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In this paper, which may be considered as a continuation of [F5], complete discrete valuation
fields of rank n with a perfect residue field k of positive characteristic p are treated. We
study Galois totally ramified p -extensions (with respect to the discrete valuation oi rank n )
and establish the reciprocity map

where V ](~OP(F) is the subgroup in the topological Milnor ]( -group J{~OP(F) generated
by principal units with respect to the discrete valuation oi rank n, P/F is the maximal
unramified with respeet to the diserete valuation of rank n subextension in F;b / F, F ab is
the maximal abelian p -extension of F. For an abelian tota11y ramified p -extension L / F the
reciproeity map WF induces the isomorphism

v !(~OP(F)/NL/FVK~OP(L) .:::. Homzp ( Gal(P/F), Gal(L/F)) .
Dur eonstruetions work for the ease of K. = diITlFp k/'P(k) > 0, where p(x) = x p - x. In
particular, they eoineide with the known eonstruetions in the case of K = 1 ([F1-4]), and
the constructions in the case oi n = 1 ([F5]).

In the first section oi this paper we establish a general eonstruction of p -dass field theory
which develops the methods of J. Neukirch ([NI-3D and the above-mentioned construetions.
It should be stressed that this section (in such form of presentation) was written under the
influence of the work [N4]. The second seetion deals with the specific features of the complete
discrete valuation fields of rank n. The third section contains dass field theory for such
fields. We discuss ramifieation theory in the fourth section basing on the obtained results.
In particular, the Hasse-Herbrand function is defined and its properties are studied. The
material exposed may be considered as an explanation of same known phenomena described
in the worles of K. Kato, V.G. Lomadze and O. Hyodo ([K4-5], [L], {H]) in the case of the
imperfect residue field. Fina11y, in the fifth section we clarify the properties of the reciprocity
map exposing the description oi norm subgroups in V I(~OP(F) .

This research was carried out during a stay of the author at Max-Planck-Institut für Mathematik
at Bonn. The hospitality of the institute is greatfu11y acknowledged by the author.

§ 1. p -class field theory.

1.1. Let ]( be a field and Gp = Gal(Kp / !() be the Galois group of the fixed maximal
separable p -extension !{p of K over !(. Let Q(Gp ) be the category, whose objects are
finite subextensions F/!{ in !(p/!( and the morphisms are the compositions of (J : F -+ (J F
for (J E Gp and the inclusion iu F / L : a F -+ L.

Let A be a Gp -modulation (see § 4 of [N4], oe s. 324 of [N3]), Le. a double functor

A = (A*, A.) : Q(Gp ) -+ Ab,

where A• is a covariant functor, A. is a contravariant functor, such that A•(F) =
A.(F) = AF for a11 F E Q(Gp ), and such that: 1) u·u. = u.a· = id for Cf E
Gp , a· = A·(a), a. = A*(a); 2) NL / F 0 iF / L = IL : Fl for F, L E Q(Gp ), F c L
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and N L/ F = A*(iF/ L ), iF/ L = A*(iF/ L ); 3) for any system R of representatives of

Gal(J<p/L) \ Gp/Gal(J<p/M), where L, M E Q(Gp ), the formula

i K / L 0 N M/ K = L N L(1M/L 0 i(1M/L(1M 0 a*
qER

holds.

Further we will write a instead of a* .

1.2. Assume that the field ]< possesses the following properties:

Cl. There exists a Galois subsextension KIK in Kpl ](, such that Gal (K I]() ~

DZp, K, > O. Put F = FK for F E Q(Gp ).
K.

C2. There exists a valuation v : AK ---+ Z, such that V(AK) = Z, v(NF/KAF) = IF n K :
KIZ, NL/FUL = UF, where F,L E Q(Gp ), L c Fand

UF = {o: E AF: v(NF/Ko:) = O}.

Put VF = L v 0 NF/ K , then vF(AF) = Z. An element 7rF E AF is called prime if
IFnK:KI

vF( 7rF) = 1. The set UF is called the group of units. Put

U1,F = 1 +7rFOF, OF = {a E AF: VF(O:) 2:: O}.

Put AF = l~ AFj-' where Fj runs all finite extensions of F in F and the injective limit is

taken with respect to i Fj/ Fj ,. Then one can define the valuation vF : AF ---+ Z as the natural

extension of the valuations vF· : AF· ---+ Z.
) )

A finite extension LIF, where F, L E Q(Gp ), is called totally ramified if L n F = F.

Now we assume that the following property holds also:

C3. Let LIF be a cyclic totally ramified extension, a be a generator of Gal(LIF). Then
the sequence

N,.,..,.,..
A,.,.. (1-=.1 A,.,.. ~F A,.,.. ---+ 0

L L F

is exact, where a and NZ/ F are induced by a : ALj ---+ ALj' NLj / Fj : ALj ---+ AFjl Lj =
LFj and Fj runs a11 finite subextensions in FIF; and if er(a) = 0: for a E AL' then

v7(a) E IL : FIZ.

1.3. Let LIF be a Galois totally ramified extension and G = Gal(LIF). Let V(LIF)
denote the subgroup in Uz generated by tbe elements a(o:) - a with er E C, Q' E Uz.
For er E Gout

where 'TrI is a prIme element in L (e.g., 'Tr7 = i L/7'TrL ). In fact, z induces the
homomorphism

i : Gal(L/Ftb
---+ UIIV(LIF),
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Proposition. The sequence
N.............

ab L/F
1 -+ Gal(LIF) -+ UZIV(LI F) -+ UF -+ 0

is exact.

Proof: It can be carried out similarly to the proof of Theorem 2 in Chap. 2 of [I].

First assurne that LIF is cyclic of degree pn. Let a be a generator of G. If i (am ) E

V(LI F) for some ffi, then a(ffi7r7) - ffi'JrI = O'(c) - c for a suitable c E UI . Then

0'(m7rz - e) = m7r7 - e. By the second condition of C3 we deduce that pnjm and i is

injective. Further, let NZ/JiQ = 0 for Cl: E Uz' Then there is an element ß E AL such that

a = (a - l)ß because of the first condition of C3. Then we can write ß = a7r7 + e with
t: E U7 . Therefore, a =i(O'a)mod V(LIF).

Now let LIF be an arbitrary totally ramified Galois extension. Let MI F a subextension in

LIF. As, by C3 NI/MUL = UM' we get N7/M(V(LIF)) = V(MIF). Argue by induetion
on IL : FI, we ean show the exaetness of the sequenee of C3 in the term UZIV(LI F). The
injeetivity of i follows as weIl.

o
1.4. For a finite p -group G (of order of apower of p ) let

C* = Homzp ( Gal(FIF), C)
denote the group of eontinuous homomorphisms of Zp -module Gal ( FIF) (a' 0' = (ja, a E Zp)
to the diserete Zp -module G. This group is isomorphie (non-eanonieallY) with ffi"G, where
x > 0 was defined in Cl.

Let LIF be a Galois totally ramified extension. Now we introduee the map \I! L/ F : UF -+

( Gal (LIF) ab ) *. Let e E UF. Aeeording to C3 there exists an element 1] E U7' such that

N7/F'l = c. Let 'Ij; be an extension of <p E Gal(FIF) on Z. As NZ/Ji(('Ij; -1)1]) = 0,
we deduee from Proposition (1.3) that

(1/J -1)1] == (1- O') 7rZ mod V(LIF)

with a suitable a E Gal( LIFtb
, where 7r7 is a prime element in AL' It is easy to verify

that a doesn't depend on the choice of 1/J aod 7]. Put X( <p) = 0'. One can immediately

obtain that X(CPl'P2) = al0'2, Le. XE (Ga} (L/Ftb)*. Put iJ!L/F(e) = X.

Lemma. The map WL/F : UFINL/FUL -+ (Gal(LIFtb
) * is weil defined and a homo­

morphism.

Proof: lf c = C1C2, then one may assume 1] 1}1"12. Therefore, (j = 0"10'2 and
WL/F(c1c2) = WL/F(eI)\I!L/F(cZ).

o
1.5. Now we introduce the maP YL / F, which is the inverse map to WL / F as itwill be shown
later. Let LIF a Galois tataUy ramified extension. Let X E Gal(L/F)*, and Ex be the

fixed field of aU X( cP )cp, where <p runs Gal (ZIL). Put

TL/F(X) = NEx / F7rx - NL/F 7rL fiod NL/FUL,
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where 7rX and 7rL are prime elements in AL:x and AL.

Lemma. The map

is weH defined.

Proof: C.f. the proof of Lemma (1.2) in [F5].

D

1.6. Proposition. Let L/F be aGa/Dis totally ramified extension. Then \l1 L/F 0 YL/ F

(Gal(L/F)ab) * --+ (Gal(L/F)ab) * is the identity map.

Proof: Let X E Gal(L/Fr, and let 7rx , 7rL be prime elements in AL:x ' AL. Then

Let cp E Gal(F/F) and a = X(rp) E Gal(L/F). Then

(1 - a)iL/i7rL =(rp - 1)11 mod V(L/F)

and NZ/F'I = iF/F(NEx/F7rx - NL/F7rL). Therefore, X = \l1L/F(YL/FX).

o
Corollary. The homomorphism 'l1 L/F : UF/NL/F UL --+ (Gal(L / F)ab) * is surjective; the

map YL/F : (Gal(LJF)ab) * --+ UF/NL/FUL is injective.

1.7. We are now in a position to formulate the last property to be satisfied.

C4. Let L/F be a cyclic totally ramified extension of degree p. Then the homomorphism

'l1 L/F is injective, Le. if E E UF and NZ/'F'l = iF/FE for 11 E UI with (cp -1)7] E V(LJF)

for any rp E Gal(Z/F), then c E NL/FUL.

Theorem. Let L / F be a Galois totally ramified extension. Then the map

is an isomorphism, and the map

is the inverse one.

Proof: First let LJF be a cyclic of degree p. Then it follows from C4 and Proposition (1.6)

that \l1 L/F is an isomorphism and T L/ F is an isomorphism as weIl.

Now let M / F be a Galois subextension in L/F. The following diagram is commutative:

1 --+ Gal(L/M)*

1T L/ M

UM/NL/MUL

--+ Gal(L/F)*

1 lL/F
--+ UF/NL/FUL

4
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(the proof can be carried out similarly 10 the proof of Theorem 5.1 in [F1]). Then i L / F is
surjective. Proposition (1.6) implies now that \IJ L/ F is injective.

o
Corollary. Let MI F be the maximal abelian subextension in LIF. Then NAf/FUM =

NL/FUL.

1.8. In the same way as in the proof of Proposition (1.8) and its corollary of [F5] one can

verify

Proposition. 1) Let LIF, L'F' be Ga/ois totally ramified, and F' I F, L' I L be totally

ramified. Then the diagram

Gal(L'IF')· -+

1
Gal(LIF)· -4

UFI/NLI/FIUL'

1NF'/F
UFINL/FUL

is commutative, where (he left vertical homomorphism is induced by the restriction

Gal(L' IF' ) -+ Gal(LIF) anti the canonical isomorphism Gal (LI IL') ~ Gal (LI L).

2) Let LIF be a Galois totally ramified extension, and (J E Gp . Then the diagram

Then the

UFINL/FUL

1
UM/NL/MUL

(Gal(LI Ftb
)·

Ver· 1
(Gal(LIMt b

)· -+

Gal(LIF)* -+ UFINL/FUL
(J. 1 !

Gal( (J LI(JF)* -+ UuF INuL/uFUuL

is commutative, where ((J. x) (u<.pu- l ) = uX( <.p )u-1.

3) Let LIF be a Galois totally ramified extension, and MI F be its subextension.
diagram

is commutative.

Passing to the projective limit we obtain the reciprocity map

\IJ F : UF -+ Homzp ( Gal ( FIF) ,Gal ( F;b / F) ),

where F;b / F is the maximal abelian subextension in FplF. The kernel of \l1 F coincides
with the intersection of all norm groups NL/ FUL for abelian totally ramified extensions LIF.

2. Complete discrete valuation fields of rank n.

In this section we treat the dass of fields for which theory of seetion 1 can be applied later.

2.1. Let F be a field and

t1 F : F· -+ (Z)n = Z EB ... EB Z
'-.....-'

n times

be a surjective valuation, where the additive group (Z)n is considered to be lexicographically

ordered, Le. (mI,"', mn) < (m l

ll ···, m~) in (Z).n if mj < 7n: for the maximal i such

5



that mi =I m~. The ring of integers of tJ F, its maximal ideal and the group of units will be

denoted as OF, MF, UFo Put VF = 1 + MF, Um1 .... ,mn = 1 + t~n ... t'r10F. We will

assurne that the residue field 0 F / M F = k is aperfeet field of eharaeteristie p > O. The
field F is said to be camplete if it is eomplete with respect to the first component v(n) of

tJ F = (v{l), ... ,v(n») and the residue field F v(n) of F with respect to the discrete valuation

v{n) of rank 1 is complete. The elements t n ,"', tl of F such that

with 1 at the (n + 1 - i)th position, are called loeal parameters of F.

If char(F) = p, then it follows from the general theory that F is isomorphie and homeo­

morphic (with respeet to the discrete valuation of rank n ) to the field of formal power series

k((X1))··· ((Xn )) (c.f. seetion 5 Chap. II of [FV)).

We are now going to introduce same special topology on F that takes into consideration the

eorresponding topology on F v(n) . First assurne that char(F) = p. Let Um, mEZ, be

subgroups in F v(n) , whieh are neighborhoods of zero in this topology (the topology eoincides

with the induced topology from the discrete valuation of rank 1 if n = 1 ). Assume that

Um = F v(n) for sufficiently large m. Put U = L: Umt~ n F, where tn is a prime element
m

of F with respect to v(n) . All such subgroups U in F form a fundamental system of

enighborhoods of zero in the topology of F. The so defined topology was introduced by

A.N. Parshin, see [P4].

Now let char(F) = 0 and char(Fv(n») = p > O. According to the general theory there
is a subfield Fa in F which is a complete diserete valuation field of rank nunder the

induced valuation, and p is a prime element in Fa with respeet to the first component of

the discrete valuation of rank n on Fa (see section 5 Chap. II of [FVl). In tbis case F
is a finite extension of Fo. One may assurne that the field of fractions Foo oi the Witt

ring W( k) is contained in Fo• Let Um, mEZ, be subgroups in F v(n) as above. Let

Um be subgroups in Fa, such that the coefficients from k of elements of Um are replaced

by the ring of integers of Foo • Then one can take U = I: iJmt~ n F as a fundamental
m

system oi neighborhoods oi zero in the topology oi Fo. Define the topology on F as on

the finite-dimensional vector spaee over Fo.

The multiplieative group F* is isomorphie to the produet of the cyelic subgroups {ti}
generated by ti, where t n ,"', tl are loeal parameters in F, the group of multiplicative

representatives R* of k* in F, and the group VF . If char(Fv(n)) = p, then introduce

the topology on F+ as the product of the topology on Vp induced from F and the

discrete topology on (tn) x ... x {tt} x R*. If char(F) = ... = char(k{m+l») = 0 and

char(k{m») = p, m < n - 1, where k(n) = F and k(i) is the residue field of k{i+l) with

respect to the valuation of rank 1, then put WF = 1 + tm+l 0 F. The field F is isomorphie
to the field k( m+1)((tm +1)) ... ((tn) ), and k(m+1) is a complete discrete valuation field of

rank m + 1 of the type considered above. We get tbe isomorphism
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Introduce the topology on P* as the product of the trivial topology on WF, the discrete
topology on (tm+l) X ... x (tn), and the above-defined topology on k(m+l)*. Note that the

group Wp is uniquely divisible.

The so-defined topology on P* doesn 't depend on the choice of local parameters and an

imbedding of the residue field into the field. The multiplication is sequentially continuous

with respect to this topology.

Any element a E Vp has precisely one expansion in the convergent product

C = Cl rr rr
i m 2':O i m - l 2':Im -t(im )

rr (1 +Oim, ...,ilt~ ... t;l ),

i l 2':]1(im ,"',i2 )

where Cl is a divisible element in VF, Oim, ... ,i1 E R, R is the set of multiplicative represen­

tatives of k in F, m = n if char(k(n-1)) = p, and ]m-1(0) ~ 0,' .. ,h(O,' .. ,0) > O.

2.2 Let K!j(P) be the s tb Milnor group of P. Introduce the topology on ](m(P) as

the strongest one such that the map F* x . .. x P* -+ ](!j (P) and the addition in ]{!j (F)
are sequentially continuous. Then the intersection of all neighborhoods of zero in J(!j( F)
is a subgroup in ](s(F). We will denote this subgroup as Äs(F). In the same way as
in section 2 of [Fl] and section 5 of [F3] one can show that A!j(F) = n IV I(!j(F),

1>1
where VJ(!j(F) = {Vp}J(!j-1(F), in the case of char(F) = O. If char(P) = p, then
As(F) 0:) n IV I(s(F). Put

12':1

I(~OP(F) = I(s(P)/ As(F).

Let UJ(~OP(F), V I(~OP(P), U/I(;OP(F) denote the subgroups in I<;OP(F) generated by

UF, Vp, U/ respectively, where I = (i1,"', in) E (Z) n.

For the description of J(~OP(F) one can apply generalizations of the pairings of section 2

[F2] and section 3 [F3].

2.3 Let P be the maximal abelian unramified p -extension of P with respect to the discrete

valuation ofrank n, Le. F = F®W(k) W(k;b). Put

K = diIl1Fp k/wp( k),

wbere p(x) = xp - x. We will assurne further that I\, > O. The case K. = 0 requires
special considerations taking into account the pro-quasi-algebraic structure of V I<~OP(P) as

a generalization of Serre's theory in the case of n = 1 (see [S]). The Witt theory implies

that there is a non-canonical isomorphism Gal (F/F) ~ TIxZp .

2.4. The first pairing we will employ now in the case of char( F) = p is the Artin­

Scbreier-Witt pairing. Let ab"', an E P*, and let (ßo,"', ßs) E W!j(F) be the

Witt vector. Let wp : W!j(F) -+ W!j(F) be the operator defined as wp(ßo,"', ßs) =

(ßg,· .. ,ß:) - (ßo," . ,ßs). For 4' E Gal(F/F) put

(a 1, . . . , an, (ßo, . . . , ß!j)]!j(Cf') = Cf'(1'0, . . . , 1'!j) - (1'0, . . . , '!j),
where wp(,o,'" ,1'!j) = ('\0,"', ,\!j) and the i th ghost component ,\(i) of ('\0,"', ,\!j) E

Ws(P) is defined as resk (ß(i)OI1 da1 /\ ... /\ a;1 dan). Then one can show similarly to

7



seetion 2 of [F2] and (1.11) of [F5] that (', -]., defines the non degenerate pairing

(', .]" : V ](;OP(F)/p" x W,,(P)/wpWs(P) +W,,(F)

-t Homzp ( Gal(F/P) ,W,,(F p )).

Applying this pairing in the same way as in (P4] or section 2 of [F2] one can prove

Proposition. Let P be a complete discrete valuation field 0/ rank n, char(F) = p. Then any
element a E V ](~OP(F) is uniquely expanded in the convergent series L.CIXI with Cl E Zp,

where e belangs to the fixed basis 0/ k over Fp , p f ] = (i 1,··· 1 in) > 0, the set

{jI,'" ,jn-I,j} coincides with the set {I"", n}, where j is the minimal integer such

that p f ij.

2.5 The second pairing is a generalization of the pairing introduced by S.V. Vostokov
in the case of a finite k (see [V] and Appendix B of [FV)). Assurne that char(F) =
0, char(k(n-l)) = p, and a primitve pr th root of unity ( is contained in F. Let

a = t~n ... t~l 0(1 + L.ein, ...,i1t~n ... t~l) be an element of F*, where 0 ER*, Oin, ... ,i1

belongs to the ring of integers 0 of the field FOD (see (2.1)). Put a(X) =

X~n ... X:IO(l + L.Oinl ...,ilX~n ... X~l). Let z(X) = ((X), s(X) = z(X)P" -1. Let the
operator ~ act on elements of 0 as the Frobenius automorphism Fr and on Xi as raising
to the p th power. For 0' E F* put

_ 1 p-L::.. _ -1 aa . _. 81(0)
1(0) - ploga(X) ,8.(0) - a aXj' 77.(0') - 8.(0') - aXj'

For OI,"', 0n+l E P* put

where Dj is the discriminant of the matrix

Let J.l denote the cyclic group generated by ( . Define the map r T

Homzp ( Gal (F/F), J.l) as

where / = (<.p - 1)8 and Fr(8) - 8 = resxcI>(O'],'" ,O'n+d/s(X).

Then one can show similarly to section 3 of [Fl] that r Tinduces the non degenerate pairing
(for p > 2 )
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Applying this pairing in the same way as in section 3 of [Fl] (for r = 1 ), one can prove

Proposition. Let F be a complete discrete valuation field 0/ rank n, char(F) =
0, Char\k(n-l)) = p. Let p = Ot;n ... t~1 + ... with 8 E R*. Then any element

Q' E V]<nOP(F)/p is uniquely expanded into the convergent series "BcIxI with CI E Z/p,
and

XI = {I + Bt~n ... t;l, tjn"', tjn_l}'

if 0 < ] < p(eb"', en)/(p - 1), p f I, B E R, 11 < ... < ln-I, set {lI,'" ,ln-bi}
coincides with the set {I"", n}, where 1 is the minimal index such that ij is not divisible

by p, and

where w. = 1, CI = 0 when a primitive p th root of unity doesn't belong to Fi w. E

VF such that F (~) / F are non-trivial subextensions in F/F, and kl < ... <
kn - b {kI,"', kn - l } is a subset in {I,"" n}, if a primitive p th root of unity belongs

to F.

In the case of char ( k(m+l)) = 0, char ( k(m)) = p it is easy to deduce similar assertions

in the way as in section 5 of [F3].

3. Multidinlensional local p -class field theory

Let F be a complete discrete valuation field of rank n with the residue field k. Assurne

that k is a perfect field of characteristic p and K = cliIl1Fp k/wp(k) > O. In this section we
will show that F and AF = I<;.oP(F) satisfy C1-C4 of § 4 and therefore,' obtain dass field

theory for F. This theory may be regarded as a generalization of the known results in the

case of a finite k «(Pl-5], [Kl-3], (Fl-4]).

3.1 It is well-known that AF = ](~OP(F) is a Gp -modulation. Cl is satisfied with K

defined in (2.3). For the valuation VF : AF -+ Zone can take the composition

where a is the well-known homomorphism in ]< -theory, c.f. section 2 Chap. IX of [FV].

Tben UF of section 1 coincides with UI(~OP(F) of section 2. A prime element 1rF of AF

can be written as {tl,"" tn} +c with a suitable c E UI<~OP(F), where tn,"', tl are Iocal
parameters of F. Tbe norm map NLp maps UI(~OP(L) onto U](~OP(F) as immediately

follows.

3.2. In order to verify the third condition C3 we need the following description of the norm

map (anaIogousIy to Proposition 4.1 of (F1] and Proposition 3.1 of (F3]):

Proposition. Let LIF be a cyclic totally ramified extension of degree p, (J" be a generator of

Gal(L/F). Let L = F( t~,L) for some s, 1 ~ s ~ n. Take local parameters t n ,' .. ,t$,F =

N LIFts,L," . ,tl in Fand tn ,' .. ,t$,L," . ,tl in L, and assume that

at Ls, - 1 + 0 trn tr, tri cl U-- = 0 n ... L • .. 1 mo rl +1 ... rt S, ' , n
~,L
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with 00 E R*. Let Uit"",in = Uil" ..,inIUi1+),."in·

This group is isomorphie to k : 1 + Ot~n ... t;1 ~ 0 E k. Then

1) if (i), ... ,in) < (T),"', rn), then the diagram
.......

0Ui1,.."in,L ~ k

N L/ F 1 1 1
.......

7tU pi1,.."i .. ,.. "pin,F' ~ k

is commutative;

2) if (i),' .. , in) = (Tl,"', rn), then the diagram
.......

UT1 ,"',Tn,L ~ k
N L/ F 1 !

.......

UpTt ,"',r$,"',pTn,F' ~ k

e
1

7iP - "';lP-I
() - 0 Uo

is commutative;

3) if (i l ,' .. ,in) > 0, then the diagram

Ur1 +i'1,"',T .. +pi .. ,"',rn+in,L ~ k e
NL/ F 1 ! 1

u....... k - -()-()PO-l
pT} +i} ,. .. ,r,,+i.. ,"',PTn+in,F' ~

3.2. We need also the following assertion which is proved similarly to Theorem 4.2 of [Fl]
and Theorem 3.2 of [F3] (using the bijectivity of the norm residue symbol):

Proposition. Let LIF be as just above. Then the sequence

J(~OP(L) 0--=.1 J(~OP(L) N!j/ l(~OP(F)

is exact.

Now the sequence of C3 is exact for a cyclic totally ramified extension LIF of degree p,

since the surjectivity of the norm map NZ/F : AL ~ Ap follows from Proposition (3.2). The

exactness of the sequenee of C3 in the general case of a cyclic totaUy ramified p -extension

is proved now by induction.

Let ZIF be a cyclic totally ramified extension of degree p. Let (JCi = a for Q' E l(~OP (Z).
Let (Tl,"', rn ) be as in Proposition (3.2). lf p f 1'8' then it immediately foUows from
Proposition (2.4) and Proposition (2.5) that pi vL(a). If pi r.. , then char(F) = 0 and a

primitive p th root of unity (p belongs to F. Let ( be a primitive root of the maximal

index pT, r 2:: 1, whieh is contained in Z. In the case under consideration Z = F( yIl;)
for a suitable loeal parameter t... One may take in,"', t.. , ... , t) as local parameters in F,
such that tn, ... , yIl;, ... , tl are local parameters in Z and (J ( yIl;) I yIl; = (p. We get

a = a{tl,··.·,yIl;,···tn}+:, with a E Z, € E UI(~oP(Z). As (p E F* and (p rt Z*pr,

there exists an element ß E L, such that

rr({tl,"', (p,"', in}, ß) f:. 1.

Let 1jJ E Gal(ZIL) be such that 1jJ(ß) = ß mod Z*pr. Put ((J - l){ t),· .. , yIl;" . " tn} =

(lj; - 1), with 1 E V(LIF). Then, if p f a, we obtain that

(
-1 -I)fr({tJ,"',(p,"',in}'ß)=f T "ß' ß =1,

10



a contradiction. Thus, vl(0) is divisible by p.

Now let LIi' be a cyclic totally ramified extension of degree pm and ((J' - 1)0 = 0

for a generator (J' EGal (LIi') ,oE I(~OP(L). Then, by the inductional assumption,

o = apm-I'lrl + e, where 'lrl is a prime element in K~op (L) 1 e E U](~OP (L). Then

a(T'lrl - 'lrl) == 0 mod V(LIF),

where T = (J'pm-l. Let MI F be the subextension in LIF of degree pm-I. As V(LIF) =
('lj; - 1)V(LIF) for any 'lj; EGal (LI L), we obtain that a (T1rI - 'lrI) is ('lj; - 1) -divisible

in VK~oP(L). Now by the same reasons as above, we deduce that pla, pmlv'l(o). Thus,
C3 also hol~.

3.4. Note that the quotient group U](;:'P(F)IV](~OP(F) is isomorphie to k, and hence, is

p ~divisible. Thus, we get the maps (according to section 1)

lI!LIF: V](~OP(F)/NLIFV](~OP(L) -? (Gal(LIF)ab)*,

lLIF: (Gal(LIFt b)* -? VI(~OP(F)INLIFVI(~OP(L)

for a Galois totally ramified p -extension LIF.

3.5. It remains to varify C4. Assume that LIF is a cyclic totally ramified extension of degree
p. Let (rI,"', r n ) be as in (3.2). By employing the commutative diagrams of Proposition
(3.2) it suffices to show that if

e ={1 + Ot~Tn ... t::F· .. t~Ti ,tjI''' . ,tjn_l} mod NLIFVK~OP(L)

with 8 ~ ~p( k), then 'l1 LIF (e) -:f. 1. In terms of C4 we obtain that

1] = {I +8' tTn ... e' ... tTI t· ... t· } + ...n tJ,L 1 , 11' 'Jn-1 ,

I I~ . I

where eP-~- () = e. Let LI IL be a subextension in LIL of degree p, such that "8 E LI.

Let 'lj; E Gal(LIL) be such that 'lj;IL I is a generator of Gal(LIIL). Now, if wLIF(e) = 1,

then {I + (}ot~n, ... , t::v "" t~t, tjn"', tjn_1} belongs to (cp - l)VI(~oP(L) for any

cp EGal (LIL). Then, by the same arguments as in (3.3), one obtains a contradiction.
Therefore, WLIF is injective and C4 is true.

3.6. According to Theorem (1.7) we obtain

Theorem. Let F be a complete discrete valurion field of rank n with a perfect residue field

k of characteristic p > 0, K, = dimFp kIwp( k) > O. Then for a Galois totally ramified

extension LIF, L C FP1 the map

lLIF: (Gal(LIFt b)* -? VI(t;>P(F)INLIFVI(~OP(L)

is an isomorphism and the map

WLIF: VK~OP(F)INLIFl(~OP(L) -? (Gal(LIFt b)*

11



is the inverse one. The map llJ LIF determines the reciprocity nUlp

WF: VJ(~OP(F) ~ Gal(F;b/F),

possessing natural functorial properties 01 seetion 1.

Remark. One ean show that if char(F) = p, then for Q E V J<~OP(F), ß E W8 (F)

( Q, ß] II ( cp) = 'l1 F (a)(cp)(,) - "

where cP E Gal(F/F), and , is the root of the polynomial wp(X) - ß. If char(F) = 0,

then for a E V I<~OP(F), ß E F*

rr(a,ß)(ep) = ,1V F (a)(lp)-l,

W here ep EGal ( F/F) and ,pr = ß.

4. Ramification theory.

Let F be a complete discrete valuation field of rank n as in section 3.

4.1. We get the filtration

Ul,o, ...,oI(~OP(F) :> Uz,o ....,oI{~OP(F) :> ...

on V I(~OP(F). Using the pairings of (2.4) and (2.5) in the eontext of Proposition (2.4) and
Proposition (2.5), one ean show that if char( F) = p, then for I > 0

UIJ{~OP(F)/UI+lI(~OP(F) f"V k,

where 1 = (1,0, .. ·0). If char(F) = 0, then for I > 0 and E = (eI," . ,en ) as in (2.5)
we get that

UII(~OP(F) + pI(~OP(F)/UI+lK~OP(F) + pK~OP(F)

is 0 if plI, I < pE/(p - 1) or I> pEI(p - 1) or 1= pEI(p - 1) E (Z)n and a primitive
p root of unity doesn't belong to F; is isomorphie to k if p f 1, I < pEI(p - l)j is
isomorphie to (klwp( k))n if J = pEI(p - 1) and a primitive p th root of unity belongs
to F.

Now let LIF be a Galois totally ramified extension, L C Pp. Tbe norm map NLIF :

V J(~OP(L) ~ V J<~OP(F) ean be deseribed on the base of Proposition (3.2). However, the
behavior of NLIF is more eomplieated then in the ease of n = 1. For instanee, let LIF be
of degree p, n = 2. Let L = F( tz, L). We take tz,F = NLIFtZ,L, tl as loeal parameters of
Fand ts,L, tl as loeal parameters of L. Then NLIF {I + tz,Ltl, tl} = {I + tz,Ft~, tl} and
N LIF{1 + tz,Fit, tz,L} = {I + tz,Ftt, tz,F}, but VL(tz,Lt 1) < VL(tz,Ft 1), VF(tz,Ft~) >
vF (tz,Ftl)'

4.2. Applying the eonstruetion of the reciprocity map of seetions 1 and 3,one ean deseribe

the image of UIJ(~OP(F) in (Gal(L/Ftb
) *. Then

\l1 LIF(UIK~OP(F)) =

{ X E (Gal(LJ F)"b)' : X( 'P)'IrL - 'IrL E ('P - 1)Ni/'FiF/FU1J(~OP(F)mod V(LJ F)}

12



where <p runs over Gal ( FIF) and 7rL is a prime element in K ~oP ( L ).

In the case of n = 1 it is well-known that (<p - 1)Ni/pUi,F mod V(LI F) can be replaced

by Uh(i),L mod V(LIF) and WL/F(Ui,F) is equal to the ramification group Gal( LIF)~( i)'

where h = hL / F is the Hasse-Herbrand function defined as the maximal integer j such that

(in the case of an infinite residue field)

(cf. seetion 3 Chap. III of [FV]). It is not true in the general case of n > 1.

4.3. FOT 0: E V K~OP(L) put

WL(O:) = min {I: x E UJI(~OP(L)}.

Let LIF be a Galois totally ramified extension, L c Fp. We will assume that the surjective

discrete valuation of rank n on F is induced by the surjective discrete valuation on L. Let
Z be the subset of indices I E (Z)n, I > 0, such that

UII(~OP(Z) c V(LIF) + UI+II(~OP(Z).

Define the Hasse-Herbrand function (which doesn't coincide with the classical ,one in the

case of n = 1 )

h = hL/ F : (Z)~ ~ (Z)~,

where (Z)~ is the subset of indices I > ° in (Z)n, as

h(I) = min{wL(O:) ~ Z: 0: E (<p - l)Ni/FiF/FUJJ<~OP(F)

for some <p EGal ( FIF)
if its minimum exists, and h(I) = +00 otherwise. The so-defined function doesn't depend

on the choice of the discrete valuations on Land F. The equality hLIF = hLIM 0 hMI F

is not true in the general case. However,

(*)

where nL/M (Z)~ ~ (Z)~ is the function connected with the norm map NL / M and
defined as

n LIM ( I) = min {W M ( NLIMO:) : W L (0:) = I}.

This is the consequence of the relations V (MIF) = NEIM V (L / F) and

('P - 1)N"iJ~piF/j.'U/ J(~OP(F) = NLjM(( 'P - 1)Ni;piFjPU/ J(~OP(F)).

4.4. Put for J E (Z)~

Gal(LIF)J = {er E Gal(LIF) : er7rL - 7rL E UJ I(~OP(L)}.
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Then we deduce from (4.2) that lJI L/F ( U1I<~op(F)) = (Gal( LIF)~~/ F (I)) *. As it follows

from class field theory of section 3, if LIF abelian and Gal(LIF)J -I Gal(LIF)J+l' then

J = hL/F(I) for some I E (Z)~. This assertion may be treated as a direct generalization

of the Hasse-Arf theorem.

4.5. Let LIF be a finite Galois totally ramified extension, L c Fp , and MIF be a Galois

subextension in LIF. Put G = Gal( LIF), H = Gal(LIM). Theu the form ula (*) implies

(GIH)hM/F(I) = GhL/F(I)H/ H.

This equality is an analog of the Herbrand theorem.

4.6. Finally we note that the Galois group of a tota11y ramified p -extension L of a complete

disrete valuation field F of rank 1 with an arbitrary residue field of characteristic p is the

Galois group of a totally ramified extension L' of a complete discrete valuation field F' of

rank n with the perfect residue field for a suitable n, F' . Thus, the properties of Gal( L / F)
from the standpoint of ramification theory can be reduced to the properties of Gal( L' IF')
and studied by class field theory exposed above.

5. Existence theorem

Le t L be as in section 3.

5.1. A polynomial p( X) over k is called k -decomposable if it is additive, i.e. p(a + b) =
p( a) +p( b) for a11 a, bE k, and a11 its roots belong to k (cf. section 2 of [F5]). A subgroup

N in V I(~OP(F) is called normic if 1) N is open; 2) for any I > 0 there exists a polynomial

f1(X) E OF[X] such that the residue polynomial 11 E k[X] is non zero k -decomposable

and

{I + f1(OF)t~" }I<~~l(F) CN,

where t n,"', tl are local parameters of F, I = (il,"" in); 3) for any I > 0 there exists

a polynomial 91(X) E CJF[X] such that its residue 91 is non-zero k -decomposable,

N n U11(~OP(F) + U1+l1<~OP(F)

= {1 +91( 0 F )t~" ... t~l } l(~~~\ (F) + Ul+l1(~OP(F),

and for almost a11 I the polynomial 91(X) is equal to X.

We will show that the class of normic subgroups coincides with the class of norm groups

NLIFV I<~OP( L) of Galois totally ramified extensions LIF, L c Fp •

5.2. It follows from the definition that the notion of a normic subgroup doesn't depend on

the choice of loeal parameters in F.

Proposition. Let LIF be aGa/ais totally ramified p extension, F c Lw Then
NL/FYI(~OP(L) is a normic subgroup in YI<~OP(F).

Proof: The first property for NLIF V I<~oP ( L) is evident. To verify the second and third

properties, one can proceed by induction on degree of L/ F. If L / F of degree p then all

follows from Proposition (3.2). In the general case let MI F be a subextension in LIF of

degree p. Let a be a generator of Gal( M / F) and M = F( ts,M ). Let

at M
_s_,_ = 1 +OotT

n" ... tTs

M ·· . tT

l
1 mod UT1 +l ... Tt s, ' ,"s,M
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with Bo E R*. According to Proposition (3.2) the unique non trivial polynomial arises from

the norm map NM IF is f2( X) = B~wp(Bö 1X). Now let 7rL be a prime element in I(~OP(L),
and (1 E Gal(LIF) be an extension of 0' on L. Then

NLIM (O'7rL -' 7rL) - {I +Botrn ... t r , ... t r1 t· ... t· }n lJ,M 1 , )1' , }n-1

belongs to Url +1,"',Tn I(~OP(M), where the set {jI,"', jn-l, s} coincides with tbe set

{l, .. ·,n} and tn,···,NMIFtlJ,M,···,tl are loeal parameters of F. Therefore, by the

inductional assumption,

N L/ MVI(~OP(L) n URK~OP(M) + UR+l](~OP(M)

= {I + fl(OF)t~n ... t::M··· t~l }K~~I(M)+ UR+IK~OP(M),

wbere R = (rI,"', r n ), and Bo E !1(OF), /1 is k ~decomposable. Thus, 80 E fl(k)
and the polynomial 120/1 is non zero k -decomposable. The second property for

NLIF V K ~oP ( L) ean be verified now similarly to the proof of Proposition 15 of [W].

D

5.3. Proposition. Let LIF be an abelian totally ramijied extension, L C Fp • Let N be a

normic subgroup in V ](~OP(F). Then Ni/F(N) is a normic subgroup in V K~OP(L).

proor: lt is earried out in the same way as the proof of Proposition (3.2) of [F5] using

Proposition (3.2).

D

5.4. Let 7r be a prime element in ](~OP(F). Let E7r denote the set of abelian totally rammed

extensions LIF, L c Fp , such that 7r E NLIFI(~OP(L). Then, if LI I F, L21F E E7( ,
LI n L21F E E7r • Indeed, let M = LI n L2 and NLt/F7r l = NL21FJr2 = 7r. Then

NM/FC = 0 for C = NLt/M7rl - NL2/M7r2. Now it follows from the first commutative

diagram of Proposition (1.8) that c E N L / M V ](~OP(L). Therefore, there is a prime element

1rM in ](~oP( M) such that

NM / F1rM = 7r, 7rM E NLtlM](~OP(Ld n NL2/Mj(~OP(L2)'

Thus, it suffices to consider the case when L] n L2 = Fand L} IF, L21F are cyclic

extensions of degree p. Assume that LI IL2IF is not totally ramified. Then there is an

unramified cyclic extension ElF of degree p, E C LI L2. Let 0'1 and 0'2 be elements of

Gal( LI L21F) such that O'tlL4 and 0'21L 1 are trivial and 0'11L 1 and 0'21L2 are generators

of Gal(L11F) and Gal(L21F) respectively. One may assume that E is the fixed field of

0'3 = 0'10'2. Let

1r'.= NLtl F1r] = NL'J/F 7r2

for some 1r] E j(;OP(Lt} , 7r2 E j(;OP(L2)' Then

Then, by Proposition (3.3)
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for some I E V I(~OP(LIL2)' Put ß = 1rl +,- 0"1(,). Tben 0"3(ß) = ß and iF/ LtL'J1r =

(1 + 0"1 + ... +af-1)ß. Tberefore, VLlk(ß) = 1. It follows from (3.3) that this is im­
possible. Thus, LI L21F is totally ramified. Now similarly with (3.3) of [F5] we get

L1L21F E &";'

5.5. In the same way as in (3.4) of [F5] one can prove

Proposition. Let 1r be a prime element in I(~OP(F). Let N be a normic subgroup in

VI(~P(F). Then there is precisely one abelian totally ramified p -extension LIF such that
N" = NLIFV K~OP(L) anti 1r E NL/FI(~OP(L).

As a corollary, we obtain

Existence Theorem. There is an order reversing bijection between the lattice o{ normic
subgroups in V I(~OP(F) with respect to the intersection and sum and the lattice 0/extensions

LIF E Etr with respect to the interseetion anti composition: N = N LIFV K~op (L) ~ L.

Finally, in the same way as in (3.4) of [FS] one can show that for the composition F tr of
a11 fields L with LIF E Etr

- ~ bF.,; n F = Fand FtrF = F; .
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