Perturbation theory for quasiperiodic solutions of infinite-dimensional Hamiltonian systems

1. Symplectic structures and Hamiltonian systems in the scales of Hilbert spaces

by

S.B. Kuksin

Max-Planck-Institut für Mathematik Gottfried-Claren-Straße 26 D-5300 Bonn 3 Institute of Control Sciences 65 Profsoyuznaya Street 117806 Moscow, GSP-7

USSR

Federal Republic of Germany

MPI/90-99

. . .

.

. •

.

Ball model for Hilbert's twelvth problem

by

R.-P. Holzapfel

Max-Planck-Institut für Mathematik Gottfried-Claren-Straße 26 D-5300 Bonn 3

,

Federal Republic of Germany

MPI/90-95

,

Contents

٠

٩,

.

.

	Introduction	2
1.	Symplectic Hilbert scales and Hamiltonian equations	3
2.	Canonical transformations	10
3.	Local solvability of Hamiltonian equations	17
4.	Toroidal phase space	21
5.	A version of the former constructions	25
	References	26

This article is the first one in the following series of 3 articles on the complete proofs of the author's theorems on perturbations of quasiperiodic solutions of infinite-dimensional Hamiltonian systems. The articles are based on the author's doctoral thesis "Perturbation theory for families of quasiperiodic solutions of infinite-dimensional Hamiltonian systems and its applications" (Moscow 1989, in Russian).

The aim of the first article is to present basic concepts of Hamiltonian mechanics in a form applicable to nonlinear differential equations of mathematical physics.

The following notations are used: for Hilbert spaces X, Y, Z the norms are denoted by $|\cdot|_X$, $|\cdot|_Y$, $|\cdot|_Z$ and inner products by $\langle \cdot, \cdot \rangle_X$, $\langle \cdot, \cdot \rangle_Y$, $\langle \cdot, \cdot \rangle_Z$; dist_X – distance in the space X; for domains $O_X \subset X$, $O_Y \subset Y$ the space of k-times Fréchet differentiable mappings $O_X \longrightarrow O_Y$ is denoted by $C^k(O_X; O_Y)$ and $C(O_X; O_Y) = C^0(O_X; O_Y)$, $C^k(O_X; \mathbb{R}) = C^k(O_X) \forall k \ge 0$; for $\phi \in C^1(O_X; O_Y)$ the tangent (cotangent) mapping is denoted by $\phi_*(\phi^*)$ (tangent spaces are identified with X and Y, cotangent spaces $T_X^* O_X, T_Y^* O_Y$ are identified with X and Y through Riesz's isomorphism). For a mapping G: $O_X \longrightarrow O_Y$ we denote by $Lip(G) = Lip(G: O_X \longrightarrow O_X)$ its Lipschitz constant,

$$Lip(G) = \sup_{x_1 \neq x_2} \frac{|G(x_1) - G(x_2)|}{|x_1 - x_2|_X}$$

1. Symplectic Hilbert scales and Hamitonian equations

Let Z be a Hilbert space with inner product $\langle \cdot, \cdot \rangle_{Z}$ and $\{Z_{s} | s \in \mathbb{R}\}$ a scale of Hilbert spaces with following properties:

a) the Hilbert space Z_{s_1} is densely inclosed in Z_{s_2} if $s_1 \ge s_2$ and the linear space $Z_{\omega} = \cap Z_s$ is dense in $Z_s \forall s$;

b) $\mathbf{Z}_{\mathbf{0}} = \mathbf{Z}$;

c) the spaces Z_s and Z_{-s} are dual with respect to inner product $\langle \cdot, \cdot \rangle_Z$.

The norm (inner product) in Z_s will be denoted by $\|\cdot\|_s = (\langle \cdot, \cdot \rangle_s)$. In particular $\|\cdot\|_0 = |\cdot|_Z$ and $\langle \cdot, \cdot \rangle_0 = \langle \cdot, \cdot \rangle_Z$. The pairing between Z_s and Z_s will be denoted $\langle \cdot, \cdot \rangle_0$ or $\langle \cdot, \cdot \rangle_Z$.

Let $J: Z_{\varpi} \longrightarrow Z_{\varpi}$ be a linear operator such that $J(Z_{\varpi}) = Z_{\varpi}$ and

d) J determines isomorphism of scale $\{Z_s\}$ of order $d_J \ge 0$, i.e. for every $s \in \mathbb{R}$ J may be continued to a continuous linear isomorphism $J : Z_s \xrightarrow{\sim} Z_{s-d_T}$;

e) the operator J with domain of definition Z_{ω} is antisymmetric in Z, i.e. $\langle Jz_1, z_2 \rangle_Z = -\langle z_1, Jz_2 \rangle_Z \quad \forall z_1, z_2 \in Z_{\omega}$.

Let us denote by J the isomorphism of order $-d_{J}$ of scale $\{Z_s\}$:

$$\mathbf{J} = -(\mathbf{J})^{-1} : \mathbf{Z}_{\mathbf{s}} \xrightarrow{\sim} \mathbf{Z}_{\mathbf{s}+\mathbf{d}_{\mathbf{J}}} \quad \forall \mathbf{s} \in \mathbb{R}$$
(1.1)

<u>Lemma 1.1</u>. The operator $J: Z \longrightarrow Z_{d_J} \subset Z$ is anti selfadjoint in Z.

<u>Proof</u>. Let $x, y \in Z_m$ and $Jx = x_1$, $Jy = y_1$. Then $Jx_1 = -x$, $Jy_1 = -y$ and

$$\langle x_1, Jy_1 \rangle_Z = -\langle Jx, y \rangle_Z = \langle x, Jy \rangle_Z = -\langle Jx_1, y_1 \rangle_Z$$
.

The operator $J: Z \longrightarrow Z$ is continuous, and the space Z_{ω} is dense in Z, so the lemma is proved.

Let us introduce in every space Z_g with $s \ge 0$ a 2-form $\alpha = \langle J dz, dz \rangle_Z$. Here by definition

$$\langle \mathbf{J} \, \mathrm{d}\mathbf{z}, \mathrm{d}\mathbf{z} \rangle_{\mathbf{Z}} \, [\mathbf{z}_1, \mathbf{z}_2] = \langle \mathbf{J} \, \mathbf{z}_1, \mathbf{z}_2 \rangle_{\mathbf{Z}} \, \forall \, \mathbf{z}_1, \mathbf{z}_2 \in \mathbf{Z}_{\mathbf{s}}$$
 (1.2)

The form α is closed and nondegenerate [A,Ch-B].

<u>Definition</u>. The triple $\{Z, \{Z_s | s \in \mathbb{R}\}, \alpha = \langle J dz, dz \rangle\}$ is called symplectic Hilbert scale (or SHS for brevity).

 $\underline{Example \ 1.1}. \ Let \ \ Z = \mathbb{R}_p^n \times \mathbb{R}_q^n \ , \ \ Z_g = Z \ \forall s \ \ and \ \ J : Z \longrightarrow Z \ , \ (p,q) \longmapsto (-q,p) \ .$ In this case $J^2 = -E$ so $\overline{J} = -J^{-1} = J$, $d_J = 0$ and

$$a = \langle J dz, dz \rangle_{Z} = \langle J dz, dz \rangle_{Z} = dp \Lambda dq$$

Properties a)-e) are obvious and we obtain the classical symplectic structure for even-dimensional spaces [A].

<u>Example 1.2</u>. Let $Z = L_2(S^1) \times L_2(S^1)$, $S^1 = \mathbb{R}/2\pi\mathbb{Z}$, be a space of pairs of square-summable periodic functions (p(x), q(x)). Let $Z_s = H^8(S^1) \times H^8(S^1)$. Here $H^8(S^1)$ is the Sobolev space of periodic functions, $s \in \mathbb{R}$ [Ch-B,RS2]. Let us take

$$J: Z_{g} \longrightarrow Z_{g}, (p(x),q(x)) \longmapsto (-q(x),p(x))$$
.

Then J = J is an isomorphism of scale $\{Z_s\}$ of order zero. Properties a)-e) are evident.

Example 1.3. Let

$$Z_{g} = H_{0}^{g}(S^{1}) = \{u(x) \in H^{g}(S^{1}) | \int_{0}^{2\pi} u(x) dx = 0\}$$

Let us take $J = \partial/\partial x$. Then J is an isomorphism of the scale of order one and $J = -(J)^{-1}$ is an isomorphism of order -1. Properties a)-e) are evident again and we have got SHS corresponding to symplectic structure of KdV-equation (see below and [A, Appendix 13; N]).

For $f \in C^1(O_s)$ let $\nabla f \in Z_{-s}$ be the gradient of f with respect to the inner product $\langle \cdot, \cdot \rangle_Z$:

$$\langle \nabla f(\mathbf{u}), \mathbf{v} \rangle_{\mathbf{Z}} = \mathrm{D}f(\mathbf{u})(\mathbf{v}) = \frac{\partial}{\partial \epsilon} f(\mathbf{u} + \epsilon \mathbf{v}) |_{\epsilon=0} \forall \mathbf{v} \in \mathrm{O}_{\mathbf{s}}$$

The mapping $O_8 \longrightarrow Z_{-6}$, $u \longmapsto \nabla f(u)$, is continuous.

For $H \in C^{1}(O_{g})$ the Hamiltonian vector-field V_{H} is the mapping $V_{H}: V_{g} \longrightarrow Z_{-\infty} = \bigcup_{g} Z_{g}$ defined by the following relation [A, Ch-B]:

$$a(\xi, \mathbf{V}_{\mathbf{H}}(\mathbf{u})) = \langle \xi, \nabla \mathbf{H}(\mathbf{u}) \rangle_{\mathbf{Z}} \, \forall \xi \in \mathbf{Z}_{\boldsymbol{\omega}}$$

or

$$\left\langle \mathbf{J}\boldsymbol{\xi}, \mathbf{V}_{\mathbf{H}}(\mathbf{u}) \right\rangle_{\mathbf{Z}} = \left\langle \boldsymbol{\xi}, \nabla \mathbf{H}(\mathbf{u}) \right\rangle_{\mathbf{Z}} \forall \boldsymbol{\xi} \in \mathbf{Z}_{\boldsymbol{\omega}}$$

So $V_{\mathbf{H}}(\mathbf{u}) = \mathbf{J} \nabla \mathbf{H}(\mathbf{u})$ and

$$\dot{\mathbf{u}} = \mathbf{J} \nabla \mathbf{H}(\mathbf{u}) \tag{1.3}$$

is the Hamiltonian equation corresponding to the hamiltonian H. Let us denote

$$D_{\mathbf{g}}(V_{\mathbf{H}}) = \{ u \in O_{\mathbf{g}} | V_{\mathbf{H}}(u) = J \overline{V} \mathbf{H}(u) \in \mathbf{Z}_{\mathbf{g}} \} .$$

<u>Definition</u> (cf. [B]). A curve u(t), $0 \le t \le T$, is called a strong solution in the space Z_g of the equation (1.3) iff $u \in C^1([0,T];Z_g)$, $u(t) \in D_g(V_H) \ \forall t \in [0,T]$ and $\forall t$ equation (1.3) is satisfied. A curve $u \in C([0,T];Z_g)$ is called a weak solution of (1.3) iff it is the limit in $C([0,T];Z_g)$ -norm of some sequence of strong solutions.

<u>Definition</u>. Let $O_s^1 \in O_s$ be a domain such that for every $u_0 \in O_s^1$ there exist a unique weak solution $u(t) = S^t(u_0)$ $(0 \le t \le T)$ of equation (1.3) with initial condition $u(0) = u_0$. The set of mappings

$$S^{t}: O_{s}^{1} \longrightarrow O_{s}, u_{0} \longmapsto S^{t}(u_{0}) \quad (0 \leq t \leq T)$$

is called "local semiflow of equation (1.3)" or "flow of equation (1.3)" for short.

Weak solutions of equations (1.3) are generalized ones in the sense of distributions (see [L] for systematic use of this type of solutions):

<u>Proposition 1.4</u>. Let us suppose that for some $s_1 \in \mathbb{R}$, $Lip(\nabla H : O_s \longrightarrow Z_{s_1}) < \omega$.

Then a weak solution $u(t) \in O_{g}$ $(0 \le t \le T)$ of equation (1.3) is a generalised solution and after substitution of u(t) into (1.3) the left and right hand sides of the equation coincide as elements of the space $D'((0,T);Z_{s_2})$ of distributions on (0,T) with values in Z_{s_2} , $s_2 = \min\{s,s_1-d_J\}$.

<u>Proof.</u> By definition of weak solution there exist a sequence of strong solutions $u_n(t)$ such that $u_n(\cdot) \longrightarrow u(\cdot)$ in $C([0,T];X_g)$. For this sequence

$$\dot{u}_n \longrightarrow \dot{u}$$
 in $D'((0,T);Z_s)$,

 $J\nabla H(u_n) \longrightarrow J\nabla H(u)$ in $C([0,T];Z_{s_1}-d_J)$. After transition to limit in equation (1.3) one obtains the result.

Example 1.1, again. Let $H \in C^1(\mathbb{R}_p^n \times \mathbb{R}_q^n)$. The Hamiltonian equation takes the classical form:

$$\dot{\mathbf{p}} = -\nabla_{\mathbf{q}} \mathbf{H}(\mathbf{p},\mathbf{q}) , \ \dot{\mathbf{q}} = \nabla_{\mathbf{p}} \mathbf{H}(\mathbf{p},\mathbf{q}) .$$

If $H \in C^2(\mathbb{R}^{2n})$ then a weak solution is a strong one and it exists for some T > 0, T = T(p(0),q(0)).

Example 1.2, again. Let us consider the hamiltonian

$$H = \frac{1}{2} \int_{0}^{2\pi} (p_x(x)^2 + q_x(x)^2 + V(x)(p(x)^2 + q(x)^2) + \chi(p(x)^2 + q(x)^2)) dx$$

with analytical function χ and smooth function V. Then $H \in C^{1}(Z_{s})$ for $s \geq 1$ and

$$\nabla H(p,q) = (-p_{xx} + V(x)p + \chi'(p^2 + q^2)p, -q_{xx} + V(x)q(x) + \chi'(p^2 + q^2)q) .$$

The equation (1.3) takes now the following form:

ł

$$\dot{p} = q_{xx} - V(x)q - \chi'(p^2 + q^2)q$$
,
 $\dot{q} = -p_{xx} + V(x)p + \chi'(p^2 + q^2)p$.

Let us denote u(t,x) = p(t,x) + iq(t,x). The last equations are equivalent to nonlinear Schrödinger equation with real potential V(x) for complex functions u(t,x):

$$\dot{\mathbf{u}} = \mathbf{i}(-\mathbf{u}_{\mathbf{X}\mathbf{X}} + \mathbf{V}(\mathbf{x})\mathbf{u} + \epsilon \, \chi'(|\mathbf{u}(\mathbf{x})|^2)\mathbf{u}) , \qquad (1.4)$$
$$\mathbf{u}(\mathbf{t},\mathbf{x}) \equiv \mathbf{u}(\mathbf{t},\mathbf{x}+2\pi) .$$

The problem (1.4) has an unique strong solution u(t,x), $u(t,\cdot) \in Z_s$, $0 \le t \le T = T(u(0,x))$, if $s \ge 1$ and $u(0,x) \in Z_{s+2}$ (we interpret here Z_s as the Sobolev space of periodic complex-valued functions), and (1.4) has an unique weak solution for $0 \le t \le T$ if $u(0,x) \in Z_s$. For the simple proof see part 3 below.

Example 1.3, again. In the situation of example 1.3 let us consider the hamiltonian

$$H = \int_{0}^{2\pi} (\frac{1}{2} u_{x}^{2} + u^{3}) dx .$$

Then $H \in C^1(Z_s)$ for $s \ge 1$ and $\nabla H(u(x)) = -u_{xx} + 3u^2$. So now equation (1.3) is the

KdV equation

$$\dot{\mathbf{u}}(\mathbf{t},\mathbf{x}) = -\mathbf{u}_{\mathbf{x}\mathbf{x}\mathbf{x}} + 6\mathbf{u}\mathbf{u}_{\mathbf{x}} \tag{1.5}$$

for periodic on x functions with zero mean value:

$$u(t,x) \equiv u(t,x+2\pi), \int_{0}^{2\pi} u(t,x)dx \equiv 0 \qquad (1.5')$$

It is well known [K] that for $s \ge 3$ the problem (1.5), (1.5') has an unique strong solution u(t,x), $u(t,\cdot) \in Z_g \forall t$, for every initial condition $u(0,x) = u_0(x) \in Z_{g+3}$ and has an unique weak solution for every $u_0(x) \in Z_g$. The flow of problem (1.5), (1.5') defines a homeomorphisms of phase space

$$S^t: Z_s \xrightarrow{\sim} Z_s \forall t \ge 0 \quad \forall s \ge 3$$
.

It is worth to mention that any Hamiltonian equation (including (1.4) and (1.5), (1.5')) may be written down in a form (1.3) in many different ways. For this statement see below Corollary 2.3.

2. Canonical transformations

Let $\{X, \{X_g\}, a^X\}$ and $\{Y, \{Y_g\}, a^Y\}$ be two SHS with 2-forms $a^X = \langle J^X dx, dx \rangle_X$ and $a^Y = \langle J^Y dy, dy \rangle_Y$ respectively; let J^X (J^Y) be an isomorphism of scale $\{X_g\}$ $(\{Y_g\})$ of order $-d_{JX}$ $(-d_{JY})$; d_{JX} , $d_{JY} \ge 0$. A mapping $\phi : O^X_{s_X} \longrightarrow O^Y_{s_Y}$ is a C¹-diffeomorphism of domains $O^X_{s_X} \subset X_{s_X}$ and $O^Y_{s_Y} \subset Y_{s_Y}$ $(s_X \ge 0, s_Y \ge 0)$, if ϕ is one-to-one onto $O^Y_{s_Y}$ and

$$\phi \in C^{1}(O_{s_{X}}^{X}; O_{s_{Y}}^{Y}), \ \phi^{-1} \in C^{1}(O_{s_{Y}}^{Y}; O_{s_{X}}^{X})$$
(2.1)

<u>Definition</u>. A C¹-diffeomorphism $\phi: O_{s_X}^X \longrightarrow O_{s_Y}^Y$ is canonical transformation iff it transforms 2-form a^Y into 2-form a^X :

$$\phi^* \alpha^{\rm Y} = \alpha^{\rm X} \quad . \tag{2.2}$$

<u>Proposition 2.1</u>. A C¹-diffeomorphism $\phi: O_{s_X}^X \longrightarrow O_{s_Y}^Y$ is canonical iff

$$\phi^* \mathbf{J}^{\mathbf{Y}} \phi_* \equiv \mathbf{J}^{\mathbf{X}} \tag{2.3}$$

(the identity takes place in the space $L(X_{s_X}; X_{s_X})$).

Proof. From (2.2) one has for $v \in O_{s_X}^X$ and $\xi_1, \xi_2 \in X_{s_X}$

$$\langle \mathbf{J}^{\mathbf{Y}} \phi_{*}(\mathbf{v})\xi_{1}, \phi_{*}(\mathbf{v})\xi_{2} \rangle_{\mathbf{Y}} = \langle \mathbf{J}^{\mathbf{X}} \xi_{1}, \xi_{2} \rangle_{\mathbf{X}}$$
 (2.4)

Therefore

$$\langle \phi^{*}(\mathbf{v}) \mathbf{J}^{\mathbf{Y}} \phi_{*}(\mathbf{v}) \boldsymbol{\xi}_{1}, \boldsymbol{\xi}_{2} \rangle_{\mathbf{X}} = \langle \mathbf{J}^{\mathbf{X}} \boldsymbol{\xi}_{1}, \boldsymbol{\xi}_{2} \rangle_{\mathbf{X}}$$

for all $\xi_1, \xi_2 \in X_{s_X}$. This identity implies the stated assertion.

As in the finite-dimensional case [A] a canonical transformation transforms solutions of Hamiltonian equation into solutions of equation with transformed hamiltonian:

<u>Theorem 2.2.</u> Let $\phi: O_{s_X}^X \longrightarrow O_{s_Y}^Y$ be a canonical transformation and let $y: [0,T] \longrightarrow O_{s_Y}^Y$ be a strong solution of Hamiltonian equation

$$\dot{\mathbf{y}} = \mathbf{V}_{\mathbf{H}} \mathbf{Y}(\mathbf{y}) = \mathbf{J}^{\mathbf{Y}} \nabla \mathbf{H}^{\mathbf{Y}}(\mathbf{y}) , \quad \mathbf{H}^{\mathbf{Y}} \in \mathbf{C}^{1}(\mathbf{O}_{\mathbf{s}}^{\mathbf{Y}}; \mathbb{R}) \quad .$$
(2.5)

Then $x(t) = \phi^{-1}(y(t))$ is a strong solution in $O_{s_X}^X$ of equation

$$\dot{\mathbf{x}} = \mathbf{V}_{\mathbf{H}} \mathbf{X}(\mathbf{x}) = \mathbf{J}^{\mathbf{X}} \nabla \mathbf{H}^{\mathbf{X}}(\mathbf{x}) , \quad \mathbf{H}^{\mathbf{X}} = \mathbf{H}^{\mathbf{Y}} \circ \phi .$$
(2.6)

If the mapping $\phi^{-1}: O_{s_Y}^Y \longrightarrow O_{s_X}^X$ is Lipschitz and y is a weak solution of (2.5) then x is a weak solution of (2.6).

<u>Proof.</u> For $H^X = H^Y \circ \phi$ and $x = \phi^{-1} \circ y$ $\nabla H^X = \phi^* \nabla H^Y$. Then $x : [0,T] \longrightarrow O_{s_X}^X$ is C^1 and for $y = \phi \circ x$

$$\phi_* \dot{\mathbf{x}} = \dot{\mathbf{y}} = \mathbf{J}^{\mathbf{Y}} \nabla \mathbf{H}^{\mathbf{Y}}(\mathbf{y}) = \mathbf{J}^{\mathbf{Y}} (\phi^*)^{-1} \nabla \mathbf{H}^{\mathbf{X}}(\mathbf{x})$$
(2.7)

or

$$\dot{\mathbf{x}} = (\phi_*)^{-1} \mathbf{J}^{\mathbf{Y}} (\phi^*)^{-1} \nabla \mathbf{H}^{\mathbf{X}} (\mathbf{x})$$
 (2.8)

(the right-hand side is well defined because $J^{Y}(\phi^{*})^{-1} \nabla H^{X}(x) \in C([0,T]; O_{s_{Y}}^{Y})$ for (2.1)). By (2.3), $J^{X} = (\phi_{*})^{-1} J^{Y}(\phi^{*})^{-1}$, hence

$$\dot{\mathbf{x}} = \mathbf{J}^{\mathbf{X}} \nabla \mathbf{H}^{\mathbf{X}}(\mathbf{x})$$

as stated.

The second statement of the theorem follows from the first one and the definition of a weak solution because the mapping ϕ^{-1} is Lipshitz.

Let $\{Y, \{Y_s\}, a^Y\}$ be a SHS, let L be an isomorphism of scale $\{Y_s\}$ of order $\Delta \leq \frac{1}{2} d_{J^Y}, L: Y_s \longrightarrow Y_{s-\Delta} \forall s$. Let us define second SHS $\{X, \{X_s\}, a^X\}$ where $X = Y, X_s = Y_s$ and $a^X = \langle J^X dx, dx \rangle_X, J^X = L^* J^Y L$. Let O_s^X be a domain in X_{sY} and $O_s^Y = L(O_s^X) \subset Y_{sY}, s^Y = s^X - \Delta$. The mapping $L: O_s^X \longrightarrow O_s^Y$ is canonical due to Proposition 2.1. So we have trivial

<u>Corollary 2.3</u> (change of symplectic structure). Let $H^Y \in C^1(O_{sY}^Y)$ and let $y(t) \in O_{sY}^Y$ ($0 \le t \le T$) be a solution of equation (2.5) (strong or weak). Then $x(t) = L^{-1}y(t)$ is a solution of Hamiltonian equation

$$\dot{\mathbf{x}} = \mathbf{J}^{\mathbf{X}} \nabla \mathbf{H}^{\mathbf{X}}(\mathbf{x}), \ \mathbf{J}^{\mathbf{X}} = \mathbf{L}^{-1} \mathbf{J}^{\mathbf{Y}}(\mathbf{L}^{*})^{-1},$$

with a hamiltonian $H^X = H^Y \circ L \in C^1(O_s^X)$.

Let $\{X, \{X_s\}, \alpha = \langle J dx, dx \rangle_X\}$ be a SHS, O_s^1 and O_s be domains in X_s , $O_s^1 \in O_s$ and

$$\operatorname{dist}_{X_{g}}(O_{g}^{1};X_{g}\setminus O_{g}) > \delta > 0$$
(2.10)

Let $H \in C^2(O_s)$ and $\nabla H \in C^1(O_s; X_{s+d_1}), \|J\nabla H(x)\|_s \leq K, \text{ Lip}(J\nabla H : O_s \longrightarrow X_s) \leq K,$ (2.11)

Let us consider the Hamiltonian equation

$$\dot{\mathbf{x}} = \mathbf{J} \nabla \mathbf{H}(\mathbf{x}) \tag{2.12}$$

From (2.10), (2.11) one can easily obtain that the flow of equation (2.12) defines mappings $S^t \in C^1(O_s^1;O_s)$ $\forall t \in [0,T]$, $T = \delta/K$, and every S^t is a C^1 -diffeomorphism onto its image.

<u>Theorem 2.4</u>. For every $0 \le t \le T$ the mapping S^t is a canonical transformation.

Proof. One has to prove that

$$(\mathbf{S}^{\mathsf{t}})^* \boldsymbol{a}(\mathbf{x}) [\eta_1, \eta_2] = \boldsymbol{a} [\eta_1, \eta_2] \ \forall \mathbf{x} \in \mathbf{O}_{\mathbf{s}}^1 \ \forall \eta_1, \eta_2 \in \mathbf{X}_{\mathbf{s}}$$

Since $S^0 = Id$ it is sufficient to prove that

$$(S^{\tau})^* a(\mathbf{x}) [\eta_1, \eta_2] = \operatorname{const}(\tau)$$
(2.13)

Let $x(\tau)$ be the solution of equation (2.12) for x(0) = x, and $\eta^{j}(t)$ (j = 1,2) be the solution of Cauchy problem for linearized on $x(\cdot)$ equation:

$$\dot{\eta}^{\mathbf{j}}(\tau) = \mathbf{J}(\nabla \mathbf{H})_{*}(\mathbf{x}(\tau))\eta^{\mathbf{j}}(\tau) , \quad \eta^{\mathbf{j}}(0) = \eta_{\mathbf{j}} \quad (2.14)$$

Then $(S^{\tau})_{\star}(z)\eta_{j} = \eta^{j}(\tau)$, j = 1,2 and

$$(\mathbf{S}^{\tau})^{*} \boldsymbol{\alpha}(\mathbf{x}) [\boldsymbol{\eta}_{1}, \boldsymbol{\eta}_{2}] = \boldsymbol{\alpha} [\boldsymbol{\eta}^{1}(\tau), \boldsymbol{\eta}^{2}(\tau)] =$$

$$= \langle \mathbf{J}\boldsymbol{\eta}^{1}(\tau), \boldsymbol{\eta}^{2}(\tau) \rangle_{\mathbf{X}} \equiv \boldsymbol{\ell}(\tau) \qquad (2.15)$$

The function $\ell(\tau)$ is continuously differentable. So (2.13) is equivalent to relation $d/d\tau \ell(\tau) \equiv 0$. One has

$$\frac{\mathrm{d}}{\mathrm{d}\tau} \,\ell(\tau) = \left\langle \mathbf{J} \,\dot{\eta}^{1}, \eta^{2} \right\rangle_{\mathrm{X}} + \left\langle \mathbf{J} \,\eta^{1}, \dot{\eta}^{2} \right\rangle_{\mathrm{X}} =$$
$$= \left\langle \mathbf{J} \mathbf{J} (\nabla \mathbf{H})_{*}(\mathbf{x}) \eta^{1}, \eta^{2} \right\rangle_{\mathrm{X}} + \left\langle \mathbf{J} \,\eta^{1}, \mathbf{J} (\nabla \mathbf{H})_{*}(\mathbf{x}) \eta^{2} \right\rangle_{\mathrm{X}} =$$
$$= - \left\langle (\nabla \mathbf{H})_{*}(\mathbf{x}) \eta^{1}, \eta^{2} \right\rangle_{\mathrm{X}} + \left\langle \eta^{1}, (\nabla \mathbf{H})_{*}(\mathbf{x}) \eta^{2} \right\rangle_{\mathrm{X}} = 0$$

because operator J is anti selfadjoint (Lemma 1.1) and operator $(\nabla H)_*$ is selfadjoint.

The theorem is proved.

Let
$$\operatorname{H}_{j} \in \operatorname{C}^{1}(O_{g})$$
, $\nabla \operatorname{H}_{j} \in \operatorname{C}(O_{g}; X_{g_{j}})$ $(j = 1, 2)$.

<u>Definition</u>. Let $s_1 + s_2 \ge d_J$. The Poisson bracket of the functions H_1, H_2 is the function $\{H_1, H_2\} \in C(O_8)$ defined by

$$\{\mathbf{H}_1,\mathbf{H}_2\} = \langle \mathbf{J}\nabla \mathbf{H}_1,\nabla \mathbf{H}_2 \rangle_{\mathbf{X}} .$$

Let $0 < \epsilon \leq 1$ and $H \in C^2(O_g)$, let conditions (2.10), (2.11) be satisfied and $S^t \in C^1(O_g^1; O_g)$, $0 \leq t \leq T = \delta/K$, be the flow of the equation

$$\dot{\mathbf{x}} = \epsilon \ \mathbf{J} \nabla \mathbf{H}(\mathbf{x})$$
.

<u>Theorem 2.5</u>. For every $G \in C^1(O_g)$ $G(S^t(x)) = G(x) + t \epsilon \{H,G\}(x) + O((\epsilon t)^2)$ $\forall x \in O_g^1$, $\forall 0 \le t \le T$.

Proof. From the conditions on H it is easy to see that

$$S^{t}(x) = x + t \epsilon J \overline{V} H(x) + O(t \epsilon)^{2}$$
 in X_{s}

So

$$G(S^{t}(x))-G(x) = \langle \nabla G(x), S^{t}(x)-x \rangle_{X} + O ||S^{t}x-x||_{s}^{2} =$$

$$= t \epsilon \langle \nabla G(\mathbf{x}), J \nabla H(\mathbf{x}) \rangle_{\mathbf{X}} + O(\epsilon t)^2$$

.

and the theorem is proved.

..

3. Local solvability of Hamiltonian equations

Let $\{Y, \{Y_s\}, a\}$ be SHS, let O_s be a domain in Y_s and let

$$\mathbf{H} \in \mathbf{C}^{2}(\mathbf{O}_{g}), \ \mathbf{H}(\mathbf{y}) = \frac{1}{2} \langle \mathbf{A}\mathbf{y}, \mathbf{y} \rangle_{\mathbf{Y}} + \mathbf{H}_{0}(\mathbf{y}) .$$

Here A is an isomorphism of scale $\{Y_g\}$ of order $d_A \ge 0$;

$$A: Y_{s} \xrightarrow{\sim} Y_{s-d_{A}} \quad \forall s \in \mathbb{R} , \qquad (3.1)$$

and the operator

$$A: D(A) \subset Y \longrightarrow Y$$
, $D(A) = Y_{d_A}$

is selfadjoint. So $\nabla(\frac{1}{2} \langle Ay, y \rangle_Y)(y) = Ay$, and the Hamiltonian equation corresponding to H has the form

$$\dot{\mathbf{y}} = \mathbf{J}(\mathbf{A}\mathbf{y} + \nabla \mathbf{H}_{\mathbf{0}}(\mathbf{y})) \tag{3.2}$$

We shall prove a simple theorem on the local solvability of equation (3.2) which will suit well to our aims. To formulate the theorem let us suppose that

$$\operatorname{Lip}(\mathsf{J}\nabla \mathsf{H}_{0}: \mathsf{O}_{\mathsf{g}} \longrightarrow \mathsf{Y}_{\mathsf{g}}) \leq \mathsf{K}$$

$$(3.3)$$

for some $s \ge 0$ and let $O^2, O^1 \subset Y_s$ be domains with the following properties:

$$O^2 \subset O^1 \subset O_{\mathbf{s}}$$
, $\operatorname{dist}_{\mathbf{Y}_{\mathbf{s}}}(O^1, \mathbf{Y}_{\mathbf{s}} \setminus O_{\mathbf{s}}) \geq \delta > 0$. (3.4)

-18-

Theorem 3.1. Let

$$AJy = JAy \quad \forall y \in Y_{m}$$
(3.5)

$$\langle Ay_1, y_2 \rangle_8 = \langle y_1, Ay_2 \rangle_8, \quad \langle Jy_1, y_2 \rangle_8 = -\langle y_1, Jy_2 \rangle_8 \quad \forall y_1, y_2 \in Y_{m}.$$

(3.6)

Suppose that every strong solutions y(t) of equation (3.2) with initial condition $y(0) = y_0 \in O^2$ stays inside O^1 for $0 \le t \le T$. Then for $y_0 \in O^2 \cap Y_{s+d_1}$, $d_1 = d_A + d_J$, there exists a unique strong solution y(t) for $0 \le t \le T$, and for $y_0 \in O^2$ there exists a unique weak solution y(t) for $0 \le t \le T$.

<u>Proof</u>. Let us continue the mapping $J\nabla H_0 : O^1 \longrightarrow Y_s$ to a Lipschitz one $V : Y_s \longrightarrow Y_s$. One may take for example

$$V(\mathbf{y}) = \begin{cases} \chi(\mathbf{y}) \mathbf{J} \nabla \mathbf{H}_0(\mathbf{y}) , & \mathbf{y} \in \mathbf{O}_{\mathbf{g}} \\ 0, \mathbf{y} \notin \mathbf{O}_{\mathbf{g}} , \end{cases}$$

where $\chi(\mathbf{y}) = \delta^{-1} \max(0, \delta - \operatorname{dist}_{\mathbf{Y}_{g}}(\mathbf{y}; \mathbf{O}^{1}))$ (see (3.4)). The function χ is Lipschitz, it is equal to 1 in \mathbf{O}^{1} and to 0 out of \mathbf{O}_{g} . So $\operatorname{Lip}(\mathbf{V}) \leq \mathbf{K}^{1}$ and $\mathbf{V}|_{\mathbf{O}^{1}} = \mathbf{J} \nabla \mathbf{H}_{0}$.

Let us consider the equation

$$\dot{\mathbf{y}} = \mathbf{J}\mathbf{A}\mathbf{y} + \mathbf{V}(\mathbf{y}) \tag{3.7}$$

Its solution y(t) is a solution of equation (3.2) until $y(t) \in O^1$. Let us consider the linear equation

$$\dot{\mathbf{y}} = \mathbf{J}\mathbf{A}\mathbf{y}$$
, (3.8)

too. From (3.5), (3.6) it follows that

$$\langle AJy_1, y_2 \rangle_s = -\langle y_1, AJy_2 \rangle_s \quad \forall y_1, y_2 \in Y_{\omega}$$

so by repeating the proof of Lemma 1.1 one can obtain that operator $(AJ)^{-1}: Y_s \longrightarrow Y_s$ is anti selfadjoint. So the operator

$$AJ : D(AJ) = Y_{s+d_1} C Y_s \longrightarrow Y_s$$

is anti selfadjoint, too. Due to Stone's theorem [RS1] for $y(0) = y_0 \in Y_{s+d_1}$ equation (3.8) has a unique strong solution and the mapping

$$S^{T}: Y_{s+d_{1}} \longrightarrow Y_{s+d_{1}}, y(0) \longmapsto y(T), T > 0$$

is isometric with respect to the Y_s -norm. Equation (3.7) is a Lipschitz perturbation of (3.8). So it has the unique strong solution y(t), $t \ge 0$, for every $y(0) \in Y_{s+d_1}$ and the unique weak solution for every $y(0) \in Y_s$ (see [B]). If $y(0) = y_0 \in O^2$ then due to the theorem's hypotheses such a solution does not leave domain O^1 for $0 \le t \le T$ and for such a "t" it is the unque solution of equation (3.7).

۰ ^۱

The theorem above reduces the problem of solving equation (3.2) to the problem of finding a *priori* estimate for its solutions.

4. Toroidal phase space

Let us consider a toroidal phase space of the form $\mathcal{Y} = \mathbf{T}^n \times \mathbb{R}^n \times Y$. Here $\mathbb{T}^n = \mathbb{R}^n / 2\pi \mathbb{Z}^n$ is the n-dimensional torus, $Y = Y_0$, $\{Y_g | s \in \mathbb{R}\}$ is a scale of Hilbert spaces which satisfies properties a)-c) (see above). Let us denote $\mathcal{Y}_g = \mathbb{T}^n \times \mathbb{R}^n \times Y_g$. Every space \mathcal{Y}_g has a natural metric dist_g and a natural structure of a Hilbert manifold with local charts

$$K(q^{0}) \times \mathbb{R}^{n} \times Y_{g}, K(q^{0}) = \{q \in \mathbb{R}^{n} | |q_{j} - q_{j}^{0}| < \pi \forall j\}$$

(see [Ch-B]). So

$$\mathbf{T}_{u} \ \mathscr{Y}_{s} \cong \mathbb{R}^{n} \times \mathbb{R}^{n} \times \mathbf{Y}_{s} \equiv \mathbf{Z}_{s} \quad \forall u \in \ \mathscr{Y}_{s} \ ,$$

Let J^{Y} be an isomorphism of the scale $\{Y_{g}\}$ with properties d), e) and

$$\mathbf{J}^{\mathbf{T}}: \mathbb{R}^{\mathbf{n}} \times \mathbb{R}^{\mathbf{n}} \longrightarrow \mathbb{R}^{\mathbf{n}} \times \mathbb{R}^{\mathbf{n}} , \ (\mathbf{q},\mathbf{p}) \longleftarrow (-\mathbf{p},\mathbf{q})$$

Let us denote by $J^{\mathscr{Y}}$ the operator

$$\mathbf{J}^{\mathscr{Y}} = \mathbf{J}^{\mathrm{T}} \times \mathbf{J}^{\mathrm{Y}} : \mathbf{Z}_{\mathbf{g}} = (\mathbb{R}^{n} \times \mathbb{R}^{n}) \times \mathbf{Y}_{\mathbf{g}} \longrightarrow \mathbf{Z}_{\mathbf{g} - \mathbf{d}_{\mathrm{J}}} = (\mathbb{R}^{n} \times \mathbb{R}^{n}) \times \mathbf{Y}_{\mathbf{g} - \mathbf{d}_{\mathrm{J}}}$$

and introduce in \mathcal{Y}_{s} , $s \geq 0$, a 2-form

$$\alpha^{\mathscr{Y}} = \langle \mathbf{J}^{\mathscr{Y}} \, \mathrm{du}, \mathrm{du} \rangle_{\mathbf{Z}} , \ \mathbf{J}^{\mathscr{Y}} = -(\mathbf{J}^{\mathscr{Y}})^{-1} , \ \mathbf{T}_{\mathbf{u}}^{\mathscr{Y}} \, \mathbf{s} \cong \mathbf{Z}_{\mathbf{s}} .$$

<u>Definition</u>. The triple $\{\mathcal{Y}, \{\mathcal{Y}_s\}, a^{\mathcal{Y}}\}$ is called toroidal symplectic Hilbert scale (TSHS).

Let O_s be a domain in \mathcal{Y}_s and $H \in C^1(O_s)$. Then the Hamiltonian equations corresponding to H have the form

$$\dot{\mathbf{q}}_{\mathbf{j}} = \frac{\partial \mathbf{H}}{\partial \mathbf{p}_{\mathbf{j}}}, \ \dot{\mathbf{p}}_{\mathbf{j}} = -\frac{\partial \mathbf{H}}{\partial \mathbf{q}_{\mathbf{j}}} (1 \le \mathbf{j} \le \mathbf{n}), \ \dot{\mathbf{y}} = \mathbf{J}^{\mathbf{Y}} \nabla_{\mathbf{y}} \mathbf{H}$$
 (4.1)

The definitions of strong and weak solutions for equations (4.1) are analogous to those for equation (1.3).

The Poisson bracket of two functions H_1, H_2 with $H_j \in C^1(O_s)$, $\nabla_y H_j \in C(O_s; Y_{s_i})$ (j = 1,2), $s_1 + s_2 \ge d_J$, takes the form

$$\{\mathbf{H}_{1},\mathbf{H}_{2}\}(\mathbf{q},\mathbf{p},\mathbf{y}) = \sum_{j=1}^{n} \left[-\frac{\partial\mathbf{H}_{1}}{\partial\mathbf{q}_{j}} \frac{\partial\mathbf{H}_{2}}{\partial\mathbf{p}_{j}} + \frac{\partial\mathbf{H}_{1}}{\partial\mathbf{p}_{j}} \frac{\partial\mathbf{H}_{2}}{\partial\mathbf{q}_{j}} \right] + \left\langle \mathbf{J}^{\mathbf{Y}} \nabla_{\mathbf{y}} \mathbf{H}_{1}, \nabla_{\mathbf{y}} \mathbf{H}_{2} \right\rangle_{\mathbf{Y}}$$

The results of section 1-3 readily extend to canonical transformations and Hamiltonian equations in TSHS. We'll formulate analogs of Theorems 2.2, 2.4, 2.5 and 3.1 only.

<u>Proposition 4.1</u>. The statements of Theorem 2.2 remain true if anyone of the spaces X, Y is replaced by a toroidal symplectic Hilbert space (with equations of motion replaced accordingly).

Let O_s^1, O_s be domains in $\mathcal{Y}_s, O_s^1 \in O_s$ and

dist
$$\mathcal{Y}_{\mathfrak{s}}(\mathcal{O}_{\mathfrak{s}}^{1};\mathcal{Y}_{\mathfrak{s}}\setminus\mathcal{O}_{\mathfrak{s}}) > \delta > 0$$
 (4.2)

Let $H \in C^2(O_g)$ and $V_H = (\nabla_p H, -\nabla_q H, J^Y \nabla_y H)$ be corresponding Hamitonian vector-field. Let us suppose that $V_H \in C^1(O_g; Z_g)$ and

$$|V_{\mathbf{H}}(\mathbf{q},\mathbf{p},\mathbf{y})| \leq K \quad \forall (\mathbf{q},\mathbf{p},\mathbf{y}), \quad \operatorname{Lip}(V_{\mathbf{H}}: O_{\mathbf{g}} \longrightarrow Z_{\mathbf{g}}) \leq K$$

$$(4.3)$$

Then the flow mappings $S^t: O_s^1 \longrightarrow O_s$ exist for $0 \le t \le T = \delta/K$ and every S^t is C^1 -diffeomorphism on its image.

<u>Proposition 4.2</u>. For every $0 \le t \le \delta/K$ the mapping S^t is a canonical transformation.

Let conditions (4.2), (4.3) be fulfilled and $S^t \in C^1(O_S^1;O_S)$ be the flow of equation $\frac{d}{dt}(q,p,y) = \epsilon V_H(q,p,y)$.

<u>Proposition 4.3</u>. For every $G \in C^{1}(O_{g})$ $G(S^{t}(\mathfrak{h})) = G(\mathfrak{h}) + t \epsilon \{H,G\}(\mathfrak{h}) + O(\epsilon t)^{2}$ $\forall \mathfrak{h} = (q,p,y) \in O_{g}^{1}, \forall 0 \leq t \leq T = \delta/K$.

Let in (4.1) $H = \frac{1}{2} \langle Ay, y \rangle_{Y} + H_{0}(p,q,y)$ and let the linear operator A be the same as in part 3. Let O_{s}^{1} , O_{s}^{2} , O_{s} be domains in \mathcal{Y}_{s} , $O_{s}^{2} \subset O_{s}^{1} \subset O_{s}$ and suppose inequality (4.2) is fulfilled. Let us suppose that $Lip(V_{H_{0}}: O_{s} \longrightarrow Z_{s}) \leq K$.

<u>Proposition 4.4</u>. Let us suppose that relations (3.5), (3.6) are fulfilled and that every strong solution of (4.1) with initial point $h_0 = (q_0, p_0, y_0) \in O_s^2$ stays in domain O_s^1 for

 $0 \leq t \leq T$. Then for $\mathfrak{h}_0 \in O_8^2 \cap \mathscr{Y}_{s+d_1}$, $d_1 = d_A + d_J$, and for $0 \leq t \leq T$ there exists a unique strong solution of (4.1); for $\mathfrak{h}_0 \in O_8^2$, $0 \leq t \leq T$, there exists a unique weak solution of (4.1).

The proofs of Propositions 4.1-4.3 are the same as the proofs of the corresponding theorems.

۱

5. A version of the former constructions

All construction of the sections 1-4 have natural analogs for the scales of Hilbert spaces depending on the integer index, i.e. for the scales $\{Z_g | s \in \mathbb{Z}\}$. SHS and TSHS with discrete scales $\{Z_g\}$ are sometimes more convenient to study Hamiltonian equations of form (3.2) with integer d_A , d_J . For example, KdV equation (1.5), (1.5') ($d_J = 1$, $d_A =$ 2) and nonlinear Schrödinger equation (1.4) ($d_J = 0$, $d_A = 2$).

All the statements of sections 1-4 have natural analogs for discrete scales. The proofs are the same.

References

[A]	V.I. Arnol'd, Mathematical methods in classical mechanics. "Nauka", Moscow, 1974; English transl., Springer-Verlag, 1978
[B]	H. Brezis, Operateurs maximaux monotones et semigroupes de contractions dans les espaces de Hilbert. North-Holland, 1973
[Ch-B]	Y. Choquet–Bruhat, C. De Witt–Morette, Analysis, manifolds and physics. North–Holland, 1982
[K]	T. Kato, Quasi–linear equations of evolutions, with applications to partial differential equations. Lecture Notes Math., 1975, v. 448, p. 25–70
[L]	JL. Lions, Quelques methodes de resolution des problemes aux limites nonlineaires. Dunod, Paris, 1969
[N]	S.P. Novikov (ed)., Theory of solitons. "Nauka", Moscow, 1980; English transl., Plenum Press, New York, 1984
[RS1]	M. Reed, B. Simon, Methods of modern mathematical physics, Vol. 1. Academic Press, Inc., 1980
[RS2]	M. Reed, B. Simon, Methods of modern mathematical physics, Vol. 2.

Academic Press, Inc. 1975

•