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THE EISENSTEIN ELEMENTS INSIDE THE SPACE OF MODULAR SYMBOLS

DEBARGHA BANERJEE AND SRILAKSHMI KRISHNAMOORTHY

Abstract. We explicitly write down the Eisenstein elements inside the space of modular symbols for

all Eisenstein series, giving a complete answer to a question of Merel. We also compute the winding

element explicitly for level product of two distinct odd primes and power of odd primes, proving explicit

versions of the Manin-Drinfeld theorem in these cases.

1. Introduction

Merel initiated the study of the Eisenstein elements inside the space of the modular symbols while

proving Uniform boundedness theorem about torsion points of elliptic curves over number fields. His

fundamental vision was to replace quotient of the Jacobian induced by Mazur’s Eisenstein ideals [11] of

the Hecke algebras with slightly bigger ideals, namely winding quotients induced by the winding elements

of the space of modular symbols. Merel explicitly computed the winding element of the space of modular

symbols using another explicit element of the space of modular symbols, which is the Eisenstein element

corresponding to the unique Eisenstein series for the congruence subgroup Γ0(p) [15], [14]. Extending the

fundamental work of Merel, we wrote down the Eisenstein elements and the winding element explicitly

inside the space of modular symbols for the congruence subgroup Γ0(p2) [2]. In the present paper [cf.

Theorem 9], we write the Eisenstein elements completely inside the space of modular symbols for all

Eisenstein series. By this explicit computation, we wish to understand the index of Eisenstein ideals and

hence the possibility of congruence between cusp forms and Eisenstein series of general level.

The winding elements are the elements of the space of modular symbols whose annihilators define

ideals of the Hecke algebras with the L-functions of the corresponding quotients of the Jacobian non-zero.

In the present paper, we write down the winding elements explicitly for N = pq with p and q distinct

odd primes and also for a power of a distinct odd prime proving explicit versions of the Manin-Drinfeld

theorem. We note that Manin-Drinfeld proved that the modular symbol {0,∞} ∈ H1(XΓ,Q) using the

theory of Hecke operator acting on the space of modular symbols. We follow the approach of Merel

[cf. [15], Prop. 11]. Our explicit computation should be useful to compute certain quantities related to

the statements and the reformulations of the Birch and Swinnerton-Dyer Conjecture. In particular, the

explicit expression of winding element should be useful to understand the algebraic part of the special

values of the L-functions [1].

In the last section, we attempt to generalize the Mazur invariant to the general level. If the level of

the modular curves are not prime, then the orders of cuspidal subgroups and Shimura subgroups are
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not same. In general, the order of the Shimura subgroups are not divisible by the order of the divisor

(0)− (∞). As a consequence, we can write down the analogue of the Mazur invariant only if the order of

the Shimura subgroup divides the order of the divisor (0)− (∞).

2. Acknowledgements

This paper owes it’s existence to several e-mail communications, encouragements and several valuable

suggestions of Professor Löic Merel. D. B. is grateful to Professor Joseph Oesterlé for sharing with him

his preprints on the subject.

3. Cusps and Eisenstein series

Recall [4], the cusps of principal congruence subgroups Γ(N) are Γ(N)s with s = a
c and ±[a, c]

(mod N) pair of integers such that gcd(a, c) = 1.

Lemma 1. Let the integers a, c have images a, c in Z/NZ. Then the following are equivalent:

• (a, c) has a lift (a, c) ∈ Z2 with gcd(a, c) = 1,

• gcd(a, c,N) = 1,

• (a, c) has order N in the additive group (Z/NZ)2.

For v = (a1, a2) ∈ ( 1
NZ)2 and v /∈ Z2, we define the Siegel functions by

gv(τ) = −q
1
2B2(a1)
τ e2πi

a2(a1−1)
2 (1− qz)

∞∏
n=1

(1− qnτ qz)(1−
qnτ
qz

).

Here, B2(X) = X2 − X + 1
6 is the second Bernoulli polynomial, qτ = e2πiτ and qz = e2πiz for z =

a1τ + a2.

Remark 2. By [ [7], p. 31], g12N
v are modular functions for the congruence subgroup Γ(N). They have

no zeros or poles on the upper half plane. The logarithmic derivative of the Siegel unit gv is denoted by

2πiφv. The properties of the Eisenstein series φv are listed in [cf. [17], Section 2.4]. For any congruence

subgroup Γ, let E2(Γ) be the space of Eisenstein series of weight two w. r. t. this congruence subgroup.

The set of all φv’s form a basis of E2(Γ(N)).

Let ε∞(N) be the number of cusps for the congruence subgroup Γ0(N). Let αk, βl, γm and κs are the

matrices

(
0 −1

1 k

)
,

(
−1 −l
p lp− 1

)
,

(
−1 −m
q mq − 1

)
,

(
1 0

s 1

)
respectively. Let V be the set

of all αt’s for t coprime to N .

We fix a point z0 ∈ H. Let c(γ) be the geodesic in YΓ joining z0 and γ(z0). Let πE(γ) =
∫
c(γ)

E(z)dz be

the period of the Eisenstein series E. The following proposition summarizes some well-known properties

of the map πE . The proofs are given in [[17], Prop. 2.3.3].

Proposition 3. Let γ =

(
a b

c d

)
be an element of Γ.

(1) πE is a homomorphism H1(YΓ,K)→ K.
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(2) πE(γ) = a+d
c a0(E)− 1

2πiL(E[

(
1 −d
0 c

)
], 1) if c 6= 0 and πE(γ) = b

da0(E) if c = 0.

There is an isomorphism δ : E2(Γ) −→ Div0(XΓ, cusps,K), where Div0(XΓ, cusps,K) is the group of

degree zero divisors supported on cusps. For all cusps x, let eΓ(x) denote the ramification index of x

over X(1). The Eisenstein series E corresponds to the divisor δ(E) =
∑

x∈Γ\P1(Q)

eΓ(x)a0(E[x]){x}.

3.1. Eisenstein series for Γ0(pq). Consider the series E′2(τ) = −1
24 +

∑
n σ1(n)qn, where σ1(n) denote

the sum of the positive divisors of n. For t ∈ {p, q, pq}, let Et be the Eisenstein series

Et(τ) = E′2(τ)− tE′2(tτ).

Lemma 4. The set Epq = {Ep, Eq, Epq} represents a basis of E2(Γ0(pq)).

Proof. Let N = pq in [[4], Theorem 4.6.2]. �

Lemma 5. The cusps of Γ0(pq) can be identified with the set {0,∞, 1
p ,

1
q}.

Proof. If a
c and a′

c′ are in P1(Q), then Γ0(pq)ac = Γ0(pq)a
′

c′ ⇐⇒

(
ay

c

)
≡

(
a′ + jc′

c′y

)
(mod pq),

for some j and y such that gcd(y, pq) = 1 [4]. A small check shows that the orbits Γ0(pq)0, Γ0(pq)∞,

Γ0(pq) 1
p , Γ0(pq) 1

q are disjoint. �

The congruence subgroup Γ0(pq) has 4 cusps [Lemma 5]. By [[18], p. 538], we see that

eΓ0(pq)(x) =



q if x = 1
p

p if x = 1
q

1 if x =∞

pq if x = 0.

Noting
∑

x∈Cusps{Γ0(pq)}

eΓ0(pq)(x)a0(E[x]) = 0 (δ(E) ∈ Div0(X0(pq),Cusps,K)),

δ(E) = a0(E)({∞} − {0}) + qa0(E[
1

p
])({1

p
} − {0}) + pa0(E[

1

q
])({1

q
} − {0}).

Lemma 6. The constant Fourier coefficients of Ep, Eq and Epq at cusps 0, 1
p , 1

q and ∞ are as follows:

0 1
p

1
q ∞

Ep
1−p
24p

p−1
24

1−p
24p

p−1
24

Eq
1−q
24q

1−q
24q

q−1
24

q−1
24

Epq
1−pq
24pq 0 0 pq−1

24

Proof. We first prove that the constant coefficient for the Fourier expansion of Epq at the cusp 1
p

is 0. As usual, the constant term of the Fourier expansion of Epq at the cusp 1
p is the constant

term at ∞ of Epq[β0]. Similarly, the constant term of the Fourier expansion of Epq at the cusp 1
q is

the constant term at ∞ of Epq[γ0]. Let ∆ be the Ramanujan’s cusp form of weight 12. We write



4 DEBARGHA BANERJEE AND SRILAKSHMI KRISHNAMOORTHY

d
dz log ∆(β(z)) = 12 d

dz log(pz + 1) + d
dz log ∆(z) for β =

(
1 0

p 1

)
. A simple calculation shows that

∆( pqz
pz+1 ) = ∆(

(
q 0

1 1

)
pz) = (pz+1

q )12∆(pz+1
q ). By taking logarithmic derivative, we deduce that

d

dz
log∆

(
q −1

1 0

)
(
pz + 1

q
) = 12

d

dz
log(pz + 1) +

d

dz
log ∆(

pz + 1

q
).

Since Epq(z) = 1
2πi

d
dz log ∆(pqz)

∆(z) , the above calculation shows that the constant term of Epq at the cusp 1
p

is 0. Similarly, the constant term of Epq at the cusp 1
q is 0. The constant term of Epq is pq−1

24 at the cusp

∞ and 1−pq
24pq at 0. For the Eisenstein series Ep ∈ E2(Γ0(p)), 1

p represents the cusp ∞ and 1
q represents

the cusp 0. We deduce that a0(Ep[β0]) = p−1
24 and a0(Ep[γ0]) = 1−p

24p .

For the other Eisenstein series Eq ∈ E2(Γ0(q)), 1
q represents the cusp ∞ and 1

p represents the cusp 0.

We deduce that a0(E1[γ0]) = q−1
24 and a0(E1[β0]) = 1−q

24q . �

4. Modular Symbols

Let T, S and R = ST be the matrices

(
1 1

0 1

)
,

(
0 −1

1 0

)
,

(
0 −1

1 1

)
respectively. Let ζ :

SL2(Z)→ H1(XΓ, cusps,K) be the map that takes the matrix g ∈ SL2(Z) to the class in H1(XΓ, cusps,K)

of the image in XΓ of the geodesic in H ∪ P1(Q) joining g.0 and g.∞.

Theorem 7. • The map ζ is surjective.

• For all g ∈ Γ\SL2(Z), ζ(g) + ζ(gS) = 0 and ζ(g) + ζ(gR) + ζ(gR2) = 0.

Proof. Manin [10]. �

Let ρ = 1+
√
−3

2 and ρ∗ = −ρ̄ be the points on the boundary of the fundamental domain. For all

g ∈ SL2(Z), let {gρ, gρ∗} be the image in XΓ(C) of the geodesic in H joining the points g.ρ and g.ρ∗.

Lemma 8. Let K ⊂ ZΓ\SL2(Z) be the set consisting of all formal sums
∑
g λgg with λg + λgS = 0 and

λg + λgR + λgR2 = 0. The map K → H1(YΓ,Z) given by
∑
g λgg →

∑
g λgg{i, ρ} is an isomorphism.

Every closed path in H1(YΓ,Z) is generated by {gρ, gρ∗}.

Proof. By [ [13], [12]], every element of H1(YΓ,Z) can be written as
∑
g λg{gi, gρ} with λg + λgS = 0.

Since {gi, gρ}+ {gρ∗, gi} = {gρ∗, gρ}, hence the lemma follows. �

5. Eisenstein elements inside the space of modular symbols

Following [15] and [12], we briefly recall the concept of Eisenstein elements of the space of Modular

symbols. Let Γ be a congruence subgroup of SL2(Z). This subgroup acts on the upper half plane H in

the usual way. The quotient space Γ\H is denoted by YΓ. Let XΓ be the compactification of YΓ obtained

by adjoining the set of cusps Γ\P1(Q). Let E2(Γ) be the space of weight 2 Eisenstein series for this

congruence subgroup. Suppose the Fourier coefficients at ∞ of an Eisenstein series E are in a fixed
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number field K. Let πE : H1(YΓ,K)→ K be the “period” homomorphism of E. The intersection pairing

◦ [ [12]] induces a perfect, bilinear pairing of K-vector spaces

H1(XΓ, cusps,K)×H1(YΓ,K)→ K.

Since ◦ is a non-degenerate bilinear pairing, there is a unique element E such that E ◦ c = πE(c). The

modular symbol E is the Eisenstein element corresponding to the Eisenstein series E.

We write down Eisenstein elements for all Eisenstein series w. r. t. the principal congruence subgroup

Γ(N). Recall, we have an isomorphism Γ(N)\SL2(Z) ∼= SL2(Z/NZ). Define a function SL2(Z/NZ)→ K

by

Gv(g) =


1
12 if vg = (0, sN )

− 1
12 if vg = ( rN , 0)

1
2B2( rN ) + E( rN ,

s
N ) Otherwise.

Theorem 9. Let E ∈ E2(Γ(N)) be an Eisenstein series such that the Fourier coefficients at ∞ of E

are in a fixed number field K. If φv is a well-known basis element of E2(Γ(N))(Remark 2), then the

Eisenstein element is completely determined by the function Gv. The error terms E( rN ,
s
N ) are always

bounded by log(N2).

Proof. Let E =
∑
g∈SL2(Z/NZ) FE(g)ζ(g) be an element inside the space of modular symbols corresponding

to the Eisenstein series φv ∈ E2(Γ(N)). Since ζ(g) = −ζ(gS), the functions GE(g) = FE(g)− FE(gS)

determine uniquely an element of the space of modular symbol. Let c ∈ H1(Y (N),Z) be an arbitrary closed

cycle. By Lemma 8, we write c =
∑
g λgg{i, ρ} with λg + λgS = 0 and hence E ◦ c =

∑
g FE(g)λg[ [13],

Cor. 3]. From the consideration of the Fundamental domain [16], we conclude that

g{0,∞} ◦ h{ρ, ρ∗} =


1 if Γg = Γh

−1 if Γg = Γhs

0 otherwise.

If E is the Eisenstein element inside the space of modular symbol corresponding to the Eisenstein series E,

then E ◦ c =
∫
c
Ev2 (z)dz. On the other hand, we conclude that

∫
c
Ev2 (z) =

∑
g
λg

2πi [log gv(gi)− log gv(gρ)].

Since H1(Y (N),Z) is generated by the images of the path of the form g{ρ, ρ∗}, the function Gv(g) :=
1

2πi [log gvg(ρ)− log gvg(ρ
∗)] uniquely determines the Eisenstein element of the modular symbol for all

Eisenstein series φv.

We now compute the values of the functions Gv explicitly for all Eisenstein series φv with v ∈
(Z/NZ)2 − {0}. For all h ∈ Γ(N)\SL2(Z), we compute

Gv(h) = FE(h)− FE(hS) =

∫ hρ

hρ∗
φv(z)dz =

∫ ρ

ρ∗
φv[h](z)dz =

1

2πi
[log gvh(ρ)− log gvh(ρ∗)].

The Siegel unit has a decomposition as a product of the Klein forms tvh and the 12 th root of Ramanujan’s

∆ function. By taking the logarithm, we get an expression log gvh(τ) = log tvh(τ) + 1
12 log ∆(τ).
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Since log ∆(ρ)−log ∆(ρ∗) = 2πi, we conclude that log gvh(ρ)−log gvh(ρ∗) = log tvh(ρ)−log tvh(ρ∗)+ πi
6 .

By the well-known decomposition of the Klein form,

log t( r
N ,

s
N )(τ, 1) = −(

rη1(τ) + sη2(τ)

2N
)(
rτ + s

N
) + log σ(

rτ + s

N
, τ, 1).

Here, η1 and η2 are the quasi-periods attached to the lattice [η, 1]. The above calculation shows,

[log gvg(ρ)− log gvg(ρ
∗)] = −πirt+ E(

r

N
,
s

N
) +

πi

6

for E( rN ,
s
N ) = log σ( rρ+sN , [ρ, 1])− log σ( rρ

∗+s
N , [ρ, 1]) and some number t depending on vg.

If vg = (0, sN ), then log g(0, s
N )(ρ)− log g(0, s

N )(ρ
∗) = πi

6 . Since [ρ, 1] and [ρ∗, 1] generate the same lattice,

there is no contribution from the sigma function. Note that vg = ( rN , 0) if and only if vgS = (0,− r
N )

and hence by [ [6], Prop. 2.1], log g( r
N ,0)(Sρ

∗)− log g( r
N ,0)(Sρ) = log g(0,− r

N )(ρ
∗)− log g(0,− r

N )(ρ) = −πi6 .
In the remaining cases, we use [ [3], Prop. 2.3] to compute the bounds of the error terms as in the

statement. �

Unfortunately, log(N2) is not a very good bound and we loose lot of information by keeping the error

terms. In the next corollary, we improve the error terms.

Corollary 10. If vg 6= (0, rN ) or ( rN , 0), we simplify the function as GE(g) = − s2

2N2 + 1
12 + T ( rN ,

s
N ).

The error term T ( rN ,
s
N ) depends on the theta functions.

Proof. By [ [4], Chap. 4.8], we have η2(Λτ ) = G2(τ) and η1(Λτ ) = τG2(τ) − 2πi. From Tρ∗ = ρ and

the well-known transformation formula for G2[ [4] Ch. 1], we deduce that G2(ρ) = G2(ρ∗). The matrix

ST fixes the root of unity ρ∗. By the same transformation formula, we conclude that G2(ρ∗) = 2πix.

From Theorem 9, [log gvg(ρ)− log gvg(ρ
∗)] = −πirN2 [(x

√
−3− 1)r+ 2sx] +E( rN ,

s
N ) + πi

6 . We calculate the

values of the E( rN ,
s
N ). Following [ [19], p. 473], we write the sigma function in terms of theta functions

as σ(z, [ω1, ω2]) = 2ω1

πν′1
exp(η1z

2

2ω1
)ν1( νz2ω1

, [ω2

ω1
, 1]). By putting u = ρρ∗ = −1, we deduce that

GE(g) =
1

12
− 1

2N2
[(xr2

√
−3− r2) + 2srx− r2(

√
−3x− 1)− 2srx− s2

u
] + T (

r

N
,
s

N
).

By a further obvious simplification, we get the function as in the statement. �

Corollary 11. For any congruence subgroup Γ and any Eisenstein series E ∈ E2(Γ), we can explicitly

determine the Eisenstein elements inside the space of modular symbols.

Proof. Since the Eisenstein series of all levels of weight two can be written as a linear combination of

logarithmic derivatives of gv and the intersection pairing is a non-degenerate bilinear pairing, the Eisenstein

element corresponding to any Eisenstein series is completely determined by the above theorem. For any

congruence subgroup Γ and E ∈ E2(Γ), we define a function HE : SL2(Z)→ C by HE(g) =
∫ ρ∗
ρ
E[g]dz.

By the proof of the above theorem, the Eisenstein elements inside the space of modular symbol are

completely determined by the function HE . �

5.1. Calculation of the error terms. The mathematical software GP/PARI may be used to calculate

the error terms of the Corollary 10. We compute the error term using the command log(theta(x, s)).
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5.2. Remarks about the other expressions of the Eisenstein elements. If Γ = Γ0(p) or Γ =

Γ0(p2), then Eisenstein elements are calculated in [15] and [2]. We note that the expressions of the

Eisenstein elements in these cases are more explicit. We list the expression of the Eisenstein elements in

these cases for the sake of completeness. Let Fp : P1(Z/pZ)→ Z be the function defined as follows:

Fp(x) =


∑p−1
h=0B1(hr2p ) if x = (r − 1, r + 1),

0 if x = (±1, 1).

Theorem 12 ( [15]). If Γ = Γ0(p) and E is a well-known basis element of E2(Γ0(p)), then

E =
∑

g∈P1(Z/p2Z)

Fp(g)ζ(g).

Let Fp2 : P1(Z/p2Z)→ K be the function defined as follows:

Fp2(x) =



1
2πi (2L(E[αr], 1)− L(E[βr], 1)) if x = (r − 1, r + 1),∫∞
0

2(2E[∇k]− E[κk])dz if x = (1 + kp, 1),

−FE((kp+ 1, 1)) if x = (kp− 1, 1),

0 if x = (±1, 1).

Theorem 13 ( [2]). If Γ = Γ0(p2) and E is a well-known basis element of E2(Γ0(p2))( [2]), then

E =
∑

g∈P1(Z/p2Z)

Fp2(g)ζ(g).

In these papers, the strategy was to calculate the Eisenstein elements by intersecting with Γ(2) and

then prove that these are actually the Eisenstein elements by showing they have the same boundary.

Unfortunately, it may be difficult to use the same method for other congruence subgroups. In the present

paper, we calculate the Eisenstein elements without using boundary calculation.

6. Explicit computation of winding elements

We now recall the definition of the winding element. Let {0,∞} denote the projection of the path from 0

to∞ in H∪P1(Q) to X0(N)(C). We have an isomorphism H1(X0(N),Z)⊗R = HomC(H0(X0(N),Ω1),C).

Let eN ∈ H1(X0(N),Z)⊗R corresponds to the homomorphism ω →
∫∞

0
ω. The element eN is called the

winding element. The explicit expression of ep is the key tool in the proof of the Uniform boundedness

theorem [14]. In [2], we explicitly computed ep2 . We may compute the winding elements explicitly for

all congruence subgroups using Theorem 9. In the present paper, we write down the winding elements

explicitly for two important cases, namely for N = pq and N = pr.

6.1. Level product of two distinct odd primes. In this section, we compute the winding element

for the level N = pq product of 2 distinct odd primes. There is a canonical bijection Γ0(pq)\SL2(Z) ∼=

P1(Z/pqZ) given by

(
a b

c d

)
→ (c, d).

Lemma 14. The set T = {I, αk, βl, γm|0 ≤ k ≤ pq − 1, 0 ≤ l ≤ (q − 1), 0 ≤ m ≤ (p − 1)} forms a

complete set of coset representatives of P1(Z/pqZ).
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Proof. The orbits Γ0(pq)αk, Γ0(pq)βl and Γ0(pq)γm are disjoint since ab−1 do not belong to Γ0(pq) for

two distinct matrices a, b from the set T . There are 1+pq+p+q = |P1(Z/pqZ)| coset representatives. �

The following lemma will be useful in the computation of the winding elements.

Lemma 15. We list rational numbers coming from coset representatives as equivalence classes of cusps

as follows:

0 1
p

1
q

−l
lp−1 , (lp− 1, q) = 1 −1

k , (k, p) > 1 −1
k , (k, q) > 1

−m
mq−1 , (mq − 1, p) = 1 −m

mq−1 , (mq − 1, p) > 1 −l
lp−1 , (lp− 1, q) > 1

.

Proof. Follows from a careful analysis using Lemma 5. �

We have a short exact sequence,

0→ H1(X0(N),Z)→ H1(X0(N), cusps,Z)→ H̃0(cusps)→ 0.

The first map is a canonical injection. The second map (boundary map) δ takes a geodesic, joining the

cusps r and s to the formal symbol [r]− [s] and the third map is the sum of the coefficients.

The following proposition presents a sharp difference between the level N = p2 and N = pq. If the

level is N = pq, then to find the winding element we need to use Eisenstein elements corresponding to all

three Eisenstein series of the well-known basis. If the level is p2, then the winding element is determined

by exactly one Eisenstein series. This proposition is an explicit version of the Manin-Drinfeld theorem

for the congruence subgroup Γ0(pq) with p and q distinct odd primes.

Proposition 16. If N = pq, the winding element is determined by the Eisenstein elements corresponding

to all 3 Eisenstein series of the basis Epq.

Proof. Since the map ζ : SL2(Z)→ H1(X0(pq), cusps,Z) is surjective, we write the Eisenstein element

corresponding to E ∈ E2(Γ0(pq)) as E =
∑
g∈Γ0(pq)\SL2(Z) FE(g)ζ(g) for some FE : P1(Z/pqZ)→ Q.

E =
∑

g∈P1(Z/pqZ)

FE(g){g.0, g.∞} = FE(0, 1){0 ,∞}+ FE(1, 0){∞, 0}+
∑
xa∈V

FE(xa){0, 1

a
}

+

p−1∑
k=1

FE(1, kq){−1

kq
, 0}+

q−1∑
k=1

FE(1, kp){−1

kp
, 0}

+

q−1∑
l=0

FE(p, lp− 1){ −l
lp− 1

,
−1

p
}+

p−1∑
m=0

FE(q,mq − 1){ −m
mq − 1

,
−1

q
}.

By Lemma 15, there exists exactly one r such that 1 ≤ r ≤ (q− 1), rp− 1 is a multiple of q, and there

exists exactly one j such that 1 ≤ j ≤ (p− 1), jq − 1 is a multiple of p. By Corollary 11, the Eisenstein

element is determined by numbers FE(h) − FE(hs) =
∫ hρ∗
hρ

E(z)dz. Hence [FE(0, 1) − FE(1, 0)] =

−
∫ Tρ∗
ρ∗

E(z)dz = −a0(E). Using the lemma 15,

E = −a0(E){0,∞}+
∑
xa∈V

FE(xa){0, 1

a
}+

p−1∑
k=1

FE(1, kq){1

q
, 0}+

q−1∑
k=1

FE(1, kp){1

p
, 0}+
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+

q−1∑
l=0,l 6=r

FE(p, lp− 1){0, 1

p
}+

p−1∑
m=0,m 6=j

FE(q,mq− 1){0, 1

q
}+FE(p, rp− 1){1

q
,

1

p
}+FE(q, jq− 1){1

p
,

1

q
}.

Simplifying further, E = −a0(E){0,∞} + A(E){0, 1
p}+B(E){0, 1

q} +
∑
xa∈V FE(xa){0, 1

a}, where

A(E) =

q−1∑
l=0

FE(p, lp− 1)−
q−1∑
k=1

FE(1, kp)− FE(q, jq − 1),

B(E) =

p−1∑
m=0

FE(q, lq − 1)−
q−1∑
k=1

FE(1, kq)− FE(p, rp− 1).

Note that for 0 ≤ l ≤ (q − 1) and l 6= r, there are integers k and a such that k(lp − 1) + aq = 1 with

Γ0(pq)βlS = αkp. A simple calculation shows that Γ0(pq)γjS = βr. Similarly for 0 ≤ m ≤ (p− 1) with

m 6= j, we have Γ0(pq)γm = αtq. Here, t and b are some integers satisfying t(mq − 1) + bp = 1. We also

see that Γ0(pq)γjS = βr. Thus, A(E) =
∑q−1
l=0 [FE(βl)− FE(βl.s)], B(E) =

∑p−1
m=0[FE(γm)− FE(γm.s)].

For t ∈ {p, q, pq}, let ∆t(z) = ∆(tz)
∆(z) be the modular units on Y0(pq). We deduce that,

A(E) =

q−1∑
l=0

∫ βlρ
∗

βlρ

E(z)dz =

q−1∑
l=0

∫ βlρ
∗

βlTρ∗

1

2πi

d

dz
log ∆t(z)dz =

q−1∑
l=0

1

2πi
[log ∆t(βlρ

∗)− log ∆t(βlTρ
∗)].

Note that for all 0 ≤ l < (q − 1), βlT = βl+1 and βq−1T = γβ0 for γ =

(
1 + pq q

−qp2 1− qp

)
. Hence,

we prove that A(E) = πE(γ). Similarly, we prove B(E) = πE(γ0) for γ0 =

(
1 + pq p

−q2p 1− qp

)
. The

Eisenstein element is given by E = −a0(E){0,∞}+ A(E){0, 1
p}+ B(E){0, 1

q}+
∑
xa∈V FE(xa){0, 1

a}.
Since

∫
E ω = 0 for all holomorphic differentials ω, the winding element is determined by the above three

equations in three unknowns corresponding to 3 Eisenstein series in Epq. If the determinant of the matrix −a0(Ep) πEp
(γ) πEp

(γ0)

−a0(Eq) πEq
(γ) πEq

(γ0)

−a0(Epq) πEpq
(γ) πEpq

(γ0)


is non-zero, then we explicitly write down the winding element in H1(X0(pq),R). �

We have an inclusion Γ0(pq) ⊂ Γ0(p), which induces a map between Riemann surfaces π : Y0(pq)→
Y0(p). We have induced maps π∗ : H1(X0(pq), cusps,Z)→ H1(X0(p), cusps,Z) and

π∗ : H1(X0(p), cusps,Z)→ H1(X0(pq), cusps,Z)

induced by the isomorphism H1(XΓ, cusps,Z) ∼= H1(YΓ,Z). Now, by the general property of the Riemann

surface π∗ ◦ π∗ = deg(π). Let E(p) be the Eisenstein element in H1(X0(p), cusps,Z) obtained from the

differential form Ep(z)dz on Y0(p) and E(pq) be the Eisenstein element in H1(X0(pq), cusps,Z) obtained

from the same differential form Ep(z)dz on the Riemann surface Y0(pq).

Lemma 17. If E = Ep, then E(pq) = 1
degππ

∗(E(p)).
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Proof. Let c ∈ H1(Y0(pq),Z), then we have π∗(E(p)) ◦ c = π∗π
∗(E(p) ◦ π∗(c) = deg(π)E(p) ◦ π∗(c) =

deg(π)
∫
π∗(c)

Ep(z)dz The second equality follows from [5], p. 198. But then deg(π)
∫
π∗(c)

Ep(z)dz =∫
c
π∗(E

(p)
1 dz) = E(pq) ◦ c. By the uniqueness of the Eisenstein elements, we have, E(pq) = 1

deg(π)π
∗(E(p)).

�

The following proposition presents a sharp difference between the Eisenstein elements for level N = p2

and level N = pq.

Proposition 18. For E ∈ Epq, the boundary of the Eisenstein element inside the space of modular

symbols is not a constant multiple of the boundary of E.

Proof. For E ∈ E2(Γ0(pq)), the boundary of E is

δ(E) = a0(E)({∞} − {0}) + qa0(E[
1

p
])({1

p
} − {0}) + pa0(E[

1

q
])({1

q
} − {0}).

From Lemma 6, we deduce that δ(Ep) = p−1
24 [{∞} − {0} + q{ 1

p} − {
1
q}], δ(Eq) = q−1

24 [{∞} − {0} −
{ 1
p} + p{ 1

q}], and δ(Epq) = pq−1
24 [{∞} − {0}]. We now calculate the boundary of the corresponding

Eisenstein elements inside the space of modular symbols. From Proposition 16, the Eisenstein element

corresponding to an Eisenstein series is always given by E = −a0(E){0,∞}+A(E){0, 1
p}+B(E){0, 1

q}+∑
xa∈V FE(xa){0, 1

a}. Clearly, if E ∈ Epq then the boundary of the Eisenstein elements are not constant

multiples of the boundary of the corresponding Eisenstein series. �

6.2. Level power of an odd prime.

Lemma 19. The set T = {I, αt, κkps |0 ≤ t ≤ pr − 1, 1 ≤ s ≤ (r − 1), 1 ≤ k ≤ (p− 1)} forms a complete

set of coset representatives of P1(Z/prZ).

Proof. The orbits Γ0(pr)αt and Γ0(pr)κkps are disjoint since the matrices αtα
−1
t′ , κkpsκ

−1
k′ps′

and αtκ
−1
kps

do not belong to Γ0(pr). There are pr +pr−1− 1 + 1 = pr +pr−1 = |P1(Z/prZ)| coset representatives. �

Lemma 20. The cusps of Γ0(pr) can be identified with the set {0,∞, 1
kp , ........,

1
lpr−1 |1 ≤ k ≤ p−1, .., 1 ≤

l ≤ (p− 1)}.

Proof. Let P = {

(
1 n

0 1

)
, n ∈ Z} be the parabolic subgroup inside the modular group SL2(Z).

There is a well known bijection between the set of cusps Γ0(pr)\P1(Q) and the double coset space

Γ0(pr)\SL2(Z)/P . The statement is obvious from the previous lemma and this bijection. �

Proposition 21. The winding element for N = pr is determined by the Eisenstein elements corresponding

to r Eisenstein series in the basis E2(Γ0(pr)) with non-zero constant Fourier co-efficients at ∞.

Proof. We consider the basis of E2(Γ0(pr)) as in [[4], Theorem 4.6.2]. There are r Eisenstein series with

non-zero constant Fourier co-efficients at∞. Since the map ζ : SL2(Z)→ H1(X0(pr), cusps,Z) is surjective,

we write the Eisenstein element corresponding to E ∈ E2(Γ0(pr)) as E =
∑
g∈Γ0(pr)\SL2(Z) FE(g)ζ(g) for

some FE : P1(Z/prZ)→ K. By Lemma 19, we have

E =
∑

g∈P1(Z/prZ)

FE(g){g.0, g.∞} = FE(0, 1){0 ,∞}+ FE(1, 0){∞, 0}+
∑
xa∈V

FE(xa){0, 1

a
}
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+

p−1∑
k=1

FE(1, kp){0, −1

kp
}+

p−1∑
l=1

FE(1, lpr−1){0, −1

lpr−1
}..+

p−1∑
k=1

FE(kp, 1){ 1

kp
, 0}+

p−1∑
l=1

FE(lpr−1, 1){ 1

lpr−1
, 0}.

By Corollary 11, the Eisenstein element is determined by the numbers FE(h)− FE(hS) =
∫ hρ∗
hρ

E(z)dz.

Hence, we have [FE(0, 1)− FE(1, 0)] = −
∫ Tρ∗
ρ∗

E(z)dz = −a0(E). Finally, we deduce that

E = −a0(E){0,∞}+
∑
xa∈V

FE(xa){0, 1

a
}+

p−1∑
k=1

[FE(kp, 1)− FE(1,−kp)]{ 1

kp
, 0}

...+

p−1∑
l=1

[FE(lpr−1, 1)− FE(1,−lpr−1)]{ 1

lpr−1
, 0}.

Since
∫
E ω = 0 for all holomorphic differentials ω, we get r equations in ε∞(pr)− 1 > r variables with

the right hand sides entries in H1(X0(pr),Q). The solutions give explicit expressions of the winding

elements inside the space of modular symbols for N = pr. �

7. Cuspidal and Shimura subgroups

We recall that the natural map X1(N) → X0(N), induces by functoriality a map between the

corresponding Jacobian groups. The Shimura subgroup is the kernel of the above map. The order X of

the Shimura subgroups are being calculated in [9]. We calculate the order Y of the divisor (0) − (∞)

from [8]. We summarize the orders in the following table:

N X Y

p n n

p2 n p2−1
24

pr, r ≥ 3 pr−1−[ r2 ]n pr−1a.b

pq, p 6= q (p−1)(q−1)
2r

(p2−1)(q2−1)
m

.

If N = p the Mazur invariant is completely understood by the fundamental work of Merel using the

explicit expression of the winding element for N = p. From the above table, X - Y for non-prime level in

general. If X | Y , then it makes sense to talk about the Mazur invariant. We expect that the explicit

expression of the winding element will help us to define an analogue of the Mazur invariant and hence a

necessary and sufficient condition of monogenity of the completed Hecke algebra at the Eisenstein ideal.

Mazur invariant can be written in terms of the winding element for the general level also if X | Y [ [15],

Prop. 12].
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modular forms, & Fermat’s last theorem (Hong Kong, 1993), Ser. Number Theory, I, 110–130, Int.

Press, Cambridge, MA (1995).

[14] ———, Bornes pour la torsion des courbes elliptiques sur les corps de nombres, Invent. Math. 124

(1996), no. 1-3, 437–449.

[15] ———, L’accouplement de Weil entre le sous-groupe de Shimura et le sous-groupe cuspidal de J0(p),

J. Reine Angew. Math. 477 (1996) 71–115.

[16] M. Rebolledo, Module supersingulier et homologie des courbes modulaires, J. Number Theory 121

(2006), no. 2, 234–264.

[17] G. Stevens, Arithmetic on modular curves, Vol. 20 of Progress in Mathematics, Birkhäuser Boston
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