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1. The Schwarzian derivative

The main character of the present note is the Schwarzian derivative, and we start with
abrief reminder of its definition and main properties.

Let 1 : RP) --+ Rp 1 be a projective line diffeomorphism. For every point x E Rpl
there exists a unique projective transformation 9x : Rpl --+ Rpl whose 2-jet at x coincides
with that of I. The Schwarzian derivative S(/) measures the deviation of the 3-jet j 31
f '3rom J gx·

More specifically, let x E Rpl and v be a tangent vector to Rpl at x. Extend v to
a vector field in a vicinity of x and denote by <Pt the corresponding local one-parameter
group of diffeomorphisms. Consider 4 points:

(€ is small) and compare their cross-ratio with that of their images under I. It turns out
that the cross-ratio does not change in the first order in E:

The €2-coefficient depends on the diffeomorphism f, the point x and the tangent vector v
(but not on its extension to a vector field)j it is a quadratic function in v. That is ta say,
S(f), the Schwarzian derivative of a diffeamorphism /, is a quadratic differential on Rpl.

By the very construction 5(g) = 0 if 9 is a projective transformation, and 5(g 0 f) =
5(/) if 9 is a projective transformation and f is an arbitrary diffeomorphism.

Chaose a projective coordinate x E R 1 U {(X)} = Rpl. Then a diffeomorphism can
be considered as a function of x, and the projective transformations are identified with
fraction-linear functions. The Schwarzian derivative is given by the fonnula

_ fm _ ~ (I" )2
5(f) -!' 2 I' .

The Schwarzian derivative enjoys the following cocycle property:

5(g 0 f) = 5(g)(/')2 + 5(f),

which means that 5 is a 1-cocycle of the group of the projective line diffeomorphisms with
the values in quadratic differentials.
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Let 0' be another parameter on RP I, that is, x = 9 (0') for some function 9, and let
1 : Rpl -+ Rpl be a diffeomorphism. The Schwarziall derivative of 1 is given, in terms
of 0', by the formula 5(90 f) - 5(g) where, as before,

and where prime means now d/ da. By the cocycle property,

5(g 0 f) - 5(g) = ((f')2 - 1)5(g) + 5(/).

A particular case of interest is x = tan(a/2) where 0' E Tl = R/27fZ is an angle parameter.
Then 5(g) = 1/2 and the fonnula for the Schwarzian derivative reads:

2. Theorem on Zeroes of the Schwarzian Derivative

Recently E. Ghys discovered a beautiful theorem ([Gh]j see also [O-T]):

Theorem 2.1. The Schwarzian derivative of every projective line diffeomorphism has at
least 4 distinct zeroes.

The proof outlined by Ghys is based on the similarity with the classical 4 vertex
theorem:

TheorelTI 2.2. A smooth c10sed convex plane curve 11as at least 4 distinct vertices (cur­
vature extrema).

The latter theorem has the following refinement (see [BI]):

Theorem 2.3. If a smooth c10sed convex plane curve transversa1ly intersects a circ1e in
N points then it has at least N distinct vertices (N is even).

The analogy between zeroes of the Schwarzian derivative and curvature extrema sug­
gest a refinement of the Ghys theorem. Call a fixed points x of a projective line diffeomor­
phism 1 simple if the graph of f transversally intersects the diagonal at point (x, x) and
5 (I) (x) =f:. O. A generic diffeomorhism has only simple fixed points. The next theorem is
the main result of the present note.

Theorem 2.4. If a projective line diffeomorphism has N fixed points of which at least
one is simple then its Schwarzian derivative has at least N distinct zeroes.

Notice that the number of fixed points of a projective line diffeomorphism, counted
with multiplicities, is even.

Theorem 2.4 ilnplies the existencc of 4 zeroes of the Schwarzian derivative. Given
a diffeomorphism f pick 3 generic points Xl, X2, Xa E Rpl, and let 9 be the projective
transformation that takes each Xi to I(xä)j i = 1,2,3. Then g-l 0 f has 3 fixed points. The
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number of fixed points being even, there exists a fourth one. By Theorem 2.4 5(g-1 0 f)
has at least 4 zeroes, and so does 5(/) = 5(g-1 0 I).

3. Proof of Theorem 2.4

The proof is elementary in that it boils down to a (somewhat messy) suceessive ap­
plieation of Rolle's theorem.

We assume that 1 is orientation-preserving; otherwise f has exactly 2 fixed points
and the assertion of Theorem 2.4 is weaker than that of Theorem 2.1.

Without 10ss of generality, assurne that 00 E Rp1 is a simple fixed point. The graph
G of 1(x) is a smooth curve with everywhere positive slope that intersects the diagonal at
(N - 1) points.

The following identity is straightforward:

((/')-1/2)" = -~(f')-1/25(/).
2

Thus one wants to show that ((f')-1/2)" has N zeroes.
Rolle's theorem provides quite a few. Between every two consecutive interseetions of

G with the diagonal there is a point at which /' = 1. Hence (/')-1/2 assumes the value
1 at least (N - 2) times, and therefore (( f') -1/2 )" vanishes at least (N - 4) times. To
aceount for the missing 4 zeroes we analyse the behaviour of f at infinity.
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v/(l-u) b

a)

Figure 1

c a

b v/(l-u)

b)

Let t = I/x be a loeal parameter at 00; set g(t) = 1/ f(l/t). Then g(O) = 0; consider
the Taylor expansion
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Since 00 is a simple fixed point, p i= 1 and 5(g )(0) i= O. It IS straightforward that
S(g)(O) = 6(pr - q2)/p2; thus pr - q2 i= O.

Oue obtains the expansion of f at 00:

f (x) = 1/g(1/ x) = ux +v +w ~ + 0 C2 )
where u = 1/p, v = _q/p2 and w = (q2 - pr)/p3. Thus u i= 1, w i= 0 and G has the
asymptotic line y = ux + v - see fig. 1.

Without loss of generality, assume that u > 1; otherwise consider f- 1 instead of f.
Let a and b be the x-coordinates of the left and rightmost intersection points of G with
the diagonal.

Gase 1: w < 0 (fig. 1 a).
By the Taylor expansion of f at infinity, f'(x) > u, and so f'(x)-1/2 < u-1/2, for

sufficiently great Ix I. Consider the graph G' of f' (x )-1/2 .

By Rolle's theorem G' intersects the Ene y = 1 at least (N -2) times, and this provides
(N - 3) extrema of (f')-1/2. Also G' lies below the line y = u-1/ 2 for sufficiently great
lxi, therefore (f')-1/2 has a local minimum to the right of the rightmost intersection of
G' with y = 1 and to the left of the leftmost such intersection - see fig. 2 a. The points
x = +00 and x = -00 also qualify as extrema of (f')-1/2. Altogether (f')-1/2 has (N + 1)
critical points, and by Rolle's theorelD ((f')-1/2)" has N zeroes.

a)

Figure 2

b)

Gase 2: w > 0 (fig. 1 b).
In this case f'(x) < u, and so f'(x)-1/2 > u-1/2, for sufficiently great lxi. Either

a < v / (1 - u) or b > v / (1 - u) (or both). Consider the former case, the latter being
completely analogous.

For x sufficiently elose to -00 the graph G lies below the asYluptotic line y = ux + v.
Therefore G fiust intersect thc asymptotic Ene to the left of thc verticalline x = u. By
Rolle's theorem there exists c < a such that f'(c) = u, and so f'(c)-1/2 = u-1/2 - see fig.
2 b.
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We do a similar bookkeeping of critical points of (f')-1/2. The graph G' intersects
the line y = 1 at least (N - 2) times on the interval a ::; x ::; b; let d be the x-coordinate
of the leftmost sueh interseetion. By Rolle's theorem (f')-1/2 has (N - 3) eritieal points
on the interval [d, b]. In addition (f')-1/2 has a loeal maximum on the interval (-00, c)
and a loeal minimum on the interval [c, d). The points ±oo are eritieal points of (/')-1/2
as weIl. Altogether (f') -1/2 has (N + 1) extrenla, thus ((f' )-1 /2 )" has N zeroes .

4. Infinitesimal Version of Theorem 2.4

Let 0: be the angle parameter on Rpl introdueecl at the end of Section 1. Consider a
diffeomorphism elose to identity: f(o:) = 0: + €g(o:) where 9 is a 27r-periodie funetion and
€ is small. Then, according to the last formula of Section 1,

5(f) = € (g'" + g') + O(€2).

Thus the differential operator (d/da:)3 + (d/da) is a linearization of the Schwarzian deriva­
tive. Fixed points of f are zeroes of g, and zeroes of 5(f) are, in, the first approximation,
zeroes of g'" + g'.

Let g(o:) = O. Call 0: a nondegenerate zero if g'(o:) =I 0 and g"'(o:) + g'(o:) =I O. The
next statement is an infinitesimal version of Theorem 2.4.

Theorem 4.1. If a smooth function 9 on the circ1e Tl has N zeroes of which at least Olle

is nondegenerate then g'" +g' has at least N distinct zeroes.

We only outline the proof. Consider 9 as a function of x = tan(a/2). Makc use of the
following identity between differential operators:

( d)3 (d) 1 22(rl)3 2
da + do: = 8" (1 + x) dx (1 + x ).

Thus Olle wants to show that (( 1 + x2 )g(x))'" has N zeroes. Assume that 1f is a siluple
zero of g(0:). One shows that an expansion at infinity holds:

(x 2 + l)g(x) = ux +v +w~ +0CJ
where u =I 0 and tu =I O. Therefore the graph of (1 + x2 )g(x) has an asymptotic line and
interseets the x-axis (N - 1) timcs. The rest af the argument repeats thc proof af Theorem
1 and we da not dweIl on it.

Remark. (d/do:)3 + (d/ da:) is a disconjugate differential operator on thc eirele. Far
an operator of odd degree k this means that every funetion in its kernel is 27r-periodic and
has at most (k - 1) zeroes on Tl , luultiplieities counted. COllid Theorem 4.1 be generalized
to other disconjugate operators? For a disconjugate differential operator L of degree k on
an interval I the following theorelu holds: ij f has N zeroes on I then L(f) has at least
N - k zeroes on I (see [Po]). The proof consists in factorizing L iuto a product

d d d
vo(x) dx V1(X) dx V2(X) ...Vk-1(X) dx Vk(X),
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where each function Vi ( X) is positive on I, and suceessively applying Rolle1s theorem. Sueh
a faetorization is not available on the circle.

5. Application to Vertices of Plane Curves

The relation between Theorems 2.4 and 4.1 is another manifestation of the relation
between zeroes of the Sehwarzian derivative and eurvature cxtrema of plane eurves. We
show here that Theorem 4.1 implies Theorem 2.3.

Let C be the eircle that transversely interseets a smooth eonvex closed plane curve /
at N points. Denote by 0 the center and by r the radius of C. Let f (a) be the support
function of " that is, the (signed) distanee from 0 to an oriented tangent line to , as a
funetion of the direetion of this line.

Support funetions of circles are linear eorubinations of first harmonies: a + beos a +
csina. These funetions generate the kernel of the differential operator (d/da)3 + (d/da).
A vertex of a eurve is its third order tangeney with a circle. Therefore vertiees of , are
zeroes of the funetion f'" (Cl') + f' (Cl' ).

Leluma 5.1. There exists at least N common support lines to / and C.

z

Figure 3

Proof. Consider an are eS of the curve that lies outside C and is bounded by two
conseeutive interseetion points X, y Ein C - see fig.3. There are at least N /2 such ares.

The distanee function from 0 assumes maximum on eS at sorne point z. The support
line to , at z does not intersect C, while the support line at X does. It follows that there
is a point on the are xz such that the support line at this point is tangent to C. Likewise
such a point exists on the are yz. Altogether one gets 2· N /2 = N common support lirres.

Lemma 5.1 implies that the function I(a) assurnes the value r at least N tirnes, so
the function g( Cl') = I( Ci) - r has N zeroes. Making a srnall perturbation of the circle C, if
neeessary, one mayassume that at least one of these zeroes is nondegenerate. By Theorem
4.1 g'" + g' nas N zeroes, and so does f'" + I'. Thus, has at least N vertices.
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6. Lorentz Caustics and Wave Fronts

According to E. Ghys ([GhJ), the theorem on 4 zeroes of the Schwarzian derivative is
a 4-vertex theorem in Lorentzian geometry. In this last section we discuss this viewpoint.

As before, G denotes the graph of an orientation-preserving projective line diffeo­
morphism f( x). The graphs of (orientation-preserving) fraction-linear functions are either
straight lines or hyperbolas (x - a)(y - b) = -82 ; in the latter case Isl is called the radius
of the hyperbola. Abusing the language we will call these curves sirnply "hyperbolas" .

For every point of G there exists a unique hyperbola second orcler tangent to G at this
point; call it the osculating hyperbola. Zeroes of 8(/) are moments of third order tangency
between G and its osculating hyperbola.

Following Ghys, introduce the Lorentz metric 9 = dx dy in the (x, y) plane. Hyperbo­
las are circles in this metric. The graph G is a "space-like" curve. All geometrical terms
such as "length", "orthogonality", etc, refer to the rnetric g. Let J be the linear operator
(x,y) --+ (-x,y). Then J(v) is orthogonal to v, and g(J(u),J(v)) = -g(u,v) for every
vectors u and v.

Let t be a (Lorentz) arc-length pararneter along G. Denote dielt by dot and dldx by
prime. One easily finds that

Ort) = ~ f"(x(t)) J'(X(t))-3/2 J(G(t)).

Call the coefficient k = f"(/')-3/2/2 the (Lorentz) curvature of G. Then k = (/')-1/28(/)
(the observation due to L. Guieu anel V. Ovsienko). Thus curvature extrema are zeroes of
the Schwarzian derivative.

Definition. The envelope r of g-orthogonalEnes to G is called its Lorentz caustic.

Note that r is a time-like curve. Note also that at inflection points of G the caustic
goes to infinity. If G is the graph of a projective Ene diffeomorphism with a fixeel point at
infinity then, according to the Moebius theorem, G has at least 3 infiections.

Definition. A waue front of G is obtaineel by rnoving every point x E G the same
distance in the elirection g-orthogonal to G at x.

If G(t) is an arc-length pararneterized curve then its s-front is the curve

Gs(t) = G(t) - s J(G(t)).

Exanlple. Let G be the upper branch of the hyperbola xy - _s2, S > O. The
arc-length parameterization is

The curvature is const ant: k = 1/s (and k = -1 I s on the lower brauch of thc same
hyperbola). The acceleration vector G(t) is collinear to G(t) für all t, so all nürmals pass
through the ürigin. The caustic elegenerates to a point, the center of the hyperbola. The
wave fronts are concentric hyperbolas, anel in particular, G s elegenerates to the center of
the original hyperbola G.

Lorentz caustics anel fronts enjoy the familiar properties of their Euclidean counter­
parts. We summarize them in the next theorem.

7



Theorenl 6.1. a). Tlle Lorentz caustic r of a curve G is tlle locus of its osculating
hyperbolas' centers. r is also tbe locus of the singularities of tbe fronts Gs .

b). Singularities of r correspond to curvature extrema of G. If G is the graph of a

projective line diffeomorpbism f tben singularities of r correspolld to zeroes of S(f).
c). (Huygens' Principle). Tbc front Gs is tlle envelope of tbe hyperbolas of radii s with
tlle centers at points of G. Tlle caustic of eacb front Gs coincides witb tbe caustic of G.
The fronts enjoy the evolution property: tbe s-front of tbe t-front of G coincides with tbe
(8 + t)-front Gs+t '

d). Each front G~ is tlle locus offree ends of a strctched string of constant Lorentz length
unwinding (rom r.

Proof. To prove the assertions a) and b) approximate G by its osculating hyperbolas
and use the properties of hyperbolas described in the Example.

To prove c) consider 3-dimensional contact space of space-like contact elements in the
Lorentz plane with coordinates (x,y, u) and the cOlltact 1-form A = (eU dx - e- u dy)/2. A
space-like curve in the (x, y) plane lifts to contact space as a Legendrian curve satisfying
2u = log (dy/dx).

Let ~ = e- U d/ dx - e" d/dy bc the Reeb vcctor field, that is, A(~) = 1 and iedA =
O. The fiow of ( parallel translates a contact element with a constant velocity in the
direction of its Lorentz normal. Denote by {<Ps} the corresponding I-parameter group of
diffeomorphisms. Each <Ps preserves the contact structure (and even the contact form).

The 8-front of a curve G is obtained as follows: lift G to contact space, apply <Ps to
the lifted curve and project back to the plane. The evolution property follows. It follows
also that all the fronts have the same family of orthogonallines, therefore they share the
same caustic.

To prove that the front Gs is the envelope of the hyperbolas of radii s centered at
points of G, consider a point x E G. Its lift to contact space is the curve / of a11 space-like
contact elements with the base-point x. The Eft G of G intersects " so <Ps( G) intersects
<Ps(/ ). The projection of <Ps (/) to the plane is the hyperbola of radius 8 with the center at
x. Since <Ps( G) intersects <Ps (,) this hyperbala is tangent to Gs.

To prove d) let t be the arc-length parameter along r, i.c., g(t(t), t(t)) = -1. Then
f(t) is orthogonal to f(t). The free end of astring unwinding from r is the point

X(t) = r(t) + (c - t)f(t)

where c is a constant, "length of the string". Then X(t) = (c - t)f(t), which is orthogonal
to t(t). Therefore the normals to the curve X are tangent to r, that is, X is a front of G.

Remark. The above contact space is contactomorphic to the standard contact space
of I-jets J1 R 1 ; indeed A = dq - pdu where p = eU x + e-Uy and q = eUx - e-Uy.

Acknowledgements. I am grateful to S. Lvovsky, V. Ovsienko and M. Umehara for
nllmerous stimulating cliscussions. It is a pleasure to acknowledge the hospitality of the
Max-Planck-Institut in Bonn. The research was supported in part by an NSF grant.

8



References

[BI] W. Blaschke. I(reis und I(ugel, Leipzig 1916.
[Gh] E. Ghys. Circles osculateurs et geometrie lorentzienne. Talk at journee inaugu­

rale du CMI, Marseille, February 1995.
[O-T] V. Ovsienko, S. Tabachnikov. Sturm theory, Ghys theorem on zeroes of the

Schwarzian derivative and flattening of Legendrian curves. Preprint.
[Po] G. Polya. On the mean-value theorem corresponding to a given linear homoge­

neous differential equation. Trans. AMS, 24 (1922), 312-324.

9


