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On a projectively minimal hypersurface

in _the unimodular affine space

T. Sasakdi

INTRODUCTION

It was W. Blaschke who developed systematically the affine
differential geometry of surfaces in the affine space A3 . His
book [1] is still one of standard references. There the third
order invariant called Fubini-Pick's cubic form played one of
fundamental roles. This invariant was found in the projective
study of surfaces. See G. Fubini -E. Sech [7] and G. Bol [2].
Note also that this form is used successfully by A.V. Pogorelov
and E. Calabi to solve the Minkowski problem and related
problems. In §67 of [1], there was defined the projective area
functional using this cubic form. A projectively minimal sur-
face is by definition a critical point of this functional.

It is known that every affine hypersphere is projectively mini-
mal. This is due to H. Behnke. Later G. Thomsen [12] derived

a differential equation defining a projectively minimal surface
in the projective category. In chapter VIII of [2] one can find
several interesting charactersations of these surfaces of
hyperbolic type due to Thomsen, Meyer, Su, Godeaux ... .

The purpose of this paper is to derive a differential

equation defining a projecitvely minimal hypersurface in the



affine space An+1 . Making use of this we can obtain non-

trivial examples of projectively minimal hypersurfaces which

n+1

are closed in A (Theorem 4.5). Also we prove that only

3 which

an ellipsoid is a projectively minimal surface in A
is compact and strongly convex (Theorem 4.2). This is a
converse to Behnke's theorem and can be seen a projective
analogue to the affine Bernstein problem (see [4]). The genera-
lisation in higher dimension remains open.

In §1 we shall recall the definition of the Fubini-Pick
form and define the projective area functional for a locally
strongly convex hypersurface in a real projective space Pn+1 .
§2 is a preliminary to calculate in §3 the variation of this

n+1

functional for a hypersurface in A . The variational equa-

tion is elliptic and of order 6. The equation for a hypersur-

n+1

face that is in P shall be remarked. In §4 we prove

theorems mentioned above.



§1 PROJECTIVE AREA OF A HYPERSURFACE

We recall in this section some projective invariants of
a hypersurface to define the projective minimality. We adopt
here the method of moving frames. A detailed description by
this method is given in [11]. Refer also [5] on the affine
treatment of a hypersurface.

1

Let p"* denote the real projective space of dimension

n+1 and G-=PGL(n+1,R) the real projective transformation

group acting canonically on Pn+1 . The group G 1is a prin-
cipal bundle over Pn+1 with the isotropy subgroup as the
fibre group. Let e0==(e8,e?,...,eg+1) be a fixed basis of
Rn+2 with det(eg,,...,eg+1) = 1 . Then for every g€G ,
eg::ge0==(eo,e1,...,en+1) is a new basis and satisfies
(1.1) det(eo,e1,...,en+1) =1 .

We call this basis a projective frame or simply a frame. Let

B

w denote the Maurer-Cartan form of G and W, be components

of w , then

(1.2) dwa6=mYAmB .



Here and throughout this paper, the summation convention is

used and the index ranges are agreed on

(1.3) 0<a,B,...<n+1 and 1<i,j,...<n .
From (1.1) it holds
(1.4) w* =0 .

Let now M be a hypersurface in Pn+1 . Here we restrict

ourselves to frames satisfying

(1.5) w n+l 0 and

0 ,...,won are linearly independent

on M . We write w = wg for short. By the exterior diffe-

rentiation of (1.5),

0 = d(.un+1 = wiAwin+1
Hence we may put
(1.6) w, ™V = h, .0 ; n,, =n,,
and define

(1.7) ©, = hijwlmj » b= (h;;) and H=deth .



Once one fixes a frame satisfying (1.5), then another frame
is written as e = ge , g being a unimodular matrix of the

form

where

a = (ag) is a nxn matrix,
b = (bi), c = (cJ) are vectors and
AL, VER .

Since the value of the Maurer-Cartan form at e , which we

denote by @ , is given by

(1.8) w = dg - g"1 + gwg_1 ,

some computation yields

(1.9) Byy = (Av)—1aikhk2a;.“ , § = (deta)™?g ,
and
nlz dlog?f * E;OO * Z}n:;l+1 =
(1.10) = nlz dlogf1+-m00 + mn+?+1-+v_1cjh kwk-biAim

Now we assume



ASSUMPTION 1.1. The matrix h is positive definite every-

where on M . The equality (1.9) implies this property does
not depend on the choice of frames. In fact this is equivalent
to the fact that the hypersurface is locally strongly convex.

- Under this assumption it is able to choose a frame @
so that

1 oy ~ Q n+1 _
(1.11) n+2dlogH+m + w =0

and, moreover, we may assume

(1.12) H =1

due to the fact (1.10) and (1.9). Limiting ourselves to such
frames and assuming the frame e itself satisfies this con-

dition from the beginning, we can see that a frame change

must satisfy

(1.13) cjhjk = vbiAll( » Av =1 and deta =1 |,
0] n+1 _
(1.14) mo + wn+1 =0 .

Let us next take a derivation of (1.6). Then, by the structure
. _ k kK 5 _

equation (1.2), (dhij hikmj hkjwi>‘Aw = 0 . Therefore

we can put

(1.15) dh,. - h, w® - h 0¥ = h . K



using symmetric hijk . From the assumption (1.12),

k J

- = pid = pid
0 = dlogH = h dhij h hijkm + 2wj '

(hij) being the inverse of (hij) . Since wg =0

by (1.4) and (1.14), this yields

ij -
(1.16) h hijk 0 .

This identity has been called the apolarity condition. Now
a calculation by use of the relation (1.8) and the definition

(1.15) shows an important relation

(1.17) AR, ., = h_aPa%
i%j

r
ijk pqr k -

In view of this relation, we put

wiww® and F = h,..h  niPpiapkr

(1.18) ®wy = h 1jkPpqr

ijk
This symmetric form 03 is called the Fubini-Pick cubic form.

It is known that it vanishes for a quadratic hypersurface and

measures the difference of a hypersurface from quadratic hyper-
surfaces (see f. ex. [6]). The scalar F , which is the square
of the horm of 0, with respect to h , is called the Fubini-
Pick invariant. This is nonnegative by Assumption 1.1. The fact

(1.9) implies the following invariance under the group action.

(1.19) %, = Azwz , Ty = Asz and ¥ = \7%F .



Hence the 2-form sz is independent of the choice of frames.
We call this the projective metric of a hypersurface, though
it is totally degenerate where F = 0 . The formula (1.19)
also implies that the form @, defines a conformal structure
on the hypersurface. As for this structure see [(11]. We put

(1.20) an = V2,0 A a0t

n
Then the volume form of the projective metric is fsz ’

which we call the projective area element. Recall that the

ratio m3/w2 is called the projective line element in [7].

Now we put
n
P(C) = I F2 da
C
for any compact oriented region C in the hypersurface M .

DEFINITION 1.2. A hypersurface is called projective minimal

if this functional P is critical for every region C .

Since P(M) = 0 for a quadratic hypersurface M , we

have a trivial

EXAMPLE 1.3. Every strongly convex quadratic hypersurface

is projectively minimal.



§2 RECALL OF THE AFFINE METRIC OF A HYPERSURFACE

In the calculation of the projective area it is better
to choose a frame which enables computation as far as simple.
A frame which meets our argument is a affine normal frame.
See Remark 3.2. In this section we recall this frame and the
related formulas. So we consider a hypersurface M in the
affine space An+1 of dimension n+1 and deal with the uni-
modular affine group instead of the projective transformation
group.

Let x denote a point of M . We say a basis

n+1

(e1,...,en+1) of A is a unimodular affine frame (an

affine frame shortly) when det(e1,...,e ) = 1 and

n+1
dx = leei (1<i<n) . Then the normalization of affine frames
relative to the unimodular affine group is carried out
similarly as in the projective case. If we denote by

waB (0<a<n+1, 1<B8<n+1) the Maurer-Cartan form of this

group, then it is possible to choose an affine frame so that

n+1 _ n+1 _ _
(2.1) Wy = W = 0 and dethij =1 ,
where we define hij by w?+1 = hijwJ . We assume as before

Assumption 1.1. This normalized frame is called an affine

normal frame. The last vector e is called the affine )

n+1

normal of the hypersurface. The form 0, defines now a

Riemannian metric, which is called the affine metric. The

invariants ¢4 and F can be defined by the same formula.



Since the conformal class ¢2 is now fixed, we can
apply Riemannian geometry to the hypersurface. For this pur-

pose we introduce another invariant. Take an exterior deriva-

tive of the equation mn+?+1 =0 to get
n+1 _
(2.2) WL AWy =0 .

Since {win+1} is linearly independent by Assumption 1.1,
it is possible to write

i_ ,1ij n+1 ij _ ,ji
(2.3) w1 = L wj , 2 =

The tensor &,. := h, lkmh . and the arithmetic mean of
ij ik mj
this trace
(2.4) g =1y .pid
n “ij

are called the affine mean curvature tensor and the affine

mean curvature respectively. The quadratic form
(2.5) = 2, .wtwd

is invariant under the unimodular affine group, though not
projectively invariant. The forms @4 and Y are fundamental
affine invariants of a hypersurface.

An affine minimal (or maximal in a strict sense [4]1)

hypersurface is by definition a hypersurface with £ = 0 .
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See [1], [5], [4]. A hypersurface which satisfies the equation
zij = khij everywhere for some function k 1is called an

affine hypersphere. It turns out that k is constant and equal
to & . According as -2£>0, = 0 or < 0 , the surface is
called of elliptic, parabolic or hyperbolic type. The geome-
trical meaning of this notion is described in §43 of [1].

Every quadratic hypersurface is known to be an affine hyper-

sphere. The next theorem is one of converses to this fact.

THEOREM ([3], [9]). Let M be an affine hypersphere which

is strongly convex and closed in the affine space. Assume M
is of elliptic or parabolic type. Then it is necessarily a

quadratic hypersurface.

An affine hypersphere of parabolic type is by definition
affinely minimal. When n = 2 , we know of a global result
due to Calabi [4] which states that every affine minimal

3

surface in A which is closed and strongly convex is a para-

boloid provided that the affine metric is complete.

Next we recall structure equations. The connection form

associated to the Riemannian metric @, which we denote by

“iJ ; is determined by the requirements dwi = wJ/\nji and
_ k k .

dhij = hik"j + hjk"i . That is,

(2.6) 7. = w3+ InI K

Here and from now on we use the lowering or raising indices



by the metric tensor h,. . The curvature tensor R..
1] ijke

is given by the formula

=1 - - -
(2.7) Rijke = 3 (hikljz Raptie = Bye8x hil"jk) *

m m
(hizmhjk 'hikmhjz) -

=

Then the Ricci tensor is

= - Y- -1 1 k2
(2.8) Rij = 2(n Z)Zij 2nzhij+4hiklhj .
The Codazzi-Minardi equations are
(2.9) Bikom ™ Migmk T Bik¥sm T Piktim T Pymbik T Pin%ik
and
-1 i _ i
(2.10) ij,m zjm’k = Z(Rikh jm SLimh jk) .

In particular we have
(2.11) hijk, = -n <Qij - zhij)

= - j.— i
(2.12) hi ij 2 (Zij, nR,l) .

For the induction of these formulas see (6], [41, [11].



§3 VARIATIONAL FORMULA OF P

Using notations in §2, we shall derive a variational

formula of the functional P . Let M be a locally strongly

convex hypersurface in the affine space An+1 and let x

generally represent a point of M . We fix an affine normal

frame {e1,...,e } at each x , varying smoothly with x .

n+1

To compute the variation of P , we consider a deformation of

the hypersurface M . Let M be a family of nearby hyper-

t

surfaces: its point x has a representation

t

_ i
(3.1) X, =Xx+a (t,x)ei(x)-+v(t(x)en+1(x) ’
where t 1is a continuous parameter. We assume MO = M and
Mt depends smoothly on t : ai and v are smooth functions
and
(3.2) at(0,x) = v(0,x) =0 .

We also assume that these functions are compactly supported
and sufficiently near to zero so that the deformed hypersur-
face remains locally strongly convex.

In order to compute P(Mt) » we first look for an affine
normal frame of Mt . We use the usual tensorial notation to

denote the covariant derivatives. Recall the Riemannian

connection is nij defined in (2.6). From (3.1)

(3.3) dx, = Bre, + (ajmjn+1 + viml> e
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where
i _ i i 3j
= w +da +a‘w. +\)oun+1
dv = v.wl .
i
We put
= + a, -la hk. + Ve, ; a, = al R
ij ij i,j 27k ij ij i ij
(3.4)
- 3 . ij -1
and define €, = e, +b.e . Then (3.3) is rewritten as
i i i"n+1
_—1 —1i ij k
dxt el , W h ljkm .
Introducing a form Di by
- J . n+1 _ j J
Di Dijw dbi-+wi bj(wi -rbiwn+1) ’
(3.5)
- 1 k - k
i3 bilj-kzbkh ij.+h1j ~bibkl 5 ’

we define a new frame {31,...,3 } at x, by the formula

~

- f5 = P o i
(3.6) e, = fei = f(ei+bien ) , e = £ Te +pe;

i +1 n+1 n+1

where



Q
]

det Cij , D = det Dij ’

(3.7)
i_ _-n-2_ij . i ij, -1
p = nf D fj ; df fim , (D77) (Dij) .

Then a calculation verifies that this frame is an affine nor-

mal frame field along M_ . The associated Riemannian tensor

. of

ﬁij and the coframe mi are given by

_ h+2 k
'Hij = £ D, C hlj
~i =14 k
(3.8) W = f h Cjkm
=3 3 3 J gl i
wg” = dlogféi twgt o biwn+1 f P Di .

Hence the area form dA of M, is
(3.9) d% = £ %caa .

In [4] Calabi has shown that it is enough to consider only a
deformation with the property bi = 0 . But we do not assume
here this property because we would like to consider later

the deformation along ey and the deformation along e+

separately and because it is easier to carry out an analogous

calculation in the projective case (see Remark 3.2).

We now compute the variation at t = 0 . For a given
quantity Q depending on a and v , the notation §Q

means the derivative of Q with respect to t , evaluated



at t = 0 . The initial condition (3.2) implies

(3.10) C.,.=D.,.=H.=h,.,b, =p, =0, £ = 1

at t = 0 . Hence we have

6b, = Sa, +6v,
5Cyy = Sa; | -%6akhkij + 2456V
6D, = abi'j+%abkhkij
(3.11) aﬁij = (n+2)8fh, 5 + B,
émi = - wai + hijécjkwk
63,7 = sags, ) + Sbyul,, - sp’D,

where we have set

(3.12) éEij = GDij - acij .

Although the explicit computation of the Fubini?Pick inva-
riant of Mt is complicated, its variation can be calculated
as follows. Recall the defining equation of the invariant

"~ ~ ~k _ ~ ~ ~ k - "~ . ~ k .
hijk of Mt : hijkw = dhij hikwj hkjwi . Then taking
derivatives with respect to t and making use of formulas

in (3.11), we have
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6hyjy = (m+3)hyy 6F + nh  SF - hij%cij +
YOSkt (‘SElthk * OEjohiy ) -
- (Zikébj . zjkabi) + (hllhjk . hjghik>6P£ .
Hence

k _ _ eid ijk
ahijk = (n+3)FSf K dcij + h éEij,k +
+ k13se. . - 2nt3K) sp
ij jk 71 -
Here we have introduced
_ k2
(3.13) Kij = hikzhj .
. - ijk ij
Since F 2h Ghijk + 3Kij6h , we get
§F = -nFof - 2k Jsc, . - k1IsE, . + 2nid%se, . . - anid%y . sp. .
ij] ij ij,k jkoi
On the other hand, from (3.9), 6dA = (-néf + 8§C)dA . There-

for the variation of P 1is given by

§p = JQ da ,
n

(3.14) Q Ff(ac - -;-n(n+2)6f> .

n
7-1( ik ol il _anidk >
F GE ij,X 2K écij K tSEij 4h Q'jkébi .

(S }=]

14
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This formula shows that the deformation is infinitesimally a

composite of the deformation in case 6v = 0 and the defor-

mation in case 6ai = 0 . So we consider separately. From now
or. we forget raising indices for simplicity of writing. We

first treat the case dév = 0 . In this case, from (3.11)

- -1 =
Gcij = Gai,j 2Gakhijk , 6C 6ai,i
= 1 =
(3.15) GDij = 6ai,j + 2dakhijk R SEij <Sakhijk '
b, = 68a, , 6S6f =0 .
i i

Then the repeated use of Stoke's formula implies

n_4 .
§P = JFZ Q;Gal da |,

Qf = K,. . -3sF. - h

i ij, 3 2°i ijkhjkl,l = 2h; 5L .

ijk7 ik

Now apply the Codazzi-Minardi equation (2.9). Namely

Kij,5 = Byxehyre) o3

BikaPske, st (hikl,j - hjkz,i)hjksz * Pk, iPyke
1

F

(3.16) = hiklhjkl,j * 3 F;

+

h L.,h h

jkl(zjkhiz o hyehiy T Ay - ’Lizhjk)
1

7F; Y BipePike, 5t Mgt
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Hence Q{ = 0 always, i.e. the deformation along e, is

infinitesimally trivial.

We next treat the case Gal =0, 1$§1i<€n . In this case
GC = - =
ij le5v R §C nidv , ébk Gvk
(3.17) 1
GDij = (S\)i'j + .ihljk(s\)k .
Then
n n n_q
=1g2 a2 ] ol
Q-ZF‘ (A(Sv) +nidv) -n Kijlijév 2nF hijkljkdvi
n -1
_n oZ2°1 2
> F KijGEij + nF hijkaEij,k .

In order to apply Stoke's formula, we assume suppdvn{F=0} =0.

From (2.11) and (3.16), we have

1 - -
(3.18) EFi = (n z)hijkzjk + Kij,j .
Hence
n D-1 n(n-2) ( 31 )
1 R F h .
(3.19) -Z-A(FZ ) = % (F 1],1>i 2 ijkiik/,

Now the repeated use of Stoke's formula yields

§P = --[%};Gv da
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where
n n_1 n_1
p=-2F2+F?% K, .4%,. <<F7 ) K )
ij7ij 5 13/,
(+
- {lFe 'n ) h,. ) - (n+2)(F2 h,. 2. )
ijk ,k ijl ,% ijk Jk'i
(3.20)
-1 n_,
- 2(F7 h ) 9. . - 1(F7 K..h,. )
ijk/ k"1 2 i3 ijk/ x
5-1
+ 2(F7 h 'k)
13X k51

Since the definition of F implies that hijk and Fk are

1/2 n_o,
F r each term of p is at least of order F2 .

of order
Hence, except n = 3 , p 1is finite even where F = 0 .

Therefore we have proved.

THEOREM 3.1. Let M be a locally strongly convex hypersur-

face in the affine space An+1 . Suppose F # 0 in case n = 3 .

Then M 1is projectively minimal if and only if it satisfies

the differential equation p = 0 .

We shall examine the local property of p . Assume the

hypersurface is locally given by the equation

xn+1 = w(x1,...,xn) near x = 0 , the function ¢ being

strictly convex, i.e. the matrix (wij = Bzw/3x18x3)>-0'. Put

c = (detwij)-1/n(n+2) . Then one can prove the next formulas:

h,. .
1] 1]

_ n+2 n+3
Bjjk™ B TG g Yoyl topdbig) v e Ty '

ijk

_ _ k2
Rij = n(n+1)cicj nc(ckw )ilpj‘Q .
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Here subindices mean derivatives with respect to (xl) and

(wij) = (wij)-1 . From these formulas we know that the operator
p 1is of degree 6 and the principal part comes from the term

3-1
2<F hijk)

it is easy to see that the principal part at 0 1is

. For simplicity assume y..{(0) = §.. . Then
'kji i] 1]

3-2
(3.21) 2(n=20F° oo hy b ¢ 285

Hence the operator p 1is elliptic. When n = 2 , it is semi-
linear and the principal part is a triply harmonic operator,

while, when n23 , it is highly nonlinear.

REMARK 3.2. The above calculation is carried out for a

1

hypersurface in At and the formula of p contains an affine

invariant . 2ij which is not projectively invariant. We remark

n+
1 can be

here that the calculation for a hypersurface in P
similarly carried out once we define projective invariants.

The result is as follows. By differentiating (1.14), we see

; b2 ,.0 i
first (hijwn+1 Wy ) Aw 0 . Hence we can put
i _ ., 0 _ i, _ s : _
ijwn+1 w; Lijw ; Lij Lji . This is the projective

analogue of zij . We next normalize a frame further by
requiring hlJLij = 0 . Moreover, where F # 0 , there exists
a frame with F = 1 and, then, 0, turns out to be a

Riemannian metric which is now projectively invariant. See

] 0 _ ]
[11] for these matters. We put hijwn+1 * g o= Uijw .
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This Uij is symmetric. The resulting equation is

(3.22) Biik, k31 7 Pigk,k%i3 T PigUiy) x *
s LR, - MK,Lh,.) L =0
2 Tijvij 47137713k’ L,k ‘
REMARK 3.3. We assumed the local strong convexity

(Assumption 1.1). But in the calculation it is sufficient to

assume that h is non-degenerate. In this case we define the
n 1

projective area element by |F|2IHIZUJ Aveonw®
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§4 APPLICATIONS

We shall find special solutions of the differential
equation p = 0 and prove theorems stated in the introduction.

We first consider the case

1. n=2. In case n = 2 , the differential equation turns

out to be extremely simple. This is due to the fact

LEMMA 4.1. K, . = E h,. in case n=2,

—_— ij 2 ij

PROOF. Assume hij = 6ij for simplicity. Then the apolarity
condition is h111-+h122:=h112-+h222:=0 . This implies

2 2 2 2 2

- _ 2
Kga = Byqq Fhpqg # Ry v hypp = 2(h 7 v o000
K. =(h.111+h122)h112 +(h, 5 +hyy5)h 55 = 0 and similarly
K = 2(h 2+h % Hence F = K = 4(h 2+h 2) and
22 111 222 ) - ii 111 222

the result follows.

From this lemma

(4.1) Kijhijk =0 , Kijlij = LF .

By using these identities, we have
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Then the Codazzi-Minardi equations (2.11) and (2.12) imply

2
p = —Z{Al =llegy - eny gl } .

Namely the differential equation defining a projectively

minimal surface is

(4.2) AL = Hzij - 2hij|l .
THEOREM 4.2. (1) (H. Behnke) Every affine sphere in A3 is
projectively minimal. (2) If the surface is compact, stroﬁgly

convex and projectively minimal, then it is a quadric.

PROQOF. (1) follows from the definition of affine hyperspheres

(§2) in view of (4.2). (2) is seen by integréting (4.2) over

the surface. In fact we have Rij-lhij = 0 and the structure
theorem in §2 proves the result.

The converse of (1) of this theorem is not true due to
the fact that a projective transform of an affine hypersphere
is not generally an affine hypersphere, while the projective
minimality is preserved by every projective transformation.
For example, consider the surface S1 = {xyz = (1+ax)3} (a#0)

2

The surface 82 is an affine sphere of hyperbolic type, but

the surface S1 is not,

in A3 which is a projective image of S, = {xyz = 1} .
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Suppose the surface is both affinely and projectively
minimal. Then (4.2) implies lij = 0 . Hence this surface
is an affine sphere of parabolic type. In particular by

Theorem in §2 we have

THEOREM 4.3. Assume the surface is strongly convex and
3

closed in A” . If it is both affinely and projectively

minimal, then it is a paraboloid.

In this theorem, the closedness is necessary.

EXAMPLE 4.4. Consider the surface given by

{(x.y,z) ead | xiy-x%3- (z+2x3-3xy)2} (k #-4)

which is found by Enriques ([8]). Outside the singular set

{y—x2==0} , the function z of x and y satisfies the
xxzyy - zxy2 = =9-9k/4 . Hence the surface is
an affine sphere of parabolic type ([3]) and it is definte

equation =z

or indefinite according as k<-4 or k>-4 . Incase k = 0 ,

the surface is known to be affinely homogeneous.

2. HIGHER DIMENSIONAL EXAMPLES. We next generalize the first

part of Theorem 4.2 in general dimension. We assume the hyper-

surface is an affine hypersphere. Since this means Rijz zhij

and ¢ is constant, the equations (2.11) and (2.12) imply
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(4.3) hijk,k = hijkzjk =0 .

Then, from (3.25), we have

—

3 3
(4.4) p = Z(F hijk),kji - 3 (F Kijhijk)’k .

THEOREM 4.5. Let M be an affine hypersphere in An+1 .

Assume it is homogeneous under the affine transformation group
preserving M and the affine metric is Einstein. Then M is

projectively minimal.

PROOF. From the equation (2.8) of Ricci-tensor and by the
assumption, K,. = kh.. for some constant k . So K..h.., =0
1] 1] ijijk
by the apolarity condition. Hence p = 0 because F is
constant by the affine homogeneity.
n+1

EXAMPLE 4.6. Let V be a non-degenerate convex cone in A

and let yx denote the characteristic function of V defined
by x(x) =IV* e”“¥/%>3r | where V* is the dual cone of V

and <,> is the pairing ([13]). If V is affinely homogeneous,
then the hypersurface {x = 1} is an affine hypersphere of

hyperbolic type ([10]).

(1) When V 1is the quadrant cone {x1:>0,...,xn+1 >0} p

then yx = (x1,...,xn+1)-1 and the abelian group R"” acts

on the space {x = 1} by (x1,...,xn+1) _—
—a1 1 -a za,

(e X ;...4€ N , € lxn”) transitively. So the affine
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metric is flat and Einstein. Hence it is projectively minimal

by Theorem 4.5.

(2) When V is an irreducible self-dual cone, i.e. one of
the circular cone and the cone of positive-definite hermitian

symmetric matrices H+(n,K) for K =R,C,H or Ca(n=3).,

it is known that the space {x 1} is a symmetric space

({10]). Hence it is projectively minimal.

QUESTION 4.7. The part (2) of Theorem 4.2. can be thought

of a solution of the Bernstein problem in the projective case.
It is an interesting problem to see whether this can be genera-

lized also in higher dimensional case.
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