Perturbation theory for quasiperiodic solutions of infinite-dimensional Hamiltonian systems

1. Symplectic structures and Hamiltonian systems in the scales of Hilbert spaces
by
S.B. Kuksin

Max-Planck-Institut	Institute of Control Sciences
für Mathematik	65 Profsoyuznaya Street
Gottfried-Claren-Straße 26	117806 Moscow, GSP-7
D-5300 Bonn 3	USSR
Federal Republic of Germany	

Ball model for Filbert's twelvth problem

by

R-P. Holzapfel

[^0]
Contents

Introduction 2

1. Symplectic Hilbert scales and Hamiltonian equations 3
2. Canonical transformations 10
3. Local solvability of Hamiltonian equations 17
4. Toroidal phase space 21
5. A version of the former constructions 25
References 26

This article is the first one in the following series of 3 articles on the complete proofs of the author's theorems on perturbations of quasiperiodic solutions of infinite-dimensional Hamiltonian systems. The articles are based on the author's doctoral thesis "Perturbation theory for families of quasiperiodic solutions of infinite-dimensional Hamiltonian systems and its applications" (Moscow 1989, in Russian).

The aim of the first article is to present basic concepts of Hamiltonian mechanics in a form applicable to nonlinear differential equations of mathematical physics.

The following notations are used: for Hilbert spaces $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ the norms are denoted by $|\cdot|_{\mathrm{X}},|\cdot|_{\mathrm{Y}},|\cdot|_{\mathrm{Z}}$ and inner products by $\langle\cdot, \cdot\rangle_{\mathrm{X}},\langle\cdot, \cdot\rangle_{\mathrm{Y}},\langle\cdot, \cdot\rangle_{\mathrm{Z}} ;$ dist $_{\mathrm{X}}-$ distance in the space X; for domains $O_{X} \subset X, O_{Y} \subset Y$ the space of k-times Fréchet differentiable mappings $\mathrm{O}_{X} \longrightarrow \mathrm{O}_{\mathrm{Y}}$ is denoted by $\mathrm{C}^{\mathbf{k}}\left(\mathrm{O}_{X} ; \mathrm{O}_{\mathrm{Y}}\right)$ and $\mathrm{C}\left(\mathrm{O}_{\mathrm{X}} ; \mathrm{O}_{\mathrm{Y}}\right)=\mathrm{C}^{0}\left(\mathrm{O}_{\mathrm{X}} ; \mathrm{O}_{\mathrm{Y}}\right), \mathrm{C}^{\mathrm{k}}\left(\mathrm{O}_{\mathrm{X}} ; \mathbb{R}\right)=\mathrm{C}^{\mathrm{k}}\left(\mathrm{O}_{\mathrm{X}}\right) \forall \mathrm{k} \geq 0$; for $\phi \in \mathrm{C}^{1}\left(\mathrm{O}_{\mathrm{X}} ; \mathrm{O}_{\mathrm{Y}}\right)$ the tangent (cotangent) mapping is denoted by $\phi_{*}\left(\phi^{*}\right)$ (tangent spaces are identified with X and Y , cotangent spaces $\mathrm{T}_{\mathrm{X}}^{*} \mathrm{O}_{\mathrm{X}}, \mathrm{T}_{\mathrm{y}}^{*} \mathrm{O}_{\mathrm{Y}}$ are identified with X and Y through Riesz's isomorphism). For a mapping $G: \mathrm{O}_{\mathbf{X}} \longrightarrow \mathrm{O}_{\mathbf{Y}}$ we denote by $\operatorname{Lip}(\mathrm{G})=\operatorname{Lip}\left(\mathrm{G}: \mathrm{O}_{\mathrm{X}} \longrightarrow \mathrm{O}_{\mathrm{X}}\right)$ its Lipschitz constant,

$$
\operatorname{Lip}(G)=\sup _{x_{1} \neq x_{2}} \frac{\left|G\left(x_{1}\right)-G\left(x_{2}\right)\right|}{\left|x_{1}-x_{2}\right| X} .
$$

1. Symplectic Hilbert scales and Hamitonian equations

Let Z be a Hilbert space with inner product $\langle\cdot, \cdot\rangle_{Z}$ and $\left\{Z_{s} \mid s \in \mathbb{R}\right\}$ a scale of Hilbert spaces with following properties:
a) the Hilbert space $Z_{s_{1}}$ is densely inclosed in $Z_{8_{2}}$ if $s_{1} \geq s_{2}$ and the linear space $Z_{\infty}=\cap Z_{s}$ is dense in $Z_{s} \forall_{s}$;
b) $Z_{0}=Z$;
c) the spaces Z_{s} and Z_{-s} are dual with respect to inner product $\langle\cdot, \cdot\rangle_{\mathrm{Z}}$.

The norm (inner product) in Z_{s} will be denoted by $\|\cdot\|_{\mathrm{s}}=\left(\langle\cdot, \cdot\rangle_{\mathrm{s}}\right)$. In particular $\|\cdot\|_{0}=|\cdot|_{\mathrm{Z}}$ and $\langle\cdot, \cdot\rangle_{0}=\langle\cdot, \cdot\rangle_{\mathrm{Z}}$. The pairing between Z_{s} and $\mathrm{Z}_{-\mathrm{f}}$ will be denoted $\langle\cdot, \cdot\rangle_{0}$ or $\langle\cdot, \cdot\rangle_{Z}$.

Let $\mathrm{J}: \mathrm{Z}_{\infty} \longrightarrow \mathrm{Z}_{\infty}$ be a linear operator such that $\mathrm{J}\left(\mathrm{Z}_{\infty}\right)=\mathrm{Z}_{\infty}$ and
d) J determines isomorphism of scale $\left\{Z_{s}\right\}$ of order $d_{J} \geq 0$, i.e. for every $s \in \mathbb{R} \quad J$ may be continued to a continuous linear isomorphism $J: Z_{8} \longrightarrow Z_{s-d_{J}}$;
e) the operator J with domain of definition Z_{∞} is antisymmetric in Z , i.e. $\left\langle\mathrm{J} \mathrm{z}_{1}, \mathrm{z}_{2}\right\rangle_{\mathrm{Z}}=-\left\langle\mathrm{z}_{1}, \mathrm{Jz}_{2}\right\rangle_{\mathrm{Z}} \quad \forall \mathrm{z}_{1}, \mathrm{z}_{2} \in \mathrm{Z}_{\mathrm{\omega}}$.

Let us denote by J the isomorphism of order $-d_{J}$ of scale $\left\{Z_{s}\right\}$:

$$
\begin{equation*}
\mathrm{J}=-(\mathrm{J})^{-1}: \mathrm{Z}_{\mathrm{s}} \longrightarrow \sim \mathrm{Z}_{\mathrm{s}+\mathrm{d}_{\mathrm{J}}} \quad \forall \mathrm{~s} \in \mathbb{R} \tag{1.1}
\end{equation*}
$$

Lemma 1.1. The operator $\mathrm{J}: \mathrm{Z} \longrightarrow \mathrm{Z}_{\mathrm{d}_{\mathrm{J}}} \mathrm{C} \mathrm{Z}$ is anti selfadjoint in Z .

Proof. Let $x, y \in Z_{m}$ and $J x=x_{1}, J y=y_{1}$. Then $J_{x_{1}}=-x, J y_{1}=-y$ and

$$
\left\langle\mathrm{x}_{1}, \mathrm{Jy}_{1}\right\rangle_{\mathrm{Z}}=-\langle\mathrm{Jx}, \mathrm{y}\rangle_{\mathrm{Z}}=\langle\mathrm{x}, \mathrm{Jy}\rangle_{\mathrm{Z}}=-\left\langle\mathrm{Jx}_{1}, \mathrm{y}_{1}\right\rangle_{\mathrm{Z}}
$$

The operator $\mathrm{J}: \mathrm{Z} \longrightarrow \mathrm{Z}$ is continuous, and the space Z_{∞} is dense in Z , so the lemma is proved.

Let us introduce in every space Z_{g} with $\mathrm{s} \geq 0$ a 2 -form $\alpha=\langle\mathrm{J} \mathrm{dz}, \mathrm{dz}\rangle_{\mathrm{Z}}$. Here by definition

$$
\begin{equation*}
\langle\mathrm{J} \mathrm{dz}, \mathrm{dz}\rangle_{\mathrm{Z}}\left[\mathrm{z}_{1}, \mathrm{z}_{2}\right]=\left\langle\mathrm{J} \mathrm{z}_{1}, \mathrm{z}_{2}\right\rangle_{\mathrm{Z}} \forall \mathrm{z}_{1}, \mathrm{z}_{2} \in \mathrm{Z}_{\mathrm{s}} \tag{1.2}
\end{equation*}
$$

The form α is closed and nondegenerate [A,Ch-B].

Definition. The triple $\left\{\mathrm{Z},\left\{\mathrm{Z}_{\mathrm{s}} \mid \mathrm{s} \in \mathbb{R}\right\}, \alpha=\langle\mathrm{J} \mathrm{dz}, \mathrm{dz}\rangle\right\}$ is called symplectic Hilbert scale (or SHS for brevity).

Example 1.1. Let $Z=\mathbb{R}_{p}^{n} \times \mathbb{R}_{q}^{n}, Z_{s}=Z \forall s$ and $J: Z \longrightarrow Z,(p, q) \longmapsto(-q, p)$. In this case $\mathrm{J}^{2}=-E$ so $\mathrm{J}=-\mathrm{J}^{-1}=\mathrm{J}, \mathrm{d}_{\mathrm{J}}=0$ and

$$
\alpha=\langle\mathrm{J} \mathrm{dz}, \mathrm{dz}\rangle_{\mathrm{Z}}=\langle\mathrm{Jdz}, \mathrm{dz}\rangle_{\mathrm{Z}}=\mathrm{dp} \Lambda \mathrm{dq} .
$$

Properties a)-e) are obvious and we obtain the classical symplectic structure for even-dimensional spaces [A].

Example 1.2. Let $Z=L_{2}\left(S^{1}\right) \times L_{2}\left(S^{1}\right), S^{1}=\mathbb{R} / 2 \pi \not Z$, be a space of pairs of square-summable periodic functions $(p(x), q(x))$. Let $Z_{s}=H^{8}\left(S^{1}\right) \times H^{8}\left(S^{1}\right)$. Here $H^{s}\left(S^{1}\right)$ is the Sobolev space of periodic functions, $s \in \mathbb{R}$ [Ch-B,RS2]. Let us take

$$
\mathrm{J}: \mathrm{Z}_{\mathrm{s}} \longrightarrow \mathrm{Z}_{\mathrm{s}},(\mathrm{p}(\mathrm{x}), \mathrm{q}(\mathrm{x})) \longmapsto(-\mathrm{q}(\mathrm{x}), \mathrm{p}(\mathrm{x}))
$$

Then $J=J$ is an isomorphism of scale $\left\{Z_{8}\right\}$ of order zero. Properties a)-e) are evident.

Example 1.3. Let

$$
Z_{s}=H_{0}^{8}\left(S^{1}\right)=\left\{u(x) \in H^{8}\left(S^{1}\right) \mid \int_{0}^{2 \pi} u(x) d x=0\right\}
$$

Let us take $\mathrm{J}=\boldsymbol{\partial} / \boldsymbol{\partial} \mathrm{x}$. Then J is an isomorphism of the scale of order one and $\mathrm{J}=-(\mathrm{J})^{-1}$ is an isomorphism of order -1 . Properties a)-e) are evident again and we have got SHS corresponding to symplectic structure of KdV-equation (see below and [A, Appendix 13; N]).

For $f \in C^{1}\left(\mathrm{O}_{\mathrm{s}}\right)$ let $\nabla f \in Z_{-\mathrm{f}}$ be the gradient of f with respect to the inner product $\langle\cdot, \cdot\rangle_{\mathrm{Z}}$:

$$
\langle\nabla f(\mathrm{u}), \mathrm{v}\rangle_{\mathrm{Z}}=\mathrm{Df}(\mathrm{u})(\mathrm{v})=\left.\frac{\partial}{\partial \epsilon} \mathrm{f}(\mathrm{u}+\epsilon \mathrm{v})\right|_{\epsilon=0} \forall \mathrm{v} \in \mathrm{O}_{\mathrm{s}} .
$$

The mapping $\mathrm{O}_{\mathrm{s}} \longrightarrow \mathrm{Z}_{-\mathrm{g}}, \mathrm{u} \longmapsto \nabla \mathrm{f}(\mathrm{u})$, is continuous.
For $H \in C^{1}\left(\mathrm{O}_{\mathrm{s}}\right)$ the Hamiltonian vector-field V_{H} is the mapping $\mathrm{V}_{\mathrm{H}}: \mathrm{V}_{\mathrm{s}} \longrightarrow \mathrm{Z}_{-\infty}=\mathrm{U}_{\mathrm{s}} \mathrm{Z}_{\mathrm{s}}$ defined by the following relation [A, Ch-B]:

$$
\alpha\left(\xi, \mathrm{V}_{\mathrm{H}}(\mathrm{u})\right)=\langle\xi, \nabla \mathrm{F}(\mathrm{u})\rangle_{\mathrm{Z}} \forall \xi \in \mathrm{Z}_{\infty}
$$

or

$$
\left\langle\mathrm{J} \xi, \mathrm{~V}_{\mathrm{H}}(\mathrm{u})\right\rangle_{\mathrm{Z}}=\langle\xi, \nabla \mathrm{H}(\mathrm{u})\rangle_{\mathrm{Z}} \forall \xi \in \mathrm{Z}_{\mathrm{\infty}} .
$$

So $V_{H}(u)=J \nabla H(u)$ and

$$
\begin{equation*}
\dot{\mathbf{u}}=\mathrm{JVH}(\mathrm{u}) \tag{1.3}
\end{equation*}
$$

is the Hamiltonian equation corresponding to the hamiltonian H. Let us denote

$$
\mathrm{D}_{\mathrm{s}}\left(\mathrm{~V}_{\mathrm{H}}\right)=\left\{\mathrm{u} \in \mathrm{O}_{\mathrm{s}} \mid \mathrm{V}_{\mathrm{H}}(\mathrm{u})=\mathrm{JVH}(\mathrm{u}) \in \mathrm{Z}_{\mathrm{s}}\right\} .
$$

Definition (cf. [B]). A curve $u(t), 0 \leq t \leq T$, is called a strong solution in the space Z_{s} of the equation (1.3) iff $u \in C^{1}\left([0, T] ; Z_{8}\right), u(t) \in D_{s}\left(V_{H}\right) \forall t \in[0, T]$ and $\forall t$ equation (1.3) is satisfied. A curve $u \in C\left([0, T] ; Z_{s}\right)$ is called a weak solution of (1.3) iff it is the limit in $\mathrm{C}\left([0, \mathrm{~T}] ; \mathrm{Z}_{8}\right)$-norm of some sequence of strong solutions.

Definition. Let $\mathrm{O}_{\mathrm{s}}^{1} \mathrm{C} \mathrm{O}_{\mathrm{s}}$ be a domain such that for every $u_{0} \in \mathrm{O}_{\mathrm{s}}^{1}$ there exist a unique weak solution $u(t)=S^{t}\left(u_{0}\right)(0 \leq t \leq T)$ of equation (1.3) with initial condition $u(0)=u_{0}$. The set of mappings

$$
S^{t}: O_{s}^{1} \longrightarrow O_{s}, u_{0} \longrightarrow S^{t}\left(u_{0}\right) \quad(0 \leq t \leq T)
$$

is called "local semiflow of equation (1.3)" or "flow of equation (1.3)" for short.

Weak solutions of equations (1.3) are generalized ones in the sense of distributions (see [L] for systematic use of this type of solutions):

Proposition 1.4. Let us suppose that for some $\mathrm{s}_{1} \in \mathbb{R}, \operatorname{Lip}\left(\nabla \mathrm{H}: \mathrm{O}_{\mathrm{s}} \longrightarrow \mathrm{Z}_{\mathrm{s}_{1}}\right)<\boldsymbol{\omega}$.

Then a weak solution $u(t) \in O_{s}(0 \leq t \leq T)$ of equation (1.3) is a generalised solution and after substitution of $u(t)$ into (1.3) the left and right hand sides of the equation coincide as elements of the space $\mathrm{D}^{\prime}\left((0, T) ; \mathrm{Z}_{\mathrm{s}_{2}}\right)$ of distributions on ($0, \mathrm{~T}$) with values in $\mathrm{Z}_{\mathrm{s}_{2}}, \mathrm{~s}_{2}=\min \left\{\mathrm{s}, \mathrm{s}_{1}-\mathrm{d}_{\mathrm{J}}\right\}$.

Proof. By definition of weak solution there exist a sequence of strong solutions $u_{n}(t)$ such that $u_{n}(\cdot) \longrightarrow u(\cdot)$ in $C\left([0, T] ; X_{s}\right)$. For this sequence

$$
\dot{\mathrm{u}}_{\mathrm{n}} \longrightarrow \dot{\mathrm{u}} \text { in } \mathrm{D}^{\prime}\left((0, \mathrm{~T}) ; \mathrm{Z}_{\mathrm{s}}\right)
$$

$\mathrm{J} \nabla \mathrm{H}\left(\mathrm{u}_{\mathrm{n}}\right) \longrightarrow \mathrm{J} \nabla \mathrm{H}(\mathrm{u})$ in $\mathrm{C}\left([0, \mathrm{~T}] ; \mathrm{Z}_{\mathrm{s}_{1}-\mathrm{d}_{J}}\right)$. After transition to limit in equation (1.3) one obtains the result.

Example 1.1, again. Let $H \in C^{1}\left(\mathbb{R}_{p}^{n} \times \mathbb{R}_{q}^{n}\right)$. The Hamiltonian equation takes the classical form:

$$
\dot{\mathrm{p}}=-\nabla_{\mathrm{q}} \mathrm{H}(\mathrm{p}, \mathrm{q}), \dot{\mathrm{q}}=\nabla_{\mathrm{p}} \mathrm{H}(\mathrm{p}, \mathrm{q}) .
$$

If $H \in C^{2}\left(\mathbb{R}^{2 n}\right)$ then a weak solution is a strong one and it exists for some $T>0$, $T=T(p(0), q(0))$.

Example 1.2, again. Let us consider the hamiltonian

$$
\mathrm{H}=\frac{1}{2} \int_{0}^{2 \pi}\left(\mathrm{p}_{\mathrm{x}}(\mathrm{x})^{2}+\mathrm{q}_{\mathrm{x}}(\mathrm{x})^{2}+\mathrm{V}(\mathrm{x})\left(\mathrm{p}(\mathrm{x})^{2}+\mathrm{q}(\mathrm{x})^{2}\right)+\chi\left(\mathrm{p}(\mathrm{x})^{2}+\mathrm{q}(\mathrm{x})^{2}\right)\right) \mathrm{dx}
$$

with analytical function χ and smooth function V. Then $H \in C^{1}\left(Z_{8}\right)$ for $s \geq 1$ and

$$
\nabla H(p, q)=\left(-p_{x x}+V(x) p+\chi^{\prime}\left(p^{2}+q^{2}\right) p,-q_{x x}+V(x) q(x)+\chi^{\prime}\left(p^{2}+q^{2}\right) q\right)
$$

The equation (1.3) takes now the following form:

$$
\begin{aligned}
& \dot{p}=q_{x x}-V(x) q-\chi^{\prime}\left(p^{2}+q^{2}\right) q \\
& \dot{q}=-p_{x x}+V(x) p+\chi^{\prime}\left(p^{2}+q^{2}\right) p
\end{aligned}
$$

Let us denote $u(t, x)=p(t, x)+i q(t, x)$. The last equations are equivalent to nonlinear Schrödinger equation with real potential $V(x)$ for complex functions $u(t, x)$:

$$
\begin{align*}
& \dot{u}=i\left(-u_{x x}+V(x) u+\epsilon \chi^{\prime}\left(|u(x)|^{2}\right) u\right) \tag{1.4}\\
& u(t, x) \equiv u(t, x+2 \pi)
\end{align*}
$$

The problem (1.4) has an unique strong solution $u(t, x), u(t, \cdot) \in Z_{s}$, $0 \leq t \leq T=T(u(0, x))$, if $s \geq 1$ and $u(0, x) \in Z_{s+2}$ (we interpret here Z_{s} as the Sobolev space of periodic complex-valued functions), and (1.4) has an unique weak solution for $0 \leq t \leq T$ if $u(0, x) \in Z_{8}$. For the simple proof see part 3 below.

Example 1.3, again. In the situation of example 1.3 let us consider the hamiltonian

$$
H=\int_{0}^{2 \pi}\left(\frac{1}{2} u_{x}^{2}+u^{3}\right) d x .
$$

Then $H \in C^{1}\left(Z_{s}\right)$ for $s \geq 1$ and $\nabla H(u(x))={ }^{-u_{x x}}+3 u^{2}$. So now equation (1.3) is the

KdV equation

$$
\begin{equation*}
\dot{u}(t, x)=-u_{x x x}+6 u_{x} \tag{1.5}
\end{equation*}
$$

for periodic on x functions with zero mean value:

$$
u(t, x) \equiv u(t, x+2 \pi), \int_{0}^{2 \pi} u(t, x) d x \equiv 0
$$

It is well known [K] that for $s \geq 3$ the problem (1.5), (1.5') has an unique strong solution $u(t, x), u(t, \cdot) \in Z_{s} \forall t$, for every initial condition $u(0, x)=u_{0}(x) \in Z_{s+3}$ and has an unique weak solution for every $u_{0}(x) \in Z_{s}$. The flow of problem (1.5), (1.5 $)$ defines a homeomorphisms of phase space

$$
\mathrm{S}^{\mathrm{t}}: \mathrm{Z}_{\mathrm{s}} \longrightarrow \mathrm{Z}_{\mathrm{s}} \forall \mathrm{t} \geq 0 \quad \forall \mathrm{~s} \geq 3 .
$$

It is worth to mention that any Hamiltonian equation (including (1.4) and (1.5), $\left(1.5^{\prime}\right)$) may be written down in a form (1.3) in many different ways. For this statement see below Corollary 2.3.

2. Canonical transformations

Let $\left\{\mathrm{X},\left\{\mathrm{X}_{8}\right\}, \alpha^{\mathrm{X}}\right\}$ and $\left\{\mathrm{Y},\left\{\mathrm{Y}_{\mathrm{B}}\right\}, \alpha^{\mathrm{Y}}\right\}$ be two SHS with 2-forms $a^{\mathrm{X}}=\left\langle\mathrm{J}^{\mathrm{X}} \mathrm{dx}, \mathrm{dx}\right\rangle_{\mathrm{X}}$ and $a^{\mathrm{Y}}=\left\langle\mathrm{J}^{\mathrm{Y}} \mathrm{dy}, \mathrm{dy}\right\rangle_{\mathrm{Y}}$ respectively; let $\mathrm{J}^{\mathrm{X}}\left(\mathrm{J}^{\mathrm{Y}}\right)$ be an
 $\phi: \mathrm{O}_{\mathrm{s}_{\mathrm{X}}}^{\mathrm{X}} \longrightarrow \mathrm{O}_{\mathrm{s}_{\mathrm{Y}}}^{\mathrm{Y}}$ is a C^{1}-diffeomorphism of domains $\mathrm{O}_{\mathbf{s}_{X}}^{\mathrm{X}} \mathrm{CX}_{\mathrm{s}_{\mathrm{X}}}$ and $\mathrm{O}_{\mathrm{s}_{\mathrm{Y}}}^{\mathrm{Y}} \mathrm{CH}_{\mathrm{s}_{\mathrm{Y}}}$ ($s_{X} \geq 0, s_{Y} \geq 0$), if ϕ is one-to-one onto $O_{{ }_{8}}^{Y}$ and

$$
\begin{equation*}
\phi \in \mathrm{C}^{1}\left(\mathrm{O}_{\mathrm{s}_{X}}^{\mathrm{X}} ; \mathrm{O}_{\mathbf{s}_{\mathbf{Y}}^{\mathrm{Y}}}\right), \phi^{-1} \in \mathrm{C}^{1}\left(\mathrm{O}_{\mathrm{s}_{\mathbf{Y}}^{Y}}^{\mathbf{Y}} ; \mathrm{O}_{\mathbf{X}}^{\mathrm{X}}\right) \tag{2.1}
\end{equation*}
$$

Definition. A C C^{1}-diffeomorphism $\phi: \mathrm{O}_{\mathbf{s}_{\mathrm{X}}}^{\mathrm{X}} \longrightarrow \mathrm{O}_{\mathbf{8}_{\mathrm{Y}}}^{\mathrm{Y}}$ is canonical transformation iff it transforms 2-form α^{Y} into 2-form α^{X} :

$$
\begin{equation*}
\phi^{*} \alpha^{Y}=\alpha^{X} . \tag{2.2}
\end{equation*}
$$

Proposition 2.1. A C^{1}-diffeomorphism $\phi: \mathrm{O}_{\mathrm{s}_{\mathrm{X}}}^{\mathrm{X}} \longrightarrow \mathrm{O}_{\mathrm{s}_{\mathrm{Y}}}^{\mathrm{Y}}$ is canonical iff

$$
\begin{equation*}
\phi^{*} \mathrm{~J}^{\mathrm{Y}} \phi_{*} \equiv \mathrm{~J}^{\mathrm{X}} \tag{2.3}
\end{equation*}
$$

(the identity takes place in the space $\mathrm{L}\left(\mathrm{X}_{\mathrm{s}_{\mathrm{X}}} ; \mathrm{X}_{-{ }_{\mathrm{X}}}\right)$).

Proof. From (2.2) one has for $v \in O_{s_{X}}^{X}$ and $\xi_{1}, \xi_{2} \in X_{s^{8}}$

$$
\begin{equation*}
\left\langle\mathrm{J}^{\mathrm{Y}} \phi_{*}(\mathrm{v}) \xi_{1}, \phi_{*}(\mathrm{v}) \xi_{2}\right\rangle_{\mathrm{Y}}=\left\langle\mathrm{J}^{\mathrm{X}} \xi_{1}, \xi_{2}\right\rangle_{\mathrm{X}} \tag{2.4}
\end{equation*}
$$

Therefore

$$
\left\langle\phi^{*}(\mathrm{v}) \mathrm{J}^{\mathrm{Y}} \phi_{*}(\mathrm{v}) \xi_{1}, \xi_{2}\right\rangle_{\mathrm{X}}=\left\langle\mathrm{J}^{\mathrm{X}} \xi_{1}, \xi_{2}\right\rangle_{\mathrm{X}}
$$

for all $\xi_{1}, \xi_{2} \in X_{s_{X}}$. This identity implies the stated assertion.

As in the finite-dimensional case [A] a canonical transformation transforms solutions of Hamiltonian equation into solutions of equation with transformed hamiltonian:

Theorem 2.2. Let $\phi: \mathrm{O}_{{ }_{8}}^{\mathrm{X}} \longrightarrow \mathrm{O}_{\mathrm{s}_{\mathrm{Y}}}^{\mathbf{Y}}$ be a canonical transformation and let $\mathrm{y}:[0, \mathrm{~T}] \longrightarrow \mathrm{O}_{\mathbf{S}_{\mathbf{Y}}}^{\mathrm{Y}}$ be a strong solution of Hamiltonian equation

$$
\begin{equation*}
\dot{\mathrm{y}}=\mathrm{V}_{\mathrm{H}} \mathrm{Y}^{(\mathrm{y})=\mathrm{J}^{\mathrm{Y}} \nabla_{H} \mathrm{Y}(\mathrm{y}), \mathrm{H}^{\mathrm{Y}} \in \mathrm{C}^{1}\left(\mathrm{O}_{\mathrm{s}}^{\mathrm{Y}} ; \mathbb{R}\right)} \tag{2.5}
\end{equation*}
$$

Then $x(t)=\phi^{-1}(y(t))$ is a strong solution in O_{8}^{X} of equation

$$
\begin{equation*}
\dot{\mathrm{x}}=\mathrm{V}_{\mathrm{H}} \mathrm{X}^{(\mathrm{x})=\mathrm{J}^{\mathrm{X}_{\nabla \mathrm{H}}} \mathrm{X}_{(\mathrm{x})}, \mathrm{H}^{\mathrm{X}}=\mathrm{H}^{\mathrm{Y}} \circ \phi} \tag{2.6}
\end{equation*}
$$

If the mapping $\phi^{-1}: \mathrm{O}_{\mathrm{s}_{\mathrm{Y}}}^{\mathrm{Y}} \longrightarrow \mathrm{O}_{\mathrm{s}_{\mathrm{X}}}^{\mathrm{X}}$ is Lipschitz and y is a weak solution of (2.5) then x is a weak solution of (2.6).

Proof. For $H^{X}=H^{Y} \circ \phi$ and $x=\phi^{-1} \circ y \quad \nabla H^{X}=\phi^{*} \nabla H^{Y}$. Then $x:[0, T] \longrightarrow O_{s_{X}}^{X}$ is C^{1} and for $y=\phi \circ x$

$$
\begin{equation*}
\phi_{*} \dot{x}=\dot{y}=J^{Y} \nabla H^{Y}(y)=J^{Y}\left(\phi^{*}\right)^{-1} \nabla H^{X}(x) \tag{2.7}
\end{equation*}
$$

or

$$
\begin{equation*}
\dot{\mathrm{x}}=\left(\phi_{*}\right)^{-1} \mathrm{~J} \mathrm{Y}_{\left(\phi^{*}\right)^{-1} \nabla H^{\mathrm{X}}(\mathrm{x})} \tag{2.8}
\end{equation*}
$$

(the right-hand side is well defined because $J^{Y}\left(\phi^{*}\right)^{-1} \nabla_{H} X^{X}(x) \in C\left([0, T] ;{ }_{O_{Y}}^{Y}\right)$ for (2.1)). By (2.3), $\mathrm{J}^{\mathrm{X}}=\left(\phi_{*}\right)^{-1} \mathrm{~J}^{\mathrm{Y}}\left(\phi^{*}\right)^{-1}$, hence

$$
\dot{\mathrm{x}}=\mathrm{J}^{\mathrm{X}} \nabla \mathrm{H}^{\mathrm{X}}(\mathrm{x})
$$

as stated.

The second statement of the theorem follows from the first one and the definition of a weak solution because the mapping ϕ^{-1} is Lipshitz.

Let $\left\{\mathrm{Y},\left\{\mathrm{Y}_{\mathrm{s}}\right\}, \alpha^{\mathrm{Y}}\right\}$ be a SHS, let L be an isomorphism of scale $\left\{\mathrm{Y}_{\mathrm{s}}\right\}$ of order $\Delta \leq \frac{1}{2}{\underset{J}{J}}^{Y}, L: Y_{\mathrm{s}} \longrightarrow \mathrm{Y}_{\mathrm{s}-\Delta} \forall \mathrm{s}$. Let us define second SHS $\left\{\mathrm{X},\left\{\mathrm{X}_{\mathrm{s}}\right\}, \alpha^{\mathrm{X}}\right\}$ where $\mathrm{X}=\mathrm{Y}, \mathrm{X}_{\mathrm{s}}=\mathrm{Y}_{\mathrm{S}}$ and $\alpha^{\mathrm{X}}=\left\langle\mathrm{J}^{\mathrm{X}} \mathrm{dx}, \mathrm{dx}\right\rangle_{\mathrm{X}}, \mathrm{J}^{\mathrm{X}}=\mathrm{L}^{*} \mathrm{~J}^{\mathrm{Y}} \mathrm{L}$. Let $\mathrm{O}_{\mathrm{B}}^{\mathrm{X}} \mathrm{X}^{\mathrm{X}}$ be a domain in
 canonical due to Proposition 2.1. So we have trivial

Corollary 2.3 (change of symplectic structure). Let $\mathrm{H}^{\mathrm{Y}} \in \mathrm{C}^{1}\left(\mathrm{O}_{\mathrm{s}}^{\mathrm{Y}}\right)$ and let $y(t) \in O{ }_{s}^{Y} Y(0 \leq t \leq T)$ be a solution of equation (2.5) (strong or weak). Then $x(t)=L^{-1} y(t)$ is a solution of Hamiltonian equation

$$
\dot{\mathrm{x}}=\mathrm{J}^{\mathrm{X}} \nabla \mathrm{H}^{\mathrm{X}}(\mathrm{x}), \mathrm{J}^{\mathrm{X}}=\mathrm{L}^{-1} \mathrm{~J}^{\mathrm{Y}}\left(\mathrm{~L}^{*}\right)^{-1}
$$

with a hamiltonian $H^{X}=H^{Y} \circ L \in C^{1}\left(O_{X}^{X}\right)$.

Let $\left\{\mathrm{X},\left\{\mathrm{X}_{\mathrm{s}}\right\}, a=\langle\mathrm{J} \mathrm{dx}, \mathrm{dx}\rangle_{\mathrm{X}}\right\}$ be a SHS, $\mathrm{O}_{\mathrm{g}}^{1}$ and O_{s} be domains in X_{s}, $\mathrm{O}_{\mathrm{s}}^{1} \mathrm{CO}_{\mathrm{s}}$ and

$$
\begin{equation*}
\mathrm{dist}_{X_{8}}\left(\mathrm{O}_{8}^{1} ; \mathrm{X}_{8} \backslash \mathrm{O}_{8}\right)>\delta>0 \tag{2.10}
\end{equation*}
$$

Let $H \in C^{2}\left(O_{8}\right)$ and

$$
\begin{equation*}
\nabla H \in C^{1}\left(\mathrm{O}_{\mathrm{s}} ; \mathrm{X}_{\mathrm{s}+\mathrm{d}_{\mathrm{J}}}\right),\|\mathrm{J} \nabla H(\mathrm{x})\|_{\mathrm{s}} \leq \mathrm{K}, \operatorname{Lip}\left(\mathrm{~J} \nabla H: \mathrm{O}_{\mathrm{s}} \longrightarrow \mathrm{X}_{\mathrm{s}}\right) \leq \mathrm{K}, \tag{2.11}
\end{equation*}
$$

Let us consider the Hamiltonian equation

$$
\begin{equation*}
\dot{\mathbf{x}}=\mathrm{J} \nabla \mathrm{H}(\mathrm{x}) \tag{2.12}
\end{equation*}
$$

From (2.10), (2.11) one can easily obtain that the flow of equation (2.12) defines mappings $\mathrm{S}^{\mathrm{t}} \in \mathrm{C}^{1}\left(\mathrm{O}_{\mathrm{s}}^{1} ; \mathrm{O}_{\mathrm{s}}\right) \forall \mathrm{t} \in[0, \mathrm{~T}], \mathrm{T}=\delta / \mathrm{K}$, and every S^{t} is a C^{1}-diffeomorphism onto its image.

Theorem 2.4. For every $0 \leq t \leq T$ the mapping S^{t} is a canonical transformation.

Proof. One has to prove that

$$
\left(\mathrm{S}^{\mathrm{t}}\right)^{*} \alpha(\mathrm{x})\left[\eta_{1}, \eta_{2}\right]=\alpha\left[\eta_{1}, \eta_{2}\right] \forall \mathrm{x} \in \mathrm{O}_{\mathrm{s}}^{1} \forall \eta_{1}, \eta_{2} \in \mathrm{X}_{\mathrm{s}}
$$

Since $S^{0}=I d$ it is sufficient to prove that

$$
\begin{equation*}
\left(\mathrm{S}^{\tau}\right)^{*} \alpha(\mathrm{x})\left[\eta_{1}, \eta_{2}\right]=\operatorname{const}(\tau) \tag{2.13}
\end{equation*}
$$

Let $\mathrm{x}(\tau)$ be the solution of equation (2.12) for $\mathrm{x}(0)=\mathrm{x}$, and $\eta^{j}(\mathrm{t})(\mathrm{j}=1,2)$ be the solution of Cauchy problem for linearized on $x(\cdot)$ equation:

$$
\begin{equation*}
\dot{\eta}^{\mathfrak{j}}(\tau)=\mathrm{J}(\nabla \mathrm{H})_{*}(\mathrm{x}(\tau)) \eta^{\dot{j}}(\tau), \eta^{\mathfrak{j}}(0)=\eta_{\mathrm{j}} \tag{2.14}
\end{equation*}
$$

Then $\left(\mathrm{S}^{\tau}\right)_{*}(\mathrm{z}) \eta_{\mathrm{j}}=\eta^{\mathrm{j}}(\tau), \mathrm{j}=1,2$ and

$$
\begin{gather*}
\left(\mathrm{S}^{\tau}\right)^{*} \alpha(\mathrm{x})\left[\eta_{1}, \eta_{2}\right]=\alpha\left[\eta^{1}(\tau), \eta^{2}(\tau)\right]= \\
=\left\langle\mathrm{J}^{1}(\tau), \eta^{2}(\tau)\right\rangle_{\mathrm{X}} \equiv \ell(\tau) \tag{2.15}
\end{gather*}
$$

The function $\ell(\tau)$ is continuously differentable. So (2.13) is equivalent to relation $\mathrm{d} / \mathrm{d} \tau \ell(\tau) \equiv 0$. One has

$$
\begin{gathered}
\frac{\mathrm{d}}{\mathrm{~d} \tau} \ell(\tau)=\left\langle\mathrm{J} \dot{\eta}^{1}, \eta^{2}\right\rangle_{\mathrm{X}}+\left\langle\mathrm{J} \eta^{1}, \dot{\eta}^{2}\right\rangle_{\mathrm{X}}= \\
=\left\langle\mathrm{J}(\nabla \mathrm{H})_{*}(\mathrm{x}) \eta^{1}, \eta^{2}\right\rangle_{\mathrm{X}}+\left\langle\mathrm{J} \eta^{1}, \mathrm{~J}(\nabla \mathrm{H})_{*}(\mathrm{x}) \eta^{2}\right\rangle_{\mathrm{X}}= \\
=-\left\langle(\nabla \mathrm{H})_{*}(\mathrm{x}) \eta^{1}, \eta^{2}\right\rangle_{\mathrm{X}}+\left\langle\eta^{1},(\nabla \mathrm{H})_{*}(\mathrm{x}) \eta^{2}\right\rangle_{\mathrm{X}}=0
\end{gathered}
$$

because operator J is anti selfadjoint (Lemma 1.1) and operator $(\nabla H)_{*}$ is selfadjoint.

The theorem is proved.

Let $H_{j} \in C^{1}\left(O_{s}\right), \nabla H_{j} \in C\left(O_{8} ; X_{s_{j}}\right) \quad(j=1,2)$.

Definition. Let $s_{1}+\mathrm{s}_{2} \geq \mathrm{d}_{\mathrm{J}}$. The Poisson bracket of the functions $\mathrm{H}_{1}, \mathrm{H}_{2}$ is the function $\left\{\mathrm{H}_{1}, \mathrm{H}_{2}\right\} \in \mathrm{C}\left(\mathrm{O}_{8}\right)$ defined by

$$
\left\{\mathrm{H}_{1}, \mathrm{H}_{2}\right\}=\left\langle\mathrm{JV} \mathrm{H}_{1}, \nabla \mathrm{H}_{2}\right\rangle_{\mathrm{X}} .
$$

Let $0<\epsilon \leq 1$ and $H \in C^{2}\left(O_{s}\right)$, let conditions (2.10), (2.11) be satisfied and $\mathrm{S}^{\mathrm{t}} \in \mathrm{C}^{1}\left(\mathrm{O}_{\mathrm{s}}^{1} ; \mathrm{O}_{8}\right), 0 \leq \mathrm{t} \leq \mathrm{T}=\delta / \mathrm{K}$, be the flow of the equation

$$
\dot{x}=\epsilon J \nabla H(x) .
$$

Theorem 2.5. For every $\mathrm{G} \in \mathrm{C}^{1}\left(\mathrm{O}_{\mathrm{g}}\right) \quad \mathrm{G}\left(\mathrm{S}^{\mathrm{t}}(\mathrm{x})\right)=\mathrm{G}(\mathrm{x})+\mathrm{t} \epsilon\{\mathrm{H}, \mathrm{G}\}(\mathrm{x})+\mathrm{O}\left((\epsilon \mathrm{t})^{2}\right)$ $\forall x \in O_{8}^{1}, \forall 0 \leq t \leq T$.

Proof. From the conditions on H it is easy to see that

$$
S^{t}(x)=x+t \epsilon J \nabla H(x)+O(t \epsilon)^{2} \text { in } X_{s}
$$

So

$$
\mathrm{G}\left(\mathrm{~S}^{\mathrm{t}}(\mathrm{x})\right)-\mathrm{G}(\mathrm{x})=\left\langle\nabla \mathrm{G}(\mathrm{x}), \mathrm{S}^{\mathrm{t}}(\mathrm{x})-\mathrm{x}\right\rangle_{\mathrm{X}}+\mathrm{O}\left\|\mathrm{~S}^{\mathrm{t} x-\mathrm{x}}\right\|_{\mathrm{S}}^{2}=
$$

$$
=\mathrm{t} \epsilon\langle\nabla \mathrm{G}(\mathrm{x}), \mathrm{J} \nabla \mathrm{H}(\mathrm{x})\rangle_{\mathrm{X}}+\mathrm{O}(\epsilon \mathrm{t})^{2}
$$

and the theorem is proved.
3. Local solvability of Hamiltonian equations

Let $\left\{Y_{,},\left\{Y_{s}\right\}, a\right\}$ be SHS, let O_{s} be a domain in Y_{s} and let

$$
H \in C^{2}\left(O_{8}\right), H(y)=\frac{1}{2}\langle A y, y\rangle_{Y}+H_{0}(y)
$$

Here A is an isomorphism of scale $\left\{Y_{8}\right\}$ of order $d_{A} \geq 0$;

$$
\begin{equation*}
A: Y_{s} \longrightarrow Y_{s-d_{A}} \quad \forall \mathrm{~s} \in \mathbb{R} \tag{3.1}
\end{equation*}
$$

and the operator

$$
\mathrm{A}: \mathrm{D}(\mathrm{~A}) \mathrm{CY} \longrightarrow \mathrm{Y}, \mathrm{D}(\mathrm{~A})=\mathrm{Y}_{\mathrm{d}_{\mathrm{A}}}
$$

is selfadjoint. So $\nabla\left(\frac{1}{2}\langle A y, y\rangle_{Y}\right)(y)=A y$, and the Hamiltonian equation corresponding to H has the form

$$
\begin{equation*}
\dot{\mathrm{y}}=\mathrm{J}\left(\mathrm{Ay}+\nabla \mathrm{H}_{0}(\mathrm{y})\right) \tag{3.2}
\end{equation*}
$$

We shall prove a simple theorem on the local solvability of equation (3.2) which will suit well to our aims. To formulate the theorem let us suppose that

$$
\begin{equation*}
\operatorname{Lip}\left(\mathrm{J}^{\mathrm{V}} \mathrm{H}_{0}: \mathrm{O}_{\mathrm{s}} \longrightarrow \mathrm{Y}_{\mathrm{s}}\right) \leq \mathrm{K} \tag{3.3}
\end{equation*}
$$

for some $s \geq 0$ and let $\mathrm{O}^{2}, \mathrm{O}^{1} \subset \mathrm{Y}_{\mathrm{s}}$ be domains with the following properties:

$$
\begin{equation*}
\mathrm{O}^{2} \mathrm{CO}^{1} \mathrm{CO}_{\mathrm{s}}, \operatorname{dist}_{\mathrm{Y}_{\mathrm{s}}}\left(\mathrm{O}^{1}, \mathrm{Y}_{\mathrm{s}} \backslash \mathrm{O}_{\mathrm{s}}\right) \geq \delta>0 \tag{3.4}
\end{equation*}
$$

Theorem 3.1. Let

$$
\begin{gather*}
\mathrm{AJy}=\mathrm{JAy} \quad \forall \mathrm{y} \in \mathrm{Y}_{\infty} \tag{3.5}\\
\left\langle\mathrm{Ay}_{1}, \mathrm{y}_{2}\right\rangle_{\mathrm{s}}=\left\langle\mathrm{y}_{1}, \mathrm{Ay}_{2}\right\rangle_{\mathrm{s}},\left\langle\mathrm{Jy}_{1}, \mathrm{y}_{2}\right\rangle_{\mathrm{s}}=-\left\langle\mathrm{y}_{1}, \mathrm{Jy}_{2}\right\rangle_{\mathrm{s}} \quad \forall \mathrm{y}_{1}, \mathrm{y}_{2} \in \mathrm{Y}_{\infty} \tag{3.6}
\end{gather*}
$$

Suppose that every strong solutions $y(t)$ of equation (3.2) with initial condition $y(0)=y_{0} \in O^{2}$ stays inside O^{1} for $0 \leq t \leq T$. Then for $y_{0} \in O^{2} \cap Y_{s+d_{1}}$, $d_{1}=d_{A}+d_{J}$, there exists a unique strong solution $y(t)$ for $0 \leq t \leq T$, and for $y_{0} \in O^{2}$ there exists a unique weak solution $y(t)$ for $0 \leq t \leq T$.

Proof. Let us continue the mapping $J \nabla H_{0}: \mathrm{O}^{1} \longrightarrow \mathrm{Y}_{8}$ to a Lipschitz one $\mathrm{V}: \mathrm{Y}_{\mathrm{s}} \longrightarrow \mathrm{Y}_{\mathrm{s}}$. One may take for example

$$
V(y)=\left\{\begin{array}{l}
x(y) J \nabla H_{0}(y), y \in O_{s} \\
0, y \notin O_{s}
\end{array}\right.
$$

where $\chi(y)=\delta^{-1} \max \left(0, \delta-\right.$ dist $\left._{Y_{8}}\left(y ; O^{1}\right)\right)$ (see (3.4)). The function χ is Lipschitz, it is equal to 1 in O^{1} and to 0 out of O_{s}. So $\operatorname{Lip}(\mathrm{V}) \leq \mathrm{K}^{1}$ and $\left.\mathrm{V}\right|_{\mathrm{O}^{1}}=\mathrm{JV} \mathrm{H}_{0}$.

Let us consider the equation

$$
\begin{equation*}
\dot{y}=J A y+V(y) \tag{3.7}
\end{equation*}
$$

Its solution $y(t)$ is a solution of equation (3.2) until $y(t) \in O^{1}$.. Let us consider the linear equation

$$
\begin{equation*}
\dot{\mathrm{y}}=\mathrm{JAy}, \tag{3.8}
\end{equation*}
$$

too. From (3.5), (3.6) it follows that

$$
\left\langle\mathrm{AJy}_{1}, \mathrm{y}_{2}\right\rangle_{\mathrm{s}}=-\left\langle\mathrm{y}_{1}, \mathrm{AJy}_{2}\right\rangle_{\mathrm{s}} \quad \forall \mathrm{y}_{1}, \mathrm{y}_{2} \in \mathrm{Y}_{\infty}
$$

so by repeating the proof of Lemma 1.1 one can obtain that operator $(A J)^{-1}: Y_{s} \longrightarrow Y_{s}$ is anti selfadjoint. So the operator

$$
\mathrm{AJ}: \mathrm{D}(\mathrm{AJ})=\mathrm{Y}_{\mathrm{s}+\mathrm{d}_{1}} \mathrm{C} \mathrm{Y}_{\mathrm{B}} \longrightarrow \mathrm{Y}_{\mathrm{s}}
$$

is anti selfadjoint, too. Due to Stone's theorem [RS1] for $y(0)=y_{0} \in Y_{s+d_{1}}$ equation (3.8) has a unique strong solution and the mapping

$$
\mathrm{S}^{\mathrm{T}}: \mathrm{Y}_{\mathrm{s}+\mathrm{d}_{1}} \longrightarrow \mathrm{Y}_{\mathrm{s}+\mathrm{d}_{1}}, \mathrm{y}(0) \longmapsto \mathrm{y}(\mathrm{~T}), \mathrm{T}>0
$$

is isometric with respect to the Y_{s}-norm. Equation (3.7) is a Lipschitz perturbation of (3.8). So it has the unique strong solution $y(t), t \geq 0$, for every $y(0) \in Y_{s+d_{1}}$ and the unique weak solution for every $y(0) \in Y_{s}$ (see [B]). If $y(0)=y_{0} \in O^{2}$ then due to the theorem's hypotheses such a solution does not leave domain O^{1} for $0 \leq t \leq T$ and for such a " t " it is the unqiue solution of equation (3.7).

The theorem above reduces the problem of solving equation (3.2) to the problem of finding a priori estimate for its solutions.

4. Toroidal phase space

Let us consider a toroidal phase space of the form $y=\mathbf{T}^{\mathbf{n}} \times \mathbb{R}^{\mathrm{n}} \times \mathrm{Y}$. Here $\mathbb{T}^{\mathbb{n}}=\mathbb{R}^{\mathrm{n}} / 2 \pi \mathbb{Z}^{\mathrm{n}}$ is the n -dimensional torus, $\mathrm{Y}=\mathrm{Y}_{0},\left\{\mathrm{Y}_{\mathbf{8}} \mid \mathrm{s} \in \mathbb{R}\right\}$ is a scale of Hilbert spaces which satisfies properties a)-c) (see above). Let us denote $y_{\mathrm{s}}=\mathbb{T}^{\mathrm{n}} \times \mathbb{R}^{\mathrm{n}} \times \mathrm{Y}_{\mathrm{s}}$. Every space y_{8} has a natural metric dist ${ }_{8}$ and a natural structure of a Hilbert manifold with local charts

$$
K\left(q^{0}\right) \times \mathbb{R}^{n} \times Y_{s}, K\left(q^{0}\right)=\left\{q \in \mathbb{R}^{n}| | q_{j}-q_{j}^{0} \mid<\pi \forall j\right\}
$$

(see $[\mathrm{Ch}-\mathrm{B}]$). So

$$
\mathrm{T}_{\mathrm{u}} \mathcal{Y}_{\mathrm{s}} \cong \mathbb{R}^{\mathrm{n}} \times \mathbb{R}^{\mathrm{n}} \times \mathrm{Y}_{\mathrm{s}} \equiv \mathrm{Z}_{\mathrm{s}} \quad \forall \mathrm{u} \in \mathcal{Y}_{\mathrm{s}}
$$

Let $J Y$ be an isomorphism of the scale $\left\{Y_{s}\right\}$ with properties d), e) and

$$
\mathrm{J}^{\mathrm{T}}: \mathbb{R}^{\mathrm{n}} \times \mathbb{R}^{\mathrm{n}} \longrightarrow \mathbb{R}^{\mathrm{n}} \times \mathbb{R}^{\mathrm{n}},(\mathrm{q}, \mathrm{p}) \longmapsto(-\mathrm{p}, \mathrm{q})
$$

Let us denote by J^{y} the operator

$$
\mathrm{J}^{\mathscr{Y}}=\mathrm{J}^{\mathrm{T}} \times \mathrm{J}^{\mathrm{Y}}: \mathrm{Z}_{\mathrm{s}}=\left(\mathbb{R}^{\mathrm{n}} \times \mathbb{R}^{\mathrm{n}}\right) \times \mathrm{Y}_{\mathrm{s}} \longrightarrow \mathrm{Z}_{8-\mathrm{d}_{J}}=\left(\mathbb{R}^{\left.\mathrm{n}^{n} \times \mathbb{R}^{\mathrm{n}}\right) \times \mathrm{Y}_{\mathrm{s}-\mathrm{d}_{J}} .}\right.
$$

and introduce in $y_{8}, s \geq 0$, a 2-form

$$
\alpha^{\mathscr{y}}=\left\langle\mathrm{J}^{\mathscr{y}} \mathrm{du}, \mathrm{du}\right\rangle_{\mathrm{Z}}, \mathrm{~J}^{\mathscr{y}}=-\left(\mathrm{J}^{\mathscr{y}}\right)^{-1}, \mathrm{~T}_{\mathrm{u}} \mathscr{y}_{\mathrm{s}} \cong \mathrm{Z}_{\mathrm{s}} .
$$

Definition. The triple $\left\{y,\left\{y_{8}\right\}, a^{y}\right\}$ is called toroidal symplectic Hilbert scale (TSHS).

Let O_{s} be a domain in y_{s} and $\mathrm{H} \in \mathrm{C}^{1}\left(\mathrm{O}_{\mathrm{s}}\right)$. Then the Hamiltonian equations corresponding to H have the form

$$
\begin{equation*}
\dot{\mathrm{q}}_{\mathrm{j}}=\frac{\partial \mathrm{H}}{\partial \mathrm{p}_{\mathrm{j}}}, \quad \dot{\mathrm{p}}_{\mathrm{j}}=-\frac{\partial \mathrm{H}}{\partial \mathrm{q}_{\mathrm{j}}}(1 \leq \mathrm{j} \leq \mathrm{n}), \dot{\mathrm{y}}=\mathrm{J}^{\mathrm{Y}} \nabla_{\mathrm{y}} \mathrm{H} \tag{4.1}
\end{equation*}
$$

The definitions of strong and weak solutions for equations (4.1) are analogous to those for equation (1.3).

The Poisson bracket of two functions $\mathrm{H}_{1}, \mathrm{H}_{2}$ with $\mathrm{H}_{\mathrm{j}} \in \mathrm{C}^{1}\left(\mathrm{O}_{8}\right)$, $\nabla_{\mathrm{y}} \mathrm{H}_{\mathrm{j}} \in \mathrm{C}\left(\mathrm{O}_{\mathrm{s}} ; \mathrm{Y}_{\mathrm{s}}\right)(\mathrm{j}=1,2), \mathrm{s}_{1}+\mathrm{s}_{2} \geq \mathrm{d}_{\mathrm{J}}$, takes the form

$$
\left\{\mathrm{H}_{1}, \mathrm{H}_{2}\right\}(\mathrm{q}, \mathrm{p}, \mathrm{y})=\sum_{\mathrm{j}=1}^{\mathrm{n}}\left[-\frac{\partial \mathrm{H}_{1}}{\partial \mathrm{q}_{\mathrm{j}}} \frac{\partial \mathrm{H}_{2}}{\partial \mathrm{p}_{\mathrm{j}}}+\frac{\partial \mathrm{H}_{1}}{\partial \mathrm{p}_{\mathrm{j}}} \frac{\partial \mathrm{H}_{2}}{\partial \mathrm{q}_{\mathrm{j}}}\right]+\left\langle\mathrm{J}^{\left.\mathrm{Y}_{\mathrm{y}} \mathrm{H}_{1}, \nabla_{\mathrm{y}} \mathrm{H}_{2}\right\rangle_{\mathrm{Y}} .}\right.
$$

The results of section 1-3 readily extend to canonical transformations and Hamiltonian equations in TSHS. We'll formulate analogs of Theorems 2.2, 2.4, 2.5 and 3.1 only.

Proposition 4.1. The statements of Theorem 2.2 remain true if anyone of the spaces X, Y is replaced by a toroidal symplectic Hilbert space (with equations of motion replaced accordingly).

Let $\mathrm{O}_{8}^{1}, \mathrm{O}_{\mathrm{s}}$ be domains in $y_{\mathrm{s}}, \mathrm{O}_{8}^{1} \mathrm{CO}_{\mathrm{s}}$ and

$$
\begin{equation*}
\operatorname{dist}_{y_{s}}\left(\mathrm{O}_{8}^{1} ; y_{s} \backslash \mathrm{O}_{8}\right)>\delta>0 \tag{4.2}
\end{equation*}
$$

Let $\mathrm{H} \in \mathrm{C}^{2}\left(\mathrm{O}_{8}\right)$ and $\mathrm{V}_{\mathrm{H}}=\left(\nabla_{\mathrm{p}} \mathrm{H},-\nabla_{\mathrm{q}} \mathrm{H}, \mathrm{J} \mathrm{Y}_{\mathrm{y}} \mathrm{H}\right)$ be corresponding Hamitonian vector-field. Let us suppose that $V_{H} \in C^{1}\left(O_{g} ; Z_{8}\right)$ and

$$
\begin{equation*}
\left|\mathrm{V}_{\mathrm{H}}(\mathrm{q}, \mathrm{p}, \mathrm{y})\right| \leq \mathrm{K} \quad \forall(\mathrm{q}, \mathrm{p}, \mathrm{y}), \operatorname{Lip}\left(\mathrm{V}_{\mathrm{H}}: \mathrm{O}_{\mathrm{s}} \longrightarrow \mathrm{Z}_{\mathrm{s}}\right) \leq \mathrm{K} \tag{4.3}
\end{equation*}
$$

Then the flow mappings $S^{t}: O_{s}^{1} \longrightarrow O_{8}$ exist for $0 \leq t \leq T=\delta / K$ and every S^{t} is C^{1}-diffeomorphism on its image.

Proposition 4.2. For every $0 \leq t \leq \delta / K$ the mapping S^{t} is a canonical transformation.

Let conditions (4.2), (4.3) be fulfilled and $S^{t} \in C^{1}\left(O_{S}^{1} ; \mathrm{O}_{S}\right)$ be the flow of equation $\frac{\mathrm{d}}{\mathrm{dt}}(\mathrm{q}, \mathrm{p}, \mathrm{y})=\epsilon \mathrm{V}_{\mathrm{H}}(\mathrm{q}, \mathrm{p}, \mathrm{y})$.

Proposition 4.3. For every $G \in C^{1}\left(\mathrm{O}_{8}\right) \quad G\left(S^{t}(\mathfrak{h})\right)=G(\mathfrak{h})+\mathfrak{t} \epsilon\{H, G\}(\mathfrak{h})+O(\epsilon t)^{2}$ $\forall \mathfrak{h}=(\mathrm{q}, \mathrm{p}, \mathrm{y}) \in \mathrm{O}_{\mathrm{s}}^{1}, \forall 0 \leq \mathrm{t} \leq \mathrm{T}=\delta / \mathrm{K}$.

Let in (4.1) $H=\frac{1}{2}\langle A y, y\rangle_{Y}+H_{0}(p, q, y)$ and let the linear operator A be the same as in part 3. Let $\mathrm{O}_{\mathrm{s}}^{1}, \mathrm{O}_{\mathrm{s}}^{2}, \mathrm{O}_{\mathrm{s}}$ be domains in $y_{\mathrm{s}}, \mathrm{O}_{\mathrm{s}}^{2} \mathrm{CO} \mathrm{O}_{8}^{1} \mathrm{CO}_{\mathrm{s}}$ and suppose inequality (4.2) is fulfilled. Let us suppose that $\operatorname{Lip}\left(\mathrm{V}_{\mathrm{H}_{0}}: \mathrm{O}_{\mathrm{s}} \longrightarrow \mathrm{Z}_{\mathrm{s}}\right) \leq \mathrm{K}$.

Proposition 4.4. Let us suppose that relations (3.5), (3.6) are fulfilled and that every strong solution of (4.1) with initial point $h_{0}=\left(q_{0}, p_{0}, y_{0}\right) \in O_{s}^{2}$ stays in domain O_{s}^{1} for
$0 \leq t \leq T$. Then for $\mathfrak{h}_{0} \in \mathrm{O}_{\mathrm{s}}^{2} \cap y_{\mathrm{s}+\mathrm{d}_{1}}, \mathrm{~d}_{1}=\mathrm{d}_{\mathrm{A}}+\mathrm{d}_{\mathrm{J}}$, and for $0 \leq \mathrm{t} \leq \mathrm{T}$ there exists a unique strong solution of (4.1); for $\mathfrak{h}_{0} \in \mathrm{O}_{\mathrm{g}}^{2}, 0 \leq \mathrm{t} \leq \mathrm{T}$, there exists a unique weak solution of (4.1).

The proofs of Propositions 4.1-4.3 are the same as the proofs of the corresponding theorems.

5. A version of the former constructions

All construction of the sections 1-4 have natural analogs for the scales of Hilbert spaces depending on the integer index, i.e. for the scales $\left\{Z_{8} \mid s \in \mathbb{Z}\right\}$. SHS and TSHS with discrete scales $\left\{\mathrm{Z}_{\mathrm{s}}\right\}$ are sometimes more convenient to study Hamiltonian equations of form (3.2) with integer d_{A}, d_{J}. For example, KdV equation (1.5), (1.5 $)\left(d_{J}=1, d_{A}=\right.$ 2) and nonlinear Schrödinger equation (1.4) $\left(d_{J}=0, d_{A}=2\right)$.

All the statements of sections 1-4 have natural analogs for discrete scales. The proofs are the same.

References

[A] V.I. Arnol'd, Mathematical methods in classical mechanics. "Nauka", Moscow, 1974; English transl., Springer-Verlag, 1978
[B] H. Brezis, Operateurs maximaux monotones et semigroupes de contractions dans les espaces de Hilbert. North-Holland, 1973
[Ch-B] Y. Choquet-Bruhat, C. De Witt-Morette, Analysis, manifolds and physics. North-Holland, 1982
[K] T. Kato, Quasi-linear equations of evolutions, with applications to partial differential equations. Lecture Notes Math., 1975, v. 448, p. 25-70
[L] J.-L. Lions, Quelques methodes de resolution des problemes aux limites nonlineaires. Dunod, Paris, 1969
[N] S.P. Novikov (ed)., Theory of solitons. "Nauka", Moscow, 1980; English transl., Plenum Press, New York, 1984
[RS1] M. Reed, B. Simon, Methods of modern mathematical physics, Vol. 1. Academic Press, Inc., 1980
[RS2] M. Reed, B. Simon, Methods of modern mathematical physics, Vol. 2. Academic Press, Inc. 1975

[^0]: Max-Planck-Institut
 für Mathematik
 Gottfried-Claren-Straße 26
 D-5300 Boan 3

 Federal Republic of Germany

