HIGHER ALGEBRAIC K-THEORY FOR TWISTED
LAURENT SERIES RINGS OVER ORDERS AND
SEMISIMPLE ALGEBRAS

ADEREMI KUKU

ABSTRACT. Let R be the ring of integers in a number field F', A any R-
order in a semisimple F-algebra ¥, a an R-automorphism of A. Denote
the extension of « to X also by a. Let Aq[T] (resp. Xa be the a-twisted
Laurent series ring over A (resp. X). In this paper we prove that
(i) There exist isomorphisms Q ® Kn(Aa[T]) ~ Q ® Gn(Aa[T]) =~
Q ® Kn(X4[T]) for all n > 1.
(i) G (Aa[T], Z1) ~ Gn(Aa[T), Z1) is an l-complete profinite Abelian
group for all n > 2.
(i) div G2 (Aa[T], Z1) = 0 for all n > 2.
(iv) Gn(Aa[T]) — GE(Aa[T), Z:) is injective with uniquely I-divisible
cokernel (for all n > 2).
(v) K-1(A), K_1(Aa[T]) are finitelz generated Abelian groups.
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e
B = O

Let R be the ring of integers in a number field F'. The initial motivation for

group T = (t) on G is given by a(g) = tgt ! for all g € G.
1

this work was a desire to obtain results on higher K-theory of the groupring
RV of virtually infinite cyclic group of the form V = G x, T, where GG is a
finite group, a an automorphism of G and the action of the infinite cyclic
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Note that undestading K-theory of RV is fundamental to Farrel-Jones
conjecture which asserts that K-theory an arbitrary discrete group H should
have as “building blocks” the K-theory of virtually cyclic subgroups of H
(see [8]). A group V is virtually cyclic if it is either finite or virtually
infinite cyclic (i.e., contains a finite index subgroup that is infinite cyclic).
For results on higher K-theory of grouprings of finite groups see [15, chapter
7] and associated references. There are two types of virtually infinite cyclic
groups — one type of the form V = G x, T as described above and the
other of the form V = Gy *g G1, where the groups Gg, G1, H are finite
and [Go : H| =[Gy : H] = 2. For some results on higher K-theory of both
types of groups see [15, 7.5] or [16]. In this paper, we obtain results on
higher K-theory of twisted Laurent series ring that translate into results on
grouprings RV, V = G x, T, as we now explain.

If « is an automorphism of a finite group G, we also denote by « the
automorphism induced on RG by « and observe that for V. = G, x T,
RV = (RG)4[T] = (RG)4a[t,t71] is the a-twisted Laurent series ring over
the groupring RG. Now, RG is an R-order in the semi-simple F-algebra
FG and so, we endeavour in this paper to obtain general results on higher
K-theory of Ay(T) where A is an arbitrary R-order in a semi-simple F-
algebra ¥ so that results on (RG),[T"] become examples and applications of
our results.

Note also that an R-automorphism of A extends to an F-automorphism
of ¥ which we also denote by a. We also study higher K-theory of X,[T]
and prove in 1.1.2(b) that there exist isomorphisms

Q& Kn(Aa[T]) ~ Q® Gn(Ao[T]) ~ Q@ Kn(Ea[T1)

for all n > 2. Hence Q @ K,(RV) ~ Q ® G,(RV) ~ Q ® K,(FV) for all
n > 2. Since we have shown in 1.1.2(a) that G,,(A4[T]) is finitely generated
Abelian group for all n > 1, it follows that K,,(An[T]), K, (24[T]) and hence
K,(RV), K,,(FV) have finite torsion-free ranks for all n > 2.

We next investigate under what conditions G,,(A4[T]) could actually be
a finite group and show in 1.2.1 that when F' is a totally real number field
with ring of integers R and A any R-order in a semi-simple F-algebra, then
Go(m1)(Aa[T1]) is finite for all odd m > 1. Hence Goy,q1)(RV) is finite.

In section 2, we study profinite higher K-theory of A,[T] and prove that
GV (AQ[T), Z;) = Gn(A[T],Z;) are I-complete profinite Abelian groups;
div GY (Ao [T],Z;) = 0; and that the map G, (A4[T]) — G (Au[T],7Z))
is injective with uniquely [-divisible cokernel. Corresponding results follow
when we replace A,[T] by RV.

In a final section, we prove that if F' is an algebraic number field with ring
of integers R and A any R-order in a semi-simple F-algebra 3, then K _1(A)
and K_1(A4[T]) are finitely generated Abelian groups; NK_1(A, ) = 0 and
K_1(Aft]) ~ K_1(A). That K_1(A) and K_1(A,[T]) are finitely generated
for arbitrary R-orders A generalize respectively similar results by D. Carter
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for K_1(RG) (G a finite group, see [4]) and by Farrell/Jones for K_;1(ZV)
(see [9]).

Notes on notation. If « is an automorphism of a ring A, we shall write
A[T) = Auft,t7 Y] for the a-twisted Laurent series ring over A. Note that
additively A,[T] = Aq[t,t!] with multiplication given by (at?) - (bt/) =
a1 (b))t for a,b € A. Aut] (resp. Au[t7!]) is the subring of A,[T]
generated by A and ¢ (resp. A and ¢t 1). Call A,[t] the a-twisted polynomial
ring over A. We also have inclusion maps i : A — A,[T], it : A — A,lt]
and i~ : A — Au[t71].

The augmentation map € : A,[t] — A induces a group homomorphism
gv t Kp(Aqlt]) — Kn(A) and we put NK,, (A, ) := kere,. Since ¢ is split
by iT, we have K, (A,[t]) ~ K,(A) & NK, (4, a).

If B is an additive Abelian group and m is a positive integer, we shall
write B/m for B/mB and B[m]| for the set of elements x of B such that
mx = 0. We write div B for the subgroup of divisible elements fo B. If [ is
a rational prime, we write B for the [-primary subgroup of B. Note that
By = B[I°] = lim B[I"].

Acknowledgements. Part of the work reported in this article was done
while I was visiting University of Bielefeld, Germany and IHES, Paris. It
was concluded and written up while I was visiting Max-Planck-Institut fiir
Mathematik, Bonn, Germany. I like to thank the three institutions for
hospitality and financial support.

1. HIGHER K-THEORY OF A,[T], ¥,[T] (A ARBITRARY ORDERS)
1.1. K (AQ[T))y Gu(AQ[T))y Kn(Ea[T)).

1.1.1. Let R be the ring of integers in a number field F'; A any R-orders
in a semi-simple F-algebra Y, o an R-automorphism of A. Then « can be
extended to an F-automorphism of ¥ (since ¥ = A ® g F'). The aim of this
section is to prove the following theorem.

1.1.2. Theorem. Let F be an algebraic number field with ring of integers
R, A any R-order in a semi-aimple F-algebra 3, a an R-automorphism of
A. Denote the extension of a to ¥ also by . Let Ay [T (resp. Xo[T]) be
the a-twisted Laurent series ring over A (resp. ¥). Then we have

(a) Gn(Ao[T)) is a finitely generated Abelian group for alln > 1.
(b) There exist isomorphisms:
Q& Kn(Aa[T]) ~ Q& Gn(Aa[T]) ~ Q@ Kn(3a[T])
forn > 2.

Before proving 1.1.2 we state the following consequence of the result.

1.1.3. Corollary. Let V = G %, T be the virtually infinite cyclic subgroup
where G is a finite group, o € Aut(G) and the action of T on G is given by
a(g) =tgt~'. for all g € G. Then,
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(a) Gn(RV) is a finitely generated Abelian group for aln > 1.
(b) Q® K,,(RV) ~Q® G,(RV) ~Q® K,(FV) for alln > 2.

The proof of 1.1.2(b) will proceed in several steps (see theorems 1.1.5,
1.1.6, 1.1.7 below). However, we first recall the following result (1.1.4).

1.1.4. Theorem ([15, theorem 7.3.2] or [16]). Let R be the ring of integers
in a number field ', A any R-order in a semi-simple F-algebra 3. If a: A
— A is an R-automorphism, then there exists an R-order I' C X, such that

(1) ACT,

(2) T is a-invariant.

(3) T is (right) regular ring. In fact T is (right) hereditary.

1.1.5. Theorem. Let R be the ring of integers in a number field F', A any
R-order in a semi-simple F-algebra, o : A — A and R-automorphism of
A, T an a-invariant order containing A as in 1.1.4, Ay [T] (resp. T4[T])
the a-twisted Laurent series ring over A (resp. T'). ¢ : Ay[T] — T [T] the
map induced by the inclusion A — I'. Then the induced homomorphisms
on @ Kn(AQ[T]) — K, (Lo[T]) has torsion kernel and cokernel. Hence for
all n > 2 we have Q ® K, (Ay[T]) ~ Q ® K, (To[T])-

Proof. There exists a positive integer s such that sI" C A (see [19] or [15]).
Put ¢ = sT'. Then ¢ is an ideal of I" and A. Put B = A/q, B’ =T'/q. Then

we have cartesian squares
A—— T

| | (1)
B —— B

and
AJT] —— T, [T]

I o

B.[T] —— B.L[T).
So, by [5] and [19], we have a long exact sequence

o K (BLITN (L) — Kn(A[I](E) —

S S

Kn(Ta[T))(5) & Kn(BalT))(5) — Kn(BL[T)(5) — -+ (M)

s

Now, I, B, B’ are quasi-regular rings, so are I'y[T], B,[T| and B, [T] (see
[9]). If we write A for B,[T] or B, [T], JA for the Jacobson’s radical of A,
then by [19] K, (A, JA) is s-torsion since s annihilates A and so from the
relative sequence

-— K, (A, JA) — K, (A) — K,(A)J) — -

we have K,(A)(}) ~ K,(A4/JA)(%). We now claim that K,(A)(L) ~
K, (A/JA)(L) is torsion.
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Proof of claim. Note that A/JA ~ (A'/JA")4[T] is a regular ring (see [9])
where A’/JA’ is a finite semi-simple ring which is a finite direct product of
matrix algebras over finite fields. Hence K, ((A’/JA")4[T]) is a finite direct
sum of K-groups of the form K, ((F;)a[T]) where F; is a finite field. Also,
(Fi)al[T] is a regular ring and so K, ((F;)a[T]) ~ Gn((Fi)alT]).

Now, for each Fj, we have by [15, theorem 7.5.3(iii)] or [16], that there
exists a long exact sequence

= Gu(F;) — Gu(F;) — Gn((FZ)a[T]) -
Gn1(F) — Gnoa(Fi) — -+ (IV)

where each G,,(F;) ~ K, (F;) is a finite Abelian group for n > 2 — by [15,
theorem 7.1.12] or by Quillen’s result. So, from (IV) above, G, ((F;)a[T])
is finite for all n > 2, i.e. K,((F})alT]) =~ Gn((F;)a[T]) is a finite Abelian
group. Hence (K,,(A'/JA")4[T]), as a finite direct sum of Abelian groups of
the form K, (F})q[T] is a finite group. Hence K, ((4'/JA")[T])() is torsion.
So, for A = B,(T) or BL[T|, K,(A)(}) ~ K,((4/JA)(L)) is torsion and
Q® Kn(A)(%) = 0.

So, by tensoring the Mayer-Vietoris exact sequence (III) with Q we get
an isomorphism

Q® K, (A[T]) ~ Q® K, (T'a[T7])
for all n > 2. O

1.1.6. Theorem. Let R, F, A, a; T, Ay[T], To[T] be as in 1.1.5. Let
on : Gp(Ta[T]) — Gn(Aa[T]) be the homomorphism induced by the exact
functor M(To[T]) — M(AL[T]) given by ‘restriction of scalars’. Then for
all n > 2, ¢, has fnite kernel and torsion cokernel and hence induces an
isomorphism

Q® Gn(l'a[T]) ~ Q& Gn(Au[T])

Proof. First note that the exact functor M(I') — M (A) given by ‘restriction
of scalars’ yields group homomorphisms d,, : G,(I') — G,(A). Now, by
replacing the macimal order I' in the proof of [15, theorem 7.2.3, p. 146]
or [16] with the a-invariant order I' containing A, as in 1.1.4, we have that
for all n > 1, 6, : Gp(I') — G,(A) has finite kernel and cokernel. The
proof in [15, theorem 7.2.3] works for this I' also. Now from [15, theorem
7.5.3(b)] or [16], we have the following horizontal exact sequence and hence
a commutative diagram

l—«

Ga(T) =25 Gu(T) —— Gu(Ta[T]) —— Gpot(T) —25 Guoy(D)

L

Gu(A) =25 Gp(A) —— Gu(AalT]) —— Gpo1(A) =25 Guoi(A)
(V)
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By taking kernels and cokernels of vertical arrows in (V), we have a top
(resp. bottom) horizontal exact sequence consisting of kernels (resp. coker-
nels) of the vertical maps. Since we saw above that §,, has finite kernels and
cokernels, we then have that ¢, : G, (I'4[T]) — G, (A,[T]) has finite kernel
and cokernel for each n > 2. Hence Q ® G,,(I'o[T]) ~ Q ® G, (A [T]). But
I'o[T] is regular. Hence

Q& Kn(I'a[T]) ~ Q® Gr(Aa[T)).
(]

1.1.7. Theorem. Let R, F, ¥, A, a, T be as in theorem 1.1.2. Then for
all n > 2, the map 0,, : Gp(Ao[T]) — Gn(Ba[T]) =~ Kn(Ea[T]) indiced by
the canonical map Ao [T] — X4[T] has finite kernel and torsion cokernel.
Hence

Q®Gr(Au[T]) ~Q® Gp(Ea[T]) ~ Q@ K, (X4[T)).

Proof. Note that the canonical (inclusion) map A 2,5 induces a group
homomorphism p,, : G,(A) — G, (X) ~ K,(X) (note that G,,(¥) ~ K, (¥)
since ¥ is regular).

Now, by [15, theorem 7.5.3(b)] or [16], we have the following horizontal
exact sequences and hence a commutative diagram

Cn(A) =% Gp(A) —— Gu(Aa[T]) —— Gno1(A) —— Gaoi(A)

[ e

Gn(Z) =5 Gp(Z) —— Gu(ZalT]) —— Gna (D) —— Gna(%)
(VD)
Now, from the commutative diagram
Gn(A) —L G (2) ~ K, (D)
K, (T) (VID)

we have
0 — kerd,, — ker 8,, — ker p,, — coker §,, — coker 3,, — coker p,, — 0

Now, by the proof of 1.1.6, kerd, and cokerd, are finite. Also by [15,
theorem 7.2.2] or [12], ker 3, is finite and coker /3, is torsion for all n > 2.
Hence from fiagram (VII) above, ker p,, is finite and coker p,, is torsion for
all n > 2. It then follows from the diagram (VI) above that ker @, is finite
and coker 0,, is torsion. O

Proof of 1.1.2. (a) From [15, theorem 7.5.3(b)] or [16], we have an exact
sequence

Gr(A) =25 G (A) — Gn(Aa[T]) — G(A) =25 G (A)
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Also by [15, theorem 7.1.13] or [10] G, (A) is a finitely generated Abelian
group for all n > 1. Hence G,,(Ay[T]) is finitely generated for all n > 2.
(b) That Q ® K, (Ax[T]) ~ Q ® Gy (Ay[T]) follow from theorem 1.1.4 i.e.
Q@ Kp(AL[T]) ~ Q® K, (Ty[T]) and 1.1.5 ie. Q@ G,(Au[T]) ~ Q®
Ko(ZalT). 0

1.1.8. Remarks. Since by 1.1.2(a), G, (A4[T]) is finitely generated Abelian
group for all n > 2, it follows that K, (Ay[T]) and K, (X,[T]) have finite
torsion free rank just like G, (Ay[T]).

Hence if V = G x4 T is a vistually infinite cyclic group, then K, (RV),
K, (FV) have finite torsion-free rank for n > 2.

1.2. Finiteness of Gg(m41)(Aa[T]). In this subsection, we investigate
under what circumstances Gy, (Ay[T]) could actually be a finite group. We
prove below (see theorem 1.2.1) that if F' is a totally real field, then the
group Gao(m41)(Aa[T]) is finite for all odd positive integers m. We state this
formally:

1.2.1. Theorem. Let R be the ring of integers in a totally real number
field F', A an R-order in a semi-simple F-algebra, o : A — A and R-
automorsphim. Then for all odd positive integers m, Gomy1)(Aa[T]) is a
finite group. Hence in the notation of 1.1.2, Go(mq1)(RV) is finite.

The proof of 1.2.1 will make use of the following:

1.2.2. Theorem. Let F' be a number field with ring of integers R, A and
R-order in a semi-simple F-algebra ¥. Then (a) For alln > 1, Ga,(A) is a
finite group. (b) If F is totally real, then Gopm+1(A) is also finite for all odd
m > 1.

Proof. Part (a) is proved in [15] and [14]. See [15, theorem 7.2.7].

If F' is a totally real number field with ring of integers O, a similar proof
works. We only have to show that Ka,,11(I") is finite if I" is a maximal order
in a central division algebra D over a totally real number field F' with ring
of integer Op. Let the dimension of D over F be s2. We know from [15,
theorem 7.1.11] or [11] that Koy,41(I") is finitely generated. We only need
to show that Ko,,11(T") is torsion. Let tr : Ko,11(T') — Kopmt1(OF) be
the tranfer map and i : Ko, 11(Op) — Koy41(I") the map induced by the
inclusion map Op — I'. Let # € Kopy1(T). Then io tr(z) = z*°. But
Koy, 41(T) is finite since it is also finitely generated. O

Proof of 1.2.1. Assume that m is an odd positive integer. The we have an
exact sequence

- — Gomya(N) =22 Gopya(A) LN Gomia(Aa[T]) L Gomir1(A) — - --

where Gap12(A) is finite by 1.2.2(a) and Gap,+1(A) is finite by 1.2.2(b). So
Gom+t2(Ao[T])/Im B ~ Im .
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But Im 3 is finite and Im~y is also finite as a subgroup of the finite group
Gam+1(A). Note that Im 3 is finite as a homomorphic image of the finite
group Gomi2(A). Hence Gopy2(Ay[T]) is finite for all odd positive integers
m. [l

2. MOD-/* AND PROFINITE HIGHER K-THEORY OF A, (7))
2.1. Mod-/® theory.

2.1.1. Let C be an exact category, [ a rational prime, s a positive integer,
M;ZH the (n + 1)-dimensional mod-I®-space, i.e. the space obtained from
S™ by attaching and (n + 1)-cell via a map of degree [* (see [3], [17], [15]).

If X is an H-space, let [M, ZZH, X] be the set of homotopy classes of maps
from M**! to X.We shall write m,11(X,Z/1°) for [M"™', X]. If C is an
exact category and we put X = BQC, we write K,,(C,Z/1?) for m,+1(BQC),
we write K,,(C,Z/1°) for mp4+1(C,Z/1°) and KoC,Z/1® for Ko(C) @ Z/1°. We
shall refer to K,,(C,Z/1°) as mod-l* K-theory of C.

2.1.2. From [15, 8.1.2] or [13], we have an exact sequence

K (C) L5 K (C) 2 Ko (C,2/1°) 25 Kyt (C) — K1 (C)

and hence a short exact sequence for all n > 2
0— K,(C)/I° — K,(C,Z)l°) — K,(C)[I°’] — 0
where K,,(C)[l*] = {z € K,,(C) | I*z = 0}.

2.1.3. Examples.

(i) Let A be a ring with identity and P(A) the category of finitely gener-
ated projective A-modules. We write K,,(A,Z/1®) for K,(P(A),Z/1®).
We are interested in A = A,(T). Note that K, (A,Z/l°) is also
mn(BGL(A)T,Z]1°).

(ii) Let A be a Noetherian ring and M(A) the category of finitely gen-
erated A-modules. We write G, (A4,Z/1°) for K,,(A,Z/1®).

(iii) Let Y be a scheme, C = P(Y") the category of locally free sheaves of
Ox-modules of finite rank. We write K, (X, Z/1*) for K,,(P(Y),Z/1?)
and observe that for Y = Spec(A), A a commutative ring, we recover
K, (A,Z/1%) as in (i).

(iv) Let Y be a Noetherian scheme and M(Y") the category of coherent
sheaves of Oy-modules. We write G, (Y,Z/1?) for K,,(M(Y"),Z/1°)
and when Y = Spec(A), where A is commutative, then we recover
Gn(A,Z/l®) as in (ii) above.

(v) It follows from 2.1.2 that we have exact sequences

0 — Kp(Au[T))/1P — Kn(Aa[T],Z)1°) — Kp(Aa[T))[I°] — 0
and

0 — Gn(Aa[T)) /I — Gr(A[T), Z/1°) — Gr(Aa[TD[*] — 0
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2.2. Profinite higher K-theory.

2.2.1. Let C be an exact category, [ a rational prime, s a positive integer
Mﬁoﬂ = liLnMﬁH. We define the profinite K-theory of C by K4 (C, Zl) =
(M3, BQC). We write K, (C,Zy) for lim K, (C,Z/1°).

For more details on these constructions and their properties, see [15, chap-
ter 8] or [13].

2.2.2. Examples.

(i) For C = P(A) asin 2.1.3(i), we shall write K5' (A, Z;) for K" (P(A), Z;)

and K,,(A,7;) for K,(P(A),Z).

(ii) For C = M(A) as in 2.1.3(ii), we shall write G5 (4, Z;) for KE"(M(A), Z;)
and G, (A,Z;) for K,(M(A),Z;).

(iii) For C = P(Y) as in 2.1.3(iii) we shall write K2 (Y, Z;) for KE*(P(Y), Z;)
and K,,(Y,Z;) for K,(P(Y),Z;).

(iv) For C = M(Y) as in 2.1.3(iv), we shall write G5 (Y, Z;) for KX (Y, Z;)
and Gy, (Y, Zy) = K, (M(Y), Zy).

2.2.3. Remarks. From the results earlier obtained by this author for general
exact categories, (see [15, chapter 8] or [13]) we can already deduce the
following for P(A4[T]) and M(A4[T]).

(i) From [15, lemma 8.2.1], we have the following exact sequences for

n > 1.
(@) 0— lim'K, 11 (A[T),Z/1°) — KB (Ma[T), Z1) — Kn(Aa[T), Z/1) —
(b) 0 — lim'Gpi1(AL[T), Z/1°) — GB (A[T), Zi) — Gn(AalT), Z/1) — 0.

S

(ii) From [15, theorem 8.2.2] we have for all n > 2,

(a) lm KB (AQ[T), Z)[I°] = 0y lim' K1 (Aa[T], Z/1°)= div K¥" (Aa[T], Zy);

() Hm G (ALT] 2007 = 05 lim' Gt (A[T], Z/17) = div G ([T, Z).

S S

(iii) Form [15, lemma 8.2.2] or [13], we have

(a) lim KR'(AQ[T), Z4)/1° ~ Kn(Aa[T], Zy);

S

() lim GE(Aa[T], Z0)/1° = Gr(AalT), Z2).

S

2.3. Some computations.
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2.3.1. The aim of this subsection is to prove theorem 3.3.2 below. Before
stating the result, we first explain the construction of map ¢ in 2.3.2(c)
below.

Note that for any exact category C, the natural map M;ZOH —
induces a map

[S"*1, BQC) - (M, BQC), e,
Ko (C) =2 KP'(C, 7).
So when C = M(A,[T]) we have a map
¢ : Gn(Ay[T]) — GO (AT, Zy).

2.3.2. Theorem. Let R be the ring of integers in anumber field F, A any
R-order in a semi-simple F-algebra ¥, o : A — A an R-automorphism of
A, A, [T] the a-twisted Laurent series ring over A. Then, for alln > 2:

(a) div Gy (AalT],Z;) = 0. )
(b) GV (AT, Z)) ~ Gn(Au[T],Z;) is an l-complete profinite Abelian

group. )
(c) The map Gn(AL[T]) — GY (Au[T),Zy) is injective with uniquely
l-divisible cokernel.

Proof. (a) From 2.2.3(ii)(b), we have
lim' Gre1 (AT, Z/1°) = div GE (Aa[T), Z0), @

for all n > 2. Now, by theorem 1.1.1(a) G,(As[T]) is finitely generated
for all n > 1. Hence G,,(Ao[T],Z/1°) is finite for all n > 1. In particular,
Gri1(Aa[T],Z/1°) is finite for all n > 2 and so lim Gpi1(Aa[T],Z/1°) = 0
for all n > 2. Hence from (I), div GE' (Ao [T7],Z;) = 0 for all n > 2.

(b) We saw in (a) above that G, (Ay[T],Z/1°) is a finite group for all
n > 1. Hence in the exact sequence

0 — lim' Gpy1(Aa[T], Z/1°) — G (A [T, Zy) — Gp(Ma[T),2;) — 0

we have mlGn+1(Aa[T],Z/ZS) = (0. Hence,
GE (Aa[T), Zy) =~ G(Aa[T], Za). (1)
Now, by 2.2.3(ii)(b),
GP (A [T, Z0) /15 ~ Gn(Ao[T], Zy). (I11)

So, from (IT) and (ITT) G} (Ao [T, ) /15 ~ R (A [T}, Z4) Le. G (Aa[T), Z1) ~

Gn(Aa[T],Zy) is l-complete. It is profinite since Gy, (Aa[T, Zi) = lim Gy, (Aa[T], Z/1%)

where each G,,(Ay[T],Z/1*) is a finite group.
(c) Since for all n > 1, G,,(A4[T]) is a finitely generated Abelian group
(see 1.1.1(a)), it follows that G, (A[T]); is a finite group for each n. Hence



HIGHER ALGEBRAIC K-THEORY FOR TWISTED LAURENT SERIES RINGS 11

Gn(A[T]); has no non-trivial divisible subgroups. Hence by [15, corol-
1ary 8.2.1] or [13], kernel and cokernel of ¢ are uniquely I-divisible. But
G (A [T)) is finitely generated and so, ker ¢ = divker ¢ = 0, as subgroups
of Gy, (Au[T)). O

3. K_1(A), K_1(A4[T]), A ARBITRARY ORDERS

3.1. Finite generation of K_;(A), K_1(A4[T]). Let R be the ring of
integers in a number field F', A any R-order in a semi-simple F-algebra 3, o :
A — A and R-automorphism of A, A,[T], the a-twisted Laurent polynomial
ring over A. We prove in this section that K_;(A) and K_;(Ay[T]) are
finitely generated Abelian groups for arbitrary R-orders A in semi-simpe
F-algebras. Note that the proof in [9] by Farrel/Jones is for A = ZG, G a
finite group. Also D. Carter shows in [4] that K_;(RG) is finitely generated
and here we show that this result also holds more generally for arbitrary
orders.

Finally we prove also that NK_1 (A, ) = 0 and so, K_1(Aa[t]) ~ K_1(A).

3.1.1. Theorem. Let F be an algebraic number field with ring of inte-
gers R, A any R-order in a semi-simple F-algebra ¥, a : A — A an R-
automorphism of A, Ay[T] the a-twisted Laurent series ring over A. Then

(a) K_1(A) is a finitely generated Abelian group.

(b) K_1(Au[T)) is a finitely generated Abelian group.

(¢) K_1(A) = K_1(Aalt]).

Proof. (a) Let I be a maximal R-order containing A. Then, there exists a
positive integer s such that sI' C A. Then ¢ = sI" is an ideal of A and T
Put B = A/q, B'=T/q. Then we have a cartesian square

A —— T

L

B —— B

and hence a Mayer-Vietoris sequence

- — Kl(B,) — Ko(A) — Ko(T') ® Ko(B) — KO(B,) —
KA — KMo K1(B) —--- (D)
Now by [1, prop. 10.1, p. 685], K_;(A) = 0 for ¢ > 1 and any quasi-regular
ring A. Note that B, B’ are finite rings and hence quasi-regular. Also I’
is quasi-regular. Hence for A = B, B’ or I, K_;(A) = 0 for ¢ > 1. So the
sequence (I) becomes
- — Ko(A) — Ko(T') ® Ko(B) — Ko(B') — K_1(A) — 0. (II)

To show that K_;(A) is finitely generated it suffices from (II) to show
that Ko(B') is finitely generated. Now B’ is a finite Artinian ring and so, by
[1, p. 465], Ko(B') ~ Ko(B'/JB') where JB' = radical of B’. But B’/JB’ is
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a finite semi-simple ring ans so, Ko(B') ~ Ky(B’'/JB’) is a finite direct sum
of Ky of (finite) fields each of which is isomorphic to Z. Hence Ky(B’) is
a (free) Abelian group of finite rank and hence is finitely generated. Hence
K_1(A) is finitely generated.

(b) Let I be an a-invariant order containing A as in 1.1.3. Let s be a
positive integer such that sI' C A and put ¢ = sI', B = A/q, B’ = T'/q.
Then we have cartesian squares B B B

(I11)

N — =
%

and
Ao[T] —— T[T

| w
Bo[T] —— B\[T]

and hence a Mayer-Vietoris sequence

e — KQ(AO[[T]) B KO(FQ[T]) @KO(BO‘[T]) -
KO(B&[T]) — K—I(AQ[T]) — 0. (V)

where I',[T], Bo[T] and B, [T] are quasi-regular (see [9]). If A = T',[T],
B,[T] or B.[T] and T™ is the free Abelian group of rank n Then by [1,
prop. 10.1], K_;(A) =0 for i > 1.

Also, by Serre’s theorem Ky(A) — Ko(A[T"]) is an epimorphism (see [7]).
Since K_,,(A) is a direct summand of the cokernel of Ky(A) — Ko(A[T"])
we have K_,(A) = 0 for n > 1. So from the exact sequence (I), we have
K_,(Au[T]) = 0 for n > 2 and Ko(B.,[T]) — K_1(A4[T]) is an epimor-
phism.

By mapping the Mayer-Vietoris sequence associated with cartesian square
(I) to the Mayer-Vietoris sequence associated with square (II), we have a
commutative square

Ko(B") —— K_1(7A)

l | 0

Ko(B[T)) —— K1(Aa[T)).

To prove that K_;(A) — K_1(A4[T]) is an epimorphism, it suffices to
prove that Ko(B') — Ky(B.[T]) is an epimorphism in the commutative
diagram

Ko(B) ——  Ko(B,[T])

| l

Ko(B'/JB'") —— Ko((B'/JB')4[T))
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where the vertical maps are isomorphisms. Also by [7, theorem 27],
the map Ko(B'/JB') — Ko((B'/JB')4[T]) is an epimorphism. Hence
Ko(B') — Ko(B.[T]) is an epimorphism. So K_1(A) — K_1(A,[T)]) is an
epimorphism. Since by (a), K_1(A) is finitely generated, then K_1(A4[T])
is also finitely generated.

(c) By definition, K_1(A4[t]) ~ K_1(A) @ NK_1(A, ). So it suffices to
show that NK_;(A,a) = 0.

Let A,T,B =A/q, B’ =T/q be as in the proof of (a) (b). Then we have
two cartesian squargs B

A ——

%

l (VII)

and
ALJt] —— T4t

l l (VILI)

Balt] —— Bali]

where I'y[t], B,[t] and Bl [t] are quasi-regular as well as I', B, B’. Hence we
have Mayer-Vietoris sequences

- — Ko(Aalt]) — Ko(Talt)®Ko(Balt]) — KO(B(;M) - K—l(Aa[t(]) )_)
IX
and

- — Ko(A) — Ko(T) — Ko(B) — Ko(B) — K_1(A) — - (X)

where for A =T, B, B', T,[t], Ba[t], BL[t], K_i;(A) =0 for i > 1 (see [1,
prop. 10.1]). By mapping (IX) to (X) and taking kernels, we have that

NK_{(A,a) = coker(NKy(T, o) & NKo(B,a) — NKy(B',)).

So it suffices to show that NKy(B',a) = 0. Since B’, B/[t] are quasi-
regular, the result follows from [6, lemma 2.4]. So NK_;(A,a) = 0 and
hence K_;1(Aft]) ~ K_1(A). O

3.1.2. Corollary. let R be the ring of integers in a number field F, V =

G o T a virtually infinite cyclic group where G is a finite group and the
action of the infinite cyclic group T on G is given by a(g) = tgt—' for all
g € G. Then K_1(RV) is a finitely generated Abelian group.

3.1.3. Corollary. Let a be an automorphism of a finite group G, R the ring
of integers in a number field F'. Denote the induced automorphism on RG

also by a. Then K_1(RG) ~ K_1((RG)4[t]) is a finitely generated Abelian
group.
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