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In this paper, which may be considered as a continuation of [FS5], complete discrete valuation
fields of rank n with a perfect residue field k& of positive characteristic p are treated. We
study Galois totally ramified p-extensions (with respect to the discrete valuation of rank n )
and establish the reciprocity map

Up: VE9P(F) - Homzp(Ga,l(F/F), Ga.l(F;b/F‘))>

where VK[°P(F) is the subgroup in the topological Milnor K -group Ki*P(F) generated
by principal units with respect to the discrete valuation of rank n, F/F is the maximal
unramified with respect to the discrete valuation of rank n subextension in F;b JF, Fo s
the maximal abelian p-extension of F. For an abelian totally ramified p -extension L/F the
reciprocity map Wp induces the isomorphism

VKP(F)/Ny pVEKSP(L) 5 Homzp(Gal(F/F), Gal(L/F)) .

Our constructions work for the case of « = dimg, k/p(k) > 0, where p(z) = 2 —z. In
particular, they coincide with the known constructions in the case of « = 1 ([F1-4]), and
the constructions in the case of n = 1 ([F5)).

In the first section of this paper we establish a general construction of p-class field theory
which develops the methods of J. Neukirch ([N1-3]) and the above-mentioned constructions.
It should be stressed that this section (in such form of presentation) was written under the
influence of the work [N4]. The second section deals with the specific features of the complete
discrete valuation fields of rank n. The third section contains class field theory for such
fields. We discuss ramification theory in the fourth section basing on the obtained results.
In particular, the Hasse-Herbrand function is defined and its properties are studied. The
material exposed may be considered as an explanation of some known phenomena described
in the works of K. Kato, V.G. Lomadze and O. Hyodo ([K4-5], [L], {H]) in the case of the
imperfect residue field. Finally, in the fifth section we clarify the properties of the reciprocity
map exposing the description of norm subgroups in VK P(F) .

This research was carried out during a stay of the author at Max-Planck-Institut fiir Mathematik
at Bonn. The hospitality of the institute is greatfully acknowledged by the author.

§ 1. p-class field theory.

1.1. Let K be a field and G, = Gal(K,/K) be the Galois group of the fixed maximal
separable p-extension K, of K over K. Let Q(G,) be the category, whose objects are
finite subextensions F/K in Kp/K and the morphisms are the compositions of o : F' — o F
for 0 € Gp and the inclusion i,p/p : oF — L.

Let A be a Gy -modulation (see § 4 of (N4], or s. 324 of [N3]), i.e. a double functor

A= (A", A): Q(G,) — Ab,

l

where A* is a covariant functor, A, is a contravariant functor, such that A*(F)
AJF) = Ap for all F € Q(G,), and such that: 1) ¢%0, = o,0" = id for ¢ €
Gp, 0* = A*0), 0 = Au(0); 2) Nyjpoipy = |L: F| for F,L € Q(G,), FC L



and Npjp = Au(ip/1), ipyn = A*(ipr); 3) for any system R of representatives of
Gal(K,/L) \ G,/Gal(K,/M), where L,M € Q(G,), the formula

ik/Lo Nuik =D NiomjL ®ioMjLom © 0"
cER

holds.
Further we will write ¢ instead of o* .

1.2. Assume that the field K possesses the following properties:

Cl. There exists a Galois subsextension K/K in K,/K, such that Ga,l(f':’ /K) o
[1Z,, = > 0. Put F = FK for F € Q(G,).
K

C2. There exists a valuation v: Ag — Z, such that v(Ag) = Z, v(NF/KAF) =|FnN K:
K|Z, NppUp = Up, where F,L € Q(Gp), L C F and

UF = {QE AF : ‘U(NF/]{Q) = 0}

Put vp = vo Np/g, then vp(Ap) = Z. An element np € Ap is called prime if

1
|FAK:K]|
vp(wp) = 1. The set Up is called the group of units. Put

Uhr=14+7r0p, Op = {a € Ap:vp(a) > 0}.

Put Az =lim Ap;, where Fj runs all finite extensions of F" in F and the injective limit is
taken with respect to i,/ Fy- Then one can define the valuation vy : Az — L as the natural
extension of the valuations vp, : Ap, — Z.

A finite extension L/F, where F,L € Q(Gp), is called totally ramified if L N F=F
Now we assume that the following property holds also:

C3. Let L/F be a cyclic totally ramified extension, o be a generator of Gal(L/F). Then
the sequence

N~
-1
A5 Ay BT Az -0

is exact, where o and NI/F are induced by ciz Ap; — Ay, Npgyp 2 A, — Afy, Ly =
LF; and Fj runs all finite subextensions in F'/F; and if o(a) = « for a € Ay, then
vi{e) € |L: FIZ

13. Let L/F be a Galois totally ramified extension and G = Gal(L/F). Let V(L|F)

denote the subgroup in Uy generated by the elements o(a) — o with 0 € G, a € Uz
For ¢ € G out

(o) = a(wz) — w3 mod V(L|F),

where Ty is a prime element in L (e.g., e ] LjimL ). In fact, 7 induces the

homomorphism
' i: Gal(L/F)™ — Uz /V(LIF),

since a(wz) -7 € UE'



Proposition. The sequence

Nev ~
1= Gal(L/F)* — Uz/V(L/F) 47 Uz —0

is exact.
Proof: It can be carried out similarly to the proof of Theorem 2 in Chap. 2 of [I).

First assume that L/F is cyclic of degree p”. Let o be a generator of G. If ¢(c™) €

V(L/F) for some m, then a(m'rrz) — mry = o(e) — ¢ for a suitable € € Uy . Then

a(mwz — e) = mm; — €. By the second condition of C3 we deduce that p*|m and 1 is
injective. Further, let Ny FE= 0 for o € U;. Then there is an element 3 € A5 such that
a = (0 —1)B because of the first condition of C3. Then we can write 8 = ar; + ¢ with
¢ € Uy . Therefore, o = = i(e%)mod V(L/F).

Now let L/F be an arbitrary totally ramified Galois extension. Let M/F a subextension in

L/F. As, by C3 NL/MUL = Uy, we get Nz/ﬁ(V(L/F)) = V(M/F). Argue by induction

on |L: F|, we can show the cxactncss of the sequence of C3 in the term U3 /V(L/F). The
injectivity of : follows as well.
O

1.4. For a finite p-group G (of order of a power of p ) let
G* = Hom, (Gal(F/F),G)

denote the group of continuous homomorphisms of Z, -module Gal(ﬁ' [F)(a-0=0° a€ly)
to the discrete Z, -module G. This group is isomorphic (non-canonically) with @,.G, where
z > 0 was defined in Cl.
Let L/F be a Galois totally ramified extension. Now we introduce the map ¥, p: Up —

*
(Gal(L/F)“b) . Let ¢ € Up. According to C3 there exists an element 7 € Uz, such that
NI/F" = ¢. Let ¢ be an extension of ¢ € Gal(ﬁ/F) on L. As NZ/F((¢ —1)3) =0,
we deduce from Proposition (1.3) that

(¥ —1)n = (1 —o)r; mod V(L/F)

with a suitable ¢ € Gal (L/F)“b, where 7+ is a prime element in A5 . It is easy to verify

that o doesn’t depend on the choice of 3 and 7. Put x(¢) = o. Onc can immediately
obtain that X(¢1¢2) = 010, ie. x € (Gal (L/F)“”) Put Wy p(e) = x.

Lemma. The map W : Up[Ny Uy — (Gal(L/F)“b) is well defined and a homo-
morphism.
Proof: If ¢ = £;e2, then one may assume 5 = 9y72. Therefore, ¢ = o102 and
Y rlere2) = Y p(e1)¥ r(e2).

(]

1.5. Now we introduce the map Y7, p, which is the inverse map to W, as it will be shown
later. Let L/F a Galois totally ramified extension. Let xy € Gal(L/F)’, and I, be the
fixed field of all x(¢)p, where ¢ runs Gal (E/L). Put

Ty/r(x) = Ng pry — Npyprpmod NpypUp,



where 7, and mj are prime elements in A}:x and Aj.

Lemma. The map
Tr/r: Gal(L/F)* — Up/NprUs

is well defined.
Proof: Cf. the proof of Lemma (1.2) in [FS].

O
1.6. Proposition. Let L/F be a Galois totally ramified extension. Then U LJFo Yy
(Ga.l(L/F)“b)* — (Gal(L/F)“b)* is the identity map.
Proof: Let x € Gal(L/F)", and let 7;, 7 be prime elements in Ax,,Ar. Then

iEx/‘E‘n'x = zL/‘Eﬂ‘L + 7 with p € Uz.
Let ¢ € Gal(F/F) and o = x(¢) € Gal(L/F). Then
(1- O')iL/'E"TL = (p—1)p mod V(L/F)

and N‘I‘:/Fﬂ = iF/F(NEx/FWX - NL/FTI‘L). Therefore, X = \I’L/F(YL/FX)-
a
*
Corollary. The homomorphism VY ,p : Up/NypUp — (Gal(L/F)“b) is surjective; the
*
map Yi,p : (Gal(L/F)“b) — Up/NypUyL is injective.
1.7. We are now in a position to formulate the last property to be satisfied.
C4. Let L/F be a cyclic totally ramified extension of degree p. Then the homomorphism
W,/ 1s injective, i.e. if € € Up and N'E/?"" = iF/FE for n € Uy with (¢ — 1)n € V(L/F)
for any ¢ € Ga.l(i/F), then € € Ny /pUy.

Theorem. Let L/F be a Galois totally ramified extension. Then the map

Yo (Gal(L/F)“b) — Up/NypUs

is an isomorphism, and the map

lI'L/F : UF/-NL/FUL — (Ga.l(L/F)ab)

is the inverse one.

Proof: First let L/F be a cyclic of degree p. Then it follows from C4 and Proposition (1.6)
that Wy p is an isomorphism and Y;,p is an isomorphism as well.

Now let M/F be a Galois subextension in L/F. The following diagram is commutative:
1 = Gal(L/M) — Gal(L/F)* - Gal(M/F) —= 1

Vpm 1 Tyr L Tmyr
Um/NyymUp — Up[NppUp, — Urp/NypUnm



(the proof can be carried out similarly to the proof of Theorem 5.1 in (F1]). Then Y ,p is
surjective. Proposition (1.6) implies now that W, is injective.
(]
Corollary. Let M/F be the maximal abelian subextension in L/F. Then Ny pUpy =
NppUr.
1.8. In the same way as in the proof of Proposition (1.8) and its corollary of [F5] one can
verify
Proposition. 1) Let L/F, L'F' be Galois totally ramified, and F'[/F, L'[L be totally
ramified. Then the diagram
Gal(L'/F')" — Up[NpypUyp
! L Npyr
G&I(L/F)‘ — UF/NL/FUL
is commutative, where the left vertical homomorphism is induced by the restriction
Gal(L'/F') — Gal(L/F) and the canonical isomorphism Gal(L'/L') ~ Gal(L/L).
2) Let L/F be a Galois totally ramified extension, and o € Gp. Then the diagram
Ga.l(L/F)‘ — UF/NL/FUL
o'l !
Gal(eL/aF)" — oFINoLjoFUsL
is commutative, where (a*x)(apo™!) = ox(p)o~".

3) Let L/F be a Galois totally ramified extension, and M|F be its subextension. Then the

diagram .

(Gal(L/F)ab) — UF/NL/FUL
Ver* | .

(Gal(L/M)“") —~ Um/NymUs

is commutative.

Passing to the projective limit we obtain the reciprocity map
Up: Up — Homzp(Gal(F‘/F), Gal(F;”/F)),

where F;,‘b /F is the maximal abelian subextension in Fy/F. The kernel of ¥ coincides
with the intersection of all norm groups N, pUj, for abelian totally ramified extensions L/F.

2. Complete discrete valuation fields of rank n.

In this section we treat the class of fields for which theory of section 1 can be applied later.
2.1. Let F be a field and

vp P ()"'=10---0l
n times

be a surjective valuation, where the additive group (Z)" is considered to be lexicographically
ordered, ie. (m, -+ mn) < (m), -, my) in (Z)" if mi < my for the maximal i such



that m; # m:-. The ring of integers of vy, its maximal ideal and the group of units will be
denoted as Op, Mp, Up. Put Vp =14+ Mp, Up,.om, = 1+ t7" -t Op. We will
assume that the residue field Op/Mp = k is a perfect field of characteristic p > 0. The
field F is said to be complete if it is complete with respect to the first component v(*)} of
op = (v(]), ey v(“)) and the residue field F ) of F with respect to the discrete valuation

v of rank 1 is complete. The elements t,,---,%; of F such that

Up(t,‘)=(0,"',1,"'0),

with 1 at the (n + 1 — 2)th position, are called local parameters of F.

If char(F) = p, then it follows from the general theory that F' is isomorphic and homeo-
morphic (with respect to the discrete valuation of rank n ) to the field of formal power series
k((X1))---((Xa)) (cf. section 5 Chap. II of [FV]).

We are now going to introduce some special topology on F' that takes into consideration the
corresponding topology on F ) . First assume that char(F) = p. Let Uy, m € Z, be
subgroups in F ) , which are neighborhoods of zero in this topology (the topology coincides
with the induced topology from the discrete valuation of rank 1 if n =1 ). Assume that

Up = _Fu(n) for sufficiently large m. Put U = Y Un,t™ N F, where ¢, is a prime element
m

of F with respect to »(*) . All such subgroups U in F form a fundamental system of
enighborhoods of zero in the topology of F. The so defined topology was introduced by
AN. Parshin, see [P4].

Now let char(F) = 0 and char(Fy,m) = p > 0. According to the general theory there
is a subfield Fp in F which is a complete discrete valuation field of rank n under the
induced valuation, and p is a prime element in F with respect to the first component of
the discrete valuation of rank n on Fy (see section 5 Chap. Il of [FV]). In this case F
is a finite extension of Fy. One may assume that the field of fractions Fpp of the Witt
ring W(k) is contained in Fy. Let U, m € Z, be subgroups in F . as above. Let
U’m be subgroups in Fj, such that the coefficients from % of elements of U,, are replaced
by the ring of integers of F.. Then one can take U = ) ﬁmt? N F as a fundamental

system of neighborhoods of zero in the topology of Fg. Define the topology on F' as on
the finite-dimensional vector space over Fj.

The multiplicative group F* is isomorphic to the product of the cyclic subgroups (t;)
generated by t¢;, where t¢,,---,%; are local parameters in F, the group of multiplicative
representatives R* of k* in F, and the group Vp. If char@ v(..;) = p, then introduce
the topology on F™ as the product of the topology on Vp induced from F' and the
discrete topology on (t,) x --- x {t1) x R*. If char(F) =--- = char(k“’”‘”) = 0 and

cha.r(k("‘)) =p, m<n—1, where k() = F and k() is the residue field of k0+1) with
respect to the valuation of rank 1, then put Wr =1+ ¢,,1.1OF. The field F is isomorphic
to the field k(™) ((t,n41)) - ((ts)), and k(™1 is a complete discrete valuation field of
rank m + 1 of the type considered above. We get the isomorphism

F* o k0% s W ¢ (Bg1) X -+ X (Ea).

6



Introduce the topology on F* as the product of the trivial topology on Wr, the discrete
topology on (t,41) X - -+ X (t,), and the above-defined topology on k(™+1* Note that the
group Wp is uniquely divisible.

The so-defined topology on F* doesn’t depend on the choice of local parameters and an
imbedding of the residue field into the field. The multiplication is sequentially continuous
with respect to this topology.

Any element a € Vp has precisely one expansion in the convergent product

e=a [[ I - 1l (1+9,m, igbim -t;'l),

tm20 112 mai(im) 1211(8m, - ,82)

where ¢ is a divisible element in Vg, 0;  ..;, € R, R is the set of multiplicative represen-
tatives of k in F, m=n if char(k("-l)) =p, and Tp1(0) 2 0,---, [1(0,---,0) > 0.

2.2 Let K (F) be the s th Milnor group of F. Introduce the topology on K,,(F) as
the strongest one such that the map F* x .-« x F* — K,(F) and the addition in K,(F)
are sequentially continuous. Then the intersection of all neighborhoods of zero in K,(F)

is a subgroup in I{,(F). We will denote this subgroup as A;(F). In the same way as
in section 2 of [F1] and section 5 of [F3] one can show that A,(F) = ﬂ VK, (F),

where VK, (F) = {Vr}K,_1(F), in the case of char(F) = 0. If char(F) = p, then

As(F)D> N IVK,(F). Put
>1

KP°P(F) = K4(F)/As(F).
Let UK:P(F), VKP(F), UpK°P(F) denote the subgroups in Ki°P(F') generated by
Up, Vp, Uy respectively, where I = (i1,---,i,) € (Z)".
For the description of K.:°P(F') one can apply generalizations of the pairings of section 2
[F2] and section 3 [F3].

2.3 Let F be the maximal abelian unramified p-extension of F' with respect to the discrete
valuation of rank n, ie. F = F Q) W(k;b). Put

& = dimg k/wp(k),

where p(z) = zP — z. We will assume further that « > 0. The case « = 0 requires
special considerations taking into account the pro-quasi-algebraic structure of V K ,ﬁ°p(F) as
a generalization of Serre’s theory in the case of n = 1 (see [S]). The Witt theory implies
that there is a non-canonical isomorphism Gal (ﬁ /F ) ~ 11,2,

2.4. The first pairing we will employ now in the case of char(F) = p is the Artin-
Schreier-Witt pairing. Let «ay,---,a, € F*, and let (B, ---,8s) € W,(F) be the
Witt vector. Let wp : W (F) — W,(F) be the operator defined as wp(Bo,:--,fBs) =

(ﬂ(})’s7ﬂf) _(ﬂﬂ:"'aﬁ3)~ For Y e Ga.l(ﬁ/F) put
(al:'")an7(ﬁ01"',ﬁ8)]3(§0)=(10(70!"°)73)_(70)'°'a78)7

where wp(70,+,7s) = (Ao, -, As) and the i th ghost component A() of (X,---,A,) €
W,(F) is defined as resg (ﬂ(‘)al']dal A Aay ]dan). Then one can show similarly to



section 2 of [F2] and (1.11) of [F5] that (-,-], defines the non degenerate pairing

(ls 2 VIGP(F)/p* x Ws(F)[wpWs(F) + W, (F)
— Homg, (Gal (F’/F), W,(Fp)).

Applying this pairing in the same way as in [P4] or section 2 of [F2] one can prove

Proposition. Let F' be a complete discrete valuation field of rank n, char(F) = p. Then any
element o € VK,°P(F) is uniquely expanded in the convergent series Tcizy with ¢y € 1,

Ty = {1 +9t:1nt'11’ tju"'?tjn—i}?

where O belongs to the fixed basis of k over Fp, p t I = (31, -+,ta) > 0, the set
{71, 1Jn=1,7} coincides with the set {1,---,n}, where j is the minimal integer such
that p t ;.

2.5 The second pairing is a generalization of the pairing introduced by S.V. Vostokov
in the case of a finite & (see [V] and Appendix B of [FV]). Assume that char(F) =
0, char(k(""l)) = p, and a primitve p"th root of unity ( is contained in F. Let

a = t‘,‘l"u-t‘l“O(l +295n,...,;1ti,"---t§‘) be an element of F*, where 0 € R*, 0;, ..,
belongs to the ring of integers o of the field Fyp (see (2.1)). Put oX) =
X:;n---x;“a(1 + zei,,,...,,-lx:;n---x;‘=). Let 2(X) = ((X), s(X) = 2(X)”" — 1. Let the
operator A act on elements of o as the Frobenius automorphism Fr and on X; as raising
to the pth power. For a € F* put

1

o) = log o XY72, 6i(a) = a dl()

X~

-1 3a

X mi(a) = &i(a) —

For a1, --,azy1 € F* put
®(a1, -+, ang1) = H{ant1) Dngr = l(@n) Dn + -+ + (=1)"l(e1) D1,

where D; is the discriminant of the matrix

5](051) 5,,(0’1)
61(&;_1) -ua 5,,(&,'_])
mlaiy) ... 7nl@igr)
m{ens1) ... Anl{om4r)

Let p denote the cyclic group generated by (. Define the map T, : (F*)"*! —
Homzp(Gal(F/F),,u) as
Cr(a1, -, ang)e) = (7,

where 7 = (¢ —1)6 and Fr(6) — 6 = resxy®(cy, -, any1)/s(X).

Then one can show similarly to section 3 of [F1] that I', induces the non degenerate pairing
(for p > 2 )

[y K9P(F)/p" x F*JE*P Homzp(Gal(ﬁ/F), p).



Applying this pairing in the same way as in section 3 of [F1] (for » = 1 ), one can prove
Proposition. Let F be a complete discrete valuation field of rank n, char(F) =
0, cha:(k(“'l)) = p. Let p = 0 --t1* + .-+ with § € R*. Then any element

a € VK"P(F)/p is uniquely expanded into the convergent series Lcyzy with ¢; € 1/p,
and

o= {1400ty i

lfO <I< p(el,"'aen)/(p_l)i P + I1 0 € Ra jl < < jn—la set {jla"'ajn—lsj}
coincides with the set {1,---,n}, where j is the minimal index such that 1; is not divisible
by p, and

Ty = {wntkp"',tkﬂ_.l})

where w, = 1, ¢; = 0 when a primitive p th root of unity doesn’t belong to F; w, €

Vi such that F(gw,)/F are non-trivial subextensions in F/F, and b < --- <
kn—1, {k1, -+, kn=1} is a subset in {1,--- ,n}, if a primitive p th root of unity belongs
to F.

In the case of cha,r(k("‘“)) =0, char(k(’")) = p it is easy to deduce similar assertions
in the way as in section 5 of [F3].

3. Multidimensional local p-class field theory

Let F' be a complete discrete valuation field of rank n with the residue field k. Assume
that % is a perfect field of characteristic p and & = dimg, k/wp(k) > 0. In this section we
will show that F' and Ap = K°P(F) satisfy C1-C4 of § 4 and therefore, obtain class field
theory for F. This theory may be regarded as a generalization of the known results in the
case of a finite k& ([P1-5], [K1-3], [F1-4]).

3.1 It is well-known that Ap = K;°P(F) is a G,-modulation. CI is satisfied with K
defined in (2.3). For the valuation vp: Ap — Z one can take the composition

K2P(F) 2 K (F) = -« — Ko(k) S 1,

where 0 is the well-known homomorphism in K -theory, c.f. section 2 Chap. IX of [FV].
Then Up of section 1 coincides with UKxP(F) of section 2. A prime element 77 of Af
can be written as {t,---,t,} +¢ with a suitable ¢ € UKP(F), where ty,---,%; are local
parameters of F. The norm map Ny, maps UK P(L) onto UKP(F) as immediately
follows.

3.2. In order to verify the third condition C3 we need the following description of the norm
map (analogously to Proposition 4.1 of [F1] and Proposition 3.1 of [F3]):

Proposition. Let L/F' be a cyclic totally ramified extension of degree p, o be a generator of
Gal(L/F). Let L = F(t,,L) for some s, 1 < s < n. Take local parameters iy, -ty p =
Nyjptop,-<- i in Foand 1,1, 1, -+, ¢y in L, and assume that

ots [

T =140ty 17y -t mod Uy, 41,0 r,
s,



with 0, € R*. Let ﬁ;,,...';n = Ui, in /Uiy 41
This group is isomorphic to k : 1 + 0tir .. t'i’ — 0 € k. Then

pevin

1) if (31, ,tn) < (r1,--+,7n), then the diagram

-~

Ui v - k 0
Nyrl [
[7,,,'1,...,,'”...',,,'"'? - k&
IS commutative;
2) if (i1, ,tn) = (r1,"**,Tn), then the diagram
U,-,,...,,-"J_ — k 9
Npyrl ! !
Upfu"',ra,---mrn.p — k - 553"1
is commutative;
3) if (41, ,in) > 0, then the diagram
(7,-, Fig,otadpis, - rnting  — K ]

Nyrl l !

Uprs s pabivrprating — k =005
3.2. We need also the following assertion which is proved similarly to Theorem 4.2 of [F1]
and Theorem 3.2 of [F3] (using the bijectivity of the norm residue symbol):

Proposition. Let L/F be as just above. Then the sequence
- N
KRP(L) S KRP(L) "4 K©P(F)
is exact,

Now the sequence of C3 is exact for a cyclic totally ramified extension L/F of degree p,
since the surjectivity of the norm map Ny = : A7 — Ax follows from Proposition (3.2). The
exactness of the sequence of C3 in the general case of a cyclic totally ramified p-extension
is proved now by induction.

Let L/F be a cyclic totally ramified extension of degree p. Let oo = o for a € Ki°P (E)
Let (ry,---,rn) be as in Proposition (3.2). If p { r,, then it immediately follows from
Proposition (2.4) and Proposition (2.5) that plvy(e). If p|r,, then char(F) = 0 and a
primitive pth root of unity (, belongs to F. Let ¢ be a primitive root of the maximal
index p", r > 1, which is contained in L. In the case under consideration L = F (¢/1,)
for a suitable local parameter ¢,. One may take ¢,,---,1,,---,%; as local parameters in ﬁ,
such that t,,---, ¢/, -,t1 are local parameters in L and o (/1) [/t = (p. We get
a=a{ty, -, Ul tn }+e with a € Z, ¢ € UK“’P( ) As ¢y € F* and ¢, & L7,

there exmts an element § € L, such that

Ff({tla"‘agp:"':tn},ﬁ) # 1.

Let ¢ € Gal(E/L) be such that p(8) = B mod L*?". Put (o0 — 1){t1, -+, /ey, tn} =
(¥ — 1)y with v € V(L/F). Then, if p { a, we obtain that

o({tn, vt 8) = T (1,877 671) = 1,

10



a contradiction. Thus, vy(e) is divisible by p.
Now let I/F be a cyclic totally ramified extension of degree p™ and (o —1)a = 0
for a generator o € Ga,l(z/ﬁ), a € K,“."p(f).Thcn, by the inductional assumption,

a= apm—lﬂ‘z +¢, where 7 is a prime element in KP (Z), e € UKXP (E) Then

a(ﬂrz - WI) = 0 mod V(L|F),

where 7 = o '. Let M/F be the subextension in L/F of degree p™ 1. As V(L/F) =

(v —1)V(L/F) forany ¢ € Ga,l(Z/L), we obtain that a(T‘:’T‘Z - ﬂf) is (1 — 1) -divisible

in VKP (f:) Now by the same reasons as above, we deduce that pla, p™{vy(a). Thus,
C3 also holds.

3.4. Note that the quotient group UK:P(F)/V K'*P(F) is isomorphic to k, and hence, is
p-divisible. Thus, we get the maps (according to section 1)
*

U5 VKSP(F) [Ny pVKP(L) — (Gal(L/F)“b)
To/p: (Gal(L/F)“")* — VEKP(F)/NppV K'P(L)

for a Galois totally ramified p-extension L/F.

3.5. It remains to varify C4. Assume that L/F' is a cyclic totally ramified extension of degree
p. Let (r1,---,75) be as in (3.2). By employing the commutative diagrams of Proposition
(3.2) it suffices to show that if

e= {1400 tlp 7 by, b mod NiypV ERP(L)
with 0 ¢ _ﬁgp(k), then ¥y, r(e) # 1. In terms of C4 we obtain that
y = {1 +H't,r{'"'t;:L‘"t?,tjn'”atjn..l} oo,

where 8° @77 = 7. Let L1/L be a subextension in L/L of degree p, such that 9 el
Let 3 € Gal(L/L) be such that 1|7, is a generator of Gal(L1/L). Now, if ¥p/p(e) =1,

-~

then {1 SalLZATEERNS PR A tjn"',tjn_l} belongs to (p — 1)VK,",°I’<L) for any

¢ € Ga.l(z/[,). Then, by the same arguments as in (3.3), one obtains a contradiction.
Therefore, ¥, p is injective and C4 is true.

3.6. According to Theorem (1.7) we obtain

Theorem. Let F' be a complete discrete valution field of rank n with a perfect residue field
k of characteristic p > 0, & = dimg, k/wp(k) > 0. Then for a Galois totally ramified
extension L/F, L C F,, the map

Ty/p: (Ga,l(L/F)“")' — VE®P(F)/Ny pV K2P(L)
is an isomorphism and the map

Uyyp  VERP(F)Ny p KoL) — (Gal(L/F)™)
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is the inverse one. The map ¥, determines the reciprocity map
Up: VEKPP(F) — Gal(F;b/F‘),

possessing natural functorial properties of section 1.
Remark. One can show that if char(F) = p, then for a € VI P(F), B € W,(F)

(a Bls(#) = ¥r(@)(@)(7) — 7,
where ¢ € Gal(ﬁ/F), and «y is the root of the polynomial wp(X) — B. If char(F) =10
then for o € VK P(F), B € F*

Ty(a, B)(p) = y¥7(@0)-1,
where ¢ € Ga.l(f‘/F) and v*" = 8.

»

4. Ramification theory. |

Let F' be a complete discrete valuation field of rank n as in section 3.

4.1. We get the filtration
Ullos"ﬁo]{:';op(F) 3 UQ'O’...,OI‘,:;OP(F) D e

on VK P(F). Using the pairings of (2.4) and (2.5) in the context of Proposition (2.4) and
Proposition (2.5), one can show that if char(F) = p, then for 7 > 0

ULKGP(F) [Ur 1 KGPP(F) = k,

where 1 = (1,0,---0). If char(F) =0, then for I > 0 and F = (e1,---,e,) as in (2.5)
we get that

UrKP(F) + pIGEP(F) U K (F) + Ko (F)

is 0if p|I, I<pE/(p—1)or I >pE[/(p—1) or I =pE/(p—1) € (Z)" and a primitive
p root of unity doesn’t belong to F; is isomorphic to k if p t I, I < pE/(p—1); is
isomorphic to {k/wp(k))" if I = pE/(p—1) and a primitive p th root of unity belongs
to F.

Now let L/F be a Galois totally ramified extension, L C F,. The norm map Npp :
VEKLP(L) = VKP(F) can be described on the base of Proposition (3.2). However, the
behavior of Ny, p is more complicated then in the case of n = 1. For instance, let L/F be
of degree p,n = 2. Let L = F(t3,L). We take t5 p = Ny ptp [,t1 as local parameters of
F and {5 ,t; aslocal parameters of L. Then NL/F{I +t2,Lt1,t1} = {1 + tg,pt’]’,tl} and
Npp{l+torti,ton} = {1 +tarts,tor}, dut vp(tapty) < vi(terta), vr(tert]) >
vr(t2,rt1).

4.2. Applying the construction of the rcciprosity map of sections 1 and 3,one can describe
the image of UrKi°P(F) in (Gal(L/F)“”) . Then

U r(UrKP(F)) =

{x € (Ga.l(L/F)ab)* cx(e)rp — 7 € (p— I)NfllﬁiF/FUjK,tOP(F)mod V(L/F)}
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where ¢ runs over Ga,l(F‘/F) and 7 is a prime element in KaP(L).
In the case of n =1 it is well-known that (¢ — l)Nf/IFU,-, rmod V(L/F) can be replaced

by Uhi),r mod V(L/F) and ¥, p(U; ) is equal to the ramification group Ga.l(L/F)}:l("-),
where h = hyp is the Hasse-Herbrand function defined as the maximal integer ; such that
(in the case of an infinite residue field)

NypUsr CUipy, € Ui, NpjpUjpr C Ui r

(cf. section 3 Chap. III of [FV]). It is not true in the general case of n > 1.
4.3. For a € VK. "P(L) put

wr(a) =min{I: z € UrK;°P(L)}.

Let L/F be a Galois totally ramified extension, L C F,. We will assume that the surjective
discrete valuation of rank n on F' is induced by the surjective discrete valuation on L. Let
Z be the subset of indices I € (Z)", I > 0, such that

UiKP (L) € V(LIF) + Up K2 (T)).

Define the Hasse-Herbrand function (which doesn’t coincide with the classical one in the
case of n =1 )

h=hyp: (L)} - (1)},
where (Z)7 is the subset of indices I > 0 in (Z)", as

— . -1 . to
h(I) = min{wy{a) € Z: a € (p— I)NI/FZF/FUIKﬂ P(F)

for some ¢ € Gal(ﬁ/F)

if its minimum exists, and A(I) = +o0o otherwise. The so-defined function doesn’t depend
on the choice of the discrete valuations on L and F. The equality hp/p = hpjpr 0 hyyp
is not true in the general case. However,

hpyp =npm o hyyr, *)

where ny .y : (Z)) — (Z)} is the function connected with the norm map N,y and
defined as

np/m(l) = min {wM(NL/Ma) cwi(a) =T},

This is the consequence of the relations V(M/F) = N5 f #V(L/F) and

(¢ = VNG i py UG (IF) = Ny ((“0 ~ DN Ui ](:'OP(F))'
4.4. Put for J € (Z)%

Gal(L/F); ={o € Gal(L/F): arp — 7 € U K¥P(L)}.
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ny
from class field theory of section 3, if L/F abelian and Gal(L/F); # Gal(L/F);_,, then
J = hpp(I) for some I € (Z)}. This assertion may be treated as a direct generalization
of the Hasse-Arf theorem.

4.5. Let L/F be a finite Galois totally ramified extension, L C F,, and M/F be a Galois
subextension in L/F. Put G = Gal(L/F), H = Gal(L/M). Then the formula (*) implies

(GIH) oty = Choye(yHIH.
This equality is an analog of the Herbrand theorem.

Then we deduce from (4.2) that lIJL/F(U;K,t,"p(F)) = (Ga.l(L/F)ab/F(I))*. As it follows

4.6. Finally we note that the Galois group of a totally ramified p-extension L of a complete
disrete valuation field F' of rank 1 with an arbitrary residue field of characteristic p is the
Galois group of a totally ramified extension L' of a complete discrete valuation field F' of
rank n with the perfect residue field for a suitable n, F'. Thus, the properties of Gal(L/F)
from the standpoint of ramification theory can be reduced to the properties of Gal(L'/F')
and studied by class field theory exposed above.

5. Existerice theorem

Let L be as in section 3.

5.1. A polynomial p(X) over k is called k-decomposable if it is additive, i.e. p(a+b) =
p(a)+ p(b) for all a,b € k, and all its roots belong to & (cf. section 2 of [F5]). A subgroup
N in VK °P(F) is called normic if 1) A is open; 2) for any I > 0 there exists a polynomial
f1(X) € Op[X] such that the residue polynomial f; € k[X] is non zero k-decomposable
and
{1 + fI(OF)i'i"}K,tfl(F) CN,

where t,,---,1; are local parameters of F, I = (z1,--+,2,); 3) for any I > 0 there exists
a polynomial ¢;(X) € Op[X] such that its residue g; is non-zero k-decomposable,

NNUKEP(F) + U K2P(F)
= {1+ gi(Op)tiy -+ 88 LD (F) + Upn KOOP(F),
and for almost all / the polynomial g;(X) is equal to X.

We will show that the class of normic subgroups coincides with the class of norm groups
Np pVKP(L) of Galois totally ramified extensions L/F, L C F,.

5.2, It follows from the definition that the notion of a normic subgroup doesn’t depend on
the choice of local parameters in F.

Proposition. Let L/F be a Galois totally ramified p extension, F' C L, Then
Ny pVKSP(L) is a normic subgroup in VK P(F).

Proof: The first property for Ny, pV K. P(L) is evident. To verify the second and third
propetties, one can proceed by induction on degree of L/F. If L/F of degree p then all
follows from Proposition (3.2). In the general case let M/F be a subextension in L/F of
degree p. Let o be a generator of Gal(M/F) and M = F(i,). Let

ot
—2E = 1 oty - £y 47 mod Uy 1,
ts,M l
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with 8y € R*. According to Proposition (3.2) the unique non trivial polynomial arises from
the norm map Ny/p is f2(X) = 05wp(65' X). Now let 7, be a prime element in K°P(L)
and o € Gal(L/F) be an extension of ¢ on L. Then

¥

Npml(omp—mp) — {1 +90t,r{"“t:fM"‘tI',tjn“',tjn_l}

belongs to Ur,41,..r, KnP(M), where the set {j1, --,jn_1,8} coincides with the set

{1,---,n} and t4,- -, Npyyptep,---,t1 are local parameters of F. Therefore, by the
inductional assumption,

NpmVELP(LY N UrKPP(M) + Up g1 K2P(M)
= {14 2OR) - gy 17 O (M) + Uit K27 (M),
where R = (r1,-+,7,), and 8 € fi(OFp), f, is k-decomposable. Thus, 8y € f,(k)

and the polynomial f,o f; is non zero k-decomposable. The second property for
Ni; FVKP(L) can be verified now similarly to the proof of Proposition 15 of [W].

(]
5.3. Proposition. Let L/F be an abelian totally ramified extension, L C F,. Let N be a
normic subgroup in VK. P(F). Then N;/IF(N ) is a normic subgroup in VK. °P(L).
Proof: It is carried out in the same way as the proof of Proposition (3.2} of [F5] using
Proposition (3.2).

0

5.4. Let 7 be a prime element in K.°P(F). Let &, denote the set of abelian totally ramified
extensions L/F, L C F,, such that = € NL/FI(:°p(L). Then, if Li/F, Ly/F € & ,
Ly N Ly/F € &. Indeed, let M = Ly N Ly and Ny pm = Np, pv2 = m. Then
Nyype = 0 for € = Ny yymy — Npyypyme. Now it follows from the first commutative
diagram of Proposition (1.8) that ¢ € Ny VK 2P(L). Therefore, there is a prime element
my in K°P(M) such that

Nyypmy =, g € N KoP(L1) N N a KOOP (L)

Thus, it suffices to consider the case when Ly N L, = F and L;/F, Ly/F are cyclic
extensions of degree p. Assume that L;/L,/F is not totally ramified. Then there is an
unramified cyclic extension E/F of degree p, E C LiL;. Let o7 and o, be elements of
Gal(LyLy/F) such that oy|z, and o3|, are trivial and o;];, and o3|z, are generators
of Gal(L1/F) and Gal(Ly/F) respectively. One may assume that F is the fixed field of
o3 = o109, Let
w = NLI/F‘R'l = NL,J/FWQ
for some 7, € KiP(Ly), w2 € Ki*P(Ly). Then

NpyLaE(Ly iy 1™ = i, /0,1,72) = 0.

Then, by Proposition (3.3)

U f L La T = ta/ Ly 1,72 = 03(Y) —
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for some v € VI P(LyLy). Put B = 71 +v—ay(7). Then o3(8) = B and LR/ LT =
(1 +o14+--+ of'l)ﬂ. Therefore, vy,1,(8) = 1. It follows from (3.3) that this is im-

possible. Thus, LyLy/F is totally ramified. Now similarly with (3.3) of [F5] we get
LILQ/F € &

5.5. In the same way as in (3.4) of [F5] one can prove

Proposition. Let = be a prime element in K;°P(F). Let N be a normic subgroup in
VKLY P(F). Then there is precisely one abelian totally ramified p-extension L]F such that
N = NppVESP(L) and © € Npjpia®P(L).

As a corollary, we obtain

Existence Theorem. There is an order reversing bijection between the lattice of normic
subgroups in V I°P(F) with respect to the intersection and sum and the lattice of extensions
L/F € & with respect to the intersection and composition: N' = Ny, FVEKSP(L) o L.

Finally, in the same way as in (3.4) of [FS] one can show that for the composition Fy of
all fields L with L/F € & ’

FeNF=F and F F=F®
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