at) ≥ f(t) for
t > t0. Clearly, this is an equivalence relation on the set of all monotone
functions. The equivalence class of a function f is called the growth of
that function.
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1.2. Definition. The growth of the function dX(λ) = λ-dimX is called
the dimension growth of X.

Note that the definition of dimension function in [Dr2] is similar but
different: the asymptotic dimension growth adX(λ) from [Dr2] is min-
imal dimension of the nerve of a uniformly bounded cover of X with
the Lebesgue number ≥ λ. By taking a λ/2-enlargement of a colored
cover with λ-disjoint colors one can construct a cover of the same mul-
tiplicity with the Lebesgue number ≥ λ/2. This yields the inequality
adX(λ/2) ≤ dX(λ). Therefore, the growth of adX does not exceed the
growth od dX . In particular, a polynomial growth of dX implies the
polynomial growth of adX and in view of [Dr2] the property A. We did
not investigate here when the opposite inequality is true. Certainly it
is true when adX is a constant. In that case both functions give alter-
native definitions of the asymptotic dimension. Thus, the functions dX
and adX generalize two definitions of asymptotic dimension to metric
spaces with infinite asymptotic dimension.

Both the dimension growth and asymptotic dimension growth (dX
and adX) are quasi-isometry invariants and therefore they are invari-
ants of finitely generated groups.

In this paper we answer the question about the dimension growth dF
of the R.Thompson group F . The dimension growth of F turns out to
be exponential, the worst theoretically possible for a finitely generated
group. We were not able to find any amenable subgroup of F with
exponential dimension growth, although F contains pretty large (ele-
mentary) amenable groups. Moreover, our methods do not give any
example of a finitely generated amenable group with exponential di-
mension growth. The largest dimension growth of an amenable group

we are able to prove is e
√
λ. Thus there is a possibility that the di-

mension growth separates F from the class of amenable groups (see
Question 5.6 below). We realize that this possibility is very remote be-
cause so many previous attempts to prove non-amenability of F failed,
but still it is a possibility. The difference between F and amenable
groups that we employ is the following: F contains copies of Zk that are
(λ, ck)-quasi-isometrically embedded (for a fixed λ, and every k ≥ 1),
while we could not find amenable groups with this property.

1.3. Remark. Note that in [GTY], another generalization of the finite
asymptotic dimension property was introduced, the so called finite de-
composition complexity. It turned out that many groups have finite
decomposition complexity and these groups satisfy strong rigidity prop-
erties including the stable Borel conjecture. It would be interesting to
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“cross-bread” the finite decomposition complexity with, say, polyno-
mial dimension growth.

2. Preliminaries

We recall that the chromatic number of a graph is the minimal num-
ber of colors (if exists) such that the vertices of the graph can be colored
in a way that adjacent vertices have different colors.

2.1. Proposition. Let K be a possibly infinite graph of valency ≤ c.
Then its chromatic number ≤ c+ 1.

Proof. Take a maximal c + 1-colorable complete subgraph K ′ of K.
Any vertex v of K that is not in K ′ has at most c colored neighbors
and hence it can be colored and added to K ′. That would contradict
with the maximality of K ′. �

A version of the next proposition for the function ad is proved in
[Dr2].

2.2. Proposition. The dimension growth of a finitely generated group
G does not exceed its volume growth.

Proof. Let f be the volume growth function. We consider a graph with
vertices elements of G where every two vertices at distance < λ are
joined by an edge (this is of course the 1-scheleton of the Rips complex
of G). Then the valency of this graph is < f(λ). By Proposition 2.1 the
graph has chromatic number ≤ f(λ). Thus, a coloring of the graph in
f(λ) colors defines a coloring of the cover of G by 0-balls with λ-disjoint
colors. �

2.3. Corollary. The dimension growth of any finitely generated group
is at most exponential.

We call a map between metric spaces f : X → Y uniformly cobounded
if for every r there is an upper bound on diamf−1(Br(y)) uniform on
y. We note that a group embedding of a finitely generated group into
a finitely generated group is uniformly cobounded.

2.4. Proposition. Let φ : X → Y be a c-Lipschitz uniformly cobounded
map between metric spaces. Then λ-dimY ≥ λ

c
-dimX for all λ

Proof. Let λ-dimY = n and let U = U0 ∪ · · · ∪ Un be a uniformly
bounded cover of Y by λ-disjoint families U i. Then f−1(U) = f−1(U0)∪
· · · ∪ f−1(Un), f−1(U i) = {f−1(U) | U ∈ U i}, is a uniformly bounded
cover of X. Since f is c-Lipschitz, each family f−1(U i) is λ/c-disjoint.
Thus, λ

c
-dimX ≤ n. �



DIMENSION GROWTH 5

For a metric d on a discrete space X and r > 0 we denote by d+ r a
new metric d̄ defined as d̄(x, y) = d(x, y) + r provided x 6= y. We call
it the metric d shifted by a constant r.

The following is obvious.

2.5. Proposition. For r such that 0 < r < λ,

λ-dim(X, d+ r) = (λ− r)-dim(X, d).

2.6. Proposition. Let φ : X → Y be a (c, r)-quasi-isometric imbed-
ding: dY (φ(x), φ(x′)) ≤ cdX(x, x′) + r for all x, x′ ∈ X. Then

λ-dimY ≥ λ−r
c

-dimX.

Proof. Note that φ : (X, dX + r
c
) → (Y, dY ) is a uniformly cobounded

c
r
-Lipschitz map. Then we apply Proposition 2.4 and Proposition 2.5

to obtain the required inequality

λ-dimY ≥ λ
c
-dim(X, dX +

r

c
) ≥ λ−r

c
-dimX.

�

3. Dimension growth of direct sums of Z

3.1. Example. Using the checker coloring one gets

2-dim(Zn, `1) = 1.

Less obvious is the following

3.2. Exercise.

3-dim(Z3, `1) = 3.

3.3. Proposition. Rn does not admit a uniformly bounded open cover
of multiplicity ≤ n.

Proof. Such a cover would define a uniformly cobounded map f : Rn →
N onto an at most (n − 1)-dimensional polyhedron (the nerve of the
cover). For every vertex v ∈ N we fix a point g(v) ∈ f−1(v) and extend
it linearly to a map g : N → Rn. Clearly, g ◦ f is on a finite distance
to idRn and hence properly homotopic. Therefore

(g ◦ f)∗ = id : Hn
c (Rn)→ Hn

c (Rn)

on the n-cohomology with compact supports. Since (g ◦ f)∗ = f ∗ ◦
g∗ and f ∗ is zero homomorphism by dimensional reason, we have a
contradiction. �
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Two points x, y ∈ X in a metric space X are called r-connected if
there is a chain x0, . . . , xn of points in X such that x = x0, y = xn, and
d(xi, xi+1) ≤ r. Note that the r-connectivity is an equivalence relation.
Thus, every metric space X can be decomposed into equivalence classes
called r-components of X. A metric space X is called connected on
scale r if there is only one r-component. Otherwise, X is called r-
disconnected. Note that a path connected metric space is connected
on all scales. Despite the obvious conflict with notations in algebraic
topology, we will call spaces connected on the scale r, r-connected.

We use the notation Vert(In) for the set of vertices of the nth cube
In. We always take `1 metric on In.

3.4. Definition.

cλ(n) = max{m | ∀ f : Vert(In)→ {1, . . . ,m}
∃ i : f−1(i) is (λ− 1)− connected}.

3.5. Proposition.
cn(n) = 2n−1 − 1

Proof. First we note that any pair of points in Vert(In) on the distance
> n−1 is the endpoint set of a long diagonal. Therefore, every (n−1)-
disconnected subset of Vert(In) contains a exactly the endpoints of a
long diagonal. Since there 2n−1 long diagonals in In, 2n−1 − 1 colors is
not enough. Clearly, 2n−1 colors is enough to have the set of vertices
of each color (n− 1)-disconnected. �

3.6. Proposition.
cλ(n+ 1) ≥ cλ(n).

3.7. Lemma. λ-dim(Zn, `1) = n for any n < 2λ−1.

Proof. Assume that λ-dimZn < n. Then there is a uniformly bounded
λ-disjoint coloring f : Zn → {1, . . . , n}. The colors define families of
λ-disjoint clusters of given color: U1, . . . ,Un, U i = {U i

α}, and f−1(i) =
∪αU i

α. We regard Zn as the 0-skeleton of the standard cube lattice in
Rn. For every unit cube C = Ik with vertices in Zn and every vertex
v ∈ In we define an open neighborhood W (v, C) of v in C such that

1. W (v, C) ∩ F = W (v, F ) for every face F ⊂ C;
2. If v, u ∈ C have the same color and are in different (λ − 1)-

components in Zn, then W (u,C) ∩W (v, C) = ∅;
3. ∪v∈CW (v, C) = C.
Then for every i and α we define

Ũ i
α =

⋃
v∈U iα,C

W (v, C).
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Property 2 implies that the family {Ũ i
α}α is disjoint for each i. Property

3 implies that {Ũ i
α}i,α is a cover of Rn. It is uniformly bounded, since it

is an n-enlargement of a uniformly bounded family {U i
α}i,α. Clearly, the

multiplicity of this cover is at most n. This would give a contradiction
with Proposition 3.3.

We construct W (v, C) by induction on dimC. If dimC = 0, then
we set W (v, C) = v. Assume that the sets W (v, C) are constructed for
k-dimensional cubes and let dimC = k+ 1. Let v be a vertex in C and
b be its barycenter. Denote by

Av = Cone(b,∪v∈F⊂CW (v, F ))

the cone with the vertex b and the base the union of W (v, F ) over all
proper faces of C that contain v. We define W (v, C) = Av\{b} if the set
of vertices of C with the same color as v is (λ− 1)-disconnected in Zn.
Define W (v, C) = Av ∪ Bε(b) otherwise. Here Bε(b) is an open ε-ball
centered at b and ε is small. Then 1 and 2 are satisfied by definition.
To prove 3 it suffices to show that there is color i such that the vertices
of C colored by i are (λ− 1)-connected. Clearly this is the case when
k+1 ≤ λ−1. If k+1 = λ, then by Proposition 3.5 and the hypothesis,
cλ(λ) = 2λ−1 − 1 ≥ n. Therefore, there is such color. For k + 1 > λ
such color exists in view of Proposition 3.6. �

3.8. Theorem. The dimension growth of infinite sum of Z with the
`1-metric is at least exponential:

λ-dim(
∞⊕

Z) ≥ 2λ/4.

Proof. For n = 2λ−2 < 2λ−1 we obtain

λ-dim(
∞⊕

Z) ≥ λ-dim(
n⊕

Z) ≥ 2λ/4.

�

3.9. Remark. We do not have any estimate from above of the dimen-
sion growth of the infinite sum of Z. Moreover, we do not know if it is
finite for λ ≥ 3.

We use notation for the wreath product A o B which is for us the
semidirect product ⊕

b∈B

AoB.

We want to warn the reader that sometimes in the literature the nota-
tion B o A is used for the same group.
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If S is a generating set for A and T is a generating set for B, then
S ⊂ Ae ⊂

⊕
b∈B A together with T ⊂ B generate A oB. Note that the

summand Ab indexed by b ∈ B in
⊕

b∈B A ⊂ A o B has a form bAb−1

and therefore the metric on d (with respect to these generators) is the
metric dS on A shifted by 2‖b‖.

The following lemma is obvious.

3.10. Lemma. The identity map

id :
⊕
i∈J

(Z, | · |)→
⊕
i∈J

(Z, | · |+ r)

is (r + 1)-Lipschitz for `1-metrics on the direct sums for any index set
J .

3.11. Theorem. Let G be a group of exponential growth. Then the

group Z oG has the dimension growth ≥ e
√
λ.

Proof. It suffices to show that the subgroup
⊕

G Z ⊂ Z o G with the

induced metric has growth ≥ e
√
λ. By the above remark this subgroup

as a metric space is the sum
⊕

G(Z, | · |+2‖g‖) with `1-metric of copies
of Z indexed by g ∈ G with the standard metric | · | shifted by 2‖g‖.
In view of Proposition 2.4, Lemma 3.10 and Lemma 3.7 we obtain

λ-dim(
⊕
g∈G

(Z, | · |+ 2‖g‖)) ≥ λ-dim(
⊕
g∈Br

(Z, | · |+ 2‖g‖)) ≥

λ-dim(
⊕
g∈Br

(Z, | · |+ 2r)) ≥ λ
2r+1

-dim(
⊕
g∈Br

Z) ≥ |Br|

whenever |Br| < 2
λ

2r+1
−1 where Br is an r-ball in G and |Br| denotes

the cardinality of the ball. There are α > 0 and β > 0 such that
2αr ≤ |Br| ≤ 2βr. Then for r with βr < λ

2r+1
− 1 the inequality hold.

Therefore, it holds for r = a
√
λ for a =

√
3. Thus, λ-dim(Z o G) ≥

2
√

3λ. �

In case of infinite sum of Z with shifted metrics we have the following
estimate from above on the dimension growth.

3.12. Proposition.

λ-dim
⊕
k∈N

(Z, | · |+ k) ≤ eaλ

for some a > 0

Proof. This sum is quasi-isometrically imbedded into a finitely gener-
ated group Z o Z. Then Proposition 2.2 implies the estimate. �
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We note that this estimate is not optimal. The sharper above esti-
mate will be obtained in Corollary 6.8.

4. Low bound for dimension growth of Thompson group

In this section, it will be convenient to view the R. Thompson group
as a diagram group over the semigroup presentation 〈x | x2 = x〉.

Let us recall the definition of a diagram group (see [GS1, GS3] for
more formal definitions). A (semigroup) diagram is a planar directed
labeled graph tesselated into cells, defined up to an isotopy of the plane.
Each diagram ∆ has the top path top(∆), the bottom path bot(∆), the
initial and terminal vertices ι(∆) and τ(∆). These are common vertices
of top(∆) and bot(∆). The whole diagram is situated between the top
and the bottom paths, and every edge of ∆ belongs to a (directed) path
in ∆ between ι(∆) and τ(∆). More formally, let X be an alphabet.
For every x ∈ X we define the trivial diagram ε(x) which is just an
edge labeled by x. The top and bottom paths of ε(x) are equal to ε(x),
ι(ε(x)) and τ(ε(x)) are the initial and terminal vertices of the edge. If
u and v are words in X, a cell (u→ v) is a planar graph consisting of
two directed labeled paths, the top path labeled by u and the bottom
path labeled by v, connecting the same points ι(u→ v) and τ(u→ v).
There are three operations that can be applied to diagrams in order to
obtain new diagrams.

1. Addition. Given two diagrams ∆1 and ∆2, one can identify
τ(∆1) with ι(∆2). The resulting planar graph is again a diagram de-
noted by ∆1 +∆2, whose top (bottom) path is the concatenation of the
top (bottom) paths of ∆1 and ∆2. If u = x1x2 . . . xn is a word in X,
then we denote ε(x1) + ε(x2) + · · ·+ ε(xn) ( i.e. a simple path labeled
by u) by ε(u) and call this diagram also trivial.

2. Multiplication. If the label of the bottom path of ∆2 coincides
with the label of the top path of ∆1, then we can multiply ∆1 and ∆2,
identifying bot(∆1) with top(∆2). The new diagram is denoted by
∆1 ◦ ∆2. The vertices ι(∆1 ◦ ∆2) and τ(∆1 ◦ ∆2) coincide with the
corresponding vertices of ∆1,∆2, top(∆1 ◦ ∆2) = top(∆1),bot(∆1 ◦
∆2) = bot(∆2).
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u u∆1

∆2

∆1 ◦∆2

u u u∆1 ∆2

∆1 + ∆2

3. Inversion. Given a diagram ∆, we can flip it about a horizontal
line obtaining a new diagram ∆−1 whose top (bottom) path coincides
with the bottom (top) path of ∆.

4.1. Definition. A diagram over a collection of cells P is any planar
graph obtained from the trivial diagrams and cells of P by the oper-
ations of addition, multiplication and inversion. If the top path of a
diagram ∆ is labeled by a word u and the bottom path is labeled by a
word v, then we call ∆ a (u, v)-diagram over P .

Two cells in a diagram form a dipole if the bottom part of the first
cell coincides with the top part of the second cell, and the cells are
inverses of each other. In this case, we can obtain a new diagram
removing the two cells and replacing them by the top path of the first
cell. This operation is called elimination of dipoles. The new diagram
is called equivalent to the initial one. A diagram is called reduced if
it does not contain dipoles. It is proved in [GS1, Theorem 3.17] that
every diagram is equivalent to a unique reduced diagram.

If the top and the bottom paths of a diagram are labeled by the same
word u, we call it a spherical (u, u)-diagram. Now let P = {c1, c2, . . .}
be a collection of cells. The diagram group D(P, u) corresponding to
the collection of cells P and a word u consists of all reduced spherical
(u, u)-diagrams obtained from the cells of P and trivial diagrams by
using the three operations mentioned above. The product ∆1∆2 of two
diagrams ∆1 and ∆2 is the reduced diagram obtained by removing all
dipoles from ∆1 ◦ ∆2. The fact that D(P, u) is a group is proved in
[GS1].

4.2. Example. If X consists of one letter x and P consists of one cell
x→ x2, then the group D(P, x) is the R. Thompson group F [GS1].

Here are the diagrams representing the two standard generators
x0, x1 of the R. Thompson group F . All edges are labeled by x and
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oriented from left to right, so we omit the labels and orientation of
edges.

u u u u u u u u u

x0 x1

It is easy to represent, say, x0 as a product of sums of cells and trivial
diagrams:

x0 = (x→ x2)◦ (ε(x) + (x→ x2))◦ ((x→ x2)−1 + ε(x))◦ ((x→ x2)−1).

There is a natural diagram metric on every diagram group D(P, u):
dist(∆,∆′) is the number of cells in the diagram ∆−1∆′.

4.3. Lemma. [Bu, AGS] For the R. Thompson group F , the diagram
metric is (6, 2)-quasi-isometric to the word metric corresponding to the
standard generating set {x0, x1}.

4.4. Proposition. There are constants C1, C2 > 0 such that for every
n there is a group imbedding of ξn : Z2n → F into the Thompson group
F such that ξn is a (C1, C2n)-quasi-isometric embedding:

dF (ξn(x), ξn(x′)) ≤ C1‖x− x′‖1 + C2n

where ‖.‖1 is the standard l1-metric on Z2n.

Proof. We are going to use the following construction from [AGS]. For
any n ≥ 0, let us define 2n elements of F that commute pairwise. All
these elements will be reduced (x, x)-diagrams over P = 〈x | x2 = x〉.
For n = 0, let ∆ be the diagram that corresponds to the generator x0

(see above). It has 4 cells.
Suppose that n ≥ 1 and we have already constructed diagrams ∆i

(1 ≤ i ≤ 2n−1) that commute pairwise. For every i we consider two
(x2, x2)-diagrams: ε(x) + ∆i and ∆i + ε(x). We get 2n spherical di-
agrams with base x2 that obviously commute pairwise. It remains
to conjugate them to obtain 2n spherical diagrams with base x hav-
ing the same property. Namely, we take π ◦ (ε(x) + ∆i) ◦ π−1 and
π ◦ (∆i + ε(x)) ◦ π−1.
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Let us denote the elements of F obtained in this way by gi (1 ≤
i ≤ 2n). It is easily proved, say, by induction on n, that there exists a
(x2n , x)-diagram un with n cells and (x2n , x2n)-diagrams vn,i = ε(xi) +
∆ + ε(x2n−i−1), i = 0, ..., 2n− 1, such that each gi is equal to u−1

n vn,iun.
Hence each gi has 2n + 4 cells and its word length in F is bounded
between n/C and Cn where C is a constant. Hence the subgroup An
generated by g1, ..., g2n is isomorphic to Z2n .

Now if we consider the diagram gk11 ...g
k2n
2n for any integers k1, ..., k2n ,

the number of cells in that diagram is between 4(|k1| + ...|k2n|) and
2n+4(|k1|+...|k2n|). Now it follows from Lemma 4.3 that the restriction
of the word metric of F on the subgroup An is between 1

C1
|.| − C2n

and C1|.| + C2n where |.| is the standard l1-metric on Z2n , C1, C2 are
constants > 1. �

4.5. Remark. Note that the constants C1 and C2 in Proposition 4.4
do not exceed 25 and do not depend on n.

4.6. Theorem. The asymptotic dimension growth of the Thompson
group F is exponential.

Proof. Let An = ξn(⊕2nZ). In view of Proposition 4.4, Proposition 2.4,
Proposition 2.6, and Lemma 3.7 we obtain

λ-dim(F ) ≥ λ-dim(An) ≥ (λ−C2n
C1

)-dim
2n⊕
i=1

Z = 2n

provided 2n < 2(λ−C2n)/C1−1 or equally, n < λ−C1

C2+C1
. Thus,

λ-dim(F ) ≥ 1

2
2

1
C1+C2

λ

for all λ. �

5. The dimension growth of an elementary amenable
subgroup of the R. Thompson group F

It is known [Ch] that the R. Thompson group F is not elemen-
tary amenable, i.e. it cannot be constructed from finite and Abelian
groups using extensions, passing to subgroups, increasing unions and
homomorphisms. Nevertheless it contains large elementary amenable
subgroups: solvable of any degree [GS2] and non-solvable [Br]. In Sec-
tion 6, we shall show that every solvable subgroup of F has polynomial
dimension growth. Here we prove that the elementary amenable sub-

group of F constructed in [Br] has dimension growth ≥ e
√
λ.
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We define Bk to be the kth iterated wreath product of Z. Formally,
B0 = Z = 〈b0〉 and if Bk = 〈b0, ..., bk〉 is already constructed, then

Bk+1 = Bk o Z = (
⊕
i∈Z

Bk) o Z

where the “top” Z is generated by bk+1. We will use the first.
By induction we define a canonical subgroup Dk

∼= ⊕Z ⊂ Bk: D0 =
B0 = Z and Dk+1 = ⊕i∈ZDk. Next, we define by induction a proper
metric dk+1 on Dk+1 as `1-metric on the direct sum:

Dk+1 =
⊕
i∈Z

(Dk, dk + 2|i|).

Thus,

Dk =
⊕
ī∈Zk

(Z, | · |+ 2|i1|+ · · ·+ 2|ik|)

is the direct sum of infinitely many Z with `1-metric where each sum-
mand has the standard metric modified by a constant. Here we use the
notation ī = (i1, . . . , ik). Clearly, the embedding Dk → Dk+1 is isomet-
ric. Let D = lim→Dk be the group direct limit with the corresponding
metric d = ∪dk. Let B̄ = lim→Bk. Let B be the HNN extension of B̄
with a free letter b that conjugates bi with bi+1, i = 0, 1, 2, .... Clearly,
B is generated by b0 and b.

Let P ⊂ Rk be a polytope with integral vertices. The Ehrhart
polynomial L(P, t) of P is defined as

L(P, t) = |tP ∩ Zk|
where tP is dilation of P and | | denotes the cardinality. It is known
that L(P, t) is a polynomial of degree k with positive coefficients[BeRo].

The regular cross-polytope in Rk is the polytope spanned by the ver-
tices {±ei | i = 1, . . . , k} where {ei} is the orthonormal basis. The
Ehrhart polynomial for the regular cross-polytope Pk ⊂ Rk is known
[BeRo]:

L(Pk, t) =
k∑
i=0

2ix(x− 1) . . . (x− i+ 1)

i!
.

This formula implies the following

5.1. Proposition. For the regular cross-polytope in Pk,

L(Pk, k) = 3k.

5.2. Lemma. For each k,

λ-dim(Dk, dk) ≥ min{2
√
λ
4 , L(Pk,

√
λ

2
)};
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and

λ-dimD ≥ 2
√
λ
4 .

Proof.

λ-dimDk = λ-dim
⊕
ī∈Zk

(Z, | · |+ 2|i1|+ · · ·+ 2|ik|) ≥

λ-dim(
⊕

‖̄i‖1≤
√
λ−1/2

(Z, | · |+ 2‖̄i‖1)) ≥ λ-dim
⊕

‖̄i‖1≤
√
λ−1/2

(Z, | · |+ 2
√
λ−1)

≥
√
λ

2
-dim

⊕
‖̄i‖1≤

√
λ−1/2

Z ≥ min{2
√
λ
2
−1−1, |{̄i ∈ Zk | ‖̄i‖1 ≤

√
λ−1/2}|}

≥ min{2
√
λ
4 , L(Pk,

√
λ

2
)}.

Here the first inequality is due to the transition to a subgroup, the
second is in view of a 1-Lipschitz map (the identity map)

id :
⊕

‖̄i‖1≤
√
λ−1/2

(Z, | · |+ 2
√
λ− 1)→

⊕
‖̄i‖1≤

√
λ−1/2

(Z, | · |+ 2‖̄i‖1)

and Proposition 2.4, the third equality is due to a 2
√
λ-Lipschitz map

id :
⊕

(Z, | · |)→
⊕

(Z, | · |+ 2
√
λ− 1)

and Proposition 2.4, the forth inequality is by Lemma 3.7, the fifth is
obvious. Thus, the first part is proven.

To derive the second part we take k =
√

λ
2

in the above inequalities

and apply Proposition 5.1. We obtain

λ-dimD ≥ λ-dimDk ≥ min{2
√
λ
4 , 3
√

λ
2 } = 2

√
λ
4 .

�

5.3. Corollary. The dimension growth of (B, d) is at least e
√
λ.

5.4. Proposition. (M. Brin, [Br]) There is an embedding φ : B → F
such that for every n the inequality

dF (φ(x), φ(y)) ≤ dn(x, y) + 2n

holds for all x, y ∈ Dn.
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Proof. We view F as the group of piecewise linear increasing home-
omorphisms of [0, 1] with dyadic break points and slopes powers of
2. A support of a map from F is the subset of [0, 1] where F is not
the identity. Let f be a function from F with support (1/2, 1) that
takes (1/2, 7/8) to (1/2, 5/8). and Let g be any function from F with
support (1/4, 7/8) that takes (1/2, 5/8) to (5/8, 6/8). Then the map
b0 7→ f, b 7→ g induces an isomorphism from B to the subgroup 〈g, f〉
from F [Br]. �

Since the imbedding of B into F is not Lipschitz, the dimension
growth of B in F could be higher. We show that it is the same.

5.5. Theorem. The dimension growth of the group B taken with the

subgroup metric in the Thompson group F is at least e
√
λ.

Proof. By Proposition 5.4 and Lemma 5.2,

dB(λ) ≥ (λ− 2n)-dimDn ≥ min{2
√
λ−2n
4 , L(Pn,

√
λ− 2n

2
)}

for all n. Take λ = 2n2 + 2n. Then n =
√

λ−2n
2

and by Proposition 5.1

dB(λ) ≥ min{2
n

2
√
2 , 3n} ≥ 2

n
2
√
2 ≥ CeC

√
λ

for some constant C. �

5.6. Question. Is the dimension growth of every amenable finitely
presented group sub-exponential?

A positive answer to this question would imply, in view of Theorem
4.6, that F is not amenable.

6. Estimates from above

We recall that a family U of sets of X is m-colored if U = U1∪· · ·∪Um

and each U i is a collection of disjoint sets. Each of the families U i is
called a color (i-color). A colored family U is called a k-cover if every
k colors in it form a cover of X. Also, we recall that in a metric space
X we call an i-color λ-disjoint if dist(U,U ′) ≥ λ for all different sets
U,U ′ ∈ U i.

6.1. Definition. We say that a metric spaceX satisfies the Kolmogorov-
Ostrand condition (KO-condition) for a function n(λ) if for every λ and
m ≥ n(λ) there is a uniformly bounded m-colored n(λ)-cover with λ-
disjoint colors.
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The origin of this condition can be traced to the work of Kolmogorov
and Ostrand on Hilbert’s 13-th problem [Ost].

Clearly, if there is an m′-colored such cover, then there is an m-
colored such a cover with m < m′ and m ≥ n(λ).

6.2. Example. R satisfies KO-condition for n(λ) = 2.

Proof. We define

U0 = {(2mλi, 2mλ(i+ 1)− λ) | i ∈ Z}

and

U i = U0 + 2λi = {U + 2λi | U ∈ U0}
for i = 1, . . . ,m− 1. clearly for any i 6= j, U i ∪ U j is a cover. �

6.3. Exercise. Every metric space X with finite asymptotic dimension
satisfies the KO-condition with n(λ) = asdimX + 1. Any metric space
X satisfying the KO-condition with n(λ) satisfies λ-dimX ≤ n(λ)− 1
for every λ.

The following statement is obvious.

6.4. Proposition. Suppose that a discrete metric space (X, ρ) satisfies
the KO-condition with nX(λ). Then for all r > 0 the “shifted” space
(X, ρ+ r)-satisfies the KO-condition with n(λ) = nX(λ− r).

6.5. Proposition. Suppose that metric spaces X and Y satisfy the KO-
condition with nX(λ) and nY (λ) respectively. Then X×Y supplied with
`1-metric satisfied the KO-condition with n(λ) = nX(λ) + nY (λ)− 1.

Proof. Fix λ and m. We take m-colored nX(λ)-cover U of X and m-
colored nY (λ)-cover V of Y and form m families

W i = U i × V i = {U × V | U ∈ U i, V ∈ V i, i = 1, . . . ,m}.

Clearly, every color W i is λ-disjoint. Let us show that it is an n-
cover of X × Y with n = n(λ). Let W i1 , . . . ,W in be a collection of
n-families. It suffices to show that it covers X×Y . Let (x, y) ∈ X×Y .
Since U is an nX-cover, so is U i1 , . . . ,U in . Therefore, there are at
least n − nX(λ) + 1 = nY (λ) elements from U i1 , . . .U in that cover x.
Otherwise, if x is covered only by ≤ n − nX(λ) elements, the nX(λ)
elements would not cover x and hence would not form a cover of X.
Denote them by U j1 , . . . ,U js , s = nY (λ), jk ∈ {i1, . . . , in}. Note that
Vj1 , . . . ,Vjs is a cover of V . Thus, y is covered by a family Vjk for some
k ≤ s. Then (x, y) is covered by the family Wjk . �
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6.6. Proposition. Let A and B be groups such that A o B is finitely
generated. Suppose that A and B taken with the restricted metric satisfy
the KO-condition with nA and nB. Then the semi-direct product AoB
satisfies the KO-condition with n(λ) = nA(λ) + nB(λ)− 1.

Proof. The proof is the same as in Proposition 6.5 with the use of
the product structure on A o B with fiber-wise isometric projection
AoB → A and the direct projection AoB → B. �

6.7. Proposition. Suppose that B satisfies the KO-condition with a
monotone function nB(λ). Then B o Z satisfies the KO-condition with

n(λ) =
∫ λ+2

0
nB(t)dt+ 1.

Proof. We show that the group⊕
i∈Z

(B, ρ+ 2|i|)

satisfies the KO-condition with n(λ) =
∫ λ+2

0
nB(t)dt and apply Proposi-

tion 6.6. For every λ our metric space is the product with the `1-metric
of the partial direct sum and a λ-discrete space Z:⊕

i∈Z

(B, ρ+ 2|i|) = (
⊕
|i|≤λ/2

(B, ρ+ 2|i|))× Z.

Thus, it suffices to show, by Exercise 6.3, that the space⊕
|i|≤λ/2

(B, ρ+ 2|i|)

satisfies the KO-condition with n(λ). By Proposition 6.5 and Proposi-
tion 6.4, ⊕|i|≤λ/2(B, ρ+ 2|i|) satisfies the KO-condition with∑

|i|≤λ/2

nB(λ− 2|i|) = 2
∑

0≤i≤λ/2

nB(λ− 2i) =

= 2(nB(1) + nB(3) + nB(5) + nB(7) · · ·+ nB(λ)) ≤
∫ λ+2

0

nB(t)d(t).

�

6.8. Corollary. The dimension growth of Bk is at most λk.

Proof. Induction on k. �

Note that it was proven before (Proposition 5.2) that the dimension
growth of Bk is at least λk/2.

6.9. Question. What is the actual dimension growth of Bk? In par-
ticular, what is the exact dimension growth of Z o Z?
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Let PL0(I) be the group of orientation-preserving piecewise-linear
homeomorphisms of the unit interval with finitely many breaks in slope
under the operation of composition. Obviously, F < PL0(I).

6.10. Theorem. The dimension growth of every solvable finitely gen-
erated subgroup of PL0(I) is polynomial.

Proof. Consider the class R of subgroups of PL0(I) constructed in
Bleak [Bl]. This is the smallest class of groups containing Z, and closed
under taking direct products A × B if A,B ∈ R, and taking wreath
products A o Z if A ∈ R. By [Bl], every finitely generated solvable
group in PL0(I) is a subgroup of a finitely generated group of R. By
Propositions 6.5, 6.7 every finitely generated group ofR has polynomial
dimension growth. �

7. Two questions about the dimension growth of
expanders

7.1. Question. What is the dimension growth of an expander? Does
it depend on the choice of the expander?

Here an expander is an infinite connected graph obtained by attach-
ing Xn to R+ at n ∈ N for all n where Xn is a sequence of (finite)
expanding graphs. Since an expander is not coarsely embeddable in a
Hilbert space, the dimension growth of any expander is greater than
any polynomial.

We suspect that the dimension growth of at least some expanders
are exponential. The following question may clarify the situation.

7.2. Question. Is it true that a metric space (a finitely generated
group) with subexponenial dimension growth coarsely embeds in a uni-
formly convex Banach space?

Note that there are expanders which do not embed coarsely into
any uniformly convex Banach spaces [La] (compression numbers and
compression functions of coarse embeddings of groups into such Banach
spaces have been considered in [ADS]).
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