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This artic1e ia the first one in the following series of 3 articles on the complete proofs

of the author's theorems on perturbations of quasiperiodic solutions of infinite-dimensional

Hamiltonian systems. The articlea are based on the author's doctoral thesis IIperturbation

theory for families of quasiperiodie solutions of infinite-dimensional Hamiltonian systems

and its applications" (Moscow 1989, in Russian).

The aim of the first article is to present basic concepts of Hamiltonian mechanics in a

form applicable to nonlinear differential equations of mathemaiical physics.

The following notations are used: for Hilbert spates X, Y, Z the norms are denoted

by I· IX, I· Iy, I· Iz and inner products by <.,.)X, <.,.)y, <.,.) z ; distx ­

distance in the space X; for domains 0x ( X, 0y (Y the space of k-times Frechet

differentiable mappings 0x ---+ 0y ia denoted by Ck(Ox ;Oy) and

C(OX ;Oy) =CO(Ox ;Oy) , Ck(Ox ;IR) =Ck(Ox) Vk ~ 0 ; for r/J E C1(Ox ;Oy} the

•tangent (cotangent) mapping ia denoted by ;.(; ) (tangent spaces are identified with X

• •and Y , cotangent spates T 0x T Oy are identified with X and Y through Riesz'sx , y

isomorphism). For a mapping G: 0x --+ 0y we denote by

Lip(G) = Lip(G : 0x ---+ 0X) its Lipschitz constant,
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1. Symplectic Hilbert seales and Hamitonian equations

Let Z be a Hilbert space with inner product (.,.) Z and {Zsl s E IR} a scale of

Hilbert spaces with following properties:

a) the Hilbert space Zs is densely inclosed in Zs if s1 ~ 82 and the linear space
1 2

Z = n Zs i8 dense in Z Vs;
00 s

b) Zo = Z ;

c) the spaces Zs and Z-s are dual with respect to inner product (- J - ) Z .

The norm (inner product) in Zs will be denoted by 11-11
8

= ( -, -) s) . In particular

11-110= I - IZ and (·,,}O = (-, -)Z . The pairing between Zs and Z-s will be

denoted (.,.) 0 or (-,.) Z .

Let J: Zoo~ Zoo be a linear operator such that J(Zoo) = Zoo and

d) J determines isomorphism of seale {Zs} of order dJ ~ 0 , i.e. for every s E (R J

may be continued to a continuous linear isomorphism J: Zs~ ZS-d
J

;

e) the operator J with domain of definition Z is antisymmetric in Z, Le.
00

( Jzl'z2) Z = -(zl ) Jz2) Z Vzl'z2 E Zoo .

Let us denote by J' the isomorphism of o~der -dJ of scale {Zs}:

J' = -(J)-1 : Z I Z Vs E IR
S N s+dJ

Lemma 1.1. The operator J': Z~ Zd (Z ia anti selfadjoint in Z.
J

(1.1)

Proof. Let x,y E Zoo and Jx = xl ,Jy = Y1 . Then J'xl = -x, J'Y1 = -y and
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The operator J: z ---+ Z ia continuoua, and the space Z ia dense in Z, so the lemma
lD

is proved. •

Let ns introduce in every space Zs with s ~ 0 a 2-form a = (J dz,dz) z . Here by

definition

(1.2)

The form a is closed and nondegenerate [A,Ch-B].

Definition. The tripie {Z,{Zs Is EIR}, Q = (J dz,dz)} is ca11ed symplectic Hilbert

scale (or SHS for brevity).

Example 1.1. Let Z = IR~ )( lR~, Zs = Z Vs and J: Z ---+ Z, (p,q)~ (-q,p) .

In this case J2 = -E so J = _J-1 = J , d
J

= 0 and

Q = (J dz,dz)Z = (J dz,dz)Z = dp A dq .

Properties a)-e) are obvious and we obtain the c1assical symplectic structure for

even-dimensional spaces [A].

Example 1.2. Let Z = L2(S1) )( L2(S1), S1 = 1R/2rll , be aspace of pairs of

square--Bummable periodic functions (p(x), q(x)) . Let Zs = HS(S1) )( HS(Sl) . Here

HS(S1) ia the Sobolev space of periodic functions, s E IR [Ch-B,RS2]. Let us take

J : Zs ---+ ZS' (p(x),q(x))~ (-q(x),p(x)) .
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Then J = J is an isomorphism of scale {Zs} of order zero. Properties a~) are evident.

Example 1.3. Let

2r

ZB = Hg(Sl) = {u(x) E HB(Sl) I f u(x)dx = O}

o

Let us take J = 8/ {) x . Then J is an i80morphism of the scale of order one and

J = -{J)-1 is an isomorphism of order -1 . Properties a)--e) are evident again and we

have got SBS corresponding to symplectic structure of KdV--equation (see below and [A,

Appendix 13; N]).

For fE C1
(Os) let Vf E Z-ti be the gradient of f with respect to the inner product

(·,}Z:

(Vf(u),v}Z = Df(u)(v) = ~ f(u+fv) I f=O Vv E Os .

The mapping Os ----+ Z-s' u~ Vf(u) ,is continuous.

For B E C1(Os) the Hamiltonian vector-field VB is the mapping

VB : V ---+ Z = UZ defined by the following relation [A, Ch-B].:
8 -([) s 8

or
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ü= JVH(u) (1.3)

is the Hamiltonian equation corresponding to the hamiltonian H. Let us denote

DeEnition (cf. [B]). A curve u(t), 0 ~ t ~ T , is called a strang solution in the

space Zs of the equation (1.3) iff u E Cl
( [O,T] ;Zs) , u(t) E Ds(VH) Vt E [O,T] and Vt

equation (1.3) is satisfied. A curve u E C( [O,T] jZs) is called a weak solution of (1.3) iff it

is the limit in C( [O,T] ;Zs)-norm of some sequence of strong solutions.

Definition. Let O~ C Os be a domain such that for every uoE O~ there exist a

unique weak solution u(t) = st(uO) (0 ~ t ~ T) of equation (1.3) with initial condition

u(O) = uo. The set of mappings

t 1 t
S : Os ---+ Os' Uo~ S (uO) (0 ~ t 5 T)

is called "Ioeal semiflow of equation (1.3)" or Itflow of equation (1.3)" for short.

Weak solutions of equations (1.3) are generalized ones in the sense of distributions

(see [L] for systematic use of tms type of solutions):

Proposition 1.4. Let us suppose that for same SI E IR, Lip(VH: Os ---+ Zs ) < m .
1
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Then a weak solution u(t) E Os (0 ~ t ~ T) of equation (1.3) is a generalised solution

and after substitution of u(t) into (1.3) the left and right hand sides of the equation

coincide as elements of the space D' ((O,T);Z ) of distributions on (OJT) with values in
s2

Proof. By definition of weak solution there exist a sequence of strong solutions un(t)

such that un(·) ---+ u(·) in C( [O,T] jXs) . For this sequence

JVH(un) ---+ JVH(u) in C( [O,T] ;Zs -d ) . After transition to limit in equation (1.3) one
1 J

obtains the result. •

Examnle LI, again. Let H E Cl(lR~ )( IR~) . The Hamiltonian equation takes the

classical form:

p= -VqH(p,q), q= VpH(p,q) .

If H E C2(1R2n) then a weak solution is a strong one and it exiats for some T > 0 J

T = T(p(O),q(O)) .

Example 1.2, again. Let us consider the hamiltonian

2~

H = ~J (px(x)2 + qx(x)2 + V(x)(p(x)2 + q(x)2) + X(p(~)2 + q(x)2))dx
o
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with analytical function X and sIDooth function V . Then H E C1(Zs) for S ~ 1 and

VH(p,q) = (-pxx + V(x)p + X' (p2+q2)p, -qxx + V(x)q(x) + X' (p2 + q2)q) .

The equation (1.3) takes now the following form:

p= qxx - V(x)q - X' (p2+q2)q ,

q= -Pxx + V(x)p + X' (p2+q2)p

Let us denote u(t,x) = p(t,x) + iq(t,x) . The last equations are equivalent to nonlinear

Schrödinger equation with real potential V(x) for complex functions u(t,x) :

• I 2u = i(-uxx + V(x)u + € X (Iu(x) I )u) ,

(1.4)

u(t,x) == u(t,x+2'K) .

The problem (1.4) has an unique strong solution u(t,x), u(t,·) E Zs '

o~ t ~ T = T(u(O,x)) ,if 8 ~ 1 and u(O,x) E Zs+2 (we interpret here Zs as the Sobolev

space of periodie complex-valued functions), and (1.4) has an unique weak solution for

o~ t ~ T if u(O,x) E Zs . For the simple proof see part 3 below.

Example 1.3, again. In the situation of example 1.3 let us consider the hamiltonian

2""

H =J(~ux2 + u
3)dx .

o

Then H E C1(Zs) for s ~ 1 and VH(u(x)) = -uxx + 3u2 . So now equation (1.3) is the
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KdVequation

for periodie on x functions with zero mean value:

2r

u{t,x) == u{t,x+2r), Ju{t,x)dx;: 0
o

(1.5)

(1.5' )

It is well known [K] that for s ~ 3 the problem (1.5), (1.5') has an unique strong

solution u(t,x) , u(t J ·) E ZsVt J for every initial condition u(O,x) = uO(x) E Zs+3 and

has an unique weak solution for every uO(x) E Zs . The flow of problem (1.5), (1.5')

defines a homeomorphisms of phase space

1t is worth to mention that any Hamiltonian equation (including (1.4) and (1.5),

(1.5')) may be written down in a form (1.3) in many different ways. For this statement see

below Corollary 2.3.
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2. Canonica.l transformations

Let {X,{Xs},oX} and {Y'{Ys},oY} be two SHS with 2-forms

aX = (lXdx,dx)x and aY = (lYdy,dy)y respectivelYj let JX (lY) be an

isomorphisrn of scale {Xs} ({Ys}) of order -d X (-d .y); d X, d y ~ 0 . A mapping
J J J J

f/J : OX
s

-----+ 0 Y
s

ia a C1-diffeomorphism of domains OX
a

( X
s

and 0 y C y
X Y X X sy sy

(sX ~ 0, sy ~ 0) , if t/J is one-t(H)ne onto 0; and
Y

(2.1)

Definition. A C1-diffeomorphism f/J: oX ----+ 0 Y
s

is canonical transformationSx Y
iff it transforms 2-form aY into 2-form oX:

* y X
tP a = a .

Proposition 2.1. A C1-diffeomorphism ,p: O~ ---+ 0; is canonica.l iff
X Y

(the identity takes place in the space L(Xs ;X--s )).
X X

X
Proof. From (2.2) one has for v E 0

8
and {1'{2 E XsX X

(2.2)

(2.3)

(2.4)
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Therefore

for all el'e2 EXs . This identity implies the stated assertion.
X

•

As in the finite-dimensional case [A] a canonical transformation transforms

solutions of Hamiltonian equation into solutionB of equation with transformed hamiltonian:

Theorem 2.2. Let ,,: OX ~ 0 Y be a canonical transformation and let
Sx Sy

y
y: [O,T] ~ 0 a be a strong solution of Hamiltonian equation

y

• YV Y Y 1 Yy = V y(y) = J H (y), H E C (0 s ;IR)
H Y

Then x(t) = ,,-l(y(t)) is a strong solution in 0; of equation
X

· Xv X X Yx =V X(x) = J H (x) I H = Ho" .
H

(2.5)

(2.6)

If the mapping ;-1: 0; ~ 0; is Lipschitz and y is a weak solution of (2.5) then
Y X

x ia a weak solution of (2.6).

Proof. For HX = HY
0 " and x = ,,-1 0 y VHX = ;* VHY . Then

x: [O,T] ----i o~ is Cl and for y = " 0 x
X
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· · y V y Y· -1 V X'.x=y=J H (y)=J (;) H (x) (2.7)

(2.8)

(the right-hand side is weIl defined because JY(; ·)-1 VHX(x) E C ( [0,T] j 0;- )for
Y

X -1 Y *-1(2.1». By (2.3), J = (~*) J (~) , hence

· X V Xx = J H (x)

as stated.

The second statement of the theorem follows from the first one and the definition of a

weak solution because the mapping ,-1 is Lipshitz. •

YLet {Y'{Ys},a } be a SHS, let L be an isomorphisffi of scale {Ys} of order

1 v XfJ. ~ ~ d Y' L: Ys N I Ys- A v s . Let us define second SHS {X,{XS},ll } where
J

X = Y, Xe = Ys and aX = (JXdx,dx)x' JX = L*JYL . Let OXX be a domain in
s

X Y and 0 YY = L(OXX) ( Y Y J sY = sX-A . The mapping L: oXX -----t 0 YY is
ass s s ,s

canonical due to Proposition 2.1. So we have trivial

Corollary 2.3 (change of symplectic structure). Let HY E C1(OYy) and let
s

y(t) E 0 YY (0 ~ t ~ T) be a solution of equation (2.5) (strong OI weak). Then
s

x(t) = L-1y(t) ia a solution of Hamiltonian equation
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with a hamiltonian HX = HY 0 L E C1(OXX) .
8

d istX (O~;Xs\Os) > 0> 0
S

(2.10)

(2.11)

Let U8 consider the Hamiltonian equation

i = JVH(x) (2.12)

From (2.10), (2.11) one can easily obtain that the flow of equation (2.12) defines mappings

5t E C
1

(O~;o8) Vt E [0,T] , T = 6/K , and every 5
t

is a C
1
-diffeomorphism onto its

image.

Theorem 2.4. For every 0 5 t 5 T the mapping st is a canonica1 transformation.

Proof. One has to prove that
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Since SO = Id it ia sufficient to prove that

(2.13)

Let x( T) be the solution of equation (2.12) for x(O) =x t and ".i(t) (j =1,2) be the

solution of Cauchy problem for linearized on x( -) equation:

(2.14)

(2.15)

The function 1..( T) ia continuoualy differentable. So (2.13) ia equivalent to relation

d/dT t(T) =0 . One has

d ( -I 2) (J 1 -2)QT t(T) = J,.",., X + ,.",., X =

because operator J ia anti aelfadjoint (Lemma 1.1) and operator (VH)* is selfadjoint.
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The theorem is proved.

Let B j E C1
(Os)) VHj E C(OsjXs ) (j = 1,2) .

J

•

Definition. Let sl + 82 ~ dJ . The Poisson bracket of the function8 Hp H2 is the

function {Hl'H2} E C(Os) defined by

Let 0 < f ~ 1 and H EC2(Os) , let conditions (2.10), (2.11) be satisfied and

st E C1(O~;Os) , 0 ~ t ~ T = alK, be the ßow of the equation

i = € JVH(x) .

1 t 2Theorem 2.5. Für every G E C (Os) G(S (x)) = G(x) + tf{H,G}(x) + 0(( ft) )

Vx E O~, V0 ~ t ~ T .

Proof. From the conditions on H it is easy to see that

So



and ihe theorem is proved.
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= tE(VG(x),JVH(x)X + O( Et)2

•
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3. Local solvability of Hamiltonian equatiollB

Let {Y'{Ys},a} be SHS, let Os be a domain in Ys and let

Here A ia an isomorphism of acale {Ys} of order dA ~ 0 ;

A:Ys IY VsEIR 1
f\J s--dA

and the operator

A : D(A) (Y ---+ Y, D(A) = YdA

(3.1)

is selfadjoint. SO V(~ (Ay,y)y)(y) = Ay , and the Hamiltonian equation corresponding to

H has the form

y= J(Ay + VHO(Y)) (3.2)

We shall prove a simple theorem on the local 80lvability of equation (3.2) which will

suit weIl to our aims. Ta formulate the theorem let UB suppose that

Lip(JVHO: Os ---+ Ys) :s K

for some s ~ 0 and let 0 2,01 (Ys be domains with the following properties:

(3.3)
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disty (Ol ,YS\OS) ~ 6> 0 .
s

(3.4)

AJy = JAy Vy EYm (3.5)

(3.6)

Suppose that every strang salutionB y(t) of equation (3.2) with initial condition

y(O) = yo E 0 2
stays inside 0 1

for 0 ~ t ~ T . Then for YO E 0 2 nYs+d 1

1

d1 = dA + dJ ' there exists a unique strong solution y(t) for 0 ~ t 5 T , and for Yo E 0 2

there exists a unique weak solution y(t) for 0 ~ t ~ T .

Proof. Let us continue the mapping JVHO: 0 1 ---+ Ys to a Lipschitz one

V : Ys ---+ Ys . One may take for example

{
X(y)JVHo(y) 1 y E Os

V(y) = 0 d. 0
,y ~ s'

where X(y) = 0 1 max (O,6--d.isty (y;Ol)) (see (3.4)). The function X is Lipschitz, it is
s

equal to 1 in 0 1 and to 0 out oI Os . So Lip(V) ~ K1 and V I 1 = JVHO .
o

Let us consider the equation

y= JAy + V(y) (3.7)
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Hs solution y(t) is a solution of equation (3.2) until y(t) E 0 1.. Let us consider the linear

equation

too. From (3.5), (3.6) it follows that

y= JAy 1 (3.8)

80 by repeating the proof of Lemma 1.1 one ean obtain that operator (AJ)-l: Ys --t Ys

is anti selfadjoint. So the operator

is anti selfadjoint, too. Due to Stone's theorem [RS1] for y(O) = YO E Ys+d equation
1

(3.8) has a unique strong solution and the mapping

T
S : Ys+d --t Ys+d ' y(O)............-.. y(T), T > 0 ,

1 1

is isometrie with respect to the Ys-norm. Equation (3.7) is a Lipsehitz perturbation of

(3.8). So it has the unique strong solution y(t) J t ~ 0 , for every y(O) EYs+d and the
1

unique weak solution for every y(O) EYs (see [B]) . If y(O) = yo E 0 2 then due to the

theoremJs hypotheses sueh a solution does not leave domain 0 1 for 0 ~ t ~ T and for

such a "t 11 it ia the unqiue solution of equation (3.7).

•
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The theorem above reduces the problem of Bolving equation (3.2) to the problem of

finding apriori estimate for its solutions.
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4. Toroidal phase space

Let us consider a toroidal phase Spate of the form JI = Tn )( IRn )( Y . Here

Tn = IR
n

/21: ll.n is the n-dimensional torus, Y = Yo' {Ysis EIR} is a scale of Hilbert

spaces which satisfies properties a)-e) (see above). Let U8 denote Ps = Tn
x IRn

x Ys .

Every space JIs has a natural metric dists and a natural structure of a Hilbert manifold

with local charts

(see [Ch-B]). So

T 11 ~!Rn x IRn x Y == Z Vu E 11 ,
u's- S S 3's

Let JY be an isomorphism of the scale {Y5} with properties d), e) and

Let U8 denote by J JI the operator

and introduce in JIs' s ~ 0 , a 2-form
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Definition. The tripIe {P ,{ Ps}' Q Pt is called toroidal symplectic Rilbert sca.le

(TSHS).

Let Os be a domain in Ps and H E C1(Os) . Then the Hamiltonian equations

corresponding to H have the form

• OH· 8H · Yv
q. = 7JD'.' PJ' =-~. (1 ~ j Sn), y = J yH
J P j J

(4.1)

The definitions of strong and weak saIntions for eqnations (4.1) are analogons to those for

equation (1.3).

The Poisson bracket of two functions Hp H2 with Hj E C1(Os) ,

V H. E C(Os;Ys ) (j = 1,2), sI + s2 ~ dJ ' takes the form
Y J j

The results of section 1-3 readily extend to canonica.l transformations and

Hamiltonian equations in TSHS. We'll formulate analogs of Theorems 2.2, 2.4, 2.5 and 3.1

only.

Proposition 4.1. The statements of Theorem 2.2 remain true if anyone of the spaces

XJ Y is replaced by a toroidal symplectic Hilbert space (with equations of motion replaced

accordingIy).

Let O~, Os be domains in IIs ' O~ (Os and
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(4.2)

Then the ßow mappings st: O~ ----i Os exist for 0 ~ t ~ T = alK and every st is

C1-diffeomorphism on its image.

Proposition 4.2. For every 0 ~ t ~ alK the mapping st is a cananical

transformation.

Let conditions (4.2), (4.3) be fulfilled and st E C1(0§;OS) be the flow of equation

dat (q,p,y) = f VH(q,P,Y) .

Proposition 4.3. For every G E C1(Os) G(st(~)) = G(~) + t f{H,G}(~) + O( Et)2

V ~ = (q,p,y) E O~, V0 ~ t ~ T = alK.

Let in (4.1) H = ~ (Ay,y) y + HO(p,q,y) and let the linear operator A be the same

aB in part 3. Let O~, 0;, Os be domains in Jls ' 0; ( O~ C Os and suppose

inequality (4.2) is fulfilled. Let us suppose that Lip(VH : Os --t Zs) ~ K .
o

Proposition 4.4. Let us suppose that relations (3.5), (3.6) are fulfilled and that every

strang solution of (4.1) with initial point ~O = (Qo'Po,yO) E 0; stays in domain O~ for
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2
O~t~T.Thenfor (JoEosn Jls+d ,d1 =dA +dJ,andfor O~t~T thereexistsa

1

unique strong solution of (4.1); for (JO E O~, 0 ~ t ~ T » there exists a unique weak

solution of (4.1).

The proofs of PropositionB 4.1-4.3 are the same aB the proofs of the corresponding

theorems.



,
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5. Aversion of the former constructions

All construction oI the sections 1-4 have natural analogs for the scales oI Hilbert spaces

depending on the integer index, i.e. for the scales {Zs Is E1l} . SHS and TSHS with

discrete scales {Zs} are sometimes more convenient to study Hamiltonian equations of

form (3.2) with integer dA' dJ . For example, KdV equation (1.5), (1.5') (dJ = 1, dA =

2) and nonlinear Schrödinger equation (1.4) (dJ = 0, dA = 2) .

All the statements of sections 1-4 have natural analogs for discrete scales. The proofs are

the same.
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